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Abstract

A major challenge for evolutionary computation is to evolvephenotypes such as neural networks, sensory
systems, or motor controllers at the same level of complexity as found in biological organisms. In order to
meet this challenge, many researchers are proposing indirect encodings, that is, evolutionary mechanisms
where the same genes are used multiple times in the process ofbuilding a phenotype. Such gene reuse allows
compact representations of very complex phenotypes. Development is a natural choice for implementing
indirect encodings, if only because nature itself uses thisvery process. Motivated by the development of
embryos in nature, we define Artificial Embryogeny (AE) as thesubdiscipline of evolutionary computa-
tion (EC) in which phenotypes undergo a developmental phase. An increasing number of AE systems are
currently being developed, and a need has arisen for a principled approach to comparing and contrasting,
and ultimately building, such systems. Thus, in this paper,we develop a principled taxonomy for AE. This
taxonomy provides a unified context for long-term research in AE, so that implementation decisions can
be compared and contrasted along known dimensions in the design space of embryogenic systems. It also
allows predicting how the settings of various AE parametersaffect the capacity to efficiently evolve complex
phenotypes.

1 Introduction

As the problems tackled with evolutionary computation become increasingly complex, it is becoming ap-
parent that a direct mapping from genotype to phenotype, wherein each unit of the phenotype is represented
by a single gene in the genotype, will no longer be effective (Angeline 1995; Bentley and Kumar 1999;
Hornby and Pollack 2002). Novel problem domains, such as theevolution of complex neural networks and
large commercial buildings (Bentley and Kumar 1999; O’Reilly 2000) require on the order of thousands or
even millions of structural units for a single phenotype. Ifevery gene were to map directly to a single unit
of phenotypic structure, evolution would be searching through an intractable million-dimensional genotypic
space.

In order to be tractable, the number of genes required to specify a phenotype must be orders of magnitude
less than the number of structural units composing that phenotype. Nature has shown such representational
systems to be possible on an enormous scale. Even with 100 trillion neural connections in the human brain,
there are only about 30 thousand active genes in the human genome (2800 million amino acids; Dellaert
1995; Deloukas et al. 1998; Kandel et al. 1991; Zigmond 1999,page 9).

Such representational efficiency is made possible through gene reuse. In an indirect genetic encoding, a
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single gene may be used multiple times at different stages ofdevelopment. There are two primary forms of
reuse. First, phenotypic structures can occur in repeatingpatterns, where the same structural theme, perhaps
with some variation, appears over and over again. Each time apattern repeats, the same gene group can
provide the specification. Examples of repeating patterns in biological organisms include the numerous
left/right symmetries of vertebrates (Raff 1996, pages 302-303), and the numerous receptive fields in the
visual cortex (Gilbert and Wiesel 1992; Hubel and Wiesel 1965). Repetition frequently involves variation
on a general theme. For example, each vertebrae in the spine is formed similarly to the others, albeit with
different incoming and outgoing connections (Zigmond 1999, pages 30-31) .

The second primary form of reuse occurs when the same gene product is used toinitiate separate devel-
opmental pathways. For example, Cohn et al. (1997) found that the same gene product, fibroblast growth
factor (FGF), induces the appearance ofboth forelimbs and hindlimbs depending on the part of the body
where the FGF is applied. Thus, the same gene can be used to initiate different structures at different
locations.

Natural organisms implement gene reuse through a process ofdevelopment, or embryogeny.1 The same
genes can be used at different points in development for different purposes, and the order in which activa-
tions of genes take place determines when and where a particular gene is expressed (Raff 1996). Recently,
researchers have begun to replicate this process in artificial developmental systems. The hope is that ex-
tremely compact codes can evolve to represent immensely complex phenotypes.

Researchers have used several names for artificial evolutionary systems that utilize a developmental
phase, including Artificial Ontogeny (Bongard and Pfeifer 2001), Computational Embryogeny (Bentley and
Kumar 1999), Cellular Encoding (Gruau 1994), and morphogenesis (Jakobi 1995). We adopt the term Arti-
ficial Embryogeny (AE) to refer to the entire class of such systems.2 Because AE offers a methodological
approach for reaching the level of complexity seen in natural organisms, the evolution of the body and brains
of artificial organisms has been a popular goal for researchers in this field (Bongard and Pfeifer 2001; Del-
laert and Beer 1996; Hornby and Pollack 2001b; Komosinski and Rotaru-Varga 2001). Thus, the primary
objective of AE is to evolve levels of complexity that have heretofore been out of reach. It is notneces-
sary for systems to faithfully simulate low-level biological development processes, except insofar as the
simulation of these processes may help in achieving high complexity. In order to achieve this goal, both
biologically-motivated and more abstract implementations will need to be tested in many domains.

With growing interest in the field, and a large number of systems being introduced, a need has arisen
for a common framework to analyze and compare them. By identifying the dimensions along which design
decisions can vary, future experiments can reveal their costs and benefits. For this reason, in this paper, we
build a taxonomy for AE systems based on a principled analysis of both existing systems, and biological
research on embryogeny. Ultimately, this taxonomy makes itpossible to predict the outcome of specific
design decisions along well-defined dimensions.

We begin by reviewing existing systems within a preliminaryframework, distinguishing between gram-
matical and cell chemistry approaches. Our review focuses on AE systems that reuse genes because reuse
is one of the primary motivations of AE. We then survey research in biology that provides insight into
the mechanisms behind embryogeny. Five major dimensions ofdevelopment emerge from the biological
overview: (1) Cell Fate, (2) Targeting, (3) Heterochrony, (4) Canalization, and (5) Complexification. Finally,
we use these five major dimensions to replace the preliminaryframework with a mature multidimensional

1Bentley and Kumar (1999) pointed out that the correct term isembryogenyas opposed toembryology. Embryogeny is the
embryological process of development itself, while embryology is thestudyof the process of development. Since we are attempting
to evolve developmental systems, we are implementing artificial embryogeny.

2Embryogenyconveys that systems in this class develop phenotypes usinggenetic information starting from a small initial
structure.
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taxonomy of AE methodologies.

2 Review of Artificial Embryogeny

This section reviews prior work in AE by examining two parallel lines of research. The first type is the
grammatical approach, originated by Lindenmayer (1968). The grammatical approach evolves sets of rules
in the form of grammatical rewrite systems. The grammar can be context-free or context-sensitive and can
utilize parameters. Variations on this theme include usinginstruction trees or directed graphs in place of
actual grammars.

The second type of AE, thecell chemistry approach, is inspired by the early work of Turing (1952),
who introduced a mathematical model of diffusion and reaction within a physical substrate. This approach
attempts to more closely mimic how physical structures emerge in biology. Cells are arranged in a phys-
ical space where simulated proteins can be sent as signals from one cell to another, as in nature. Growth
processes such as axons and dendrites can form connections between cells through complex targeting mech-
anisms. Protein structures are produced by genes in a cell’sgenome if the proper regulatory proteins already
exist inside the cell’s cytoplasm. In effect, the proteins inside the cell are like preconditions to rules in
the grammatical approach. This approach attempts to approximate the functionality of natural develop-
ment through physically-motivated implementation. The hope is that by closely simulating the lower-level
processes of biological development, more natural, and hence more complex, phenotypes can evolve.

We make the distinction between grammatical and cell chemistry approaches for two reasons: (1) It
is currently the most recognizable distinction among AE systems, and (2) it reflects the general division
in artificial intelligence between high-level, top-down approaches and low-level, bottom-up approaches.
However, it will turn out that this initial distinction is ultimately superficial, and that a more sophisticated
taxonomy of AE systems can be derived based on relevant biological dimensions. We begin by introducing
existing systems in these two categories, and will introduce a biological taxonomy in the next section.

2.1 Grammatical Approaches

Using grammar to model biological development traces back to Aristid Lindenmayer, who introduced a
grammatical rewriting system calledL-systems(Lindenmayer 1968). Lindenmayer observed that complex
natural objects, in particular plants, could be described by iteratively replacing simple parts with more
complex parts. This idea is naturally expressed grammatically, where symbols on the left side of production
rules are replaced in parallel by strings on the right. The strings generated by L-systems can be interpreted
as morphological or graphical descriptions, yielding complex fractal-like objects. In other words, L-systems
are indirect encodings that output an explicit string of developmental instructions. For example, figure
1 shows how two simple rewrite rules produce a tree structure. Symbols produced by the rules describe
directions of growth in the tree: “B” means ”grow forward,” “�” means, ”turn direction of growth left,” and
“+”, “turn direction of growth right.” Thus, L-systems can encode complex morphologies using relatively
simple rules.

The grammar can be made more powerful by adding parameters tothe rewrite rules, so that the same
rules can generate different structures depending on theirparameterization (Lindenmayer 1974). In addition,
if one parameter is used as a counter, it can be used to terminate growth processes after a specific number of
iterations. Systematically decrementing the counter eachtime allows rules to naturally express a stopping
case when a parameter reaches zero. Consider the following example:
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Figure 1: Grammatical Approach Example (L-systems; Lindenmeyer 1968).. The two rewrite rules (inset)
describe the growth of a tree-like morphology. The symbolA, shown as a thick line in the tree, is the only symbol that
is rewritten in this grammar. The symbolB, which does not expand, becomes a thin branch, and� and+ determine
relative angles of branches expanded fromA symbols. This example illustrates how a few simple generative rules can
encode a large structure with many components.A(n) : (n > 1) ! B(n)A(n� 1)(n � 1) ! A(0)B(n) : (n > 2) ! C(0)(n � 2) ! D(0)C(n) : ! C(n)D(n) : ! D(n);
where the symbol to be rewritten is on the left, the parameteris in parenthesis, the condition for activating
the rule is after the colon, and the replacement string is on the right. Starting with A(4), this L-system would
produce, A(4)! B(4)A(3)! C(0)B(3)A(2)! C(0)C(0)B(2)A(1)! C(0)C(0)D(0)A(0):

In addition to utilizing parameters, rules can also be made context sensitive, or be applied stochasti-
cally (Prusinkiewicz and Lindenmayer 1990). In a context sensitive L-system, rule activation is not only
contingent upon the correct nonterminal symbol being present, but also upon the symbols that surround
that nonterminal. In stochastic L-systems, successors arechosen probabilistically, leading to randomized
final structures. As another refinement, Vaario (1994) introduced an elaborate object-oriented extension of

4



Body Segment

Leg Segment Foot Segment

Figure 2:Development of Body Morphology (Sims 1994).The graph on the left specifies how the morphology on
the right develops. The body segments repeat because of the recurrent loop on the “body segment” instruction node,
which allows the reuse of genetic code. The number of repetitions is determined by an evolved parameter in the loop
which is not shown. The final structure is a centipede-like creature with six legs and feet on each leg. Sims’ work has
inspired many AE researchers to explore body-brain evolution in simulated 3D environments.

L-systems in which individual objects and subobjects in a developing organism contain their own rewrite
rules. Different refinements to L-systems affect the kinds of structures they can evolve in varying ways. The
effects of such refinements is an open area of research.

Many AE researchers have utilized L-systems and similar grammatical methods (Belew and Kammeyer
1993; Boers and Kuiper 1992; Hornby and Pollack 2001a,b; Kitano 1990; Sims 1994). In such systems, a
set of production rules is evolved for each genome. Startingfrom a canonical embryological start symbol,
embryos are grown by repeatedly applying rules to the symbols in the developing embryo.

