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Abstract

A major challenge for evolutionary computation is to evopleenotypes such as neural networks, sensory
systems, or motor controllers at the same level of compleagtfound in biological organisms. In order to
meet this challenge, many researchers are proposing édireeodings, that is, evolutionary mechanisms
where the same genes are used multiple times in the procbsgdihg a phenotype. Such gene reuse allows
compact representations of very complex phenotypes. Dpr@&nt is a natural choice for implementing
indirect encodings, if only because nature itself useswvbiy process. Motivated by the development of
embryos in nature, we define Artificial Embryogeny (AE) as siubdiscipline of evolutionary computa-
tion (EC) in which phenotypes undergo a developmental phasencreasing number of AE systems are
currently being developed, and a need has arisen for a pkittpproach to comparing and contrasting,
and ultimately building, such systems. Thus, in this paperdevelop a principled taxonomy for AE. This
taxonomy provides a unified context for long-term researciAle, so that implementation decisions can
be compared and contrasted along known dimensions in thgndgsace of embryogenic systems. It also
allows predicting how the settings of various AE parameadfect the capacity to efficiently evolve complex
phenotypes.

1 Introduction

As the problems tackled with evolutionary computation lmeedncreasingly complex, it is becoming ap-
parent that a direct mapping from genotype to phenotypere&itheach unit of the phenotype is represented
by a single gene in the genotype, will no longer be effectikageline 1995; Bentley and Kumar 1999;
Hornby and Pollack 2002). Novel problem domains, such ag¥biition of complex neural networks and
large commercial buildings (Bentley and Kumar 1999; O’Re2000) require on the order of thousands or
even millions of structural units for a single phenotypeevery gene were to map directly to a single unit
of phenotypic structure, evolution would be searching uigfoan intractable million-dimensional genotypic
space.

In order to be tractable, the number of genes required tafspephenotype must be orders of magnitude
less than the number of structural units composing that@ype. Nature has shown such representational
systems to be possible on an enormous scale. Even with li@htrieural connections in the human brain,
there are only about 30 thousand active genes in the humammge(2800 million amino acids; Dellaert
1995; Deloukas et al. 1998; Kandel et al. 1991; Zigmond 1p88¢e 9).

Such representational efficiency is made possible throegie geuse. In an indirect genetic encoding, a

1



single gene may be used multiple times at different stagegwlopment. There are two primary forms of
reuse. First, phenotypic structures can occur in repegidtigerns, where the same structural theme, perhaps
with some variation, appears over and over again. Each tipa&ttarn repeats, the same gene group can
provide the specification. Examples of repeating pattennBidlogical organisms include the numerous
left/right symmetries of vertebrates (Raff 1996, pages-302), and the numerous receptive fields in the
visual cortex (Gilbert and Wiesel 1992; Hubel and Wiesel3)9@&Repetition frequently involves variation
on a general theme. For example, each vertebrae in the spfoeied similarly to the others, albeit with
different incoming and outgoing connections (Zigmond 1988%es 30-31) .

The second primary form of reuse occurs when the same gedegiris used tanitiate separate devel-
opmental pathways. For example, Cohn et al. (1997) foundttizasame gene product, fibroblast growth
factor (FGF), induces the appearanceboth forelimbs and hindlimbs depending on the part of the body
where the FGF is applied. Thus, the same gene can be usediateirdifferent structures at different
locations.

Natural organisms implement gene reuse through a process/efopment, or embryogefylhe same
genes can be used at different points in development fagrdifit purposes, and the order in which activa-
tions of genes take place determines when and where a partgene is expressed (Raff 1996). Recently,
researchers have begun to replicate this process in atiflevelopmental systems. The hope is that ex-
tremely compact codes can evolve to represent immenselplearphenotypes.

Researchers have used several names for artificial evadutiosystems that utilize a developmental
phase, including Artificial Ontogeny (Bongard and Pfeifé02), Computational Embryogeny (Bentley and
Kumar 1999), Cellular Encoding (Gruau 1994), and morphegin(Jakobi 1995). We adopt the term Arti-
ficial Embryogeny (AE) to refer to the entire class of suchtsys? Because AE offers a methodological
approach for reaching the level of complexity seen in ndtanganisms, the evolution of the body and brains
of artificial organisms has been a popular goal for reseascinethis field (Bongard and Pfeifer 2001; Del-
laert and Beer 1996; Hornby and Pollack 2001b; Komosins#liRataru-Varga 2001). Thus, the primary
objective of AE is to evolve levels of complexity that havediefore been out of reach. It is noeces-
sary for systems to faithfully simulate low-level biological dd#opment processes, except insofar as the
simulation of these processes may help in achieving highptexity. In order to achieve this goal, both
biologically-motivated and more abstract implementationll need to be tested in many domains.

With growing interest in the field, and a large number of systéeing introduced, a need has arisen
for a common framework to analyze and compare them. By ify@mg the dimensions along which design
decisions can vary, future experiments can reveal theis@r®d benefits. For this reason, in this paper, we
build a taxonomy for AE systems based on a principled analygsboth existing systems, and biological
research on embryogeny. Ultimately, this taxonomy makg®ssible to predict the outcome of specific
design decisions along well-defined dimensions.

We begin by reviewing existing systems within a preliminilgmework, distinguishing between gram-
matical and cell chemistry approaches. Our review focusel® systems that reuse genes because reuse
is one of the primary motivations of AE. We then survey reskdn biology that provides insight into
the mechanisms behind embryogeny. Five major dimensiomgwlopment emerge from the biological
overview: (1) Cell Fate, (2) Targeting, (3) Heterochrom), Canalization, and (5) Complexification. Finally,
we use these five major dimensions to replace the prelimiftargework with a mature multidimensional

Bentley and Kumar (1999) pointed out that the correct termnigryogenyas opposed tembryology Embryogeny is the
embryological process of development itself, while embogy is thestudyof the process of development. Since we are attempting
to evolve developmental systems, we are implementing@aimbryogeny.

2Embryogenyconveys that systems in this class develop phenotypes gsinetic information starting from a small initial
structure.



taxonomy of AE methodologies.

2 Review of Artificial Embryogeny

This section reviews prior work in AE by examining two paedllines of research. The first type is the
grammatical approachoriginated by Lindenmayer (1968). The grammatical apghcavolves sets of rules
in the form of grammatical rewrite systems. The grammar candntext-free or context-sensitive and can
utilize parameters. Variations on this theme include usirsgruction trees or directed graphs in place of
actual grammars.

The second type of AE, theell chemistry approachis inspired by the early work of Turing (1952),
who introduced a mathematical model of diffusion and reactwithin a physical substrate. This approach
attempts to more closely mimic how physical structures gmén biology. Cells are arranged in a phys-
ical space where simulated proteins can be sent as sigoatsdne cell to another, as in nature. Growth
processes such as axons and dendrites can form conneatiwvexh cells through complex targeting mech-
anisms. Protein structures are produced by genes in ageifsme if the proper regulatory proteins already
exist inside the cell's cytoplasm. In effect, the proteinside the cell are like preconditions to rules in
the grammatical approach. This approach attempts to ajppade the functionality of natural develop-
ment through physically-motivated implementation. Thedes that by closely simulating the lower-level
processes of biological development, more natural, andéherore complex, phenotypes can evolve.

We make the distinction between grammatical and cell cheynggpproaches for two reasons: (1) It
is currently the most recognizable distinction among ABeayss, and (2) it reflects the general division
in artificial intelligence between high-level, top-downpapaches and low-level, bottom-up approaches.
However, it will turn out that this initial distinction is timately superficial, and that a more sophisticated
taxonomy of AE systems can be derived based on relevantgidallodimensions. We begin by introducing
existing systems in these two categories, and will intredadiological taxonomy in the next section.

2.1 Grammatical Approaches

Using grammar to model biological development traces bacRristid Lindenmayer, who introduced a
grammatical rewriting system callddsystemgLindenmayer 1968). Lindenmayer observed that complex
natural objects, in particular plants, could be describgdtératively replacing simple parts with more
complex parts. This idea is naturally expressed grammibtigehere symbols on the left side of production
rules are replaced in parallel by strings on the right. Theg$ generated by L-systems can be interpreted
as morphological or graphical descriptions, yielding ctewrfractal-like objects. In other words, L-systems
are indirect encodings that output an explicit string of elepmental instructions. For example, figure
1 shows how two simple rewrite rules produce a tree struct@ymbols produced by the rules describe
directions of growth in the tree:B” means "grow forward,” =" means, "turn direction of growth left,” and
“+7, “turn direction of growth right.” Thus, L-systems can eme complex morphologies using relatively
simple rules.

The grammar can be made more powerful by adding parameté¢he t@write rules, so that the same
rules can generate different structures depending onglaeimeterization (Lindenmayer 1974). In addition,
if one parameter is used as a counter, it can be used to tdegrawvth processes after a specific number of
iterations. Systematically decrementing the counter ¢iach allows rules to naturally express a stopping
case when a parameter reaches zero. Consider the followarge:
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Figure 1: Grammatical Approach Example (L-systems; Lindenmeyer 198)..
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describe the growth of a tree-like morphology. The symioshown as a thick line in the tree, is the only symbol that
is rewritten in this grammar. The symb#l, which does not expand, becomes a thin branch,-aaad+ determine

relative angles of branches expanded frdmymbols. Thi
encode a large structure with many components.
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s example illustrates how a few simple genezatiles can

where the symbol to be rewritten is on the left, the paramister parenthesis, the condition for activating

the rule is after the colon, and the replacement stri
produce,
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ng iviemight. Starting with A(4), this L-system would

In addition to utilizing parameters, rules can also be mamtgext sensitive, or be applied stochasti-
cally (Prusinkiewicz and Lindenmayer 1990). In a contexts#ve L-system, rule activation is not only

contingent upon the correct nonterminal symbol
that nonterminal. In stochastic L-systems, succe

being predaut also upon the symbols that surround
ssorshaysen probabilistically, leading to randomized

final structures. As another refinement, Vaario (1994) ohiced an elaborate object-oriented extension of
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Figure 2:Development of Body Morphology (Sims 1994) The graph on the left specifies how the morphology on
the right develops. The body segments repeat because at¢heaent loop on the “body segment” instruction node,
which allows the reuse of genetic code. The number of repestis determined by an evolved parameter in the loop
which is not shown. The final structure is a centipede-lileature with six legs and feet on each leg. Sims’ work has
inspired many AE researchers to explore body-brain evafiti simulated 3D environments.

L-systems in which individual objects and subobjects in zetiging organism contain their own rewrite
rules. Different refinements to L-systems affect the kindstimctures they can evolve in varying ways. The
effects of such refinements is an open area of research.

Many AE researchers have utilized L-systems and similamgratical methods (Belew and Kammeyer
1993; Boers and Kuiper 1992; Hornby and Pollack 2001a,@r6it1990; Sims 1994). In such systems, a
set of production rules is evolved for each genome. Staftiog a canonical embryological start symbol,
embryos are grown by repeatedly applying rules to the sysinahe developing embryo.

Interestingly, L-systems were not initially designed taselved. They were meant to model or describe
the growth of fractal-like designs in nature. Thus, a pagmtroblem for L-systems-based AE is that the
capacity tadescribeembryogeny does not necessarily imply a capabilitguolveembryogeny.

