728

A Methodology for Collectmg \
” Engineering Data

VICTOR R. BASILI, MEMBER, 1EEE; AND DAVID

Abstract—An effective data collection method for evaluating software

development methodologies and for studying the software development
process is described. The method uses goal-directed data collection to
evaluate methodologies with respect to the claims made for them. Such’
claims are used as a basis for defining the goals of the data collection,
establishing a list of questions of interest to be answered by data analy-
sis, defining a set of data categorization schemes, and designing a data
collection form. _ ‘

The data to be collected are based on the changes made to the software
during development, and are obtained when the changes are made. To
ensure accuracy of the data, validation is performed concurrently with
software development and data collection. Validation is based on inter-
views with those people supplying the data. Results from using the meth-
odology show that data validation is a necessary part of change data
collection. Without it, as much as 50 percent of the data may be
€IToneous.

Feasibility of the data collection methodology was demonstrated by
applying it to five different projects in two different environments.
The application showed that the methodology was both feasible and
useful.

Index Terms—Data collection, data collection methodology, error
analysis, error classification, software engineering experimentation.

I. INTRODUCTION

CCORDING to the mythology of computer science, the

first computer program ever written contained an error.
Error detection and error correction are now considered to be
the major cost factors in software development [1]-[3]. Much
current and recent research is devoted to finding ways of pre-
venting software errors. This research includes areas such as
requirements definition [4], automatic and semiautomatic
program generation [5], [6], functional specification [7],
abstract specification [8] -[11], procedural specification [12],
code specification [13]-[15], verification [16]-[18], coding
techniques [19]-[24], error detection [25], testing [26],
[27], and language design [16], [28]-[31].

One result of this research is that techniques claimed to be
effective for preventing errors are in abundance. Unfortunately,
there have been few attempts at experimental verification of
such claims. The purpose of this paper is to show how to
obtain valid data that may be used both to learn more about
the software development process and to evaluate software
development methodologies in production environments. Pre-

Manuscript received December 13, 1982; revised January 11, 1984.
This work was supported in part by the National Aeronautics and Space
Administration under Grant NSF-5123 to the University of Maryland.

V. R. Basili is with the Department of Computer Science, University
of Maryland, College Park, MD 20742.

D. M. Weiss is with the Naval Research Laboratory, Washington, DC
2037s.

vious 15}, {32}
data and evaluatio
ware development
previously ‘mentio
methodology desct
studies. conducted
and by NASA’s So

The remainder g
collection and the
Section-II is a ste
methodology. Se
methodology to th)
the lessons learneg

- ated problems, limj

Software -Engineer,

The course of
question of opinio:
ware engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-10, NO. 6, NOVEMBER 1984

'alid Software

M. WEISS

[34] and companion [35] papers present
n results, obtained from two different soft-
environments. (Not all of the techniques
ned were included in these studies.) The
ibed in this paper was developed as part of
by the Naval Research Laboratory (NRL)
ftware Engineering Laboratory (SEL) [36].
f this section discusses motivation for data
attributes of a useful data collection effort.
p-by-step description of the data collection
ction HI describes the application of the
e SEL environment. Section IV summarizes
I concerning data.collection and its associ-
tations, and applications.

ing Experimentation

action in most sciences when faced with a

his to obtain experimental verification. Soft-
disputes are infrequently settled that way.

Data from experiments exist, but rarely apply to the question

to be settled. The
affairs. - Probably

re are a numiber of reasons for this state of
the two most important are the number of

potential confounding factors involved in software studies and

the expense of atte

trial environment i

mpting to do.controlled studies in an indus-
volving medium or large scale systems.

Rather than attempting controlled studies, we have devised a
method for conducting accurate causal analyses in production

environments. Cat
of errors and the
Such analyses are
software developm
ot reject claims mj
better techniques
errors. - Relatively
the literature; som

Attributes of Usefy

To provide usefy
display certain attg

sal analyses are efforts to discover the causes
reasons that changes are made to software.
designed to provide some insight into the
ent and maintenance processes, help confirm
ade for different methodologies, and lead to
for prevention, detection, and correction of
few examples of this kind of study exist in

¢ examples are [4], [15], [32], [37], [38].

! Data Collection

I data, a data collection methodology must
ibutes. Since much of the data of interest

are collected during the test phase, complete analysis of the

data must await ps

~is important that
currently with deve

Developers can
development. In 3
opment environme
some form of con

0098-5589/84/1100-0728$01 00 ©1984 11

oject completion. For accuracy reasons, it
data collection and validation proceed con-
lopment.

provide data as they make changes during
1 reasonably well-controlled software devel-
nt, documentation and code are placed under
figuration control before being released to

T

"EE

BASILI AND WEISS: VALID SOFTWARE ENGINEERING DATA

their users. Changes may then be defined as alterations to
baselined design, code, or documentation.

A key factor in the data gathering process is validation of
the data as they become available. Such validity checks result
in corrections to the data that cannot be made at later times
owing to the nature of human memory [39]. Timeliness of
both data collection and data validation is quite important to
the accuracy of the analysis.

Careful validation means that the data to be collected must
be carefully specified, so that those supplying data, those vali-
dating data, and those performing the analyses will have a con-
sistent view of the data collected. This is especially important
for the purposes of repetition of the studies in both the same
and different environments.

Careful specification of the data requires the data collectors
to have a clear idea of the goals of the study. Specifying goals
is itself an important issue, since, without goals, one runs the
risk of collecting unretated, meaningless data.

To obtain insight into the software development process, the
data collectors need to know the kinds of errors committed and
the kinds of changes made. To identify troublesome issues, the
effort needed to make each change is necessary. For greatest
usefulness, one would like to study projects from software
production environments involving teams of programmers.

We may summarize the preceding as the following six
criteria.

1) The data must contain information permitting identifica-
tion of the types of errors and changes made.

2) The data must include the cost of making changes.

3) Data to be collected must be defined as a result of clear
specification of the goals of the study.

4) Data should include studies of projects from production
environments, involving teams of programmers.

5) Data analysis should be historical; data must be collected
and validated concurrently with development.

6) Data classification schemes to be used must be carefully
specified for the sake of repeatability of the study in the same
and different environments.