Interestingly, L-systems were not initially designed to beevolved. They were meant to model or describe
the growth of fractal-like designs in nature. Thus, a potential problem for L-systems-based AE is that the
capacity todescribeembryogeny does not necessarily imply a capability toevolveembryogeny.

Still, many researchers have pursued the evolution of L-systems and other grammatically-based encod-
ings with some success. One interesting such research direction is the evolution of artificial neural networks
(i.e.neuroevolution). Neuroevolution has long been a major theme in AE, partly because the potential com-
plexity of neural networks is known to be so high. The first rewrite neuroevolution system was developed
by Kitano (1990), who showed that it was possible to evolve the connectivity matrices of artificial neural
networks through a set of evolved rewrite rules. Instead of utilizing a string on the right hand side of a rule,
Kitano used a small 2 by 2 matrix. If the elements of the matrixare nonterminal symbols, then they are
themselves rewritten with 2 by 2 matrices from their respective rules, expanding the size of the matrix expo-
nentially. Eventually, when terminals are reached, a complete matrix of numerical values has been created.
The matrix then represents the connectivity of a neural network. Although nondevelopmental encoding
schemes have since been shown to perform better (Siddiqi andLucas 1999), Kitano’s early graph generation
grammar showed that it was possible to use rewrite rules to encode neural networks for encoder/decoder
problems.

Other researchers have experimented with alternative waysof encoding rewrite rules, aiming at grammar
encodings more suitable for evolution. Boers and Kuiper (1992) used context sensitive L-systems to evolve
neural network topologies. They encoded the rules in a genome as a bit string, which can be recombined
using simple genetic operators. Resulting bit strings werethen translated back into rewrite rules. Boers
and Kuiper were able to evolve solutions to several conventional problems, such as XOR and handwriting
recognition. However, these results did not provide conclusive evidence of the capability of L-systems to
solve these problems since the weights were found through backpropagation. It is not clear that the complex
developmental process was necessary.
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While previous work focused on narrow problems that did not necessarily demonstrate the power of
grammatical encodings, Sims (1994) chose to evolve the bodymorphologies and neural networks of artifi-
cial creatures in a simulated 3D physical world. In this domain, the power of generative encodings is easy
to observe, since resulting creatures are animated in a simulated physical environment. Sims used directed
graphs as the genotypes for his experiment. In these graphs,a node represents a body part and an edge speci-
fies how body parts are connected (figure 2). The nodes and edges together work like L-system rewrite rules:
an edge is like an atom of a rewrite rule and a node is like a terminal. By following recursive edges, Sims’
system reuses genetic material. 3D animations of evolved creatures displayed strikingly natural-looking
gaits. However, gene reuse was not exclusively responsiblefor the natural appearance of the animations; the
quality of physical simulation itself contributed to the results as well.

Using a similar domain as Sims, Hornby and Pollack (2001a,b,2002) applied L-systems to the simul-
taneous evolution of the body morphologies and neural networks of artificial creatures in a simulated 3D
physical environment. Before Hornby and Pollack’s experiments, Lipson and Pollack (2000) had already
evolved creatures that could locomote in such an environment, and successfully transfered their designs to
robots in the real world. However, Lipson and Pollack did notemploy a developmental encoding, instead
utilizing a direct encoding. Hornby and Pollack’s work built on this earlier work by using L-systems as a
developmental encoding. Using this encoding, they evolvedcreatures to locomote without dragging most
of their parts on the ground. Parametric L-systems with 20 rewrite rules were evolved. The resulting crea-
tures were compared with others evolved with a non-developmental encoding, which specified a sequence
of explicit build commands. The developmental encoding evolved dramatically more complex and more
fit creatures than the non-developmental encoding. Developmental creatures displayed significantly more
body segments and repeating structures. Some creatures even displayed symmetrical arrangements of parts.
The results demonstrate that reuse is an important capability for embryogenic systems. However, there are
many morphologies that can potentially support locomotion. Therefore, finding such a morphology may not
be difficult. The question remains whether L-systems can be evolved for a stricter task with a small set of
possible solutions.

Even though many rewrite systems evolve neural networks, other structures have been used as well. For
example, a sorting network is an ordered set of place comparisons, where an item at one position in a list is
compared to an item at a second position. If they are out of order, their positions are switched. Belew and
Kammeyer (1993) evolved rewrite rules similar to L-systemsto specify how such sorting networks would
develop. A grammar encoding was used because the development of a sorting network can exploit symme-
tries. For example, the left and right halves of an unorderedsequence can be both sorted independently using
the same procedure, and then finally combined for a final ordering. The developmental encoding only needs
to encode one of the symmetrical procedures and then expand it once for each half of the sequence, thus
exploiting the symmetry of the problem. Other unusual phenotypes evolved with rewrite systems include
floor plans for buildings and Mondrian paintings (Schnier 1998). Together, these examples demonstrate
that rule evolution and AE in general are applicable to practical problems beyond the evolution of neural
networks and body morphologies.

L-systems encode rewrite rules that determine the steps in adeveloping phenotype. In contrast, some AE
researchers have preferred grammatical encodings that bear more resemblance to programming languages.
These encodings reuse genes through subroutines and recursion, rather than by applying rules under spec-
ified conditions. For example, Gruau (1993, 1994) and Gruau et al. (1996) usedgrammar treesto encode
steps in the development of a neural network starting from a single ancestor cell. This system is calledCel-
lular Encoding(CE) because its rules apply to single cells in a growing network. The grammar tree contains
developmental instructions at each node. For example, CE includes functions that split one cell into two
cells, change the values of links between cells, and remove existing links between cells (figure 3).
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Figure 3:Cellular Encoding (CE; Gruau 1993,1994) Example.The grammar tree is shown at left and the network
growth is shown from top to bottom in five steps at right. The network begins at step 1 as a single cell. At each step,
each network cell is reading from its own part of the tree. Dotted lines identify the location in the tree from which
each cell is reading at each step. When a cell splits, its children cells take separate paths in the tree. The “Increment
Link Register” instruction is the way a cell knows to which link it should apply any subsequent link-based instructions.
In the example, such an instruction occurs immediately following the link register instruction, causing a link’s value
to increase, represented in the network by a thickening linewidth. The neural activation bias is represented by cell
darkness. This example is based on others given by Gruau (1993). While Gruau uses abbreviated instructions, we spell
them out entirely to make the example easy to follow. Gruau (1993) proved that Cellular Encoding grammar trees can
describe any network topology.

Developing cells in CE read from different parts of the grammar tree at the same time. Areading head
for each cell indicates from which part of the grammar tree itis reading. When a cell encounters anend
instruction, its state is finalized and it stops reading. CE uses a First In First Out (FIFO) queue of cells in
order to keep track of which cells are currently executing instructions, and in what order they should be
executed. A cell at the front of the queue executes the instruction to which its reading head points, moves its
head to the subsequent instruction in the grammar tree, and then goes to the end of the queue. Sometimes
cells encounter instructions to divide (there are a varietyof cell division methods), in which case the original
cell moves its reading head down the left subtree, and the newcell moves its head down the right subtree.
Thus, cell divisions allow different cell lineages to follow different developmental pathways.

Gruau showed that by adding a decrementing counter and arecursioninstruction to the family of avail-
able instructions, it is possible to move the reading head back to the top of the tree and reexecute the same
developmental code multiple times. In fact, Gruau gave an example of how a neural network that solves
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the three bit parity problem can be encoded by reusing the developmental code of an XOR network twice
(Gruau 1994). In addition, CE can be extended to encode multiple trees, each with the ability to jump into
the others, so that individual trees can be reused multiple times like subroutines.

Unlike L-systems, CE encoding was designed to be evolved, because a methodology for evolving gram-
mar trees, Genetic Programming (GP; Koza 1992), already existed. Thus, by representing CE grammar
trees as LISP S-expressions, CE took advantage of the GP evolutionary methodology. Gruau showed that
CE could evolve repeating structures in problems such as parity and symmetry, where the same procedure
needs to be repeated over and over again. In fact, CE evolved asolution to the parity problem that could be
altered to produce solutions to parity problems of varying sizes by manually changing the value of only a
single gene. The most inputs demonstrated was 51, confirmingCE’s powerful capacity to reuse structure.

CE has also been applied to body-brain evolution. Komosinski and Rotaru-Varga (2001) used a grammar
tree encoding similar to CE to evolve the body morphology andneural network for agents in a simulated3D world. They showed that the developmental grammar tree encoding evolved modular structures with
repeating parts for simple tasks such as growing to a tall height, and locomotion.

Although initial results with grammar trees on the parity problem and in the body/brain evolution do-
main are promising, CE has not performed as well in other difficult and well-established problem domains.
Stanley and Miikkulainen (2002c) showed that a non-developmental encoding called NeuroEvolution of
Augmenting Topologies (NEAT) was able to evolve solutions to a difficult non-Markovian version of the
problem of simultaneously balancing two poles on a cart using 25 times fewer evaluations than CE. This
comparison suggests that the capacity to reuse genes alone does not ensure efficiency. The ultimate devel-
opmental encoding should be able tobothharness the power of reuse for the discovery of complexity,and
find solutions quickly.

Luke and Spector (1996) identified several aspects of CE thatcould be changed to improve performance:� Crossing over subtrees of CE genomes changes the order in which their operations are executed. Since
the effects of CE’s operators depend on their execution order, the same subtree in one genome may
result in a very different phenotype when inherited by an offspring.� Because CE’s operators are node-centric, CE’s ability to make specific and precise modifications to
connections is limited.� CE creates networks by splitting many cells into two or more interconnected cells. Therefore, the
networks tend to be highly interconnected, which may slow down the search in some tasks where
high connectivity is not required.

Luke and Spector (1996) suggestededge encodingas a solution to these problems. In edge encoding, net-
works are grown by modifying the edges in a graph rather than the nodes, and the grammar trees are traversed
in depth-first rather than breadth-first order. There is currently no experimental comparison between CE and
edge encoding. However, the problems with CE that edge encoding is designed to solve are important in
their own right, since they reveal the importance of evolutionary bias in grammatical AE. Because gram-
matical approaches have formal structure, it is possible toconstruct proofs about the kinds of topologies
they can express. For example, Gruau proved that CE can express any possible neural network topology.
However, Luke and Spector’s critique, along with the pole balancing results, suggest that expressivity is
not the most important property of an AE encoding. Rather, the kinds of architectures that encodings are
biasedtowards, and their capacity to apply crossover and mutationoperators to genomes without damaging
their functionality, are of utmost importance. L-systems face the same problems. Thus, there are several
challenges for grammar-based encodings in the future: Whatkinds of architectures do they tend to produce?
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Are these the kinds of architectures we want? Do they make sense as a genetic code subject to genetic
operators?

There is a final question about grammatical encodings that does not concern their efficiency or biases,
yet has inspired an entirely different approach to AE: Are they a natural way to implement the process of
biological development? In the next section, we review systems that attempt to more closely simulate the
low-level aspects of natural embryogeny. Although we do nottake the perspective that biological simulation
is necessaryfor a good encoding, it may still provide useful insight intothe implementation of developmen-
tal systems. Because nature has evolved extremely compact encodings, it is important to explore the space
of systems that attempt to follow the same path. The next section describes such biologically-motivated
systems.