Still, many researchers have pursued the evolution of ttesys and other grammatically-based encod-
ings with some success. One interesting such researchiidirés the evolution of artificial neural networks
(i.e. neuroevolutioh Neuroevolution has long been a major theme in AE, partbabse the potential com-
plexity of neural networks is known to be so high. The first rissvneuroevolution system was developed
by Kitano (1990), who showed that it was possible to evoheedbnnectivity matrices of artificial neural
networks through a set of evolved rewrite rules. Insteadtitizimg a string on the right hand side of a rule,
Kitano used a small 2 by 2 matrix. If the elements of the madrx nonterminal symbols, then they are
themselves rewritten with 2 by 2 matrices from their respeatules, expanding the size of the matrix expo-
nentially. Eventually, when terminals are reached, a cetephatrix of numerical values has been created.
The matrix then represents the connectivity of a neural agkw Although nondevelopmental encoding
schemes have since been shown to perform better (Siddidiwcas 1999), Kitano’s early graph generation
grammar showed that it was possible to use rewrite rules todm neural networks for encoder/decoder
problems.

Other researchers have experimented with alternative efegtscoding rewrite rules, aiming at grammar
encodings more suitable for evolution. Boers and Kuipe®2)@sed context sensitive L-systems to evolve
neural network topologies. They encoded the rules in a genasra bit string, which can be recombined
using simple genetic operators. Resulting bit strings wkes translated back into rewrite rules. Boers
and Kuiper were able to evolve solutions to several congeati problems, such as XOR and handwriting
recognition. However, these results did not provide casiekievidence of the capability of L-systems to
solve these problems since the weights were found througkpbapagation. It is not clear that the complex
developmental process was necessary.



While previous work focused on narrow problems that did netessarily demonstrate the power of
grammatical encodings, Sims (1994) chose to evolve the hamiphologies and neural networks of artifi-
cial creatures in a simulated 3D physical world. In this domthe power of generative encodings is easy
to observe, since resulting creatures are animated in datieduphysical environment. Sims used directed
graphs as the genotypes for his experiment. In these grapitgle represents a body part and an edge speci-
fies how body parts are connected (figure 2). The nodes and solggether work like L-system rewrite rules:
an edge is like an atom of a rewrite rule and a node is like aitemBy following recursive edges, Sims’
system reuses genetic material. 3D animations of evolvedtures displayed strikingly natural-looking
gaits. However, gene reuse was not exclusively resporfgibtbe natural appearance of the animations; the
guality of physical simulation itself contributed to thesudts as well.

Using a similar domain as Sims, Hornby and Pollack (200120062) applied L-systems to the simul-
taneous evolution of the body morphologies and neural mésvof artificial creatures in a simulated 3D
physical environment. Before Hornby and Pollack’s experniis, Lipson and Pollack (2000) had already
evolved creatures that could locomote in such an envirohnaem successfully transfered their designs to
robots in the real world. However, Lipson and Pollack did eotploy a developmental encoding, instead
utilizing a direct encoding. Hornby and Pollack’s work bwh this earlier work by using L-systems as a
developmental encoding. Using this encoding, they evobredtures to locomote without dragging most
of their parts on the ground. Parametric L-systems with 2@ite rules were evolved. The resulting crea-
tures were compared with others evolved with a non-devedial encoding, which specified a sequence
of explicit build commands. The developmental encodinghva dramatically more complex and more
fit creatures than the non-developmental encoding. Dewetopal creatures displayed significantly more
body segments and repeating structures. Some creaturesliepéayed symmetrical arrangements of parts.
The results demonstrate that reuse is an important cafyaloiti embryogenic systems. However, there are
many morphologies that can potentially support locomotifimerefore, finding such a morphology may not
be difficult. The question remains whether L-systems canvbé/ed for a stricter task with a small set of
possible solutions.

Even though many rewrite systems evolve neural network&ratructures have been used as well. For
example, a sorting network is an ordered set of place cosmasi where an item at one position in a list is
compared to an item at a second position. If they are out afrptteir positions are switched. Belew and
Kammeyer (1993) evolved rewrite rules similar to L-systamspecify how such sorting networks would
develop. A grammar encoding was used because the develbpireesorting network can exploit symme-
tries. For example, the left and right halves of an unordsegfience can be both sorted independently using
the same procedure, and then finally combined for a final orgemhe developmental encoding only needs
to encode one of the symmetrical procedures and then expamde for each half of the sequence, thus
exploiting the symmetry of the problem. Other unusual plygpes evolved with rewrite systems include
floor plans for buildings and Mondrian paintings (Schnie8p Together, these examples demonstrate
that rule evolution and AE in general are applicable to pecatiproblems beyond the evolution of neural
networks and body morphologies.

L-systems encode rewrite rules that determine the stepdéneloping phenotype. In contrast, some AE
researchers have preferred grammatical encodings thatma resemblance to programming languages.
These encodings reuse genes through subroutines andioacuegher than by applying rules under spec-
ified conditions. For example, Gruau (1993, 1994) and Gruaal. €1996) usedjyrammar treeso encode
steps in the development of a neural network starting froingles ancestor cell. This system is call€el-
lular Encoding(CE) because its rules apply to single cells in a growing ngtwThe grammar tree contains
developmental instructions at each node. For example, C€lEdas functions that split one cell into two
cells, change the values of links between cells, and renxigérg links between cells (figure 3).
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Figure 3:Cellular Encoding (CE; Gruau 1993,1994) Example. The grammar tree is shown at left and the network
growth is shown from top to bottom in five steps at right. Thenwek begins at step 1 as a single cell. At each step,
each network cell is reading from its own part of the tree. tBaiines identify the location in the tree from which
each cell is reading at each step. When a cell splits, itslail cells take separate paths in the tree. The “Increment
Link Register” instruction is the way a cell knows to whichKiit should apply any subsequent link-based instructions.
In the example, such an instruction occurs immediatelyfaithg the link register instruction, causing a link’s value
to increase, represented in the network by a thickeningJiitth. The neural activation bias is represented by cell
darkness. This example is based on others given by Grua@)1®fhile Gruau uses abbreviated instructions, we spell
them out entirely to make the example easy to follow. Gru®98) proved that Cellular Encoding grammar trees can
describe any network topology.

Developing cells in CE read from different parts of the graanrmee at the same time. ikading head
for each cell indicates from which part of the grammar treis iteading. When a cell encounters emd
instruction, its state is finalized and it stops reading. GEsua First In First Out (FIFO) queue of cells in
order to keep track of which cells are currently executingtrimctions, and in what order they should be
executed. A cell at the front of the queue executes the ictabiuto which its reading head points, moves its
head to the subsequent instruction in the grammar tree,he@mgoes to the end of the queue. Sometimes
cells encounter instructions to divide (there are a vamétell division methods), in which case the original
cell moves its reading head down the left subtree, and thecetiimoves its head down the right subtree.
Thus, cell divisions allow different cell lineages to fallaifferent developmental pathways.

Gruau showed that by adding a decrementing counter aeduasioninstruction to the family of avail-
able instructions, it is possible to move the reading head bathe top of the tree and reexecute the same
developmental code multiple times. In fact, Gruau gave amgte of how a neural network that solves
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the three bit parity problem can be encoded by reusing theldpmental code of an XOR network twice
(Gruau 1994). In addition, CE can be extended to encode plaultiees, each with the ability to jump into
the others, so that individual trees can be reused muliiplest like subroutines.

Unlike L-systems, CE encoding was designed to be evolvaruse a methodology for evolving gram-
mar trees, Genetic Programming (GP; Koza 1992), alreadstezki Thus, by representing CE grammar
trees as LISP S-expressions, CE took advantage of the GRtiemalry methodology. Gruau showed that
CE could evolve repeating structures in problems such asy/@ard symmetry, where the same procedure
needs to be repeated over and over again. In fact, CE evolselliton to the parity problem that could be
altered to produce solutions to parity problems of varyiimps by manually changing the value of only a
single gene. The most inputs demonstrated was 51, confir@itig powerful capacity to reuse structure.

CE has also been applied to body-brain evolution. Komosarsk Rotaru-Varga (2001) used a grammar
tree encoding similar to CE to evolve the body morphology aedral network for agents in a simulated
3D world. They showed that the developmental grammar treeddngcevolved modular structures with
repeating parts for simple tasks such as growing to a tadjitieand locomotion.

Although initial results with grammar trees on the paritplplem and in the body/brain evolution do-
main are promising, CE has not performed as well in otheradtiffiand well-established problem domains.
Stanley and Miikkulainen (2002c) showed that a non-devalmal encoding called NeuroEvolution of
Augmenting Topologies (NEAT) was able to evolve solutioostdifficult non-Markovian version of the
problem of simultaneously balancing two poles on a cartgi&b times fewer evaluations than CE. This
comparison suggests that the capacity to reuse genes alesendt ensure efficiency. The ultimate devel-
opmental encoding should be ablettoth harness the power of reuse for the discovery of compleasityg
find solutions quickly.

Luke and Spector (1996) identified several aspects of CEethdtl be changed to improve performance:

e Crossing over subtrees of CE genomes changes the ordercgh tigir operations are executed. Since
the effects of CE’s operators depend on their executionrptde same subtree in one genome may
result in a very different phenotype when inherited by asmiihg.

e Because CE’s operators are node-centric, CE’s ability tkengpecific and precise modifications to
connections is limited.

e CE creates networks by splitting many cells into two or maorericonnected cells. Therefore, the
networks tend to be highly interconnected, which may slowmthe search in some tasks where
high connectivity is not required.

Luke and Spector (1996) suggestdge encodings a solution to these problems. In edge encoding, net-
works are grown by modifying the edges in a graph rather thambdes, and the grammar trees are traversed
in depth-first rather than breadth-first order. There isently no experimental comparison between CE and
edge encoding. However, the problems with CE that edge emgasl designed to solve are important in
their own right, since they reveal the importance of evoludiry bias in grammatical AE. Because gram-
matical approaches have formal structure, it is possibleotwstruct proofs about the kinds of topologies
they can express. For example, Gruau proved that CE canssxprgy possible neural network topology.
However, Luke and Spector’s critique, along with the poléabeing results, suggest that expressivity is
not the most important property of an AE encoding. Rather, tmelkiof architectures that encodings are
biasedtowards, and their capacity to apply crossover and mutatparators to genomes without damaging
their functionality, are of utmost importance. L-systerasd the same problems. Thus, there are several
challenges for grammar-based encodings in the future: Whds of architectures do they tend to produce?
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Are these the kinds of architectures we want? Do they makeesas a genetic code subject to genetic
operators?

There is a final question about grammatical encodings the$ dot concern their efficiency or biases,
yet has inspired an entirely different approach to AE: Areytla natural way to implement the process of
biological development? In the next section, we revieweayst that attempt to more closely simulate the
low-level aspects of natural embryogeny. Although we datake: the perspective that biological simulation
is necessaryor a good encoding, it may still provide useful insight itih@ implementation of developmen-
tal systems. Because nature has evolved extremely compemdiags, it is important to explore the space
of systems that attempt to follow the same path. The nexiasedescribes such biologically-motivated
systems.

2.2 Cell Chemistry Approaches

Turing (1952) first modeled biological development at theraical level with higeaction-diffusion model
Although the model was not meant to encompass all of devedopnit did account for patterns seen on the
exterior of natural organisms, such as the coloring pastembird feathers and animal coats. In the model,
a set of equations describe how the concentrations of diffesubstances, anorphogenschange over time
due to their diffusion and reaction with each other. Thegyatt produced by the model are strikingly similar
to patterns found in nature, giving support to the model.