II. SCHEMA FOR THE INVESTIGATIVE METHODOLOGY

Our data collection methodology is goal oriented. It starts
with a set of goals to be satisfied, uses these to generate a set
of questions to be answered, and then proceeds step-by-step
through the design and implementation of a data collection
and validation mechanism. Analysis of the data yields answers
to the questions of interest, and may also yield a new set of
questions. The procedure relies heavily on an interactive data
validation process; those supplying the data are interviewed for
validation purposes concurrently with the software develop-
ment process. The methodology has been used in two different
environments to study five software projects developed by
groups with different backgrounds, using very different soft-
ware development methodologies. In both environments it
yielded answers to most questions of interest and some insight
into the development methodologies used. Table I is a sum-
mary of characteristics of completed projects that have been
studied. Definitions of the characteristics are the same as in
[40]. All examples used in this paper are taken from studies
of the SEL environement.

methodology.

729
TABLE 1
SUMMARY OF PROJECT INFORMATION
SELI | SEL2 | SEL3 [NRL) [

Effort (work-months) 790 | 396 | 987 | 480
Nurnber of developers 5 4 7 9

Lines ofi code (K) 509 | 754 | 854 | 21.8
Developed tines of code || 465 | 31.1 | 786 | 2.8
Nurnber of| components | 502 490 839 253

The projects studied vary widely with respect to factors such
as application, size, development team, methodology, hardware,
and support software. Nonetheless, the same basic data collec-
tion methodology whs applicable everywhere. The schema used
has six basic steps, ilisted in the following, with considerable
feedback and iteration occurring at several different places.

1) Establish the Goals of the Data Collection: We divide
goals into two categbries: those that may be used to evaluate a
particular software @evelopment methodology relative to the
claims made for it, and those that are common to all method-
ologies to be studied.

As an example, a goal of a particular methodology, such as
information hiding [41], might be to develop software that
is easy to change. The corresponding data collection goal is to
evaluate the success of the developers in meeting this goal, i.e.,
evaluate the ease with which the software can be changed.
Goals in this category may be of more interest to those who
are involved in developing or testing a particular methodology,
and must be defined cooperatively with them.

A goal that is of interest regardless of the methodology being
used is to help understand the environment and focus atten-
tion on techniques that are useful there. Another such goal is
to characterize changes in ways that permit comparisons across
projects and environments. Such goals may interest soft-
ware engineers, programmers, managers, and others more than

goals that are speciﬂic to the success or failure of a particular
|

Consequences of Omitting Goals: Without goals, one is
likely to obtain data in which either incomplete patterns or no
patterns are discernible. As an example, one goal of an early
study [15] was to characterize errors. During data analysis, it
became desirable to discover the fraction of errors that were the
result of changes made to the software for some reason other
than to correct an ejrror. Unfortunately, none of the goals of
the study was related to this type of change, and there were
no such data availabﬂe.

2) Develop a List of Questions of Interest: Once the goals of
the study have been} established, they may be used to develop
a list of questions to be answered by the study. Questions of
interest define data parameters and categorizations that permit
quantitative analysis of the data. In general, each goal will result
in the generation of several different questions of interest. As
an example, if the gpal is to characterize changes, some corre-
sponding questions of interest are: “What is the distribution of
changes according to the reason for the change?”, “What is the
distribution of changes across system components?”, “What is
the distribution of eﬁfort to design changes?”

As a second example, if the goal is to evaluate the ease with
which software can be changed, we may identify questions of
interest such as: “Is%it clear where a change has to be made in
the software?”, “Are changes confined to single modules?”,
“What was the average effort involved in making a change?”’

730

Questions of interest form a bridge between subjectively
determined goals of the study and the quantitative measures
to be used in the study. They permit the investigators to deter-
mine the quantities that need to be measured and the aspects
of the goals that can be measured. As an example, to discover
how a design document is being used, one might collect data
that show how the document was being used when the need
for a change to it was discovered. This may be the only aspect
of the document’s use that is measurable.

In addition to forcing sharper definition of goals, questions
of interest have the desirable property of forcing the investiga-
tors to consider the data analyses to be performed before any
data are collected.

Goals for which questions of interest cannot be formulated
and goals that cannot be satisfied because adequate measures
cannot be defined may be discarded. Once formulated, ques-
tions can be evaluated to determine if they completely cover
their associated goals and if they define quantitative measures.

Consequences of Omitting Questions of Interest: Without
questions of interest, data distributions that are needed for
evaluation purposes, such as the distribution of effort involved
in making changes, may have to be constructed in an ad hoc
way, and be incomplete or inaccurate. As a result, there may
be no quantitative basis for satisfying the goals of the study.
In effect, goals are not well defined if questions of interest are
not or cannot be formulated.

3) Establish Data Categories: Once the questions of interest
have been established, categorization schemes for the changes
and errors to be examined may be constructed. Each question
generally induces a categorization scheme. If one question is,
“What was the distribution of changes according to the reason
for the change?”, one will want to classify changes according
to the reason they are made. A simple categorization scheme
of this sort is error corrections versus nonerror corrections
(hereafter called modifications).

Each of these categories may be further subcategorized
according to reason. As an example, modifications could be
subdivided into modifications resulting from requirements
changes, modifications resulting from a change in the develop-
ment support environment (e.g., compiler change), planned
enhancements, optimizations, and others.

Such a categorization permits characterization of the changes
with respect to the stability of the development environment,
with respect to different kinds of development activities,
etc. When matched with another categorization such as the
difficulty of making changes, this scheme also reveals which
changes are the most difficult to make.

Each categorization scheme should be complete and consis-
tent, i.e., every change should fit exactly one of the subcate-
gories of the scheme. To ensure completeness, we usually add
the category “Other” asa subcategory. Where some changes are
not suited to the scheme, the subcategory “Not Applicable”
may be used. As an example, if the scheme includes subcate-
gories for different levels of effort in isolating error causes, then
errors for which the cause need not be isolated (e.g., clerical
errors noticed when reading code) belong in the “Not Appli-
cable” subcategory.

Consequences of Not Defining Data Categories Before
Collecting Data: Omitting the data categorization schemes

may result in data

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-10, NO. 6, NOVEMBER 1984

that cannot later be identified as fitting any

particular categorization. Each change then defines its own

category, and the

result is an overwhelming multiplicity of

data categories, with little data in each category.

4) Design and Test Data Collection Form: To provide a
permanent copy of the data and to reinforce the programmers’
memories, a data collection form is used. Form design was
one of the trickiest parts of the studies conducted, primarily
because forms represent a compromise among conflicting

objectives.
plete, detailed set

Typical conflicts are the desire to collect a com-

of data that may be used to answer a wide

range of questions of interest, and the need to minimize the time

and effort involved

in supplying the data. Satisfying the former

leads to large, detailed forms that require much time to fill

out.
form,

Including the da
quite beneficial, C

are resolved early (
may be tailored to

in configuration m;

are a useful part of

The latter requires a short, check-off-the-boxes type of

ta suppliers in the form design process is
omplaints by those who must use the form
.., before data collection begins), the form
the needs of the data suppliers (e.g., for use
anagement), and the data suppliers feel they
the data collection process.