2.2 Cell Chemistry Approaches

Turing (1952) first modeled biological development at the chemical level with hisreaction-diffusion model.
Although the model was not meant to encompass all of development, it did account for patterns seen on the
exterior of natural organisms, such as the coloring patterns on bird feathers and animal coats. In the model,
a set of equations describe how the concentrations of different substances, ormorphogens, change over time
due to their diffusion and reaction with each other. The patterns produced by the model are strikingly similar
to patterns found in nature, giving support to the model.

The model begins with several chemical morphogens distributed randomly throughout a discrete two or
three-dimensional medium. According to Turing (1952), at each point in the medium, a vector of morphogen
concentrations,C, changes temporally and spatially as described by Turing’spartial differential equation,�C�t = F (C) +Dr2C; (1)

whereF (C) is a nonlinear function describing how the morphogens represented byC react with each other,
andD is a diagonal matrix representing the relative magnitude ofthe diffusion coefficients for the different
morphogens. The coefficients determine how fast different chemicals spread through the medium. Thus, the
equation describes both reactivity and diffusion at a pointin space. The equation is simultaneously applied
at every point in the medium, for every time step, yielding a dynamic system that stabilizes on interesting
patterns under the right conditions.

Like L-systems, Turing’s reaction-diffusion model was notoriginally designed to be evolved. Although
many grammatical approaches to AE follow the original L-system model, cell chemistry approaches tend to
use Turing’s model only as an inspiration. It describes lower level phenomena than L-systems, and therefore
does not lend itself as easily to evolution of complex forms.However, cell chemistry approaches rely at
least on the abstract concepts of diffusion and reaction, augmented with additional biologically-inspired
components.

For example, Nolfi and Parisi (1991) modeled ”diffusion” at the level of axon growth, and ”reaction”
as the interaction between axons and cell bodies. Thus, their model is significantly higher-level and more
abstract than Turing’s. Each neuron is defined by a single gene in a fixed-length genome. Each gene
describes the branching and positional properties of a corresponding neuron. The branching properties
specify how branches will grow, or diffuse, from the cell body of the neuron. When growing axons hit other
cells during development, connections are made. Then, in a later phase, non-functional connections are
pruned. This approach utilizes growth to create connections without explicitly describing each connection
in the genotype. However, since every neuron must be directly specified, genes are not reused, limiting
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the complexity of what can be represented. Their later work (Cangelosi et al. 1993) extended the model to
include cell divisions and migrations based on rewrite rules, in addition to the axonal growth. Interestingly,
this new model used ideas from both the grammatical approachand cell chemistry approach in order to
allow genes to be used more than once.

In contrast to Cangelosi et al.’s abstract model of neural growth, Fleischer and Barr (1993) produced
a lower-level model of neural development more reminiscentof Turing’s differential equation models of
diffusion. Cells on a2D plane move independently. Each cell has its own internal state that controls
its behavior. The outside environment has chemical, mechanical, and electrical properties. Extracellular
chemicals diffuse through the environment based on differential equations, just as in Turing’s model. In
addition, the genome itself is a set of differential equations that take as arguments the cell’s internal state
and the state of the outside environment. This framework allows cells to move and interact through chemical
diffusion and axon growth in order to form neural networks. Fleischer and Barr (1993) drew the interesting
conclusion that combining multiple mechanisms to build a pattern can be more robust than using a single
mechanism. For example, a cell’s identity can both be regulated by its lineage and the chemical messages
in its surrounding environment. Fleischer and Barr were able to demonstrate several interesting low-level
behaviors. For example, an axon was able to grow along a chemical gradient and find a target neuron
while avoiding obstacles. However, their genomes were hand-coded and not evolved. Similarly, Mjolsness
et al. (1991) used a model of low-level chemistry and gene activation to simulate the early development
of Drosophilaflies, and Kaneko and Furusawa (1998) modeled the emergence of multicellularity and cell
differentiation through the interactions between cells ina medium. Although these systems reveal interesting
low-level properties of cellular interaction, neither model was combined with evolution.

Astor and Adami (2000) introduced an artificial chemistry similar to Fleischer and Barr’s model, where
chemicals diffuse based on diffusion equations, and genes are activated if chemicals that they explicitly
specify are located in the cell cytoplasm. Astor and Adami showed that they could hand-code a genome for
a neural network that displayed classical conditioning behavior. In other words, through repeated activation,
the network learned to associate an output with a stimulus that initially did not activate the output. Astor
and Adami (2000) did not report results for evolved networks, although they proposed future evolutionary
experiments.

Dellaert (1995) pointed out that the computational complexity of such low-level simulation might make
evolution difficult. Thus, Dellaert and Beer (1994a,b) and Dellaert (1995) designed an ambitious and ex-
tensive model of development meant to be both biologically defensible and computationally tractable. The
model centers on the idea ofgenetic regulatory networks(GRNs), which are networks of interactions be-
tween genomes and their environments that lead to a sequenceof state changes inside each cell (figure 4).
While the diffusion and reaction of various chemicals in theFleischer and Barr model can be understood
as a GRN, Dellaert and Beer use a more abstract model of GRNs which captures the dynamics of such a
system without descending to the physical level.

Dellaert et al. implemented their GRN using boolean functions calledoperonsinside the genome. For
example, consider the following two operons:Operon 1 : A ^ :B = COperon 2 : A ^ C = B

The first equation means that if proteinA is present in the cell cytoplasm, and protein B is not present,
then proteinC is produced and added to the cytoplasm. The presence ofA andC satisfies the second operon,
yieldingB in the cytoplasm for the first time. At that point, because operon 1 only produces its product in
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Gene Model::

Regulatory Region   Coding Region for Gene Product

Code for ABB

Code for CAA

Code for D>>B

Code for BD,A,CBB

Figure 4:Genetic Regulatory Network Example. Each gene is modeled as a regulatory region and a coding region
that codes a particular product (e.g. a protein in a natural cell). A simple network showing how different gene products
of some genes regulate other genes is shown inside a cell, depicted as a rounded rectangle. The network describes a
system that produces a number of products and then turns off when enough of product B is produced. The symbol
“>>” means a large amount. The diagram shows that the entire network becomes activated when product B enters
the cell from an external source. B causes A to be produced, which in turn causes C to be produced by another gene.
A and C, without D in the cell cause more B to be created, which in turn feeds back into the production of A, further
strengthening the cycle. Eventually, when a great deal of B is present, D is finally produced, stopping the generation of
B and ending the feedback cycle. The GRN shows that interesting dynamics can result from the regulatory interactions
of different genes. In an AE model, gene products might e.g. cause axons to grow or reduce neural thresholds.

the absence ofB, the cell would stop producing proteinC. This example illustrates how a complex network
of interactions can result from operons inside a cell. By representing the presence or absence of a proteins
using boolean equations, the computational expense of simulating diffusion through differential equations
is eliminated.

Several low-level biological processes utilize the proteins produced by operons. For example, a facility
is included to allow one cell to introduce a new protein to another cell through a receptor. In addition,
cells grow axons if they have a special axon-growing proteinin their cytoplasm. The axons then connect
to cells with the proper target protein. The axons find their path by growing around cells with special path
designating proteins. Thus, a nervous system can develop ina biologically plausible manner.

Cells divide in the simulation when a special dividing protein is present. After division, both descendant
cells are in the same state, which leads to a problem. How can the symmetry ever be broken so that cell
differentiation takes place? The model solves this problemby introducing a single symmetry-breaking
protein after the first cell-division, and by allowing communication between cells.

The GRN model revealed an important challenge for AE. Dellaert and Beer (1996)hand-codedthe
genome for both the body morphology (i.e. sensors and actuators) and the nervous system of an obstacle-
avoiding vehicle. Subsequently, they were able to evolve incrementally improved versions of the vehicle
off the initial hand-coded genome. However, they could not evolve such a vehicle from scratch. They
attributed this failure to the massive search space introduced by such an expressive encoding. Intractable
search spaces are a significant challenge to AE systems in general. Thus, like grammatical approaches, cell
chemistry approaches must also address their biases and evolvability.

Dellaert and Beer (1996) were able to overcome the large search space problem by greatly simplifying
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A: B or C

B: A and C C: A and B

Figure 5: Random Boolean Network (RBN) Example. The state of the network is given by the boolean values
of A, B, andC. At each timestep, the state values are updated based on their values in the previous timestep. In the
approach of Dellaert and Beer (1996), the current state of a cell is given by the current state of its RBN. Individual bits
in the state signal events like cell splitting or creating connections between cells. RBNs were introduced by Kauffman
(1993) to simulate the protein expression patterns in cellsin a developing embryo. RBNs are computationally less
expensive than full-blown GRN implementations (figure 4), while exhibiting similar dynamics.

their model, using random boolean networks (RBNs) instead of the more complex operon model. RBNs,
initially introduced by Kauffman (1993), are simple boolean expressions whose outputs are connected to the
inputs of other boolean expressions, forming a network (figure 5). The network has a state defined by the
current outputs of all the boolean expressions, which defines the current state of the cell. In addition, Dellaert
and Beer simplified the axonal outgrowth model, such that cells were simply connected if they expressed the
right proteins, foregoing the entire axon growth phase. Interestingly, with this simplified model, they were
able to evolve a solution to the obstacle avoidance task fromscratch, in addition to evolving a line-following
vehicle. The lesson is that simple solution structures sometimes perform better than biologically plausible
ones; abstraction can be a powerful tool.

Researchers have introduced a number of cell chemistry-based models similar to that of Dellaert and
Beer (Bongard and Pfeifer 2001; Eggenberger 1997; Jakobi 1995). Jakobi (1995) also used a GRN model
based on proteins interacting with a genome and transferring between different cells. However, instead of
boolean expressions, Jakobi utilizedtemplates, which are strings of characters that could be matched with
proteins. The templates were parts of genes. This encoding allowed the entire genome to be evolved as
a string, similarly to DNA. Jakobi evolved simulated robotsthat could move down corridors and wander
without hitting obstacles. Eggenberger (1997) used a similar string encoding with template matching for
genetic regulation. Eggenberger also introduced a proteinthat causes cells to die, since cell death is common
in biological development.

Unlike Jakobi and prior researchers, Eggenberger experimented with much simpler tasks than evolving
neural networks. Instead, he evolved bilaterally symmetric shapes, to show that symmetry could develop
naturally through reuse. A variety of symmetric three-dimensional morphologies evolved, showing how
discovering symmetry can be beneficial. Eggenberger’s simple symmetry task brings up an important ques-
tion for AE researchers: Should experiments focus on evolving elaborate nervous systems, like Dellaert and
Beer (1996) and Jakobi (1995), or on very simple proofs of concept in order to demonstrate performance
potential, like Eggenberger? Given that eventually we needto evolve very complex phenotypes that develop
through gene reuse, experiments at this stage should indicate that methods have the potential to reach this
goal. Body-brain evolution can sometimes lead to unclear conclusions. For example, even if it is possi-
ble to evolve a vehicle that avoids obstacles, does that success tell us anything about why development is
necessary, or is it just an easy problem that a non-AE system could have solved just as well? In contrast,
bilateral symmetry is a strategy used by many complex organisms to reuse the same structures efficiently.
Thus, sometimes simple experiments can demonstrate a potential for complex development.
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Like Eggenberger, Bentley and Kumar (1999) also chose to experiment at the level of abstract proofs
of concept. They utilized a simpler cell chemistry approachin which colored cells on a grid expanded or
died depending on whether their surrounding cells matched preconditions in a genome of rules with pre-
conditions. The preconditions described the configurationof surrounding cells and location in the grid. The
encoding allows reuse because preconditions may occur overand over again at different grid locations in the
same developmental sequence. Although this encoding resembles grammatical approaches, its preconditions
instead check the local environment in a grid of cells. To verify that their encoding was efficient, Bentley
and Kumar evolvedtessellating tiles, which are shapes that can be fit together in groups of four without
overlapping. Bentley and Kumar showed that their indirect encoding evolved tessellating tiles more reliably
than a number of encoding schemes that did not employ reuse, supporting the hypothesis that gene reuse can
support the development of form. Because both the task and the encoding were simple, the experimental
results were easy to interpret, just as with Eggenberger’s work on bilateral symmetry.