The model begins with several chemical morphogens disgibtandomly throughout a discrete two or
three-dimensional medium. According to Turing (1952),attepoint in the medium, a vector of morphogen
concentrationsC, changes temporally and spatially as described by Turjpgrtial differential equation,

%—f = F(C) + DV?C, (1)
whereF'(C) is a nonlinear function describing how the morphogens sepreed byC react with each other,
andD is a diagonal matrix representing the relative magnitudinefdiffusion coefficients for the different
morphogens. The coefficients determine how fast differeatricals spread through the medium. Thus, the
equation describes both reactivity and diffusion at a pimirgpace. The equation is simultaneously applied
at every point in the medium, for every time step, yieldingyaamic system that stabilizes on interesting
patterns under the right conditions.

Like L-systems, Turing’s reaction-diffusion model was ndginally designed to be evolved. Although
many grammatical approaches to AE follow the original Ltegs model, cell chemistry approaches tend to
use Turing’s model only as an inspiration. It describes loeecl phenomena than L-systems, and therefore
does not lend itself as easily to evolution of complex forriowever, cell chemistry approaches rely at
least on the abstract concepts of diffusion and reactiogmamted with additional biologically-inspired
components.

For example, Nolfi and Parisi (1991) modeled "diffusion” la¢ tevel of axon growth, and "reaction”
as the interaction between axons and cell bodies. Thus, el is significantly higher-level and more
abstract than Turing’s. Each neuron is defined by a single gera fixed-length genome. Each gene
describes the branching and positional properties of aesponding neuron. The branching properties
specify how branches will grow, or diffuse, from the cell lyanf the neuron. When growing axons hit other
cells during development, connections are made. Then, @tea phase, non-functional connections are
pruned. This approach utilizes growth to create connestisithout explicitly describing each connection
in the genotype. However, since every neuron must be dirsgtbcified, genes are not reused, limiting
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the complexity of what can be represented. Their later w@&ngelosi et al. 1993) extended the model to
include cell divisions and migrations based on rewritesula addition to the axonal growth. Interestingly,
this new model used ideas from both the grammatical appraadhcell chemistry approach in order to
allow genes to be used more than once.

In contrast to Cangelosi et al.’s abstract model of neuraigr, Fleischer and Barr (1993) produced
a lower-level model of neural development more reminisa@nturing’s differential equation models of
diffusion. Cells on &D plane move independently. Each cell has its own internaé gteat controls
its behavior. The outside environment has chemical, mecharand electrical properties. Extracellular
chemicals diffuse through the environment based on diftEkequations, just as in Turing’s model. In
addition, the genome itself is a set of differential equadithat take as arguments the cell’s internal state
and the state of the outside environment. This framewodwalicells to move and interact through chemical
diffusion and axon growth in order to form neural networkieischer and Barr (1993) drew the interesting
conclusion that combining multiple mechanisms to build tigpa can be more robust than using a single
mechanism. For example, a cell’s identity can both be régdlay its lineage and the chemical messages
in its surrounding environment. Fleischer and Barr were dbldemonstrate several interesting low-level
behaviors. For example, an axon was able to grow along a claémiadient and find a target neuron
while avoiding obstacles. However, their genomes were ftaxid and not evolved. Similarly, Mjolsness
et al. (1991) used a model of low-level chemistry and genwaditin to simulate the early development
of Drosophilaflies, and Kaneko and Furusawa (1998) modeled the emergémeealticellularity and cell
differentiation through the interactions between cella medium. Although these systems reveal interesting
low-level properties of cellular interaction, neither nebevas combined with evolution.

Astor and Adami (2000) introduced an artificial chemistmyigar to Fleischer and Barr's model, where
chemicals diffuse based on diffusion equations, and geresdivated if chemicals that they explicitly
specify are located in the cell cytoplasm. Astor and Adamingkd that they could hand-code a genome for
a neural network that displayed classical conditioningavéir. In other words, through repeated activation,
the network learned to associate an output with a stimulasitfitially did not activate the output. Astor
and Adami (2000) did not report results for evolved netwpedthough they proposed future evolutionary
experiments.

Dellaert (1995) pointed out that the computational comipfexf such low-level simulation might make
evolution difficult. Thus, Dellaert and Beer (1994a,b) angll®ert (1995) designed an ambitious and ex-
tensive model of development meant to be both biologicatiiedsible and computationally tractable. The
model centers on the idea génetic regulatory network&GRNs), which are networks of interactions be-
tween genomes and their environments that lead to a seqoéstate changes inside each cell (figure 4).
While the diffusion and reaction of various chemicals in Feischer and Barr model can be understood
as a GRN, Dellaert and Beer use a more abstract model of GRIM$ waptures the dynamics of such a
system without descending to the physical level.

Dellaert et al. implemented their GRN using boolean funioalledoperonsinside the genome. For
example, consider the following two operons:

Operon 1: AN-B=C
Operon 2: ANC =B

The first equation means that if protetis present in the cell cytoplasm, and protein B is not present
then proteinC is produced and added to the cytoplasm. The presendeantlC satisfies the second operon,
yielding B in the cytoplasm for the first time. At that point, becauseropel only produces its product in
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Gene Model:

I Regulatory Region ICoding Region for Gene Productl

B [Code for A |

-----

Figure 4:Genetic Regulatory Network Example. Each gene is modeled as a regulatory region and a codingregio
that codes a particular product (e.g. a protein in a natel§l A simple network showing how different gene products
of some genes regulate other genes is shown inside a ceitteléas a rounded rectangle. The network describes a
system that produces a number of products and then turnshaffivenough of product B is produced. The symbol
“>>" means a large amount. The diagram shows that the entireonetvecomes activated when product B enters
the cell from an external source. B causes A to be produceitjvith turn causes C to be produced by another gene.
A and C, without D in the cell cause more B to be created, whidiuin feeds back into the production of A, further
strengthening the cycle. Eventually, when a great deal sfiBésent, D is finally produced, stopping the generation of
B and ending the feedback cycle. The GRN shows that intagedsinamics can result from the regulatory interactions
of different genes. In an AE model, gene products might eagse axons to grow or reduce neural thresholds.

the absence aB, the cell would stop producing prote@. This example illustrates how a complex network
of interactions can result from operons inside a cell. Byr@epnting the presence or absence of a proteins
using boolean equations, the computational expense oflaimy diffusion through differential equations

is eliminated.

Several low-level biological processes utilize the pruggdroduced by operons. For example, a facility
is included to allow one cell to introduce a new protein totheo cell through a receptor. In addition,
cells grow axons if they have a special axon-growing proieitheir cytoplasm. The axons then connect
to cells with the proper target protein. The axons find thaihpoy growing around cells with special path
designating proteins. Thus, a nervous system can develpimiogically plausible manner.

Cells divide in the simulation when a special dividing pimts present. After division, both descendant
cells are in the same state, which leads to a problem. Howlmasymmetry ever be broken so that cell
differentiation takes place? The model solves this probbsmintroducing a single symmetry-breaking
protein after the first cell-division, and by allowing comnication between cells.

The GRN model revealed an important challenge for AE. Ddllaad Beer (1996hand-codedthe
genome for both the body morphology (i.e. sensors and ar&)aand the nervous system of an obstacle-
avoiding vehicle. Subsequently, they were able to evoleeemmentally improved versions of the vehicle
off the initial hand-coded genome. However, they could naivee such a vehicle from scratch. They
attributed this failure to the massive search space intredby such an expressive encoding. Intractable
search spaces are a significant challenge to AE systems @madeifihus, like grammatical approaches, cell
chemistry approaches must also address their biases alvdlgility.

Dellaert and Beer (1996) were able to overcome the largelegnace problem by greatly simplifying
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Figure 5: Random Boolean Network (RBN) Example. The state of the network is given by the boolean values
of A, B, andC'. At each timestep, the state values are updated based owahess in the previous timestep. In the
approach of Dellaert and Beer (1996), the current state eflagscogiven by the current state of its RBN. Individual bits
in the state signal events like cell splitting or creatingwections between cells. RBNs were introduced by Kauffman
(1993) to simulate the protein expression patterns in ¢els developing embryo. RBNs are computationally less
expensive than full-blown GRN implementations (figure 4hjlev exhibiting similar dynamics.

their model, using random boolean networks (RBNSs) instdatieomore complex operon model. RBNSs,
initially introduced by Kauffman (1993), are simple boaiepressions whose outputs are connected to the
inputs of other boolean expressions, forming a network édi). The network has a state defined by the
current outputs of all the boolean expressions, which defime current state of the cell. In addition, Dellaert
and Beer simplified the axonal outgrowth model, such thds eetre simply connected if they expressed the
right proteins, foregoing the entire axon growth phaseerkgtingly, with this simplified model, they were
able to evolve a solution to the obstacle avoidance task &gnatch, in addition to evolving a line-following
vehicle. The lesson is that simple solution structures $iones perform better than biologically plausible
ones; abstraction can be a powerful tool.

Researchers have introduced a number of cell chemistgebamdels similar to that of Dellaert and
Beer (Bongard and Pfeifer 2001; Eggenberger 1997; Jakdb)1Yakobi (1995) also used a GRN model
based on proteins interacting with a genome and transfeb@tween different cells. However, instead of
boolean expressions, Jakobi utilizesmplateswhich are strings of characters that could be matched with
proteins. The templates were parts of genes. This encodlingeal the entire genome to be evolved as
a string, similarly to DNA. Jakobi evolved simulated robttisit could move down corridors and wander
without hitting obstacles. Eggenberger (1997) used a aimsiring encoding with template matching for
genetic regulation. Eggenberger also introduced a prétaincauses cells to die, since cell death is common
in biological development.

Unlike Jakobi and prior researchers, Eggenberger expetidewnith much simpler tasks than evolving
neural networks. Instead, he evolved bilaterally symmethapes, to show that symmetry could develop
naturally through reuse. A variety of symmetric three-dirsienal morphologies evolved, showing how
discovering symmetry can be beneficial. Eggenberger’sIsisymmetry task brings up an important ques-
tion for AE researchers: Should experiments focus on emglelaborate nervous systems, like Dellaert and
Beer (1996) and Jakobi (1995), or on very simple proofs ofcephin order to demonstrate performance
potential, like Eggenberger? Given that eventually we rieeyolve very complex phenotypes that develop
through gene reuse, experiments at this stage should tedicat methods have the potential to reach this
goal. Body-brain evolution can sometimes lead to uncleacksions. For example, even if it is possi-
ble to evolve a vehicle that avoids obstacles, does thaesadell us anything about why development is
necessary, or is it just an easy problem that a non-AE systard diave solved just as well? In contrast,
bilateral symmetry is a strategy used by many complex ogyasito reuse the same structures efficiently.
Thus, sometimes simple experiments can demonstrate atipbfen complex development.
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Like Eggenberger, Bentley and Kumar (1999) also chose teraxent at the level of abstract proofs
of concept. They utilized a simpler cell chemistry approackvhich colored cells on a grid expanded or
died depending on whether their surrounding cells matchiedgmditions in a genome of rules with pre-
conditions. The preconditions described the configuraticsurrounding cells and location in the grid. The
encoding allows reuse because preconditions may occurodeover again at different grid locations in the
same developmental sequence. Although this encoding ldesigrammatical approaches, its preconditions
instead check the local environment in a grid of cells. Tafyahat their encoding was efficient, Bentley
and Kumar evolvedessellating tileswhich are shapes that can be fit together in groups of fourouit
overlapping. Bentley and Kumar showed that their indirectogling evolved tessellating tiles more reliably
than a number of encoding schemes that did not employ reuspoging the hypothesis that gene reuse can
support the development of form. Because both the task andriboding were simple, the experimental
results were easy to interpret, just as with Eggenbergesi&wn bilateral symmetry.