The forms must be constructed so that the data they contain
can be used to answer the questions of interest. Several design
iterations and test periods are generally needed before a satis-
factory design is found.

Our principal goals in form design were to produce a form
that

a) fit on one piece of paper,

b) could be used in severat different programming environ-
ments, and

¢) permitted the programmer some flexibility in describ-
ing the change.

Fig. 1 shows the last version of the form used for the SEL
studies reported here. (An earlier version of the form was
significantly modified as a result of experience gained in the
data collection and analysis processes.) The first sections of
the form request textual descriptions of the change and the
reason it was made. Following sections contain questions and
check-off tables that reflect various categorization schemes.

As an example, g categorization of time to design changes is
requested in the first question following the description of the
change. The completer of the form is given the choice of four
categories (one hour or less, one hour to one day, one day to
three days, and more than three days) that cover all possibil-
ities for design time.

Consequences of Not Usmg a Data Collection Form: With-
out a data collection form, it is necessary to rely on the devel-
oper’s memories and on perusal of early versions of design

~ documentation and code to identify and categorize the changes

made. This approach leads to incomplete, inaccurate data.

5) Collect and Validate Data: Data are collected by requir-
ing those people who are making software changes to complete
a change report form for each change made, as soon as the
change is completed. Validation consists of checking the forms
for correctness, copsistency, and completeness. As part of the
validation process,|in cases whete such checks reveal problems,
the people who filled out the forms are interviewed. Both

731

VALID SOFTWARE ENGINEERING DATA

BASILI AND WEISS

oeq (q) 1uoIg (e) -wioj 110dar oueyd TS T Sig

@

ta1eQ :pazuoyny = ey

‘SuONED jtuses
11 pue asned s34 bulpuesiapun pue ‘abueys IO 0U3 syl Buizuobaies uy |nydjay 39 Aew 1e vonewso Ul Aue oAb asealy

NOLLVWHOINI TYNOLLIOQY - 3 NOILI3S

(®)

{82/9) 2-0us

uoIssIdx3 LR jO 40 2160) (OUUOD LI INEISIW © SeM JOLLS 3y

BIEP JO IMUDAIIS JO BNIEA AN INOGE UONAWINSSE UINTISHY € SEMm JOLD ay)

TuoneRAWIIdW] Jo ubisap Ul seA J0LS3 Ayl 3|

AINO SHOBHI NOLLYINIWIIEWI HO NDISIQ HO4

(3 v ureexz) g O Iusvodwod 3)6uls ¢ Jo vonTIVARWRCW! JO UBISIP Ayl Ui oL

1049 j21931D [} $IUAUCHIOD |esd4as BUtAIOAY] 40113 uBisag

123 LUB T 16T 353 pue Butpeo=—— ubisap’ $350S jeuoiDuny Suawanbay———

SWIMSAS IR JRIUI JOLID AN PIP VIYM

1181 3,ue) ONTT (T T s1eg/# dicday abueyD) sap

£306URYD SNOIALC & O palejal JOLID SIY Sem

{3 v uieydx3) on S35 ¢PIN PUNOIENIOM B SEM ‘DUNO) 223U §I

‘Aep 3UC UeY) 0" ‘Aep JUO 01 JAOY FUC ——— ‘33 40 Inoy U0

puno; pasy

E95NED B ALBIOSE OL PISM ALIR A SBM 1CUYAL

(3 w1 wieidx3) syl

anbiuydal §eosy

35Y AINGILIL/ADUM ;3155010

owng

ases)

voneluaWNIOp bulpeay

$952553W 10442 I1j100ds 153014

5368359 JoLsd warsAg

apod bngep erdedg

Ssawwesbosd Japo yitm syjey

UOssaa Jayno Aq Huipeas epo)

Jaunwesboid Aq Buipeal apo)

IR0 JO UONIFASL(

asn AdueIdsodes0

bunsal soueidadoy

SUNJ 353 Adueldasde-aug

aney asnes SWOIGWAG. 0013 uonepies
Buputy W puly Bunsaag vy weibosy
1njss300ng Inpssazang 0} pEn
$3RIADY saniAoy SRSy

$FSNRI S11 PUY PUE ‘JOU3 3 13219p ‘welboId A elEpyeA O PESN WaM S IANDE Jeum
BIVd3Y GNV NOILVAIIVA - 0 NOILD3S

ATINO SNOILIZHEOD HOYY3 HO3

Jajid '/ 7] iosd 30 0) sos13 [m] pRRadRISIW IO nu«toocw Jzo_unu_._um@m _‘u‘com—u:‘:m o
abenbuse| wdaoxs *, o 1ALs3 | lwo‘ ‘. s punsiy [PalddIaIuIsIW SO 3IOSUE NUIWRLNDIY =}
{¢pazpiaiseseyd 35ag Jona S §| MOH) BOBYS J0 3dAL - D NOLLD3S
ATINO SNOILIZHHOD HOBU3 BOS

ON saX ¢abueys eyl Aq vﬁv»:,« WIVOdWIoS SUC UeY) 310W sep
$II/AI 435N 4O JuaWINDIdW]
{3 ur werdxz) a0 O ! 20 “Aupqeureiuteus ‘Al jo {w]
abueyd JuawuosALR &) uonEISEPY a abueys 1nbal jo wor (]
A fededsfawn jo uoseziwncy 3 wswasueyus pauueid O

3pod Bnqap 3o woRajep/uUOILSL] (] uondaNo? Jou3 [

{Zpazuadeseys 353Q S5uey? Sy} S1 MOH) 3DONVHD 40 34AL - 8 NOILIIS

sAep ¢ weg aiow T *sAep £ 0} Aep ‘Aep | o1 snoy ('$33] 40 JnoYy |

abueys sy 1wt pue p pun 03 Wi UosIad Ul MIOLI S Sem ey

Teesersries uo paums sbueys

Tt UO paULLISIEP EBURLD JC) PIIN

{sea, Aeq yuow)

2papeau sem eBueyd Jeys BuiLiulIaP Ul pILY auom ¢ p 40} IPPE 3TYM S LEO443

{uoissea apnpdur) Yo ase p 0} wYM 1103443

éopew sem sSueys teupy INOILJINDS3A

opew sbueyd oyl sem Aypy INOSYIY
NOILVIUSILINIO! - ¥ NOILISS

31VQ IN3BEND IWYN LO3roud

WHd0d LHOdIY 3DNVHI

UIBWNN

732

70T

P
62
ko
£ 50
r]! 40
9 30
201 20
8 10 _“Q—‘l
g o 3 .__3__|
Req Design Debug Env PE Other
Change Type
SELL A
P 707
E oot
C
F{ S0 45
T 40
g 3T 2 24
F 201
B 10 *
g 1 .
Req ~ Design Debug Env PE Other

Change Type
SEL3

Fig. 2. Sources of modifications.

collection and validation are concurrent with software devel-
opment; the shorter the lag between completing the form and
conducting the interview, the more accurate the data.