Even as some cell chemistry AE researchers moved towards simpler proof of concept experiments,
recent research builds on the earlier ambitious experiments of Jakobi and Dellaert and Beer. Many re-
searchers using cell chemistry approaches attempt to evolve sophisticated behaviors through the evolution
of the brains and bodies of creatures in a3D simulated world, just as Hornby and Pollack (2002) have
done with L-systems. Bongard, Paul, and Pfeifer (2000,2001,2002) used a GRN-based encoding similar
to Eggenberger’s to evolve such creatures. The creatures were evaluated on their ability to walk towards
a block and push it some distance on the ground. Bongard et al.were able to show that repeated pheno-
typic structures were evolved by reusing genes. Later, Bongard (2002) showed that the genes affecting
morphology had evolved a separate developmental pathway from those affecting neurogenesis, even though
the same gene products could affect both pathways. This result implied that changes in morphology could
occur through mutation without disrupting neurogenesis and vice versa. Thus, a form of modularity was
evolved in which the neural network and body morphology develop in parallel yet independently of each
other. Such modularity allows evolution to search over varied body-plans without affecting neurogenesis,
and to discover different neural networks for the same body-plan. Thus, the GRN-based encoding allowed
a high level of flexibility in the kinds of mutations that werefeasible.

2.3 A Unified Perspective

In this section, we divided the space of AE systems into grammatical and cell chemistry approaches. Al-
though they have similar goals, their origins are different. While grammatical approaches tend to be abstract
and high-level, cell chemistry approaches generally utilize lower level representations and are more strictly
motivated by the biological mechanisms of development.

Several AE researchers have previously proposed classifications of genetic encodings (Angeline 1995;
Bentley and Kumar 1999; Hornby and Pollack 2002; Komosinskiand Rotaru-Varga 2001). These classifi-
cations served primarily to distinguish encodings that reuse genes from those that do not. However, two of
these classifications furthermore divided the space of indirect encodings into two classes roughly analogous
to grammatical and cell chemistry approaches. Bentley and Kumar (1999) distinguishedexplicit encodings,
in which genes function like instructions in a programming language (i.e. grammatical encodings), from
implicit encodings, in which the connection between genes and parts of the phenotype is emergent (i.e.
cell chemistry encodings). Similarly, Hornby and Pollack (2002) contrasted indirect encodings that employ
parameters and labels (i.e. grammatical encodings) from those that do not (i.e. cell chemistry approaches).
Thus, the cell chemistry vs. grammatical division presented in this section reflects a traditional view of the
field.

The encoding used by a system can affect the way genomes are manipulated through mutation and
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crossover, and is therefore an important design decision. However, the cell chemistry vs. grammatical
distinction is largely superficial and does not reflect how phenotypes can develop. Although cell chemistry
and grammatical systems develop differently in a number of important ways, many of these differences only
exist for historical reasons, not because of any intrinsic requirement of either approach.

First, grammatical approaches can have properties usuallyassociated with cell chemistry approaches.
For example, existing cell chemistry systems tend to develop in a coordinate space, while grammatical
systems develop in a vacuum. However, there is no reason why rewrite rules or instructions could not
in principle take Cartesian coordinates as arguments or parameters. In addition, although signals may be
more natural in a cell chemistry system, components in an unfolding rewrite production can in principle
send signals in a Cartesian space. Although current cell chemistry systems tend to use continuous gradients
while grammatical systems are discrete, there is no reason that a grammar could not produce or manipulate
continuous values or exist in a continuous space. Grammatical systems tend to produce static components
that do not move or grow after they are produced, but again such components could be mobile in principle.

Second, cell chemistry systems can display properties usually associated with grammatical systems. For
example, grammatical systems can explicitly call subroutines, while cell chemistry approaches generally
cannot. However, cell chemistry approachesimplicitly use subroutines by initiating a chain of regulatory
events more than once. While grammatical systems can also explicitly iterate over parameters, cell chemistry
systems can approximate iteration by using decreasing concentrations of chemicals as arguments to cell
functions. Such functions can themselves be evolved, or be emergent from the dynamics of a regulatory
network.

Third, both approaches can be hybridized. Cells can containinternal grammars, and grammars can
spawn cells. In fact, the cell chemistry systems of Bentley and Kumar (1999), Mjolsness et al. (1991), and
Cangelosi et al. (1993) exhibit hybrid properties. Bentleyand Kumar’s cells reproduce based on a list of
rules, Mjolsness’ cells contain grammatical rules that determine cell behavior, and the system of Cangelosi
et al. combines grammatical rules with axon growth.

Thus, the different approaches currently overlap or can potentially overlap in many important ways. The
current divided perspective is not necessarily a good description of the space of possible methodologies.
The problem of designing a powerful AE system should be approached from a more general perspective,
in which specific mechanisms that can be implemented ineither approach are considered independently of
their encoding. In the following sections, we identify and discuss such specific mechanisms based on natural
development, expanding the perspective on AE in general. Wewill then use this broader perspective to form
a taxonomy of AE systems that allows AE research to take placein a unified context.

3 Dimensions of Development

In this section, we analyze natural development by breakingit down into five major dimensions. Not only
are these dimensions conceptually useful for understanding development, but they also provide insight into
the design of AE systems. We will use these dimensions later to form a taxonomy of AE systems. The
taxonomy is based on the ways these dimensions can vary in different AE implementations.

Two important themes underlie the discussion in this section:� In order to compare different AE systems, it is important to understand the contribution of specific
aspects of development to the capacity to evolve complex systems. Since both grammatical and cell
chemistry approaches can vary along the five dimensions, thedimensions should be taken into account
in either type of implementation.
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� Some aspects of development can be implemented on computersas abstractions of biological de-
velopment that would be impossible in nature. Using such abstractions can significantly improve
efficiency.

Hence, identifying the dimensions of development can help in selecting the right combination of de-
velopmental mechanisms to produce a computationally efficient AE methodology, i.e. one that can produce
phenotypes of extremely high complexity. We now turn to a detailed discussion of each of the following five
dimensions of development:

1. Cell Fate: The fate of a cell is the eventual role it will come to play during development. For example,
a cell may become a neuron or a muscle cell. There are several ways that cell fates are determined in
nature. Since cells in AE systems must eventually play a rolein the mature phenotype, it is important
to consider the means through which those roles can be determined.

2. Targeting: The ways that cells can develop connections to target locations is an important aspect of
development. Connectivity contributes to the overall functionality of complex systems, particularly
neural networks. AE system design can benefit from an analysis of the ways that connections develop
in nature.

3. Heterochrony: The timing and ordering of events in the embryogeny of a lineage of organisms can
change over generations. Such changes can result in different final results, sometimes leading to
important innovations in natural organisms. AE researchers may consider whether their encodings
allow similar flexibility.

4. Canalization: Biological genomes are tolerant to mutations. Several mechanisms allow developing
components to adjust to changes caused by mutations in connected components. These mechanisms
can be employed in AE systems.

5. Complexification: Over the course of biological evolution, new genes are occasionally added to
genomes, increasing the complexity of the phenotype. Complexification has led to major innovations
in body-plan organization. By implementing a mechanism forhandling variable length genomes, AE
can also utilize complexification.

3.1 Cell Fate

The fate of a cell determines its ultimate location, connectivity with other cells, and role in the mature
phenotype.3 A cell’s fate is determined by the genes that are expressed during its development. For ex-
ample, liver cells show a different pattern of gene expression than brain cells, even with the same genes in
their genomes. AE systems must address a crucial question: How is cell fate determined? In traditional
grammatical encodings, the ultimate role of a specific structure is obtained from a grammatical derivation,
whereas cells in cell chemistry approaches can derive theirultimate roles through chemical messages from
other cells, or from activated genes inside the cell. In thissection, we examine the variety of ways that cell
fates are determined in nature, all of which can potentiallybe implemented in AE.

In biology, cell fates are determined through a variety of means. We illustrate these mechanisms through
a set of examples, after introducing some terminology. Early in development, groups of cells are undiffer-
entiated and called precursor cells. Their fates are assigned in several ways, frequently through receiving
messages from an outside cell called anorganizer. For illustration, let us assume the precursor cells each

3We use the termcell to refer to a basic unit of the developing phenotype.
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Figure 6: Derivations of Cell Fates. Five ways that cells can derive their roles are depicted. Thelarge cell is an
organizer cell, i.e. a cell that tells other cells what fates to assume. The smaller cells, which are initially undifferen-
tiated, can become either cell typeA (gray) or cell typeB (white), through various mechanisms. A question for AE
systems is which mechanisms lead to most efficient evolution? This figure is based on Wilkins (2002).

take on one of two fates:A or B (figure 6). A variety of static and signal-based strategies are possible
(Wilkins 2002):� Graded Induction: A signal is released from an organizer in a graded pattern. The precursor cell

receiving the most signals assumes fateA, while those receiving fewer signals assume fateB.� Two Step Induction: The organizer first releases a uniform signal to all the precursor cells to let them
know that they form a precursor group. A secondary signal is subsequently released to a subset of the
group in order to further distinguish fates.� Sequential: The signal from the organizer reaches only a single precursor cell, which assumes fateA. It then sends secondary signals to adjacent precursor cells, giving them secondary identities.� Self-organization: The precursor cells signal each other and the dynamic properties of the network
of signals assigns fates, without any organizer cell necessary.� Prepattern: Gene expression alone, deriving from each precursor cell’s lineage, is responsible for
fates. Signals are not utilized, i.e. the state of the parentcell fully specifies the states its progeny.

While in biology all of these strategies are utilized, any subset of them can be used to specify cell fate
in an AE system. Grammatical systems tend to rely extensively on prepatterning, while cell chemistry
approaches rely on a diverse set of signaling strategies. However, either approach can useanyof the above
strategies. For example, parameters or contexts in L-system rewrite rules could include signaling constraints,
while cell chemistry approaches could rely extensively on prepatterning.

In addition to the above strategies, AE can also take advantage of positional information that is not
explicitly available in nature. In embryos of many natural organisms, a gradient of protein expression
along different axes forms a rudimentary Cartesian coordinate system. Because coordinate information is
not explicitly available to developing cells, these gradients evolved to provide positional information. For
example in vertebrates, the fates of cells along the anterior-posterior axis is based on proteins expressed
by HOX genes (Curtis et al. 1995; Lall and Patel 2001) (see Section 3.5). However, in AE, coordinate
information is knownprima facieand therefore need not be evolved. Rules or genes can be made to explicitly
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activate based on the coordinates of their containing cellsin a Cartesian system. In fact, Bentley and Kumar
(1999) and Eggenberger (1997) used this idea by assuming a ”gradient” present in every developing embryo
that was really just a two-dimensional Cartesian coordinate. This way, positional information can be used
directly to specify fate, or to regionalize the embryo into cell fate groups.