Even as some cell chemistry AE researchers moved towardslesimroof of concept experiments,
recent research builds on the earlier ambitious experisnefitlakobi and Dellaert and Beer. Many re-
searchers using cell chemistry approaches attempt to e@wolphisticated behaviors through the evolution
of the brains and bodies of creatures 38 simulated world, just as Hornby and Pollack (2002) have
done with L-systems. Bongard, Paul, and Pfeifer (2000,ZP) used a GRN-based encoding similar
to Eggenberger’s to evolve such creatures. The creatures evaluated on their ability to walk towards
a block and push it some distance on the ground. Bongard eteat able to show that repeated pheno-
typic structures were evolved by reusing genes. Later, Bah@2002) showed that the genes affecting
morphology had evolved a separate developmental pathwaytfiose affecting neurogenesis, even though
the same gene products could affect both pathways. Thi#t regulied that changes in morphology could
occur through mutation without disrupting neurogenesid @ce versa. Thus, a form of modularity was
evolved in which the neural network and body morphology tgyvén parallel yet independently of each
other. Such modularity allows evolution to search overegfody-plans without affecting neurogenesis,
and to discover different neural networks for the same boldy: Thus, the GRN-based encoding allowed
a high level of flexibility in the kinds of mutations that weeasible.

2.3 A Unified Perspective

In this section, we divided the space of AE systems into gratiwal and cell chemistry approaches. Al-
though they have similar goals, their origins are differafthile grammatical approaches tend to be abstract
and high-level, cell chemistry approaches generallyagtilower level representations and are more strictly
motivated by the biological mechanisms of development.

Several AE researchers have previously proposed claggifisaof genetic encodings (Angeline 1995;
Bentley and Kumar 1999; Hornby and Pollack 2002; Komosiaski Rotaru-Varga 2001). These classifi-
cations served primarily to distinguish encodings thaseegenes from those that do not. However, two of
these classifications furthermore divided the space ofactiencodings into two classes roughly analogous
to grammatical and cell chemistry approaches. Bentley amda¢ (1999) distinguisheexplicit encodings,
in which genes function like instructions in a programmiagduage (i.e. grammatical encodings), from
implicit encodings, in which the connection between genes and phatte phenotype is emergent (i.e.
cell chemistry encodings). Similarly, Hornby and Polla2R@2) contrasted indirect encodings that employ
parameters and labels (i.e. grammatical encodings) frarsetithat do not (i.e. cell chemistry approaches).
Thus, the cell chemistry vs. grammatical division preseritethis section reflects a traditional view of the
field.

The encoding used by a system can affect the way genomes aiputaéed through mutation and
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crossover, and is therefore an important design decisioowener, the cell chemistry vs. grammatical
distinction is largely superficial and does not reflect howmbtypes can develop. Although cell chemistry
and grammatical systems develop differently in a numbemgiartant ways, many of these differences only
exist for historical reasons, not because of any intrinsguirement of either approach.

First, grammatical approaches can have properties usasdlgciated with cell chemistry approaches.
For example, existing cell chemistry systems tend to devéloa coordinate space, while grammatical
systems develop in a vacuum. However, there is no reason eite rules or instructions could not
in principle take Cartesian coordinates as arguments @npaters. In addition, although signals may be
more natural in a cell chemistry system, components in aoldiny rewrite production can in principle
send signals in a Cartesian space. Although current cethidtiy systems tend to use continuous gradients
while grammatical systems are discrete, there is no redmsdratgrammar could not produce or manipulate
continuous values or exist in a continuous space. Gramataystems tend to produce static components
that do not move or grow after they are produced, but agaih samponents could be mobile in principle.

Second, cell chemistry systems can display propertiedlysassociated with grammatical systems. For
example, grammatical systems can explicitly call subrmsj while cell chemistry approaches generally
cannot. However, cell chemistry approacheplicitly use subroutines by initiating a chain of regulatory
events more than once. While grammatical systems can gidicidy iterate over parameters, cell chemistry
systems can approximate iteration by using decreasingectrations of chemicals as arguments to cell
functions. Such functions can themselves be evolved, omergent from the dynamics of a regulatory
network.

Third, both approaches can be hybridized. Cells can cornteéimnal grammars, and grammars can
spawn cells. In fact, the cell chemistry systems of Bentlay lidiumar (1999), Mjolsness et al. (1991), and
Cangelosi et al. (1993) exhibit hybrid properties. Bentheyl Kumar's cells reproduce based on a list of
rules, Mjolsness’ cells contain grammatical rules thaedwaine cell behavior, and the system of Cangelosi
et al. combines grammatical rules with axon growth.

Thus, the different approaches currently overlap or capmially overlap in many important ways. The
current divided perspective is not necessarily a good gesmn of the space of possible methodologies.
The problem of designing a powerful AE system should be aggred from a more general perspective,
in which specific mechanisms that can be implementesithrer approach are considered independently of
their encoding. In the following sections, we identify ansladiss such specific mechanisms based on natural
development, expanding the perspective on AE in generalwlMihen use this broader perspective to form
a taxonomy of AE systems that allows AE research to take plaaeunified context.

3 Dimensions of Development

In this section, we analyze natural development by breaktidgwn into five major dimensions. Not only

are these dimensions conceptually useful for understgriitvelopment, but they also provide insight into
the design of AE systems. We will use these dimensions latéortn a taxonomy of AE systems. The
taxonomy is based on the ways these dimensions can vanyfénaift AE implementations.

Two important themes underlie the discussion in this sactio

e In order to compare different AE systems, it is important tmlerstand the contribution of specific
aspects of development to the capacity to evolve compleemsgs Since both grammatical and cell
chemistry approaches can vary along the five dimensionslithensions should be taken into account
in either type of implementation.
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e Some aspects of development can be implemented on com@steaisstractions of biological de-
velopment that would be impossible in nature. Using suchratttons can significantly improve
efficiency.

Hence, identifying the dimensions of development can helpelecting the right combination of de-
velopmental mechanisms to produce a computationally efficAE methodology, i.e. one that can produce
phenotypes of extremely high complexity. We now turn to ailied discussion of each of the following five
dimensions of development:

1. Cell Fate: The fate of a cell is the eventual role it will come to playidgrdevelopment. For example,
a cell may become a neuron or a muscle cell. There are sevayal tivat cell fates are determined in
nature. Since cells in AE systems must eventually play aindllee mature phenotype, it is important
to consider the means through which those roles can be deexm

2. Targeting: The ways that cells can develop connections to targetimtais an important aspect of
development. Connectivity contributes to the overall fior@lity of complex systems, particularly
neural networks. AE system design can benefit from an asabfthe ways that connections develop
in nature.

3. Heterochrony: The timing and ordering of events in the embryogeny of adgeof organisms can
change over generations. Such changes can result in différal results, sometimes leading to
important innovations in natural organisms. AE researchmay consider whether their encodings
allow similar flexibility.

4. Canalization: Biological genomes are tolerant to mutations. Severalhaeisms allow developing
components to adjust to changes caused by mutations in ciedneomponents. These mechanisms
can be employed in AE systems.

5. Complexification: Over the course of biological evolution, new genes are siocally added to
genomes, increasing the complexity of the phenotype. Cexiffdation has led to major innovations
in body-plan organization. By implementing a mechanismhfamdling variable length genomes, AE
can also utilize complexification.

3.1 Cell Fate

The fate of a cell determines its ultimate location, conindgtwith other cells, and role in the mature
phenotype A cell’'s fate is determined by the genes that are expressedglits development. For ex-
ample, liver cells show a different pattern of gene expmsséan brain cells, even with the same genes in
their genomes. AE systems must address a crucial questiow: i¢icell fate determined? In traditional
grammatical encodings, the ultimate role of a specific siimgcis obtained from a grammatical derivation,
whereas cells in cell chemistry approaches can derive tiiinate roles through chemical messages from
other cells, or from activated genes inside the cell. In $ieistion, we examine the variety of ways that cell
fates are determined in nature, all of which can potentiadymplemented in AE.

In biology, cell fates are determined through a variety oimse We illustrate these mechanisms through
a set of examples, after introducing some terminology. yEarddevelopment, groups of cells are undiffer-
entiated and called precursor cells. Their fates are asdigmseveral ways, frequently through receiving
messages from an outside cell calledamganizer For illustration, let us assume the precursor cells each

3We use the terrgell to refer to a basic unit of the developing phenotype.
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Figure 6: Derivations of Cell Fates. Five ways that cells can derive their roles are depicted. [&tge cell is an
organizer celli.e. a cell that tells other cells what fates to assume. Taler cells, which are initially undifferen-
tiated, can become either cell tyge(gray) or cell typeB (white), through various mechanisms. A question for AE
systems is which mechanisms lead to most efficient evol@tithis figure is based on Wilkins (2002).

take on one of two fatesA or B (figure 6). A variety of static and signal-based strategiespmssible
(Wilkins 2002):

e Graded Induction: A signal is released from an organizer in a graded pattetme grecursor cell
receiving the most signals assumes fatavhile those receiving fewer signals assume fate

e Two Step Induction: The organizer first releases a uniform signal to all the yrgar cells to let them
know that they form a precursor group. A secondary signaliisequently released to a subset of the
group in order to further distinguish fates.

e Sequential The signal from the organizer reaches only a single precwsll, which assumes fate
A. It then sends secondary signals to adjacent precursat geling them secondary identities.

¢ Self-organization The precursor cells signal each other and the dynamic piiepeof the network
of signals assigns fates, without any organizer cell necgss

e Prepattern: Gene expression alone, deriving from each precursorscitieage, is responsible for
fates. Signals are not utilized, i.e. the state of the parelhfully specifies the states its progeny.

While in biology all of these strategies are utilized, anpset of them can be used to specify cell fate
in an AE system. Grammatical systems tend to rely extensioel prepatterning, while cell chemistry
approaches rely on a diverse set of signaling strategiesieker, either approach can uaey of the above
strategies. For example, parameters or contexts in Lisysevrite rules could include signaling constraints,
while cell chemistry approaches could rely extensively mpptterning.

In addition to the above strategies, AE can also take adganté positional information that is not
explicitly available in nature. In embryos of many naturajanisms, a gradient of protein expression
along different axes forms a rudimentary Cartesian coatdirsystem. Because coordinate information is
not explicitly available to developing cells, these gratkeevolved to provide positional information. For
example in vertebrates, the fates of cells along the amtpdsterior axis is based on proteins expressed
by HOX genes (Curtis et al. 1995; Lall and Patel 2001) (sedi®@e8.5). However, in AE, coordinate
information is knowrprima facieand therefore need not be evolved. Rules or genes can be oxaddititly
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activate based on the coordinates of their containing celsCartesian system. In fact, Bentley and Kumar
(1999) and Eggenberger (1997) used this idea by assumingdiégt” present in every developing embryo

that was really just a two-dimensional Cartesian cooréindthis way, positional information can be used
directly to specify fate, or to regionalize the embryo intdl ¢ate groups.

Because the information available computationally cafedffom that available in nature, the design
of AE systems should be based on a principled analysis of th& gnd cons of the various natural and
artificial strategies. For example, prepatterning is comaenally inexpensive, yet used alone only allows
a single rigid way of specifying identities. In contrastgotatep induction and self-organization are dynamic
approaches to fate determination, yet involve a great deabmputation. The extent to which the various
strategies contribute to the development of highly complestems is unknown.