Perhaps the most significant problem during data collection
and validation is ensuring that the data are complete, i.e., that
every change has been described on a form. The better con-
trolled the development process, the easier this is to do. At
each stage of the process where configuration control is im-
posed, change data may be collected. Where projects that we
have studied use formal configuration control, we have inte-
grated the configuration control procedures and the data col-
lection procedures, using the same forms for both, and iaking
advantage of configuration control procedures for validation
purposes. Since all changes must be reviewed by a configura-
tion control board in such cases, we are guaranteed capture of
all changes, i.e., that our data are complete. Furthermore, the
data collection overhead is absorbed into the configuration
control overhead, and is not visible as a separate source of irrita-
- tion to the developers.

Consequences of Omitting Validation: One result of con-
current development, data collection, and data validation is
that the accuracy of the collection process may be quantified.
Accuracy may be calculated by observing the number of mis-
takes made in completing data collection forms. One may then
compare, for any data category, prevalidation distributions
with postvalidation distributions. We call such an analysis a
validation analysis. The validation analysis of the SEL data
shows that it is possible for inaccuracies on the order of 50 per-
cent to be introduced by omitting validation. To emphasize
the consequences of omitting the validation procedures, we
present some of the results of the validation analysis of the SEL
data in Section III.

6) Analyze Data: Data are analyzed by calculating the pa-
rameters and distributions needed to answer the questions of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-10, NO. 6, NOVEMBER 1984

707

P
E 60
:5:4 507 49
T 401
p 29
201 :
R TR e BV
0
S 0
Req Design Debug Env PE Unknown
Change Type
BEL2
Key
Design Modifications caused by changes in design
Debug Modifications to insert or delete debug code
Env Modifications caused by changes in the

hardware or software environment

PE Planned Enhancements

Req Modifications caused by changes in requirements
or functionall specifications

Unknown Causes of these modifications are not known

interest. As an example, to answer the question “What was
the distribution of changes according to the reason for the
change?”, a distribution such as that shown in Fig. 2 might be
computed from the data.

Application of the|Schema

Applying the schema requires iterating among the steps sev-
eral times. Defining the goals and establishing the questions of
interest are tightly|coupled, as are establishing the questions of
interest designing and testing the form(s), and collecting and
validating the data. Many of the considerations involved in
implementing and integrating the steps of the schema have been
omitted here so that the reader may have an overview of the
process. The complete set of goals, questions of interest, and
data categorizations for the SEL projects are shown in [33].

Support Procedures and Facilities

In addition to |the activities directly involved in the data
collection effort, there are a number of support activities and
facilities required| Included as support activites are testing
the forms, collection and validation procedures, training the
programmers, selecting a database system to permit easy analy-
sis of the data, encoding and entering data into the database,
and developing analysis programs.

II1. DETAILS OF SEL DATA COLLECTION
AND VALIDATION

port and control software development. There was a full-time
librarian assigned to support SEL projects. All project library
changes were routed through the librarian. In general, we
define a change to be an alteration to baselined design, code,

In the SEL envi{onment, program libraries were used to sup-

or documentation,

For SEL purposes, only changes to code,

and documentation contained in the code, were studied. The

BASILI AND WEISS: VALID SOFTWARE ENGINEERING DATA

program libraries provided a convenient mechanism for identi-
fying changes.

Each time a programmer caused a library change, he was
required to complete a change report form (Fig. 1). The data
presented here are drawn from studies of three different SEL
projects, denoted SEL1, SEL2; and SEL3. The processing pro-
cedures were as follows.

1) Programmers were required to complete change report
forms for all changes made to library routines.

2) Programs were kept in the project library during the entire
test phase.

3) After a change was made a completed change report form
describing the change was submitted. The form was first infor-
mally reviewed by the project leader. It was then sent to the
SEL library staff to be logged and a unique identifier assigned
to it.

4) The change analyst reviewed the form and noted any
inconsistencies, omissions, or possible miscategorizations. Any
questions the analyst had were resolved in an interview with the
programmer. (Occasionally the project leader or system de-
signer was consulted rather than the individual programmer.)

5) The change analyst revised the form as indicated by the
results of the programmer interview, and returned it to the
library staff for further processing. -Revisions often involved
cases where several changes were reported on one form. In
these cases, the analyst ensured that there was only one change
reported per form; this often involved filling out new forms.
Forms created in this way are known as generated forms.
(Changes were considered to be different if they were made
for different reasons, if they were the result of different events,
or if they were made at substantially different times, e.g., sev-
eral weeks apart. As an example, two different requirements
amendments would result in two different change reports, even
if the changes were made at the same time in the same subrou-
tine.) Occasionally, one change was reported on several differ-
ent forms. The forms were then merged into one form, again
to ensure one and only one change per form. Forms created in
this way are known as combined forms.

6) The library staff encoded the form for entry into the
(automated) SEL database. A preliminary, automated check
of the form was made via a set of database support programs.
This check, mostly syntactic, ensured that the proper kinds of
values were encoded into the proper fields, e.g, that an alpha-
betic character was not entered where an integer was required.

7) The encoded data were entered into the SEL database.

8) The data were analyzed by a set of programs that com-
puted the necessary distributions to answer the questions of
interest.

Many of the reported SEL changes were error corrections.
We define an error to be a discrepancy between a specification
and its implementation. Although it was not always possible
to identify the exact location of an error, it was always possi-
ble to identify exactly each error correction. As a result, we
generally use the term error to mean error correction.

For data validation purposes, the most important parts of
the data collection procedure are the review by the change
analyst, and the associated programmer interview to resolve
uncertainties about the data.

733

The SEL validation procedures afforded a good chance to
discover whether validation was really necessary; it was possi-
ble to count the number of miscategorizations of changes and
associated misinformation. These counts were obtained by
counting the number|of times each question on the form was
incorrectly answered.