Because the information available computationally can differ from that available in nature, the design
of AE systems should be based on a principled analysis of the pros and cons of the various natural and
artificial strategies. For example, prepatterning is computationally inexpensive, yet used alone only allows
a single rigid way of specifying identities. In contrast, two step induction and self-organization are dynamic
approaches to fate determination, yet involve a great deal of computation. The extent to which the various
strategies contribute to the development of highly complexsystems is unknown.

Another question is how the cells arise in the first place, before they differentiate. In natural embryos,
precursor cells must be created and distributed in an organized manner. The early proliferation of embry-
onic cells is calledcleavage(Gilbert 2000, page 25), during which numerous cell divisions occur. When
cell division begins to slow down, these early cells, calledblastomeres, rearrange their positions by moving
around the embryo in a process calledgastrulation(Gilbert 2000, page 26). AE researchers must decide
whether cleavage or gastrulation are the most computationally efficient approaches to start the process of
embryogenesis. Proliferation may not be necessary at all ina computer because a canvas of undifferenti-
ated cells can be created instantaneously with little computational cost. Thus, it may not be necessary for
evolution to discover ways to initially spread the canvas through cleavage and gastrulation.

Similarly, even though natural nervous systems rely extensively on cell migration to place cells in their
appropriate locations (Gans and Northcutt 1983), AE researchers must determine to what extent migration
aids evolutionary search. One possibility is that migrating neurons enable evolution to express similar
phenotypes in different ways through dynamically placing cells in their final positions. For example, because
of migration, a phenotypic class (such as neurons) can be created all at once in a single location. Evolution
can then produce spawning centers where a class of cells are created, and then place and connect those cells
in different locations.

Even if cells are allowed to migrate, they can do so in many ways. In low-level implementations, cells
would literally move through the developing structure as they do in natural embryos. However, AE cells
could instead prespecify the ultimate positions of their progeny using either absolute or relative coordinates,
in which case simulating migration would be unnecessary.

Much research remains to be done on distinguishing the factors in cell fate determination that evolved
in response to physical constraints in nature from those that facilitate the evolutionary search process. In
addition, the impact of different computational simplifications on evolvability is yet to be determined. In
some cases, it may turn out that low-level simulations of proliferation and migration are necessary in order
to interleave these processes with gradual cell specialization. In other cases, the overhead of simulating
low-level events may outstrip the benefits.

We have surveyed the different mechanisms of cell fate determination in nature, and those that are
additionally available computationally. Through implementing these mechanisms, experiments can be per-
formed to determine how they contribute to developing complexity.

3.2 Targeting

Not only must cells reach their proper locations, but they must also accurately connect to other cells. Partic-
ularly in the nervous system, developing proper connectivity is crucial (Gans and Northcutt 1983). In order
to create a working network of cells, cell extensions such asaxons and dendrites must ultimately reach their
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intended targets.

Targeting of cell extensions is usually based on one of two primary strategies (Marin et al. 2002; Zig-
mond 1999, pages 527-528):� Specific Identity: The identity of the target is specified directly in the genetic code and the target is

located based on a chemical marker.� Relative Position: The relative location of a target is specified in the genome,so that the extension
grows a specific distance and angle in order to reach the target. Highly regular patterns of connectivity,
such as neural self-organizing maps (SOMs), are likely to form this way.

Many variations of the two targeting strategies exist in biology, and can be utilized in AE. For example,
a chemical gradient could be used to to identify a large target area and help processes find their goals.
Location and identity could be used together, such that an extension grows towards a particular region and
then uses a gradient to zero in on its target. Other cells can also emit path designating proteins, as in Dellaert
and Beer’s (1996) model.

Although many neural systems can conceivably be organized without specifying precise targets for
individual extensions, at least some natural neural networks are based on very specific prespecified targeting.
For example, dendritic targeting in the olfactory nervous system ofDrosophilaflies has been demonstrated
to be prespecified (i.e. hardwired; Marin et al. 2002). Thus,it is reasonable for an AE system to be able to
evolve both prespecified hardwired connection topologies and topologies that organize based on chemical
gradients or relative locations.

The entire process of growing axons and dendrites need not besimulated in order to form neural con-
nections in simulation. Connections can be formed instantaneously in AE systems with perfect accuracy.
Whether low-level simulation of axon growth provides an evolutionary advantage remains to be demon-
strated. In addition, as with cell migration, Cartesian coordinate information can be directly incorporated
into AE cells in order to allow them to find appropriate targetlocations.

AE researchers also must consider the role of user-specifiedinputs and outputs in developing neural
networks. How can a developing embryo connect its cells to user-specified cells that do not result from
development? Some researchers avoid this problem by coevolving body morphology along with neural
networks, so that inputs and outputs arise naturally from the body itself (Bongard and Paul 2000; Bongard
and Pfeifer 2001; Hornby and Pollack 2001b; Komosinski and Rotaru-Varga 2001; Sims 1994). However,
such coevolution may not always be possible in real-world domains such as the evolution of controllers
for robots that have already been manufactured. Natural evolution did not need to address the problem of
connecting user specified inputs and outputs to a developingembryo. Thus, a special facility to ensure that
the final topology is connected may need to be implemented, and may affect the kinds of targeting allowed
by an AE system.

The way that targets can be expressed through genetic encoding can profoundly bias evolutionary search
towards certain kinds of topologies. Thus, significant research is necessary to determine both the most
computationally efficient way to simulate targeting, as well as the most expressive encoding.

3.3 Heterochrony

Changes in the timing of developmental events over generations is calledheterochrony(Gilbert 2000, page
554). In natural embryogeny, the path to the final product is surprisingly flexible. Entire phases of devel-
opment can be eliminated without sacrificing the end result.For example, many frog species have evolved
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Figure 7: The Developmental Hourglass (Raff 1996). The hourglass represents the constraints on trajectories
through developmental space. It illustrates that even in complex organisms, a great deal of change in developmen-
tal pathways is possible not only in late development, when established body parts are being refined, but also early
in development, when the master body-plan is still being established. The phylotypic stage, where interactions be-
tween different developing components increase, is least amenable to change. Because global interaction between
key components are critical to interconnecting the entire organism, timing changes during this stage could severely
disrupt development. The three dotted lines depict different potential trajectories through the space, all of which cross
identical phylotypic stages, even with different start andendpoints. This crossing illustrates that the phenotype atthe
phylotypic stage can remain constant even as early and late development vary in their timing and structure.

away their tadpole stage, yet still grow into mature, sexually functioning frogs (Ellinson 1987). Their limb
buds develop early, and a little frog, rather than a tadpole,ultimately emerges from the egg. Conversely,
the Mexican axolotl, a salamander, has lost itsadult stage, and develops mature gonads as a tadpole-like
creature (Voss and Shaffer 1997). Their development of gonads has been greatly accelerated so that they
become sexually functional as tadpoles. This dramatic flexibility in development suggests that significant
modularity underlies the genetic encoding. Because the timing of the development of different modules is
so flexible, mutations can safely modify timing, allowing evolution to explore a variety of developmental
plans. Heterochrony allows developing components to come into contact with different components, so that
evolution can explore many points of synthesis between components. Thus, AE researchers may wish to
consider whether their encodings support heterochrony.

The ordering of developmental events is strikingly flexible. In Drosophilaflies, all body segments form
in parallel. However, in other flies, body segments form sequentially (Lawrence 1992). In both cases,
the individual segments develop in the same way regardless of the order of their appearance. Thus, many
components can appear at different relative times. Only when different components must communicate,
such as when one component uses messages from another to guide its development, can timing changes
have a deleterious effect.

Both early and late development exhibit developmental variation in nature. While changes in late de-
velopment can be explained by local variations in mature components, the question remains how early
development can change without altering the entire development of the organism. One explanation for the
great deal of flexibility in early development is that globalinteractions among differentiated components of
an embryo do not begin to occur until around the middle of embryogenesis. This pivotal middle period is
called thephylotypic stage(Raff 1996, page 208) . After the phylotypic stage, most development is highly
localized, giving precise definition to specific body parts.The cessation of global interaction allows a great
deal of plasticity. This way, a picture of adevelopmental hourglassemerges, wherein trajectories of devel-
opment can vary most early and late in development, but less in the middle (figure 7). In fact, Raff et al.
(1999) demonstrated that early development is so flexible that they were able to mate two separate species
of sea urchins, only one of which had a larval stage, and produce a viable hybrid offspring! The offspring
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reinstated the larval stage that was absent from its maternal parent, but developed differently than either
parent. Thus, early developmental modules can be very flexible in their interactions.

There are several ways heterochrony can positively affect the final phenotype. For example, body (or
neural) parts could be moved or manipulated in relation to each other by altering the timing and sequence
of developmental. Parts can also be extended or compressed.Indeed, heterochrony has been credited with
the evolution of single-toed horses from five toed horses (Wolpert 1987) and the movement of the nose
of the whale to the top of its skull (Slijper 1962). In the evolution of the single-toed horse, the growth
rate of the central toe of the five toed horse sped up so much relative to the other toes that the other toes
ultimately became irrelevant and disappeared. In the case of the whale, an extension in the duration of jaw
growth caused the nose to be pushed upwards to form a blowhole. Thus, heterochrony has led to important
phenotypic discoveries.

In addition, heterochrony increases the number of successful genotypes by offering a variety of paths
to each successful phenotype. Mutations that can cause timing changes without disrupting the final product
areneutralmutations. There exist neutral networks of genotypes, connected by neutral mutations, that can
be explored without fitness cost, increasing the space that can easily be explored by evolution. In other
words, changes in timing can affect the developing parts that come in contact with each other, and the places
of contact, without altering the final product. Thus, given both the positive effect heterochrony can have
on final phenotypes, and the increased potential for neutralevolution, it is worthwhile to consider whether
temporal changes are possible in a given AE system.

What kinds of artificial encodings allow heterochrony? Transcriptional factors that regulate genes con-
trol gene expression during development. The overall timing of development results from the precise se-
quence of genes expressed and from the the combinatorial properties of transcription factors that regulate
genes (Ambros 2002; Reinhart et al. 2000). Whether AE systems approximate the combinatorial properties
of natural gene regulatory networks may determine the extent to which they support heterochrony. Some
cell chemistry researchers have already begun to explore this area. For example, Bongard (2002) showed
neural and morphological development in evolved artificialorganisms could each vary independently.

In addition, computational abstractions can be utilized that are not available in nature. Like Cartesian
coordinates being used in lieu of chemical gradients, time itself can be used to regulate genes. Since time is
directly available, it can be exploited as a ”growth hormone” that explicitly activates and terminates events
in embryogeny. Grammatical encodings can be parameterizedby time, while cell chemistry approaches may
implicitly or explicitly take time into account regulatinggenes. Thus, either kind of encoding can potentially
use time to regulate steps in development.

Biologists continue to uncover the mechanisms that make heterochrony possible. It remains to be seen
how difficult it is to achieve similar flexibility with eithergrammatical or cell chemistry approaches.

3.4 Canalization

Encodings in evolutionary computation are notoriously brittle: A significant proportion of mutations lead
to infeasible offspring. In contrast, natural organisms are more robust. Natural development seems to be
buffered so that slight changes in critical components do not cause related or connected components to fail.
This robustness to mutations is calledcanalization(Waddington 1942).4 Canalization may be an important
property for an AE system, facilitating safe exploration ofgenotypic space.