Another question is how the cells arise in the first placepkmethey differentiate. In natural embryos,
precursor cells must be created and distributed in an argdninanner. The early proliferation of embry-
onic cells is callectcleavage(Gilbert 2000, page 25), during which numerous cell divisiaccur. When
cell division begins to slow down, these early cells, caliaktomeresrearrange their positions by moving
around the embryo in a process callgastrulation (Gilbert 2000, page 26). AE researchers must decide
whether cleavage or gastrulation are the most computdlyoefficient approaches to start the process of
embryogenesis. Proliferation may not be necessary at alldomputer because a canvas of undifferenti-
ated cells can be created instantaneously with little cdatjmnal cost. Thus, it may not be necessary for
evolution to discover ways to initially spread the canvastigh cleavage and gastrulation.

Similarly, even though natural nervous systems rely extehson cell migration to place cells in their
appropriate locations (Gans and Northcutt 1983), AE resems must determine to what extent migration
aids evolutionary search. One possibility is that miggtimeurons enable evolution to express similar
phenotypes in different ways through dynamically placiatisdn their final positions. For example, because
of migration, a phenotypic class (such as neurons) can lagectall at once in a single location. Evolution
can then produce spawning centers where a class of cellseted, and then place and connect those cells
in different locations.

Even if cells are allowed to migrate, they can do so in manyswdy low-level implementations, cells
would literally move through the developing structure asytido in natural embryos. However, AE cells
could instead prespecify the ultimate positions of theoigaeny using either absolute or relative coordinates,
in which case simulating migration would be unnecessary.

Much research remains to be done on distinguishing therfaatacell fate determination that evolved
in response to physical constraints in nature from thosefédlitate the evolutionary search process. In
addition, the impact of different computational simpliiocas on evolvability is yet to be determined. In
some cases, it may turn out that low-level simulations ofifgm@tion and migration are necessary in order
to interleave these processes with gradual cell speci@liza In other cases, the overhead of simulating
low-level events may outstrip the benefits.

We have surveyed the different mechanisms of cell fate oetation in nature, and those that are
additionally available computationally. Through implemtiag these mechanisms, experiments can be per-
formed to determine how they contribute to developing caxipy.

3.2 Targeting
Not only must cells reach their proper locations, but theysnalso accurately connect to other cells. Partic-

ularly in the nervous system, developing proper connegtigicrucial (Gans and Northcutt 1983). In order
to create a working network of cells, cell extensions sucaxass and dendrites must ultimately reach their
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intended targets.

Targeting of cell extensions is usually based on one of timamy strategies (Marin et al. 2002; Zig-
mond 1999, pages 527-528):

¢ Specific Identity: The identity of the target is specified directly in the gémebde and the target is
located based on a chemical marker.

¢ Relative Position The relative location of a target is specified in the genosoethat the extension
grows a specific distance and angle in order to reach thettadighly regular patterns of connectivity,
such as neural self-organizing maps (SOMs), are likely tmfthis way.

Many variations of the two targeting strategies exist indmgg, and can be utilized in AE. For example,
a chemical gradient could be used to to identify a large taagea and help processes find their goals.
Location and identity could be used together, such that aneion grows towards a particular region and
then uses a gradient to zero in on its target. Other cellslsareanit path designating proteins, as in Dellaert
and Beer’s (1996) model.

Although many neural systems can conceivably be organiz#ltbut specifying precise targets for
individual extensions, at least some natural neural nédsvare based on very specific prespecified targeting.
For example, dendritic targeting in the olfactory nervoystem ofDrosophilaflies has been demonstrated
to be prespecified (i.e. hardwired; Marin et al. 2002). Tlitis, reasonable for an AE system to be able to
evolve both prespecified hardwired connection topologrestapologies that organize based on chemical
gradients or relative locations.

The entire process of growing axons and dendrites need nsinbhdated in order to form neural con-
nections in simulation. Connections can be formed instetasly in AE systems with perfect accuracy.
Whether low-level simulation of axon growth provides an lationary advantage remains to be demon-
strated. In addition, as with cell migration, Cartesianrdamate information can be directly incorporated
into AE cells in order to allow them to find appropriate tarfpetations.

AE researchers also must consider the role of user-spedifjpets and outputs in developing neural
networks. How can a developing embryo connect its cells &r-sgecified cells that do not result from
development? Some researchers avoid this problem by adegabody morphology along with neural
networks, so that inputs and outputs arise naturally froenkibdy itself (Bongard and Paul 2000; Bongard
and Pfeifer 2001; Hornby and Pollack 2001b; Komosinski anthRiI-Varga 2001; Sims 1994). However,
such coevolution may not always be possible in real-worltha@ios such as the evolution of controllers
for robots that have already been manufactured. Naturduten did not need to address the problem of
connecting user specified inputs and outputs to a develamgyo. Thus, a special facility to ensure that
the final topology is connected may need to be implementatinay affect the kinds of targeting allowed
by an AE system.

The way that targets can be expressed through genetic exgcoal profoundly bias evolutionary search
towards certain kinds of topologies. Thus, significant aesie is necessary to determine both the most
computationally efficient way to simulate targeting, ashaslthe most expressive encoding.

3.3 Heterochrony

Changes in the timing of developmental events over genasis callecheterochronyGilbert 2000, page
554). In natural embryogeny, the path to the final productrprssingly flexible. Entire phases of devel-
opment can be eliminated without sacrificing the end regwt.example, many frog species have evolved
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Figure 7: The Developmental Hourglass (Raff 1996). The hourglass represents the constraints on trajectories
through developmental space. It illustrates that even mpiex organisms, a great deal of change in developmen-
tal pathways is possible not only in late development, whstaldished body parts are being refined, but also early
in development, when the master body-plan is still beingtdisthed. The phylotypic stage, where interactions be-
tween different developing components increase, is leasinable to change. Because global interaction between
key components are critical to interconnecting the entiganism, timing changes during this stage could severely
disrupt development. The three dotted lines depict diffepotential trajectories through the space, all of whiassr
identical phylotypic stages, even with different start @mdipoints. This crossing illustrates that the phenotypleet
phylotypic stage can remain constant even as early and éatdapment vary in their timing and structure.

away their tadpole stage, yet still grow into mature, sdyuanctioning frogs (Ellinson 1987). Their limb
buds develop early, and a little frog, rather than a tadpalnately emerges from the egg. Conversely,
the Mexican axolotl, a salamander, has lostaitklt stage, and develops mature gonads as a tadpole-like
creature (Moss and Shaffer 1997). Their development of gemas been greatly accelerated so that they
become sexually functional as tadpoles. This dramaticHiktyi in development suggests that significant
modularity underlies the genetic encoding. Because thegrmf the development of different modules is
so flexible, mutations can safely modify timing, allowingo&uion to explore a variety of developmental
plans. Heterochrony allows developing components to coneeciontact with different components, so that
evolution can explore many points of synthesis between compts. Thus, AE researchers may wish to
consider whether their encodings support heterochrony.

The ordering of developmental events is strikingly flexidleDrosophilaflies, all body segments form
in parallel. However, in other flies, body segments form segally (Lawrence 1992). In both cases,
the individual segments develop in the same way regardiefe@rder of their appearance. Thus, many
components can appear at different relative times. Onlynadi#ferent components must communicate,
such as when one component uses messages from another ¢oitguiltvelopment, can timing changes
have a deleterious effect.

Both early and late development exhibit developmentalatian in nature. While changes in late de-
velopment can be explained by local variations in mature pmmants, the question remains how early
development can change without altering the entire dewedoy of the organism. One explanation for the
great deal of flexibility in early development is that gloli@kractions among differentiated components of
an embryo do not begin to occur until around the middle of grmdpenesis. This pivotal middle period is
called thephylotypic stagéRaff 1996, page 208) . After the phylotypic stage, most tpraent is highly
localized, giving precise definition to specific body paiitbe cessation of global interaction allows a great
deal of plasticity. This way, a picture ofdevelopmental hourglasamerges, wherein trajectories of devel-
opment can vary most early and late in development, but refisei middle (figure 7). In fact, Raff et al.
(1999) demonstrated that early development is so flexildettiey were able to mate two separate species
of sea urchins, only one of which had a larval stage, and m®duviable hybrid offspring! The offspring
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reinstated the larval stage that was absent from its mdtparant, but developed differently than either
parent. Thus, early developmental modules can be very feekiliheir interactions.

There are several ways heterochrony can positively affecfinal phenotype. For example, body (or
neural) parts could be moved or manipulated in relation thesher by altering the timing and sequence
of developmental. Parts can also be extended or comprebsdzbd, heterochrony has been credited with
the evolution of single-toed horses from five toed horseslféfd 1987) and the movement of the nose
of the whale to the top of its skull (Slijper 1962). In the awibn of the single-toed horse, the growth
rate of the central toe of the five toed horse sped up so muativelto the other toes that the other toes
ultimately became irrelevant and disappeared. In the chfeavhale, an extension in the duration of jaw
growth caused the nose to be pushed upwards to form a blowhbles, heterochrony has led to important
phenotypic discoveries.

In addition, heterochrony increases the number of suagegehotypes by offering a variety of paths
to each successful phenotype. Mutations that can causegtichianges without disrupting the final product
areneutral mutations. There exist neutral networks of genotypes, ected by neutral mutations, that can
be explored without fitness cost, increasing the space tratasily be explored by evolution. In other
words, changes in timing can affect the developing partsabiae in contact with each other, and the places
of contact, without altering the final product. Thus, givesttbthe positive effect heterochrony can have
on final phenotypes, and the increased potential for neetwr@ution, it is worthwhile to consider whether
temporal changes are possible in a given AE system.

What kinds of artificial encodings allow heterochrony? Henptional factors that regulate genes con-
trol gene expression during development. The overall tijrohdevelopment results from the precise se-
guence of genes expressed and from the the combinatoripépies of transcription factors that regulate
genes (Ambros 2002; Reinhart et al. 2000). Whether AE systgiproximate the combinatorial properties
of natural gene regulatory networks may determine the éxtewhich they support heterochrony. Some
cell chemistry researchers have already begun to expliseatha. For example, Bongard (2002) showed
neural and morphological development in evolved artifiorgianisms could each vary independently.

In addition, computational abstractions can be utilizeat #re not available in nature. Like Cartesian
coordinates being used in lieu of chemical gradients, tisedfican be used to regulate genes. Since time is
directly available, it can be exploited as a "growth hornictimat explicitly activates and terminates events
in embryogeny. Grammatical encodings can be parameteizécthe, while cell chemistry approaches may
implicitly or explicitly take time into account regulatirgenes. Thus, either kind of encoding can potentially
use time to regulate steps in development.

Biologists continue to uncover the mechanisms that makerdetrony possible. It remains to be seen
how difficult it is to achieve similar flexibility with eithegrammatical or cell chemistry approaches.

3.4 Canalization

Encodings in evolutionary computation are notoriouslhytleri A significant proportion of mutations lead
to infeasible offspring. In contrast, natural organisma arore robust. Natural development seems to be
buffered so that slight changes in critical components dacaose related or connected components to fail.
This robustness to mutations is calleahalization(Waddington 19423. Canalization may be an important
property for an AE system, facilitating safe exploratiorgehotypic space.