An example is misclassifications of errors as clerical errors.
(Clerical errors were defined as errors that occur in the mechan-
ical translation of an item from one format to another, e.g.,
from one coding sheet to another, or from one medium to
another, e.g., coding| sheets to cards.) For one of the SEL
projects, 46 errors originally classified as clerical.were actually
errors of other types. (One of these consisted of the program-
mer forgetting to include several lines of code in a subroutine.
Rather than clerical, this was classified as an error in the design
or implementation of] a single component of the system.) Ini-
tially, this project reported 238 changes, so we may say that
about 19 percent of the original reports were misclassified as
clerical efrors.

The SEL validation process was not good for verifying the
completeness of the reported data. We cannot tell from the
validation studies how many changes were never reported.
This weakness can be eliminated by integrating the data collec-
tion with stronger configuration control procedures.

Validation Differences Among SEL Projects

As experience was gained in collecting, validating, and analyz-
ing data for the SEL projects, the quality of the data improved
significantly, and the validation procedures changed slightly.
For SEL1 and SEL2, completed forms were examined and
programmers interviewed by a change analyst within a few
weeks (typically 3-6 \weeks) of the time the forms were com-
pleted. For project SEL2, the task leader (lead programmer
for the project) examined each form before the change analysts
saw it.

Project SEL3 was not monitored as closely as SEL1 and
SEL2. The task leader, who was the same as for SEL2, by
then understood the| data categorization schemes quite well
and again examined |the forms before sending them to the
SEL. The forms themselves were redesigned to be simpler but
still capture nearly all the same data. Finally, several of the
programmers were the same as on project SEL2 and were
experienced in completing the forms.

Estimating Inaccuracies in the Data

Although there is no completely objective way to quantify
the inaccuracy in the validated data, we believe it to be no more
than 5 percent for SEL1 and SEL2. By this we mean that no
more than 5 percent of the changes and errors are misclassified
in any of the data collection categories. For the major cate-
gories, such as whether a change is an error or modification,
the type of change, and the type of error, the inaccuracy is
probably no more than 3 percent.

For SEL3, we attempted to quantify the results of the vali-
dation procedures more carefully. After validation, forms
were categorized according to our confidence in their accuracy.
We used four categories.

734

707
60
50T
40T

xR
JoT .

Mmoo —~zZmMOXDmT
MIZB/OM MFDZ—HO=-I0

201

s s
PROJECT
Fig. 3. Corrected forms.

1) Those forms for which we had no doubt concerning the
accuracy of the data. Forms in this category were estimated
to have no more than a 1 percent chance of inaccuracy.

2) Those forms for which there was little doubt about the
accuracy of the data. Forms in this category were estimated
to have at most a 10 percent chance of an inaccuracy.

3) Those forms for which there was some uncertainty about
the accuracy, with an estimated inaccuracy rate of more than
30 percent. ‘

4) Those forms for which there was considerable uncertainty
about the accuracy, with an estimated inaccuracy rate of about
50 percent.

Applying the inaccuracy rates to the number of forms in
each category gave us an estimated inaccuracy of at most 3
percent in the validated forms for SEL3.

Prevalent Mistakes in Completing Forms

Clear patterns of mistakes and misclassifications in complet-
ing forms became evident during validation. As an example,
programmers on projects SEL1 and SEL2 frequently included
more than one change on one form. Often this was a result of
the programmers sending the changes to the library as a group.

Comparative Validation Results

Fig. 3 provides an overview of the results of the validation
process for the 3 SEL projects. The percentage of original
forms that had to be corrected as a result of the validation
process is shown. As an example, 32 percent of the originally
completed change report forms for SEL3 were corrected as a
result of validation. The percentages are based on the number
of original forms reported (since some forms were generated,
and some combined, the number of changes reported after
validation is different than the number reported before valida-
tion). Fig. 4 shows the number of generated forms expressed
as a percentage of total validated forms.

Fig. 3 shows that prevalidation SEL3 forms were significantly
‘more accurate than the prevalidation SEL1 or SEL2 forms.
Fig. 4 shows that SEL3 also had the lowest incidence of gen-
erated forms. Although not shown in the figures, combined
forms represented a very small fraction of the total validated
forms. Based on this analysis, the prevalidation SEL3 data are

407

considerably better

other projects. We

design of the form

M. —AZMODMY
WDOT OMADOD=TDC
~n

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-10, NO. 6, NOVEMBER 1984

—JL'T

SELL SEL2 SEL3
PROJECT
Fig. 4. Generated forms.
than the prevalidation data for either of the

believe the reasons for this are the improved
and the familiarity of the task leader and

programmers with the data collection process.

These results show that careful validation, including pro-
grammer interviews, is essential to the accuracy of any study

involving change data. Furthermore, it appears that with well-

designed forms and

programmer training, there is improvement

with time in the accuracy of the data one can obtain. We do

not believe that it

with programmer i

will ever be possible to dispense entirely
terviews, however.

Erroneous Classifications

Table II shows
and modifications
cent of the origin:

that could contrib

isclassifications of errors as modifications
s errors. As an example, for SEL1, 14 per-
forms were classified as modifications, but

pling of other kinds of classification errors
ute significantly to inaccuracy in the data.

‘All involve classification of an error into the wrong subcate-

gory. The first rqw shows errors that were classified by the
programmer as clerical, but were later reclassified as a result of

the validation proc
icant inaccuracy (1
the validation proc

ess into another category. For SEL1, signif-
0 percent) would be introduced by omitting
eSS,

Table IV is similar to Table III, but shows misclassifications
involving modifications for SEL1 and SEL3 (SEL2 data were
not analyzed for this purpose). The first row shows modifica-

tions that were cld
or specifications ¢
validation.

issified by the programmer as requirements
hanges, but were reclassified as a result of

Variation in Miscla,

sification

Data on misclassifications of change and error type subcate-
gories, such as shown in Table III, tend to vary considerably
among both projects and subcategories. (Misclassification of

clerical errors, as s
is most likely beca

own in Table III, is a good example.) This
use the misclassifications represent biases in

the judgments of the programmers. It became clear duting the

BASILI AND WEISS: VALID SOFTWARE ENGINEERING DATA

TABLE II
ERRONEOUS MODIFICATION AND ERROR CLASSIFICATIONS (PERCENT
OF ORIGINAL FORMS)

SEL1 | SEL2 SEL3
[odifications dassified os emrors 1% 4 less than 1% |
Errors dassified as modifications 1| 14% 5% 2%
TABLE 111
TypiCAL ERROR TYPE MISCLASSIFICATIONS (PERCENT OF ORIGINAL FORrMS)
igi SEL1 SEL2 SEL3
Clencal F 1972 % &%
Use of ing L. 0% 5% %
i Incorreat, or M isinterpreted Requirements || Unavailable | 0% | lessthan 17 |

Design Frror Unavaiiable | 8% 1%

TABLE 1V

ERRONEOUS MODIFICATION CLASSIFICATIONS (PERCENT OF
ORIGINAL FORrMS)

SEL1 SEL3
1% | lesthan1% |
1%
% less than 1% |
% | lesthan1% |

Lo]

Q10O [
;.
S
:
h

validation process that certain programmers tended toward
particular misclassifications.