4The termcanalizationwas chosen by Waddington (1942) to form an analogy between the way water running down a hill
eventually carves out regular streams in the surface, and the way development slowly settles on a set of conventions thatbecome
ingrained in the genome. Although changes to the geologicalenvironment or vegetation may cause water to take differentpaths,
the set of available paths is very difficult to alter once canalization has occurred.
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How does canalization work, and what might be the mechanismsthat allow development to succeed
even under the stress of unpredictable changes among dependent parts? In this section, we will discuss
three important such mechanisms: Stochastic events duringdevelopment, flexible resource allocation among
developing parts, and the overproduction of cells.

3.4.1 Stochasticity

A cell’s fate, i.e what role it will ultimately serve, is not completely determined when the cell first appears
(Alberch 1987). In many cases, cell fates cannot be predicted even with complete genetic knowledge. For
example, several cells in early nematode embryogenesis arecandidates for vulva formation. The cell that
is ultimately chosen to be the central cell around which the vulva forms is the cell that produces the most
of a special ligand. Receiving cells register the ligand production of their neighbors and create more ligand
receptors the more ligand they receive. This creation decreases their own ligand production. Thus, a single
cell ultimately emerges as the primary cell around which thevulva will form (Sigrist and Sommer 1999;
Wilkins 2002). It does not matter if mutations shift the ligand production one way or another, since there is
a mechanism around which the entire process will organize inanycase. Such robustness may turn out to be
useful or even necessary for AE systems as well.

In support of this view, Kaneko and Furusawa (1998) showed that nonlinear oscillations in a (non-
evolutionary) cell chemistry simulation allow multicellular organisms to develop robustly even with partial
ablation: Multicellular clusters could recover their initial differentiation pattern even after a section of the
cluster was cut out. Experimentation with stochastic grammatical rules and artificial regulatory networks
may give insight into how AE can adjust to mutations in similar ways.

3.4.2 Resource Allocation

Recent research into developmental allocation of resources has confirmed a surprising result: Body parts, at
the level of appendages, can reallocate the distribution ofresources. Nijhout and Emlen (1998) manipulated
the body parts of developing butterflies and beetles using two techniques: amputation, where a limb was
removed, and hormone treatment and selection, where limbs were only reduced. In all cases they found
that when one appendage consumed less resources, another appendage became larger by consuming the
remaining resources. This result implies that compensatory mechanisms are genetically encoded and can
react and reallocate resources properly if a mutation leadsto a change in body proportions. Thus, a change
in the size of one appendage does not require evolving compensatory changes in other appendages at the
same time.

It is possible that a resource allocation scheme could be used in AE for similar flexibility. One major
difference between AE and natural embryogeny is that the analog of nutrient resources in AE are essen-
tially unlimited. However, a resource allocation scheme could still help maintain reasonable topological
constraints on phenotypes after significant mutational changes.

3.4.3 Overproduction

Neural connectivity can potentially be disrupted by mutations affecting only some neurons in a network. If a
group of neuronsA connects to another groupB, then a mutation only affectingA may be enough to break
the entire circuit involvingA andB. Such changes are callednon-concordant. In contrast, mutations that
effect bothA andB in complementary ways are calledconcordantchanges. While non-concordant changes
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are potentially devastating, the problem can be avoided ifB has a buffering mechanism that enables it to
react to a wide variety of possible configurations ofA.

One such buffering mechanism is overproducing neurons inB. If the number of connections extending
from A to B is reduced or increased through mutation, the extraneous cells produced byB can easily be
disposed of through apoptosis, or planned cell death. In either case, the functional connection betweenA
andB will develop.

In fact, overproduction as a buffering mechanism has been documented in the connections between a
cat’s eyes and brain (Williams et al. 1986, 1993). European wildcats evolved to live in cold environments
and hunted during the day, while North African cats, from which domestic cats descend, hunted at night.
Because requirements are different for daylight hunting, wildcats have significantly more light sensors, or
cones, in the center of their visual field, resulting in an optic nerve with more neurons sending signals back to
the lateral geniculate nucleus (LGN), which is the part of the brain receiving the connections. Interestingly,
fetal wildcats have the same number of axons as domestic catsin their optic nerve in early development.
However, in domestic cats, many of the cells that are initially produced end up dying, while significantly
fewer cells die in the wildcat (Williams et al. 1993). Furthermore, studies of hybrid cats revealed that the
number of axons in their optic nerve significantly varies. Despite this variance, the number of cells in the
LGN always matches the number of neurons in the optic nerve, indicating that cell death is being used as
a buffering mechanism by the genetic system that produces the optic nerve. Thus, whether the size of the
optic nerve increases or decreases from one generation to the next, the LGN can always provide the right
number of connections for the system to function.

How could overproduction work in AE? In section 3.2, we discussed targeting by either specific identity
or relative position. If specific identity alone were used inan AE system, overproduction could not be
utilized. However, if targets that might not exist can be specified, connections to such targets would be
removed, utilizing overproduction. In contrast, overproduction with relative positional targeting is relatively
easy to implement. If an axon targets an empty location, it can be discarded. Some AE systems already
remove unused axons that result from overproduction in order to allow relative targeting to be imprecise
(Cangelosi et al. 1993; Nolfi and Parisi 1991).

All three imprecision-based strategies, that is stochasticity, competition, and overproduction, are related
and overlapping in their application in nature. Perhaps they would allow a safer search through genotypic
space in AE as well.

3.5 Complexification

While the preceding discussion of natural mechanisms in embryogeny has focused on the process of devel-
opment itself, it is important also to consider how genetic recombination and mutation are leveraged in the
evolution of developing systems. In particular, mutation in nature goes beyond optimization. New genes are
occasionally added to the genome, allowing evolution to perform acomplexifyingfunction over and above
optimization. Complexification allows evolution to begin with simple systems and elaborate on them in-
crementally, as opposed to evolving elaborate systems fromthe start. Furthermore, elaboration is protected
in nature in that interspecific mating is prohibited. Such speciation creates important dynamics differing
from standard genetic algorithms. In this section, we discuss how these important characteristics of natural
evolution bear on embryogeny.

Gene duplicationis a special kind of mutation in which one or more parental genes are copied into an
offspring’s genome more than once. The offspring then has redundant genes expressing the same proteins
(figure 8). Gene duplication has been responsible for key innovations in overall body morphology over the
course of natural evolution (Amores et al. 1998; Carroll 1995; Force et al. 1999; Martin 1999).
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Figure 8:Gene Duplication. Two genomes of equal length are crossed over. The letters represent the trait expressed
by each gene. The offspring has two additional redundant genes, resulting from the duplication of genesC andD
from the first parent.

A major gene duplication event occurred around the time thatvertebrates separated from invertebrates.
The evidence for this duplication centers aroundHOX genes, which determine the fate of cells along the
anterior-posterior axis of embryos. HOX genes are crucial in shaping the overall pattern of developmental
in embryos. In fact, differences in HOX gene regulation explain a great deal of arthropod and tetrapod
diversity (Carroll 1995). Amores et al. (1998) argue that since invertebrates have a single HOX cluster
while vertebrates have four, cluster duplication must havesignificantly contributed to elaborations in verte-
brate body-plans. The additional HOX genes took on new regulatory roles in vertebrate anterior-posterior
axis development, considerably increasing body-plan complexity. Although Martin (1999) argues that the
additional clusters can be explained by many single gene duplications accumulating over generations, as
opposed to massive whole-genome duplications, researchers agree that gene duplication has contributed to
important body-plan elaborations.

A detailed account of how duplicate genes can take on novel roles was given by Force et al. (1999): Base
pair mutations in the generations following duplicationpartition the initially redundant regulatory roles of
genes into separate classes. Thus, the embryo develops in the same way, but the genes that determine overall
body-plan are confined to more specific roles, since there aremore of them. The partitioning phase com-
pletes when redundant clusters of genes are separated enough that they no longer produce identical proteins
at the same time. After partitioning, mutations within the duplicated cluster of genes alter different steps
in development than mutations within the original cluster.In other words, the opportunities for mutation
increase through duplication because duplication createsmore points at which mutations can occur. In this
way, developmental processes elaborate.

Because major biological shifts in body-plan complexity have resulted from duplication, AE systems
should be able to utilize this kind of mutation as well. However, duplication is difficult to implement for two
reasons:

1. If genes are allowed to duplicate over the course of evolution, the population will contain genomes of
variable length. Variable length genomes can cause problems for crossover in genetic algorithms.

2. Two identical sets of genes must be capable of diverging into separate roles in a given AE system. It
is difficult to ensure that new genes remain useful after their first appearance.

We now discuss how these obstacles have been overcome by nature, and how AE can employ similar
solutions.
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(a) Original Genome

(b) Separate Duplications

(c) Duplicate Gene Roles Differentiate

(d) Crossover of Variable Length Genomes

(e) Loss of D, E, and F

(f) Loss of G, H, and I

Figure 9: The Variable Length Genome Problem. Variable length genomes are necessary for complexification.
The diagram shows how critical genes can be lost in the crossover of such genomes. A sequence of events is depicted
from top to bottom (a through f). (a) The original genome contains four genes,A, B, C, andD. (b) In separate
instances of reproduction, the original genome undergoes two different duplications. In one case a cluster of two of
its genes,A andB, are duplicated. In the other case, three genes,A,B, andC, are duplicated. The resultant genomes
now have differing lengths. (c) Over generations, the rolesof the duplicated genes differentiate from their redundant
original roles. This functional divergence is representedusing different letters,E andF , andG, H , andI . The
newly differentiated genes now may serve important new roles in their respective lineages. (d) The two genomes of
differing length are crossed over. (e) In one possible offspring, maintaining the length of the smaller genome, genesD, E, andF are lost. Particularly troublesome is the loss ofD, which was in the original genome. (f) Another
potential crossover, preserving the length of the larger genome, losesG,H , andI , along with duplicatingD. Loss of
information in crossover may disrupt previously stable phenotypic development. Moreover, there is no way to ensure
that all the necessary genes are included without a mechanism for checking which genes from one genome correspond
to those from another. See figure 10 for a solution to this problem.

3.5.1 Variable Length Genomes in AE

A gene in AE might be a rewrite rule or a gene product with a regulatory region. Whatever the encoding,
when duplication is allowed, the number of genes is variable, which can cause loss of information during
crossover. Figure 9 shows that as new genes are added in different lineages through different duplications,
the same gene may exist at different positions in different genomes. Conversely, different genes may exist
at the same position. Thus, crossover may lose essential genes through misalignment.

Interestingly, this problem does not occur in nature, and therefore it should be possible to avoid it also in
AE. First, organisms with significantly different genomes never mate because they are in different species.

Second, nature has a mechanism for aligning genes with theirproper counterparts during crossover, so
that data is not lost nor obscured. This alignment process has been most clearly observed inE. coli (Radding
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(a) Original genome with historical markings

(b) Separate duplications

(c) Duplicate gene roles differentiate

(d) Historical markings used to align genes 
     during crossover

(e) No loss of information in crossover
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Figure 10:Solving the Variable Length Genome Problem with HistoricalMarkings. Historical markings are
numbers assigned to each gene that represent the order in which new genes appeared over evolution. (a) The original
genome contains four genes,A, B, C, andD, assigned historical markings 1 through 4. (b) When new genes appear
through duplication, they are assigned numbers in the orderin which they appear. Assuming the duplication on the
left happened before the one on the right, the new genes,A0 andB0, andA0, B0, andC 0, are assigned the numbers
5 through 9. (c) As the products of the duplicate genes differentiate, their historical markings continue to serve as a
record of their origins. (d) During crossover, those genes that have matching historical markings are aligned, while
those that are disjoint are purposefully not aligned. (e) The result is that any kind of crossover can preserve the
information and relationships between all the genes in variable length genomes by utilizing the historical markings.
Historical markings are an abstraction of synapsis, the process used in nature to match up alleles of the same trait
during crossover (Radding 1982; Sigal and Alberts 1972).