“The termcanalizationwas chosen by Waddington (1942) to form an analogy betweemwty water running down a hill
eventually carves out regular streams in the surface, amevty development slowly settles on a set of conventionshibedme
ingrained in the genome. Although changes to the geologicaronment or vegetation may cause water to take diffgpatits,
the set of available paths is very difficult to alter once diaation has occurred.
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How does canalization work, and what might be the mechantbiatsallow development to succeed
even under the stress of unpredictable changes among deygpatts? In this section, we will discuss
three important such mechanisms: Stochastic events ddevejopment, flexible resource allocation among
developing parts, and the overproduction of cells.

3.4.1 Stochasticity

A cell’s fate, i.e what role it will ultimately serve, is nobmpletely determined when the cell first appears
(Alberch 1987). In many cases, cell fates cannot be pratlieten with complete genetic knowledge. For
example, several cells in early nematode embryogenesisaaididates for vulva formation. The cell that
is ultimately chosen to be the central cell around which thiwar forms is the cell that produces the most
of a special ligand. Receiving cells register the liganddpiation of their neighbors and create more ligand
receptors the more ligand they receive. This creation dse®their own ligand production. Thus, a single
cell ultimately emerges as the primary cell around whichuhka will form (Sigrist and Sommer 1999;
Wilkins 2002). It does not matter if mutations shift the lighproduction one way or another, since there is
a mechanism around which the entire process will organizmytase. Such robustness may turn out to be
useful or even necessary for AE systems as well.

In support of this view, Kaneko and Furusawa (1998) showed tionlinear oscillations in a (non-
evolutionary) cell chemistry simulation allow multicdbu organisms to develop robustly even with partial
ablation: Multicellular clusters could recover their iaitdifferentiation pattern even after a section of the
cluster was cut out. Experimentation with stochastic gratical rules and artificial regulatory networks
may give insight into how AE can adjust to mutations in simvleys.

3.4.2 Resource Allocation

Recent research into developmental allocation of reseuras confirmed a surprising result: Body parts, at
the level of appendages, can reallocate the distributiorszfurces. Nijhout and Emlen (1998) manipulated
the body parts of developing butterflies and beetles usimgtéghniques: amputation, where a limb was

removed, and hormone treatment and selection, where lindve wnly reduced. In all cases they found

that when one appendage consumed less resources, angbleadage became larger by consuming the
remaining resources. This result implies that compengatogchanisms are genetically encoded and can
react and reallocate resources properly if a mutation léadschange in body proportions. Thus, a change
in the size of one appendage does not require evolving cosapay changes in other appendages at the
same time.

It is possible that a resource allocation scheme could beé imsAE for similar flexibility. One major
difference between AE and natural embryogeny is that théograf nutrient resources in AE are essen-
tially unlimited. However, a resource allocation schemaldastill help maintain reasonable topological
constraints on phenotypes after significant mutationahgha.

3.4.3 Overproduction

Neural connectivity can potentially be disrupted by mutagi affecting only some neurons in a network. If a
group of neuronsA connects to another group, then a mutation only affecting may be enough to break
the entire circuit involvingA and B. Such changes are calledn-concordant In contrast, mutations that
effect bothA and B in complementary ways are calledncordantchanges. While non-concordant changes
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are potentially devastating, the problem can be avoiddgl lifas a buffering mechanism that enables it to
react to a wide variety of possible configurations4of

One such buffering mechanism is overproducing neurori3.itf the number of connections extending
from A to B is reduced or increased through mutation, the extranedispreduced byB can easily be
disposed of through apoptosis, or planned cell death. heeitase, the functional connection betwetn
and B will develop.

In fact, overproduction as a buffering mechanism has beenrdented in the connections between a
cat’'s eyes and brain (Williams et al. 1986, 1993). Europeddcats evolved to live in cold environments
and hunted during the day, while North African cats, from ethdlomestic cats descend, hunted at night.
Because requirements are different for daylight huntinddaats have significantly more light sensors, or
cones, in the center of their visual field, resulting in arioperve with more neurons sending signals back to
the lateral geniculate nucleus (LGN), which is the part efltnain receiving the connections. Interestingly,
fetal wildcats have the same number of axons as domestidgrc#isir optic nerve in early development.
However, in domestic cats, many of the cells that are imjtiptoduced end up dying, while significantly
fewer cells die in the wildcat (Williams et al. 1993). Funtimore, studies of hybrid cats revealed that the
number of axons in their optic nerve significantly varies.spite this variance, the number of cells in the
LGN always matches the number of neurons in the optic nengécating that cell death is being used as
a buffering mechanism by the genetic system that produeesgtic nerve. Thus, whether the size of the
optic nerve increases or decreases from one generatiore toetkt, the LGN can always provide the right
number of connections for the system to function.

How could overproduction work in AE? In section 3.2, we dissed targeting by either specific identity
or relative position. If specific identity alone were usedam AE system, overproduction could not be
utilized. However, if targets that might not exist can beddfied, connections to such targets would be
removed, utilizing overproduction. In contrast, overpsotion with relative positional targeting is relatively
easy to implement. If an axon targets an empty location,ritlma discarded. Some AE systems already
remove unused axons that result from overproduction inra@ellow relative targeting to be imprecise
(Cangelosi et al. 1993; Nolfi and Parisi 1991).

All three imprecision-based strategies, that is stochbifgticompetition, and overproduction, are related
and overlapping in their application in nature. Perhapy theuld allow a safer search through genotypic
space in AE as well.

3.5 Complexification

While the preceding discussion of natural mechanisms inrgogieny has focused on the process of devel-
opment itself, it is important also to consider how geneaticombination and mutation are leveraged in the
evolution of developing systems. In particular, mutatiomature goes beyond optimization. New genes are
occasionally added to the genome, allowing evolution tdoper a complexifyingfunction over and above
optimization. Complexification allows evolution to begintivsimple systems and elaborate on them in-
crementally, as opposed to evolving elaborate systems therstart. Furthermore, elaboration is protected
in nature in that interspecific mating is prohibited. Suckagtion creates important dynamics differing
from standard genetic algorithms. In this section, we disdwow these important characteristics of natural
evolution bear on embryogeny.

Gene duplications a special kind of mutation in which one or more parentalegesre copied into an
offspring’s genome more than once. The offspring then hdsrrdant genes expressing the same proteins
(figure 8). Gene duplication has been responsible for kegvations in overall body morphology over the
course of natural evolution (Amores et al. 1998; Carroll3;99orce et al. 1999; Martin 1999).

22



A B/ CD
XABCD
ABCD|CTI

Figure 8:Gene Duplication. Two genomes of equal length are crossed over. The lettersgept the trait expressed
by each gene. The offspring has two additional redundanegenesulting from the duplication of gen€sand D
from the first parent.

A major gene duplication event occurred around the timeheebrates separated from invertebrates.
The evidence for this duplication centers aroth@X geneswhich determine the fate of cells along the
anterior-posterior axis of embryos. HOX genes are cruciahiaping the overall pattern of developmental
in embryos. In fact, differences in HOX gene regulation axpla great deal of arthropod and tetrapod
diversity (Carroll 1995). Amores et al. (1998) argue thaicsi invertebrates have a single HOX cluster
while vertebrates have four, cluster duplication must h&gaificantly contributed to elaborations in verte-
brate body-plans. The additional HOX genes took on new etguy roles in vertebrate anterior-posterior
axis development, considerably increasing body-plan dexity. Although Martin (1999) argues that the
additional clusters can be explained by many single gendécdiipns accumulating over generations, as
opposed to massive whole-genome duplications, researelgeee that gene duplication has contributed to
important body-plan elaborations.

A detailed account of how duplicate genes can take on noles was given by Force et al. (1999). Base
pair mutations in the generations following duplicatipartition the initially redundant regulatory roles of
genes into separate classes. Thus, the embryo develomssarie way, but the genes that determine overall
body-plan are confined to more specific roles, since therenare of them. The partitioning phase com-
pletes when redundant clusters of genes are separatedreti@ighey no longer produce identical proteins
at the same time. After partitioning, mutations within thepticated cluster of genes alter different steps
in development than mutations within the original clustier.other words, the opportunities for mutation
increase through duplication because duplication creat#e points at which mutations can occur. In this
way, developmental processes elaborate.

Because major biological shifts in body-plan complexityénaesulted from duplication, AE systems
should be able to utilize this kind of mutation as well. Hoegwuplication is difficult to implement for two
reasons:

1. If genes are allowed to duplicate over the course of enwiuthe population will contain genomes of
variable length. Variable length genomes can cause prabfencrossover in genetic algorithms.

2. Two identical sets of genes must be capable of divergitgggaparate roles in a given AE system. It
is difficult to ensure that new genes remain useful after timst appearance.

We now discuss how these obstacles have been overcome bg,retd how AE can employ similar
solutions.
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Figure 9: The Variable Length Genome Problem. Variable length genomes are necessary for complexification
The diagram shows how critical genes can be lost in the cvessd such genomes. A sequence of events is depicted
from top to bottom (a through f). (a) The original genome e@im four genesA, B, C, andD. (b) In separate
instances of reproduction, the original genome undergmediifferent duplications. In one case a cluster of two of
its genesA andB, are duplicated. In the other case, three gede$3, andC, are duplicated. The resultant genomes
now have differing lengths. (c) Over generations, the rofethe duplicated genes differentiate from their redundant
original roles. This functional divergence is representsthg different letters and F', andG, H, andI. The
newly differentiated genes now may serve important newsrasigheir respective lineages. (d) The two genomes of
differing length are crossed over. (e) In one possible aiffgp maintaining the length of the smaller genome, genes
D, E, and F' are lost. Particularly troublesome is the lossiof which was in the original genome. (f) Another
potential crossover, preserving the length of the largeogee, lose€r, H, andl, along with duplicatingD. Loss of
information in crossover may disrupt previously stablemitgpic development. Moreover, there is no way to ensure
that all the necessary genes are included without a mechdaichecking which genes from one genome correspond
to those from another. See figure 10 for a solution to this jerob

3.5.1 Variable Length Genomes in AE

A gene in AE might be a rewrite rule or a gene product with a t&guy region. Whatever the encoding,
when duplication is allowed, the number of genes is variablgich can cause loss of information during
crossover. Figure 9 shows that as new genes are added iredtffneages through different duplications,
the same gene may exist at different positions in differamtagnes. Conversely, different genes may exist
at the same position. Thus, crossover may lose essentiatdglerough misalignment.

Interestingly, this problem does not occur in nature, ardedfore it should be possible to avoid it also in
AE. First, organisms with significantly different genomevear mate because they are in different species.

Second, nature has a mechanism for aligning genes withghgper counterparts during crossover, so
that data is not lost nor obscured. This alignment proces®&an most clearly observedtn coli (Radding

24



2 3
A B C D (a) Original genome with historical markings

1 2 374 1 2 3 417 8 9
A BCDARB A BCDAB (b) Separate duplications
1 2 3 4 5 6 1 2 3 4 7 8 9
A B C D E F A B C D G H | (c) Duplicate gene roles differentiate
}1 2 3 4 5 6 (@ Historical markd ol
N7 istorical markings used to align genes
ABCDEF during crossover
1 2 3 4 7 8 9
X®*A BCD GHI

1 2 3 4 5 6 7
A B C D E F G H | (e) No loss of information in crossover

Figure 10: Solving the Variable Length Genome Problem with HistoricalMarkings. Historical markings are
numbers assigned to each gene that represent the orderdh néaiv genes appeared over evolution. (a) The original
genome contains four gene$, B, C, andD, assigned historical markings 1 through 4. (b) When new gappear
through duplication, they are assigned numbers in the ardehich they appear. Assuming the duplication on the
left happened before the one on the right, the new gedtand B’, andA’, B', andC’, are assigned the numbers
5 through 9. (c) As the products of the duplicate genes diffgate, their historical markings continue to serve as a
record of their origins. (d) During crossover, those gerteg have matching historical markings are aligned, while
those that are disjoint are purposefully not aligned. (e¢ Tésult is that any kind of crossover can preserve the
information and relationships between all the genes inaldei length genomes by utilizing the historical markings.
Historical markings are an abstraction of synapsis, thegss used in nature to match up alleles of the same trait
during crossover (Radding 1982; Sigal and Alberts 1972).