The consistency between projects SEL2 and SEL3 in Table
III probably occurs because both projects had the same task
leader, who screened all forms before sending them to the SEL
for validation.

Conclusions Concerning Validation

The preceding sections have shown that the validation pro-
cess, particularly the programmer interviews, are a necessary
part of the data collection methodology. Inaccuracies on the
order of 50 percent may be introduced without this form of
validation. Furthermore, it appears that with appropriate
form design and programmer experience in completing forms,
the inaccuracy rate may be substantially reduced, although it
is doubtful that it can be reduced to the level where programmer
interviews may be omitted from the validation procedures.

A second significant conclusion is that the analysis performed
as part of the validation process may be used to guide the data
collection project; the analysis results show what data can be
reliably and practically collected, and what data cannot be.
Data collection goals, questions of interest, and data collection
forms may have to be revised accordingly. '

IV. RECOMMENDATIONS FOR DATA COLLECTORS

We believe we now have sufficient experience with change
data collection to be able to apply it successfully in a wide vari-
ety of environments. Although we have been able to make
comparisons between the data collected in the two environ-
ments we have studied, we would like to make comparisons
with a wider variety of environments. Such comparisons will
only be possible if more data become available. To encourage
the establishment of more data collection projects, we feel it is
important to describe a successful data collection methodol-
ogy, as we have done in the preceding sections, to point out
the pitfalls involved, and to suggest ways of avoiding those
pitfalls.

735

Procedural Lessons Learned

Problems encountered in various procedural aspects of the
studies were the most difficult to overcome. Perhaps the most
important are the following.

1) Clearly understanding the working environment and spec-
ifying the data colléction procedures were a key part of con-
ducting the investigation. Misunderstanding by the programmer
of the circumstances that require him/her to file a change report
form will prejudice the entire effort. Prevention of such mis-
understandings can in part be accomplished by training proce-
dures and good forms design, but feedback to the development
staff, i.e., those filling out the data collection forms, must not
be omitted.

2) Similarly, misunderstanding by the change analyst of the
circumstances that réquired a change to be made will result in
misclassifications and erroneous analyses. Our SEL data collec-
tion was helped by the use of a change analyst who had previ-
ously worked in the NASA environment and understood the
application and the development procedures used.

3) Timely data validation through interviews with those
responsible for reporting errors and changes was vital, espe-
cially during the first few projects to use the forms. Without
such validation procedures, data will be severely biased, and
the developers will not get the feedback to correct the proce-
dures they are using for reporting data.

4) Minimizing the overhead imposed on the people who
were required to complete change reports was an important
factor in obtaining complete and accurate data. Increased
overhead brought increased reluctance to supply and discuss
data. In projects where data collection has been integrated
with configuration control, the visible data collection and vali-
dation overhead is significantly decreased, and is no longer an
important factor in obtaining complete data. Because configu-
ration control procedures for the SEL environment were infor-
mal, we believe we d;id not capture all SEL changes.

5) In cases where an automated database is used, data con-
sistency and accuracy checks at or immediately prior to analysis
are vital. Errors in encoding data for entry into the database
will otherwise bias the data.

Nonprocedural Lessons Learned

In addition to the procedural problems involved in designing
and implementing a data collection study, we found several
other pitfalls that could have strongly affected our results and
their interpretation. They are listed in the following.

1) Perhaps the most significant of these pitfalls was the dan-
ger of interpreting the results without attempting to understand
factors in the environment that might affect the data. As an
example, we found a surprisingly small percentage of interface
errors on all of the SEL projects. This was surprising since
interfaces are an often-cited source of errors. There was also
other evidence in the data that the software was quite amenable
to change. In trying to understand these results, we discussed
them with the principal designer of the SEL projects (all of
which had the sameapplication). It was clear from the discus-
sion that as a result of their experience with the application,

736

the designers had learned what changes to expect to their sys-
tems, organized the design so that the expected changes would
be easy to make, and then reused the design from one project
to the next. Rather than misinterpreting the data to mean that
interfaces were not a significant software problem, we were
led to a better understanding of the environment we were
studying.

2) A second pitfall was underestimating the resources needed
to validate and analyze the data. Understanding the change
reports well enough to conduct meaningful, efficient program-
mer interviews for validation purposes initially consumed con-
siderable amounts of the change analysts’ time. Verifying that
the database was internally consistent, complete, and consistent
with the paper copies of reports was a continuing source of
frustration and a sink for time and effort.

3) A third potential pitfall in data collection is the sensitiv-
ity of the data. Programmers and designers sometimes need to
be convinced that error data will not be used against them. This
did not seem to be a significant problem on the projects studied
for a variety of reasons, including management support, pro-
cessing of the error data by people independent of the project,
identifying error reports in the analysis process by number
rather than name, informing newly hired project personnel
that completion of error reports was considered part of their
job, and high project morale. Furthermore, project manage-
ment did not need error data to evaluate performance.

4) One problem for which there is no simple solution is the
Hawthorne (or observer) effect [42]. When project personnel
become aware that an aspect of their behavior is being moni-
tored, their behavior will change. If error monitoring is a con-
tinuous, long-term activity that is part of the normal scheme
of software development, not associated with evaluation of
programmer performance, this effect may become insignificant.
We believe this was the case with the projects studied.

5) The sensitivity of error data is enhanced in an environ-
ment where development is done on contract. Contractors
may feel that such data are proprietary. Rules for data collec-
tion may have to be contractually specified.

Avoiding Data Collection Pitfalls

In the foregoing sections a number of potential pitfalls in
the data collection process have been described. The following
list includes suggestions that help avoid some of these pitfalls.

1) Select change analysts who are familiar with the environ-
ment, application, project, and development team.

2) Establish the goals of the data collection methodology and
define the questions of interest before attempting any data
collection. Establishing goals and defining questions shoud be
an iterative process performed in concert with the developers.
The developers® interests are then served as well as the data
collector’s. 4

3) For initial data collection efforts, keep the set of data
collection goals small. Both the volume of data and the time
consumed in gathering, validating, and analyzing it will be
unexpectedly large.