1982; Sigal and Alberts 1972). A special protein calledRecAtakes a single strand of DNA and aligns it with
another strand by attaching the strands at genes that express the same traits, which are calledhomologous
genes. The process by which RecA protein aligns homologous genes is calledsynapsis. In experiments in
vitro, researchers have found that RecA protein does not complete the process of synapsis on fragments of
DNA that are not homologous (Radding 1982).

It turns out that speciation and synapsis can both be utilized in genetic algorithms, including AE, by
using features of evolution that are available only throughcomputational means. Stanley and Miikkulainen
(2002a,b,c) showed that the ancestralhistory of genes in an evolving population can be used to tell which
genes should line up with which during crossover. If a counter assigns increasing integers to new genes every
time they appear through a mutation, and if those integers are preserved every time genes are subsequently
inherited, then the origin of every gene is known throughoutevolution. The numbers assigned to each gene
are calledhistorical markings. Since two genes with the same origin must express the same trait, it is
possible to know exactly which genes line up using the historical markings (figure 10).
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Although the system developed by Stanley and Miikkulainen,called NeuroEvolution of Augmenting
Topologies (NEAT), was applied to a direct encoding of neural networks that did not include a developmental
stage, in principle historical markings can be applied to any genetic encoding, including those used in AE,
since gene history is a genetic property in both developmental and nondevelopmental encodings. Thus,
using the NEAT methodology, the variable length genome problem can be overcome in AE.

Stanley and Miikkulainen (2002b,c) also showed that historical markings can be used to speciate the
population, separating incompatible organisms into different niches. The extent to which two genomes
have different genetic histories is a measure of their incompatibility. Therefore, historical markings allow
a simple way to test whether two genomes belong in the same species. The number of historical markings
only present in one of the two genomes is a measure of their incompatibility. This measure can be used to
cluster genomes into compatibility groups, or species.

A significant benefit of speciation is that it protects innovation (Stanley and Miikkulainen 2002c). Be-
cause adding new genes creates new species, organisms with duplicate genes compete primarily with other
organisms in the same species. Thus, they have a chance to optimize their new genetic material without
being prematurely eliminated through competition with thepopulation at large.Explicit fitness sharing
(Goldberg and Richardson 1987) can be used to ensure that highly fit species cannot crowd smaller species
out of the population before they have a chance to reach theirpotential. That way, gene duplications do not
need to immediately improve fitness in order to survive. On the other hand, since organisms without duplica-
tions are also protected in their own species, smaller genomes are preserved as long as they are competitive,
avoiding bloating the genome.

Historical markings provide another example of a computational abstraction that is potentially more
efficient than the natural process: In this case, historicalmarkings are an abstraction of synapsis, which
is the process through which homologous genes in natural genomes are aligned (Radding 1982; Sigal and
Alberts 1972). Historical markings enhance evolutionary search, making it possible for evolution to utilize
gene duplication effectively.

3.5.2 Divergence of Gene Clusters

Even if variable length genomes are possible in AE, the question remains how clusters of genes can be
duplicated such that the new cluster eventually takes on a new role. This goal is important because major
mutations in new duplicate clusters could permanently disabled them. They might never activate, or their
products could become so different from those of the original cluster that they disrupt development. As
Force et al. (1999) explained, after a cluster of genes is duplicated in nature, subsequent mutations reparti-
tion the roles of both the original genes and the duplicated genes without significantly altering the overall
developmental plan. Once duplicate genes have undergone sufficient mutation to be activated at different
points during development than their original counterparts, subsequent mutations can begin to alter devel-
opment at these new points. Thus, because of the duplicate genes, evolution has the flexibility to alter the
developmental process at additional points.

If duplicate genes are to take on new roles in development, they must be carefully integrated into the
already-existing developmental plan of the organism. If mutations that change the conditions under which
duplicate genes are activated are too severe, the genes willbecome disconnected from the existing devel-
opmental plan, and subsequent mutations will likely have little effect. Thus, in order to allow duplicate
genes to gradually take on new roles, the conditions under which they activate should lie on a continuum.
In other words, a slight mutation in one duplicate should cause it to be activated in some but not all cases
where its counterpart was formerly always activated. Care must be taken to make such changes possible
in a particular AE encoding. Preconditions for activating grammatical rules or regulatory requirements for
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genes in cell chemistry systems should not allow slight mutations to significantly alter the conditions under
which a particular gene is activated.

AE systems that implement both synapsis and gradual divergence of duplicate genes will allow re-
searchers to experiment with gene duplication.5 Because duplication is an effective means of complexifica-
tion, genomes should start out small and be allowed to becomelarger through duplication. Each duplication
extends the genome into a higher dimensional space where more genes are being optimized, increasing
the potential complexity of the phenotype. This approach allows evolution to optimize the lowest possible
number of dimensions, since organisms with new genes only dobetter if those genes are useful. Speciation
allows different species to complexify at different rates,so that the population can explore different spaces
simultaneously (Stanley and Miikkulainen 2002a,c).

AE systems that complexify genomes in different species from a minimal starting point will allow re-
searchers to address an important question: How should clusters of genes be chosen for duplication? Ev-
erything from copying single genes to duplicating whole genomes is possible. While biologists continue to
debate this issue (Amores et al. 1998; Martin 1999), AE can also begin to address it through experimenta-
tion. Calabretta et al. (2000) have already shown that duplicating clusters of genes can lead to the emergence
of distinct neural modules in neuroevolution.

A complexifying AE system that starts with small, simple genomes will first evolve basic structures,
such as bilateral symmetry, and then elaborate on them in future generations by adding new genes. This
approach is more likely to discover highly complex phenotypes than an approach that begins searching in
the intractably large search space of complete solutions.

We have now surveyed all five major dimensions of developmentin biological systems: Cell Fate,
Targeting, Heterochrony, Canalization, and Complexification. Since each dimension can be implemented
in different ways in AE, the dimensions together constitutea representation of the space of possible AE
systems. Thus, the distinction between cell chemistry and grammatical approaches reveals less about the
underlying properties of AE systems than how they operate oneach dimension.

Another important theme from this section was computational abstraction of mechanisms in natural
development that may be more efficient than nature’s own methods. The following resources that are not
directly available to nature but useful in computational systems were identified:� Cartesian Coordinates to represent position (Sections 3.1and 3.2)� Instantaneous spreading of a canvas of cells (Section 3.1)� Real time as a regulator of gene expression (Section 3.3)� Historical markings as a mechanism for artificial synapsis (Section 3.5)

These artificial information sources can boost computational performance in various dimensions, and
should also be considered in experimentation.

The next section uses the five dimensions of development to compose a taxonomy of existing and future
AE systems, and suggests how the taxonomy can help focus future research efforts.

5Gene deletionis also possible. However, deletion is potentially more deleterious than duplication. Duplication creates re-
dundancy, which does not cause any loss of functionality. Incontrast, deletion may cause important steps in development to be
removed, short-circuiting embryogeny.
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4 A New Taxonomy for Artificial Embryogeny

The goal of a taxonomy is to make classification and comparison of different systems possible. To achieve
this goal, a good taxonomy must reflect the underlying properties of the space being classified. Thus, the new
AE taxonomy will replace the older grammatical/cell chemistry distinction by employing each dimension
of development as an axis in a multidimensional classification space of AE implementations. These axes are
described first below, followed by an overview of how the resulting taxonomy represents the existing AE
systems.

4.1 Dimensions of Variation

In order for dimensions of development to serve as axes, theymust be characterized as continuums. That
way, it will be possible to describe a particular AE system, as well as natural evolution, aspoints in a five-
dimensional space of possible evolvable developmental systems. To better understand this space, we begin
with a summary of the major dimensions and their properties:

1. Cell Fate: An AE system can range from having a single method for determining the fate of a cell
(for example, prepatterning) to having a large variety of determination methods (described in Section
3.1).

2. Targeting: At one extreme, only specific targeting is used, whereas only relative targeting is utilized
at the other extreme. In between, systems use some combination of the two strategies (Section 3.2).

3. Heterochrony: Some systems may have no mechanisms for changing the timingof events, while
others may implement mechanisms of timing such as counters,parameters in L-systems, or dynamic
regulatory networks. More flexible systems approach the development hourglass, with many possible
paths from early to late development (Section 3.3).

4. Canalization: AE systems can range between requiring precise genotypic instructions to those that
tolerate a high degree of imprecision or mutation, utilizing such strategies as stochasticity, resource
allocation, and overproduction (Section 3.4).

5. Complexification: Classical genetic algorithm encodings employ fixed-size genomes. On the other
extreme, genomes in nature have variable length and sometimes new genes are added through dupli-
cations. Synapsis and speciation facilitate variable length genomes (Section 3.5).

The five dimensions describe theimplementationof an AE system, as opposed to itsemergent properties.
In other words, experimenters can vary the settings on any ofthese dimensions by implementing or not
implementing mechanisms described in Section 3. For any particular configuration, the emergent properties
of the resulting evolutionary process can be measured. For example, the extent to which a particular system
produces complex structures is one possible measure of its performance. Other emergent properties that may
be measured are modularity, gene reuse, symmetry, and efficiency. Because these are emergent properties
rather than implementation choices, we do not include theseproperties as axes in the implementation space.

Figure 11 classifies AE systems from Section 2 along these dimensions. Only systems for which evo-
lutionary results have been reported are classified. Natural evolution is also graphed (depicted as a tree)
for comparison. The classification isnot meant as a rating; there is no implied superiority of one end of a
dimension over another. Rather, the classification is meantto show which areas of the space are currently
being explored, and which areas remain uncharted.
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Figure 11:The Space of Existing AE Systems.AE systems, in addition to natural evolution (depicted as a tree),
are graphed on each of the five dimensions of development laidout horizontally in each subfigure. Systems depicted
in gray are grammar-based, while those in white utilize cellchemistry techniques. Only those systems for which
evolutionary results were reported are included. Even though it is not a developmental system, NeuroEvolution of
Augmenting Topologies (NEAT; Stanley and Miikkulainen 2002a,c) is included on the complexification dimension
since it is the only system that currently implements a version of synapsis and speciation. The letters are abbreviations
for the authors who developed the specific AE systems, as described in Section 2: B - Bongard and Paul (2000),
Bongard and Pfeifer (2001), and Bongard (2002); BeK - Bentley and Kumar (implicit encoding; 1999); BKa - Belew
and Kammeyer (1993); BKu - Boers and Kuiper (1992); CPN - Cangelosi et al. (1993); D - Dellaert and Beer (1994a,b)
and Dellaert (1995); E - Eggenberger (1997); G - Gruau (1993), and Gruau (1994), and Gruau et al. (1996); HP -
Hornby and Pollack (2001a,b); J - Jakobi (1995); K - Kitano (1990); KR - Komosinski and Rotaru-Varga (indirect
developmental encoding; 2001); LS - Luke and Spector (1996); NP - Nolfi and Parisi (1991); S - Sims (1994); Those
systems that did not include any kind of targeting are not graphed on that dimension. The figure shows the kinds
of AE systems that have been implemented, and those areas that remain unexplored. This taxonomy makes possible
principled exploration and comparison of future systems.
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4.2 Classification Overview

In this section we outline how the proposed taxonomy represents the current AE systems. Each dimension
is explained moving from left to right on its axis in figure 11.