1982; Sigal and Alberts 1972). A special protein calRetAtakes a single strand of DNA and aligns it with
another strand by attaching the strands at genes that exjfresame traits, which are calladmologous
genes The process by which RecA protein aligns homologous genealiedsynapsis In experiments in
vitro, researchers have found that RecA protein does noptetmthe process of synapsis on fragments of
DNA that are not homologous (Radding 1982).

It turns out that speciation and synapsis can both be ulilimegenetic algorithms, including AE, by
using features of evolution that are available only throagimputational means. Stanley and Miikkulainen
(2002a,b,c) showed that the ancestriztory of genes in an evolving population can be used to tell which
genes should line up with which during crossover. If a couassigns increasing integers to new genes every
time they appear through a mutation, and if those integerpraserved every time genes are subsequently
inherited, then the origin of every gene is known throughexdlution. The numbers assigned to each gene
are calledhistorical markings Since two genes with the same origin must express the satgitris
possible to know exactly which genes line up using the histbmarkings (figure 10).
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Although the system developed by Stanley and Miikkulaireailed NeuroEvolution of Augmenting
Topologies (NEAT), was applied to a direct encoding of neneaworks that did not include a developmental
stage, in principle historical markings can be applied tp genetic encoding, including those used in AE,
since gene history is a genetic property in both developatearid nondevelopmental encodings. Thus,
using the NEAT methodology, the variable length genome Ipralcan be overcome in AE.

Stanley and Miikkulainen (2002b,c) also showed that hisédbmarkings can be used to speciate the
population, separating incompatible organisms into diffé niches. The extent to which two genomes
have different genetic histories is a measure of their inmatibility. Therefore, historical markings allow
a simple way to test whether two genomes belong in the sanuéespélhe number of historical markings
only present in one of the two genomes is a measure of thempatibility. This measure can be used to
cluster genomes into compatibility groups, or species.

A significant benefit of speciation is that it protects inniva (Stanley and Miikkulainen 2002c). Be-
cause adding new genes creates new species, organismauplitate genes compete primarily with other
organisms in the same species. Thus, they have a chanceirtdzeptheir new genetic material without
being prematurely eliminated through competition with grapulation at large.Explicit fithess sharing
(Goldberg and Richardson 1987) can be used to ensure tHady fiigspecies cannot crowd smaller species
out of the population before they have a chance to reachpo&ntial. That way, gene duplications do not
need to immediately improve fitness in order to survive. Grdtier hand, since organisms without duplica-
tions are also protected in their own species, smaller gesare preserved as long as they are competitive,
avoiding bloating the genome.

Historical markings provide another example of a compateti abstraction that is potentially more
efficient than the natural process: In this case, histomeaikings are an abstraction of synapsis, which
is the process through which homologous genes in naturarges are aligned (Radding 1982; Sigal and
Alberts 1972). Historical markings enhance evolutionagrsh, making it possible for evolution to utilize
gene duplication effectively.

3.5.2 Divergence of Gene Clusters

Even if variable length genomes are possible in AE, the quesemains how clusters of genes can be
duplicated such that the new cluster eventually takes omarole. This goal is important because major
mutations in new duplicate clusters could permanentlybdéshthem. They might never activate, or their
products could become so different from those of the origihaster that they disrupt development. As
Force et al. (1999) explained, after a cluster of genes ifichtpd in nature, subsequent mutations reparti-
tion the roles of both the original genes and the duplicakteakeg without significantly altering the overall
developmental plan. Once duplicate genes have undergdiigiesut mutation to be activated at different
points during development than their original countemastibsequent mutations can begin to alter devel-
opment at these new points. Thus, because of the duplicagsgevolution has the flexibility to alter the
developmental process at additional points.

If duplicate genes are to take on new roles in developmeay; thust be carefully integrated into the
already-existing developmental plan of the organism. Ifatians that change the conditions under which
duplicate genes are activated are too severe, the geneBewdime disconnected from the existing devel-
opmental plan, and subsequent mutations will likely hattie leffect. Thus, in order to allow duplicate
genes to gradually take on new roles, the conditions undé&hathey activate should lie on a continuum.
In other words, a slight mutation in one duplicate shouldsesitito be activated in some but not all cases
where its counterpart was formerly always activated. Camstrbe taken to make such changes possible
in a particular AE encoding. Preconditions for activatimgrgmatical rules or regulatory requirements for
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genes in cell chemistry systems should not allow slight traria to significantly alter the conditions under
which a particular gene is activated.

AE systems that implement both synapsis and gradual dimeegef duplicate genes will allow re-
searchers to experiment with gene duplicafidBecause duplication is an effective means of complexifica-
tion, genomes should start out small and be allowed to bet¢amer through duplication. Each duplication
extends the genome into a higher dimensional space where games are being optimized, increasing
the potential complexity of the phenotype. This approatdwa evolution to optimize the lowest possible
number of dimensions, since organisms with new genes onbetter if those genes are useful. Speciation
allows different species to complexify at different rates,that the population can explore different spaces
simultaneously (Stanley and Miikkulainen 2002a,c).

AE systems that complexify genomes in different speciesfeominimal starting point will allow re-
searchers to address an important question: How shoultecdusf genes be chosen for duplication? Ev-
erything from copying single genes to duplicating wholeamees is possible. While biologists continue to
debate this issue (Amores et al. 1998; Martin 1999), AE caa hegin to address it through experimenta-
tion. Calabretta et al. (2000) have already shown that daiptig clusters of genes can lead to the emergence
of distinct neural modules in neuroevolution.

A complexifying AE system that starts with small, simple geres will first evolve basic structures,
such as bilateral symmetry, and then elaborate on them umefigenerations by adding new genes. This
approach is more likely to discover highly complex phenetyphan an approach that begins searching in
the intractably large search space of complete solutions.

We have now surveyed all five major dimensions of developniertiological systems: Cell Fate,
Targeting, Heterochrony, Canalization, and Complexiiiicat Since each dimension can be implemented
in different ways in AE, the dimensions together constitateepresentation of the space of possible AE
systems. Thus, the distinction between cell chemistry aachmatical approaches reveals less about the
underlying properties of AE systems than how they operateam dimension.

Another important theme from this section was computati@istraction of mechanisms in natural
development that may be more efficient than nature’s own oasth The following resources that are not
directly available to nature but useful in computationateyns were identified:

e Cartesian Coordinates to represent position (Sectionargi13.2)
e Instantaneous spreading of a canvas of cells (Section 3.1)
e Real time as a regulator of gene expression (Section 3.3)

¢ Historical markings as a mechanism for artificial synapSisction 3.5)

These artificial information sources can boost computatigerformance in various dimensions, and
should also be considered in experimentation.

The next section uses the five dimensions of developmentbpase a taxonomy of existing and future
AE systems, and suggests how the taxonomy can help focue figsearch efforts.

5Gene deletioris also possible. However, deletion is potentially morestigious than duplication. Duplication creates re-
dundancy, which does not cause any loss of functionalitycolntrast, deletion may cause important steps in developitodre
removed, short-circuiting embryogeny.
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4 A New Taxonomy for Artificial Embryogeny

The goal of a taxonomy is to make classification and compaiidalifferent systems possible. To achieve
this goal, a good taxonomy must reflect the underlying prtigeof the space being classified. Thus, the new
AE taxonomy will replace the older grammatical/cell chetnyiglistinction by employing each dimension
of development as an axis in a multidimensional classificaspace of AE implementations. These axes are
described first below, followed by an overview of how the tBsg taxonomy represents the existing AE
systems.

4.1 Dimensions of Variation

In order for dimensions of development to serve as axes, iinest be characterized as continuums. That
way, it will be possible to describe a particular AE systemwell as natural evolution, gmintsin a five-
dimensional space of possible evolvable development&tisygs To better understand this space, we begin
with a summary of the major dimensions and their properties:

1. Cell Fate: An AE system can range from having a single method for deténg the fate of a cell
(for example, prepatterning) to having a large variety dedaination methods (described in Section
3.1).

2. Targeting: At one extreme, only specific targeting is used, whereag @thtive targeting is utilized
at the other extreme. In between, systems use some conairtdtine two strategies (Section 3.2).

3. Heterochrony: Some systems may have no mechanisms for changing the tiohiagents, while
others may implement mechanisms of timing such as courgarameters in L-systems, or dynamic
regulatory networks. More flexible systems approach theldgment hourglass, with many possible
paths from early to late development (Section 3.3).

4. Canalization: AE systems can range between requiring precise genotgiptauctions to those that
tolerate a high degree of imprecision or mutation, utilgsuch strategies as stochasticity, resource
allocation, and overproduction (Section 3.4).

5. Complexification: Classical genetic algorithm encodings employ fixed-seeagnes. On the other
extreme, genomes in nature have variable length and soe®tiew genes are added through dupli-
cations. Synapsis and speciation facilitate variabletleggnomes (Section 3.5).

The five dimensions describe theplementatiorof an AE system, as opposed todimergent properties
In other words, experimenters can vary the settings on arthasfe dimensions by implementing or not
implementing mechanisms described in Section 3. For articpkar configuration, the emergent properties
of the resulting evolutionary process can be measured. ¥&ongle, the extent to which a particular system
produces complex structures is one possible measure @aritsrmance. Other emergent properties that may
be measured are modularity, gene reuse, symmetry, anceaffici Because these are emergent properties
rather than implementation choices, we do not include thesgerties as axes in the implementation space.

Figure 11 classifies AE systems from Section 2 along theserbians. Only systems for which evo-
lutionary results have been reported are classified. Na@waution is also graphed (depicted as a tree)
for comparison. The classification ot meant as a rating; there is no implied superiority of one ena o
dimension over another. Rather, the classification is measlhow which areas of the space are currently
being explored, and which areas remain uncharted.
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Figure 11:The Space of Existing AE Systems. AE systems, in addition to natural evolution (depicted aa)t

are graphed on each of the five dimensions of developmenoigitiorizontally in each subfigure. Systems depicted
in gray are grammar-based, while those in white utilize chmistry techniques. Only those systems for which
evolutionary results were reported are included. Evenghaitiis not a developmental system, NeuroEvolution of
Augmenting Topologies (NEAT; Stanley and Miikkulainen 2@0c) is included on the complexification dimension
since it is the only system that currently implements a wersif synapsis and speciation. The letters are abbrevition
for the authors who developed the specific AE systems, agibdeddn Section 2: B - Bongard and Paul (2000),
Bongard and Pfeifer (2001), and Bongard (2002); BeK - Bgrdaled Kumar (implicit encoding; 1999); BKa - Belew
and Kammeyer (1993); BKu - Boers and Kuiper (1992); CPN - @togjet al. (1993); D - Dellaert and Beer (1994a,b)
and Dellaert (1995); E - Eggenberger (1997); G - Gruau (1988) Gruau (1994), and Gruau et al. (1996); HP -
Hornby and Pollack (2001a,b); J - Jakobi (1995); K - Kitan®9Q@); KR - Komosinski and Rotaru-Varga (indirect
developmental encoding; 2001); LS - Luke and Spector (199B)- Nolfi and Parisi (1991); S - Sims (1994); Those
systems that did not include any kind of targeting are noplyeal on that dimension. The figure shows the kinds
of AE systems that have been implemented, and those ardagthan unexplored. This taxonomy makes possible
principled exploration and comparison of future systems.
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4.2 Classification Overview

In this section we outline how the proposed taxonomy reptssihe current AE systems. Each dimension
is explained moving from left to right on its axis in figure 11.