4) Design the data collection form so that it may be used
for configuration control, so that it is tailored to the project(s)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-10, NO. 6, NOVEMBER 1984

being studied, so that the data may be used for comparison
purposes, and so that those filling out the forms understand
the terminology used. Conduct training sessions in filling out
forms for newcomers.

5) Integrate data collection and validation procedures into
the configuration |control process. Data completeness and
accuracy are thereby improved, data collection is unobtrusive,
and collection and validation- become a part of the normal
development pro‘cedures. In cases where configuration control
is not used or is informal, allocate considerable time to pro-
grammer interviews, and, if possible, documentation search
and code reading. :

6) Automate as much of the data analysis process as possible.

Limitations

It has been previously noted that the main limitation of using
a goal-directed data collection approach in a production soft-
ware environment is the inability to isolate the effects of single
factors, For a varigty of reasons, controlled experiments that
may be used to test hypotheses concerning the effects of single
factors do not seem practical. Neither can one expect to use
the change data from goal-directed data collection to test such
hypotheses.

A second major limitation is that lost data cannot be accu-
rately recaptured. The data collected as a result of these studies
represent five yearg of data collection. During that time there
was _ considerable and continuing consideration given to the
appropriate goals-and questions of interest. Nonetheless, as
data were analyzed, it became clear that there was information
that was never requested but that would have been useful.
An example is the length of time each error remained in the
system. Programmiers correcting their own errors, which was
the usual case, can| supply these data easily at the time they
correct the error. |Our attempts to discover error entry and
removal -times after the end of development were fruitless.
(Error entry times were particularly difficult to discover.) This
type of example underscores the need for careful planning
prior to the start of|data collection. ‘

Recommendations

that May Be Provided to the Software
Developer ‘

The nature of the
environments do n
of particular factors
results cannot be u:

data collection methodology and its target
ot generally permit isolation of the effects
on the software development process. The
sed to prove that a particular factor in the

development proce

s causes particular kinds of errors, but can

be used to suggest that certain approaches, when applied in the
environment studied, will improve the development process.
The software developer may then be provided with a set. of
recommended approaches for improving the software develop-
ment process in his environment.

As an example, in the SEL environment neither external
problems, such as requirements changes, nor global problems,
such as interface design and specification, were significant.
Furthermore, the development environment was quite stable.
Most problems were associated with the individual program-
mer. The data show that in the SEL environment it would

BASILI AND WEISS: VALID SOFTWARE ENGINEERING DATA

clearly pay to impose more control on the process of compos-
ing individual routines.

Conclusions Concerning Data Collection for Methodology
Evaluation Purposes

The data collection schema presented has been applied in
two different environments. We have been able to draw the
following conclusions as a result.

1) In all cases, it has been possible to collect data concur-
rently with the software development process in a software
production environment.

2) Data collection may be used to evaluate the application
of a particular software development methodology, or simply
to learn more about the software development process. In the
former case, the better defined the methodology, the more
precisely the goals of the data collection may be stated.

3) The better controlled the development process, the more
accurate and complete the data.

4) For all projects studied, it has been necessary to validate
the data, including interviews with the project developers.

5) As patterns are discerned in the data collected, new ques-
tions of interest emerge. These questions may not be answer-
able with the available data, and may require establishing new
goals and questions of interest.

Motivations for Conducting Similar Studies

The difficulties involved in conducting large-scale controlled
software engineering experiments have as yet prevented evalu-
ations of software development methodologies in situations
where they are often claimed to work best. As a result, soft-
ware engineers must depend on less formal techniques that can
be used in real working environments to establish long-term
trends. We view goal-oriented data collection as one such tech-
nique and feel that more techniques, and many more results
obtained by applying such techniques, are needed.

ACKNOWLEDGMENT

The authors thank the many people at NASA/GSFC and
Computer Sciences Corporation who filled out forms and sub-
mitted to interviews, especially J. Grondalski and Dr. G. Page,
and the librarians, especially S. DePriest.

We thank Dr. J. Gannon, Dr. R. Meltzer, F. McGarry, Dr. G.
Page, Dr. D. Parnas, Dr. J. Shore, and Dr. M. Zelkowitz for
their many helpful suggestions.

Deserving of special mention is F. McGarry, who had suffi-
cient foresight and confidence to sponsor much of this work
and to offer his projects for study.

REFERENCES

[1] B. Boehm et al., Information Processing/Data Automation Impli-
cations of Air Force Command and Control Requirements in the
1980°s (CCIP-85), Space and Missile Syst. Org., Los Angeles, CA,
Feb. 1972,

B. Boehm, “Software and its impact: A quantitative assessment,”
Datamation, vol. 19, pp. 48-59, May 1973.

R. Wolverton, “The cost of developing large scale software,”
IEEE Trans. Comput., vol. C-23, no. 6, 1974.

T. Bell, D. Bixler, and M. Dyer, “An extendable approach to
computer-aided software requirements engineering,” IEEE Trans.
Software Eng., vol. SE-3, pp. 49-60, Jan. 1977.

(2]
(3]
[4]

{5

{61

(7

(8]

(91

(10]

1]

[12]
{13)
[14]

[15]

{16]
(17
(18]
119]
{20]
[21]
{22
{23]
[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]
[32]

(33]

[34]

A. Ambler, D."Gaod, J. Browne, et al., “GYPSY: A language for
specification and| implementation of verifiable programs,” in
Proc. ACM Conf.| Language Design for Reliable Software, Mar.
1977, pp. 1-10.

Z. Manna and R.|Waldinger, “Synthesis: Dreams = programs,”
IEEE Trans. Software Eng.,vol. SE-5, pp. 294-329, July 1979.
K. Heninger, “Specifying requirements for complex systems:
New techniques and their application,” IEEE Trans. Software
Eng., vol. SE-6, pp. 2-13, Jan. 1980.

D. L. Parnas, “A technique for software module specification
wtih examples,” Gommun. Ass. Comput. Mach., vol. 15, pp. 330-
336, May 1972.
J. Guttag, “The specification and application to programming of
abstract data types,” Comput. Syst. Res. Group, Dep. Comput.
Sci., Univ. Toronto, Ont., Canada, Rep. CSRG-59, 1975.

——, “Abstract data types and the development of data struc-
tures,” Commun.| Ass. Comput. Mach., vol. 20, pp. 396-404,
June 1976.
B. Liskov and S. Zilles, “Specification techniques for data abstrac-
tion,” IEEE Trans. Software Eng., vol. SE-1, pp. 7-19, Mar.
197S.