In the cell fate dimension, the majority of systems rely exclusively on prepatterning, i.e. the fate of
each new unit of structure is determined by its parent. Bentley and Kumar’s (1999) and Boers and Kuiper’s
(1992) systems also use context sensitivity, giving them two means of fate determination. Moving to the
right, several cell chemistry approaches use signaling as well. No system implements as many determination
methods as exist in nature.

In the targeting dimension, grammatical approaches tend touse specific targeting. When a cell splits
into two connected cells, or when a rule specifies a connection, the connections are fully specified by the
identities of the rules from which they derive. Some grammatical approaches (Gruau 1994; Hornby and
Pollack 2001b; Komosinski and Rotaru-Varga 2001; Luke and Spector 1996) also implement a kind of
relative targeting in which instructions in the grammar canspecify connections by their offset in the rewrite
string. However, this kind of relative targeting differs from that described in Section 3.2, in which targets
are specified by their offset and angle in the actual Cartesian space of the developing system. Cell chemistry
approaches use this more natural form of relative targeting. The systems of Cangelosi et al. (1993) and Nolfi
and Parisi (1991) rely exclusively on this kind of relative targeting.

A few systems (Belew and Kammeyer 1993; Boers and Kuiper 1992; Kitano 1990; Nolfi and Parisi
1991) cannot use heterochrony because steps in their development are not parameterized or modulated
in any way. Thus, changing the timing of developmental events in these systems would require altering
the entire genome. In contrast, the majority of AE systems implement some kind of parameterization or
signal modulation system, allowing developmental phases to taper off or initiate at different times. Bon-
gard’s (2002) system is placed farthest to the right becauseit is the only system with a reported analysis
of heterochrony. No system has implemented radical shifts in timing or the elimination of entire phases of
development without disrupting the final product, as seen innatural evolution.

Because they rely on prepatterning, none of the existing grammatical approaches utilize stochasticity,
resource allocation, or overproduction, and therefore cannot leverage these mechanisms for canalization. On
the other hand, cell chemistry systems can utilize imprecise targeting since physical location is a standard
property of their implementation. The one exception is Bentley and Kumar’s (1999) cell chemistry system,
which does not implement targeting and uses rules similar togrammatical rules. Eggenberger’s (1997)
system is placed slightly to the right of other cell chemistry systems because it includes a special facility for
apoptosis, or planned cell death. Stochasticity is not usedin any existing systems as a means to encourage
robustness. Despite the division in this dimension, both cell chemistry and grammatical approaches are
theoretically capable of implementing any particular kindof targeting or imprecision-based strategy, and
they differ in this dimension primarily for historical reasons.

On the complexification dimension, four systems use fixed-length genomes, and therefore cannot com-
plexify at all. Several systems use variable length genomes, but some use standard crossover operators that
are likely to lose information, making it difficult to realize the full benefit of complexification. A few sys-
tems (Bentley and Kumar 1999; Gruau 1994; Komosinski and Rotaru-Varga 2001; Luke and Spector 1996)
use special crossover operators for variable length genomes. Most of these specialized systems use genetic
programs for evolution. However, no system starts out with apopulation of small genotypes and systemat-
ically complexifies them over generations. NEAT (Stanley and Miikkulainen 2002c) is included at the far
right of the axis as the only example of a system that implements systematic complexification and approxi-
mates synapsis and speciation, although it is not an AE system. However, NEAT’s historical markings can
potentially be used by any AE system.
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The taxonomy shows that the cell chemistry vs. grammatical distinction is indeed superficial, since both
approaches can vary along each dimension. In fact, all the dimensions have empty space that can be utilized
further. The next section discusses the implications and future applications of the taxonomy.

5 Discussion and Future Work

As can be seen in figure 11, a large amount of space on many dimensions of the new AE taxonomy has
not been explored. Unexplored space includes systems that employ many ways to determine cell fates,
mix relative and specific targeting, have high potential forheterochrony, high potential for canalization, and
realistic complexification. Interestingly, natural evolution occupies exactly this part of the AE space. This
observation suggests that an extremely important point in this vast space remains to be explored, along with
many other untested points.

Ultimately, the goal of AE is to be able to evolve phenotypes as complex as biological systems. This goal
is still far in the future; at the current stage, we are still searching for constituents that make AE effective.
The dimensions of the new taxonomy for AE indicate what some of these constituents might be. There may
not be one best solution: Different parameterizations may be good for evolving different kinds of complex
systems. For example, an AE system suited for evolving million-neuron neural networks may not be the
same as one suited for evolving vehicle architectures.

Thus, the challenge for future research is to comprehensively explore this massive space. We must find
out what the trade-offs are between flexibility and simplicity, and we must question whether the mechanisms
that biologists have identified as instrumental to natural development are equally viable in AE. As a first step
in this exploration, we suggest several benchmarks that mayserve as a starting point for understanding the
AE space. Each benchmark can be applied at many points in the taxonomic space, providing many possible
avenues for future work.� Evolution of pure symmetry: Symmetry is a significant means of reuse. When the same structures

exist on both sides of an organism, discovering them only once in the genome as opposed to twice
reduces search effort. Therefore, it is important to understand how the various dimensions of devel-
opment can enhance the evolution of symmetric patterns without any goal other than symmetry itself.
If evolving k-fold symmetric patterns is made the only goal, we may isolate those dimensions that
facilitate gene reuse. Another interesting question is whetherk-fold symmetric patterns can easily be
evolved intok + 1-fold symmetric patterns, providing insight into the powerof reuse in a particular
implementation. Eggenberger’s (1997) experiments in evolving bilateral symmetry represents a first
step in this direction.� Evolving a specific shape: How hard is it for various AE systems to evolve specific shapes, such as
spheres, rings, cylinders, jointed cylinders, sockets, stars, and trees, that are known to be useful in
nature or engineering? Understanding why systems at different points in AE space succeed or fail to
evolve such shapes will aid in making future implementationdecisions.� Evolving specific connectivity patterns: The targeting dimension (section 3.2) is crucial in neu-
roevolution and experiments should be devised to understand it thoroughly. How hard is it to get
topologies such as feedforward, recurrent, or self-organizing maps to arise in AE? When is specific
identity targeting most useful as opposed to relative location targeting? How important is neuron
positioning during development when final connectivity is the only fitness criterion?� Evolving a simple controller: While much AE research has focused on ambitious artificial crea-
tures complete with body and brain, at some point it will be necessary to compare AE systems with
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other reinforcement learning systems (including non-developmental neuroevolution systems) on stan-
dard benchmark problems in order to asses whether particular AE approaches can evolve solutions
to problems that non-developmental systems cannot. For example, pole balancing has been used as a
reinforcement learning benchmark for over 30 years (Anderson 1989; Barto et al. 1983; Gomez and
Miikkulainen 1999; Gruau et al. 1996; Michie and Chambers 1968; Moriarty and Miikkulainen 1996;
Saravanan and Fogel 1995; Stanley and Miikkulainen 2002c; Watkins and Dayan 1992; Whitley et al.
1993; Wieland 1991, 1990), making it convenient for comparison with other methods. If a particular
AE methodology cannot compete in a relatively simple domain, it may not be appropriate for evolv-
ing morecomplex artificial organisms either. It is useful to know about such performance differences
early in order to analyze what causes them, and perhaps to improve them in the future.

Such benchmarks are necessary because most research to datehas focused only on establishing that
indirect encodings can evolve more complex phenotypes thandirect encodings. Thus, almost all existing
comparisons are between indirect and direct encodings. By establishing a set of standard benchmark tasks,
and a taxonomy over which to vary system configurations, direct comparisons can begin to be made between
different indirect AE encodings.

Such benchmark comparisons will eventually make it possible to predict performance of AE systems
based on their location in the taxonomy. For example, one benchmark might be to evolve a five-pointed star.
This benchmark can be attempted with a system in which all thedimensions of development are fixed except
the cell fate dimension. That dimension can vary from using only prepatterning to using every conceivable
form of fate determination, from stochastic self-organization to signaling, migration, and proliferation. The
results can be measured using several criteria: How fast does the objective shape evolve? How often and
how many genes are reused by the solution genome? Is symmetryused or is each point in the star specified
by a separate section of genetic code, i.e. is there emergentmodularity? For every possible setting on the
varying dimension (e.g. cell fate determination), data will be available for comparison.

It might, for example, turn out that the more available meansof fate determination there are, the more
reuse occurs. Once confirmed on other benchmarks and with different settings on other dimensions, this
result ultimately allows us to predict under what conditions reuse is most likely to occur. This information
will affect design decisions in future systems, and eventually, the taxonomy will make principled design of
AE systems possible.

One possible objection to using simple benchmarks is that the benefit of AE may only be realized in
very complex domains or in the evolution of very complex phenotypes. However, even if that is the case, the
suggested benchmarks are chosen specifically to test properties that are known to be exploited in complex
biological systems. For example, symmetry is used in many sophisticated biological organisms. Thus, if
an AE system cannot evolve a simple symmetrical shape, it is unlikely that it can exploit symmetry in the
evolution of more complex phenotypes.

Of course, ultimately we are interested in evolving extremely complex phenotypes. Hart et al. (1994)
argued that development allows utilizing a simpler genotypic search space than would be possible through
directly searching over phenotypes. It is for this reason that AE encodings promise to achieve otherwise
unreachable levels of complexity. Through gene reuse, genetic components can be used as modules, freeing
evolution from having to discover the same concept more thanonce.

One of the most intriguing phenomena that might emerge from asuccessful AE representation is rep-
etition with variation. That is, instead of duplicating thesame structure multiple times, a generaltheme,
such as a limb, can be reused multiple times with differing manifestations. This special kind of modular-
ity is only beginning to be understood. It does not reflect traditional engineering design, in which discrete
identical parts are assembled into larger constructions. Instead, the beginnings and ends of individual parts
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are amorphous, and their internal structure is only vaguelyconstrained. The capacity to reuse parts with
variation is potentially a very powerful way to create complexity, and a most intriguing direction of future
AE research.

6 Conclusion

The goal of AE is to eventually evolve systems that rival the complexity seen in natural organisms. While
current AE systems represent a step in this direction, no artificial system has yet come close to the power
of natural evolution. Thus, a principled approach to building AE systems is needed. As a first step, a
framework is needed in which different implementations canbe compared and contrasted along different
dimensions. In this paper, we provided such a comparative framework. We proposed a new taxonomy for AE
systems based on the dimensions of development seen in nature. This taxonomy suggests that the existing
distinction between grammatical and cell chemistry approaches is superficial. Rather, the dimensions of
development define the capabilities of an AE system. Using the new taxonomy, it will be possible to make
principled design decisions in any kind of encoding, and to compare and contrast systems in the same
context. Ultimately, we hope researchers can use this taxonomy to predict how varying the settings of
different dimensions affects the capabilities of different implementations, and therefore build better AE
systems.
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