In the cell fate dimension, the majority of systems rely asolely on prepatterning, i.e. the fate of
each new unit of structure is determined by its parent. Bgrahd Kumar's (1999) and Boers and Kuiper's
(1992) systems also use context sensitivity, giving them tweans of fate determination. Moving to the
right, several cell chemistry approaches use signalingadls iWo system implements as many determination
methods as exist in nature.

In the targeting dimension, grammatical approaches teng¢ospecific targeting. When a cell splits
into two connected cells, or when a rule specifies a conngctiee connections are fully specified by the
identities of the rules from which they derive. Some gramoadtapproaches (Gruau 1994; Hornby and
Pollack 2001b; Komosinski and Rotaru-Varga 2001; Luke apdc®r 1996) also implement a kind of
relative targeting in which instructions in the grammar specify connections by their offset in the rewrite
string. However, this kind of relative targeting differ®in that described in Section 3.2, in which targets
are specified by their offset and angle in the actual Carnesgpace of the developing system. Cell chemistry
approaches use this more natural form of relative targefiig systems of Cangelosi et al. (1993) and Nolfi
and Parisi (1991) rely exclusively on this kind of relatiaegeting.

A few systems (Belew and Kammeyer 1993; Boers and Kuiper ;188ano 1990; Nolfi and Parisi
1991) cannot use heterochrony because steps in their gewetd are not parameterized or modulated
in any way. Thus, changing the timing of developmental evémtthese systems would require altering
the entire genome. In contrast, the majority of AE systemglément some kind of parameterization or
signal modulation system, allowing developmental phasdager off or initiate at different times. Bon-
gard's (2002) system is placed farthest to the right bec#usehe only system with a reported analysis
of heterochrony. No system has implemented radical shiftgriing or the elimination of entire phases of
development without disrupting the final product, as seaemairal evolution.

Because they rely on prepatterning, none of the existinghgratical approaches utilize stochasticity,
resource allocation, or overproduction, and thereforanoaileverage these mechanisms for canalization. On
the other hand, cell chemistry systems can utilize impeetasgeting since physical location is a standard
property of their implementation. The one exception is Bgnand Kumar’s (1999) cell chemistry system,
which does not implement targeting and uses rules similagrémmatical rules. Eggenberger’s (1997)
system is placed slightly to the right of other cell chenyistystems because it includes a special facility for
apoptosis, or planned cell death. Stochasticity is not irsedy existing systems as a means to encourage
robustness. Despite the division in this dimension, bothatemistry and grammatical approaches are
theoretically capable of implementing any particular kivfctargeting or imprecision-based strategy, and
they differ in this dimension primarily for historical rearss.

On the complexification dimension, four systems use fixedtle genomes, and therefore cannot com-
plexify at all. Several systems use variable length genoimessome use standard crossover operators that
are likely to lose information, making it difficult to reaéizhe full benefit of complexification. A few sys-
tems (Bentley and Kumar 1999; Gruau 1994; Komosinski andme¥arga 2001; Luke and Spector 1996)
use special crossover operators for variable length gesoMest of these specialized systems use genetic
programs for evolution. However, no system starts out wiglopulation of small genotypes and systemat-
ically complexifies them over generations. NEAT (Stanled afiikkulainen 2002c) is included at the far
right of the axis as the only example of a system that implémsystematic complexification and approxi-
mates synapsis and speciation, although it is not an AErmsydttowever, NEAT's historical markings can
potentially be used by any AE system.

30



The taxonomy shows that the cell chemistry vs. grammatiséihdtion is indeed superficial, since both
approaches can vary along each dimension. In fact, all themsions have empty space that can be utilized
further. The next section discusses the implications ahdduwapplications of the taxonomy.

5 Discussion and Future Work

As can be seen in figure 11, a large amount of space on many siiomsnof the new AE taxonomy has
not been explored. Unexplored space includes systems itnatog many ways to determine cell fates,
mix relative and specific targeting, have high potentialHeterochrony, high potential for canalization, and
realistic complexification. Interestingly, natural eviddun occupies exactly this part of the AE space. This
observation suggests that an extremely important poifitisvast space remains to be explored, along with
many other untested points.

Ultimately, the goal of AE is to be able to evolve phenotypes@mplex as biological systems. This goal
is still far in the future; at the current stage, we are stfuching for constituents that make AE effective.
The dimensions of the new taxonomy for AE indicate what sofiibase constituents might be. There may
not be one best solution: Different parameterizations meagdmod for evolving different kinds of complex
systems. For example, an AE system suited for evolving anilfieuron neural networks may not be the
same as one suited for evolving vehicle architectures.

Thus, the challenge for future research is to comprehelysasplore this massive space. We must find
out what the trade-offs are between flexibility and simpjicand we must question whether the mechanisms
that biologists have identified as instrumental to natuesketbpment are equally viable in AE. As a first step
in this exploration, we suggest several benchmarks thatsaese as a starting point for understanding the
AE space. Each benchmark can be applied at many points iaxbadmic space, providing many possible
avenues for future work.

e Evolution of pure symmetry: Symmetry is a significant means of reuse. When the samdstegc
exist on both sides of an organism, discovering them onlyedndhe genome as opposed to twice
reduces search effort. Therefore, it is important to urtders how the various dimensions of devel-
opment can enhance the evolution of symmetric patternwithny goal other than symmetry itself.
If evolving k-fold symmetric patterns is made the only goal, we may isotabse dimensions that
facilitate gene reuse. Another interesting question isthdre-fold symmetric patterns can easily be
evolved intok + 1-fold symmetric patterns, providing insight into the poveérreuse in a particular
implementation. Eggenberger’s (1997) experiments invéwglbilateral symmetry represents a first
step in this direction.

¢ Evolving a specific shapeHow hard is it for various AE systems to evolve specific sisagech as
spheres, rings, cylinders, jointed cylinders, socketssstand trees, that are known to be useful in
nature or engineering? Understanding why systems at €ifftquoints in AE space succeed or fail to
evolve such shapes will aid in making future implementatienisions.

e Evolving specific connectivity patterns The targeting dimension (section 3.2) is crucial in neu-
roevolution and experiments should be devised to undetstatimoroughly. How hard is it to get
topologies such as feedforward, recurrent, or self-ogjagi maps to arise in AE? When is specific
identity targeting most useful as opposed to relative locatargeting? How important is neuron
positioning during development when final connectivitytis bnly fithess criterion?

e Evolving a simple controller: While much AE research has focused on ambitious artificiehc
tures complete with body and brain, at some point it will beessary to compare AE systems with
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other reinforcement learning systems (including non-tigmental neuroevolution systems) on stan-
dard benchmark problems in order to asses whether pantiéltaapproaches can evolve solutions
to problems that non-developmental systems cannot. Fongea pole balancing has been used as a
reinforcement learning benchmark for over 30 years (Anuerk989; Barto et al. 1983; Gomez and
Miikkulainen 1999; Gruau et al. 1996; Michie and Chamberg8 Moriarty and Miikkulainen 1996;
Saravanan and Fogel 1995; Stanley and Miikkulainen 2002tk and Dayan 1992; Whitley et al.
1993; Wieland 1991, 1990), making it convenient for comgaamiwith other methods. If a particular
AE methodology cannot compete in a relatively simple domiaimay not be appropriate for evolv-
ing morecomplex artificial organisms either. It is useful to know absuch performance differences
early in order to analyze what causes them, and perhaps rowathem in the future.

Such benchmarks are necessary because most research twsldtzused only on establishing that
indirect encodings can evolve more complex phenotypes divaat encodings. Thus, almost all existing
comparisons are between indirect and direct encodings.sBplshing a set of standard benchmark tasks,
and a taxonomy over which to vary system configurationsctizemparisons can begin to be made between
different indirect AE encodings.

Such benchmark comparisons will eventually make it posdiblpredict performance of AE systems
based on their location in the taxonomy. For example, onetreark might be to evolve a five-pointed star.
This benchmark can be attempted with a system in which atlitnensions of development are fixed except
the cell fate dimension. That dimension can vary from usinly prepatterning to using every conceivable
form of fate determination, from stochastic self-orgati@ato signaling, migration, and proliferation. The
results can be measured using several criteria: How fast thmeobjective shape evolve? How often and
how many genes are reused by the solution genome? Is symusettyor is each point in the star specified
by a separate section of genetic code, i.e. is there emengeddlarity? For every possible setting on the
varying dimension (e.g. cell fate determination), datd laal available for comparison.

It might, for example, turn out that the more available meainfate determination there are, the more
reuse occurs. Once confirmed on other benchmarks and witiratit settings on other dimensions, this
result ultimately allows us to predict under what condiiagruse is most likely to occur. This information
will affect design decisions in future systems, and evdhtuhe taxonomy will make principled design of
AE systems possible.

One possible objection to using simple benchmarks is tlab#nefit of AE may only be realized in
very complex domains or in the evolution of very complex phtgpes. However, even if that is the case, the
suggested benchmarks are chosen specifically to test fieptrat are known to be exploited in complex
biological systems. For example, symmetry is used in mappisticated biological organisms. Thus, if
an AE system cannot evolve a simple symmetrical shape, itlikaly that it can exploit symmetry in the
evolution of more complex phenotypes.

Of course, ultimately we are interested in evolving extrgno®mplex phenotypes. Hart et al. (1994)
argued that development allows utilizing a simpler geniatygearch space than would be possible through
directly searching over phenotypes. It is for this reasat thE encodings promise to achieve otherwise
unreachable levels of complexity. Through gene reuse,tgec@mponents can be used as modules, freeing
evolution from having to discover the same concept more timee.

One of the most intriguing phenomena that might emerge fraucaessful AE representation is rep-
etition with variation. That is, instead of duplicating teame structure multiple times, a genetta¢me
such as a limb, can be reused multiple times with differingqiifiestations. This special kind of modular-
ity is only beginning to be understood. It does not refleditranal engineering design, in which discrete
identical parts are assembled into larger constructiomstead, the beginnings and ends of individual parts
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are amorphous, and their internal structure is only vaguaelystrained. The capacity to reuse parts with
variation is potentially a very powerful way to create coexily, and a most intriguing direction of future
AE research.

6 Conclusion

The goal of AE is to eventually evolve systems that rival thenplexity seen in natural organisms. While
current AE systems represent a step in this direction, rificéat system has yet come close to the power
of natural evolution. Thus, a principled approach to budiAE systems is needed. As a first step, a
framework is needed in which different implementations bancompared and contrasted along different
dimensions. In this paper, we provided such a comparataradwork. We proposed a new taxonomy for AE
systems based on the dimensions of development seen i ndiis taxonomy suggests that the existing
distinction between grammatical and cell chemistry apghnea is superficial. Rather, the dimensions of
development define the capabilities of an AE system. Usiagiiw taxonomy, it will be possible to make
principled design decisions in any kind of encoding, and dmpare and contrast systems in the same
context. Ultimately, we hope researchers can use this targnto predict how varying the settings of
different dimensions affects the capabilities of diffaréamplementations, and therefore build better AE
systems.
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