H. Mills, R. Linger, and B. Witt, Structured Programming Theory
and Practice. Reading, MA: Addison-Wesley, 1979.

S. Caine and E. Gordon, “PDL—A tool for software design,” in
Proc. Nat. Compult. Conf., 1975, pp. 271-276.

H. Elovitz, “An pxperiment in software engineering: The archi-
tecture research facility as a case study,” in Proc. 4th Int. Conf.
Software Eng., 1979, pp. 145-152.

D. Weiss, “Evaluating software development by error analysis: The
data from the architecture research facility,” J. Syst. Software,
vol. 1, pp. 57-70,/1979.

E. W. Dijkstra, 4| Discipline of Programming. Englewood Cliffs,
NJ: Prentice-Hall) 1976.

R. W. Floyd, “Alssigning meanings to programs,” in Proc. XIX
Symp. Appl. Math., Amer. Math. Soc., 1967, pp. 19-32.
C. A. R. Hoare, “An axiomatic basis for computer programming,”

Commun. Ass. Camput. Mach. , vol. 12, pp. 576-580, Oct. 1969.

F. Baker, *“Chief| programmer team management of production
programming,” IBM Syst. J., vol. 11, no. 1, pp. 56-73, 1972.

E. W. Dijkstra, Notes on structured programming,” in Struc-
tured Programming. London, England: Academic, 1972.

D. E. Knuth, “Structured programming with go to statements,”
Comput. Surveys|vol. 6, pp. 261-301, Dec. 1974.

H. Mills, “Chief programmer teams: Principles and procedures,”
IBM Fed. Syst. Div., FSC 71-5108, 1971.

-, “Mathematical foundations for structured programming,”
IBM Fed. Syst. Div., FSC 72-6012, 1972.

N. Wirth, “Program development by stepwise refinement,”
Commun. Ass. Camput. Mach., vol. 14, pp. 221-227, Apr. 1971.

E. Satterthwaite] “Debugging tools for high-level languages,”
Software—Practice and Exp., vol. 2, pp. 197-217, July-Sept.
1972.

W. Howden, “Theoretical and empirical studies of program
testing,” in Proc| 3rd Int. Conf. Software Eng., May 1978, pp.
305-310.

J. Goodenough and S. Gerhart, “Toward a theory of test data
selection,” in Proc. Int. Conf. Reliable Software, 1975, pp.
493-510.

J. Gannon, “Language design to enhance programming reliability,”
Comput. Syst. Res. Group, Dep. Comput. Sci., Univ. Toronto,
Toronto, Ont., Canada, Rep. CSRG-47, 1975,

J. Gannon and J. Horning, “Language design for programming
reliability,” IEEE Trans. Software Eng.,vol. SE-1, June 1975.

C. A. R, Hoare and N. Wirth, “An axiomatic definition of the pro-
gramming language Pascal,” Acta Inform., vol. 2, pp. 335-35S,
1973.

K. Jensen and N| Wirth, Pascal User Manual and Report, 2nd ed.
New York: Springer-Verlag, 1974.

V. Basili and D.| Weiss, “Evaluation of a software requirements
document by analysis of change data,” in Proc. 5th Int. Conf.
Software Eng., Mar. 1981, pp. 314-323.

D. Weiss, “Evaluating software development by analysis of change
data,” Comput. |Sci. Cen., Univ. Maryland, College Park, Rep.
TR-1120, Nov. 1981.

L. Chmura and D. Weiss, “Evaluation of the A-7E software require-
ments document by analysis of changes: Three years of data,”
presented at NATO AGARD Avionics Symp., Sept. 1982,

738

[35]

(36]

[37]
[38]
(391

[40]

(41]

[42]

IEEE TRANSACTIONS ON SOFTWARE ENGINE

V. Basili and D. Weiss, “Evaluating software development by
analysis of changes: Some data from the Software Engineering
Laboratory,” IEEE Trans. Software Eng., to be published.

V. Basili, M. Zelkowitz, F. McGarry, et al., “The Software Engi-
neering Laboratory,” Univ. Maryland, College Park, Rep. TR-535,
May 1977.

B. Boehm, “An experiment in small-scale application software
engineering,” TRW, Rep. TRW-8S-80-01, 1980. .

A. Endres, “Analysis and causes of errors in systems programs,”
in Proc. Int. Conf. Reliable Software, 1975, pp. 327-336.

G. Miller, “The magical number seven, plus or minus two: Some
limits on our capacity for processing information,” Psychol. Rev.,
vol. 63, pp. 81-97, Mar. 1956.

J. Bailey and V. Basili, ““A meta-model for software development
resource expenditures,” in Proc. 5th Int. Conf. Software Eng.,
Mar. 1981, pp. 107-116.

D. L. Parnas, “On the criteria to be used in decomposing systems
into modules,” Commun. Ass. Comput. Mach., vol. 15, pp. 1053-
1058, Dec. 1972,)

J. Brown, The Social Psychology of Industry. Baltimore, MD:
Penguin, 1954.

Victor R. Basili (M’83) received the Ph.D. degree
in computer science from the University of
Texas at Austin.

He is currently a Professor and Chairman of
the Department of Computer Science at the
University of Maryland, College Park, where
he has been since 1970. He has been involved
in the design and development of several soft-
ware projects, including the SIMPL family of
structured programming languages, and is cur-
rently involved in the measurement and evalua-

ERING, VOL. SE-10, NO. 6, NOVEMBER 1984

tion of software development at the NASA/Goddard Space Flight

Center. His interests
quantitative analysis
and product. This
error analysis, and cq
ment agencies and in

lie in software development methodology and the
it:d evaluation of the software development process

cludes such specialized areas as cost modeling,
mplexity. He has consulted for several govern-
dustrial organizations, including IBM, GE, CSC,

NRL, NSWC, and NASA.
Dr. Basili is a member of the Association for Computing Machinery

and the IEEE Compuy

ter Society. He has been Program Chairman for

several conferences and has served on several editorial boards.

the software cost redu
engineered model of a

David M. Weiss received the B.S. degree in
mathematics in 1964 from Union College and
the M.S. and Ph.D. degrees in computer science
from the University of Maryland, College Park,
in 1974 and 1981, respectively.

Since 1975 he has been on the research staff
at the Naval Research Laboratory, Washington,
DC, currently with the Computer Science and
Systems Branch. His research interests are in
software engineering, software change analysis,
and formal specification. He is a member of
ction project whose purpose is to provide a well-
complex real-time system.

