
Model-Checking In-Lined Reference Monitors?

Meera Sridhar and Kevin W. Hamlen

The University of Texas at Dallas
800 W. Campbell Rd., Richardson, TX 75080, USA

meera.sridhar@student.utdallas.edu,hamlen@utdallas.edu

http://www.cs.utdallas.edu

Abstract. A technique for elegantly expressing In-lined Reference Mon-
itor (IRM) certification as model-checking is presented and implemented.
In-lined Reference Monitors (IRM’s) enforce software security policies by
in-lining dynamic security guards into untrusted binary code. Certifying
IRM systems provide strong formal guarantees for such systems by ver-
ifying that the instrumented code produced by the IRM system satisfies
the original policy. Expressing this certification step as model-checking
allows well-established model-checking technologies to be applied to this
often difficult certification task. The technique is demonstrated through
the enforcement and certification of a URL anti-redirection policy for
ActionScript web applets.

1 Introduction

In-Lined Reference Monitors (IRM’s) [17] enforce safety policies by injecting
runtime security guards directly into untrusted binaries. The guards test whether
an impending operation constitutes a policy violation. If so, corrective action is
taken to prevent the violation, such as premature termination. The result is
self-monitoring code that can be safely executed without external monitoring.

IRM’s dynamically observe security-relevant events exhibited by the un-
trusted code they monitor and maintain persistent internal state between these
observations, enabling them to accept or reject based on the history of events
observed. This allows them to enforce powerful security policies, such as safety
policies, that are not precisely enforceable by any purely static analysis [14].
Additionally, IRM’s afford code consumers the flexibility of specifying or modi-
fying the security policy after receiving the code, whereas purely static analyses
typically require the security policy to be known by the code producer.

Certifying IRM systems [1, 13] verify that IRM’s generated by a binary
rewriter are policy-adherent. Since the binary rewriters that in-line security
guards into untrusted code can be large and complex, a separate verifier is useful
for shifting this complexity out of the trusted computing base. Since the verifier
does not perform any code generation, it is typically smaller and less subject
to change than a rewriter, and therefore constitutes a more acceptable trusted

? This research was supported by AFOSR YIP award number FA9550-08-1-0044.

2 Meera Sridhar and Kevin W. Hamlen

component. Past work has implemented IRM certifiers using type-checking [13]
and contracts [1].

Model-checking is an extremely powerful software verification paradigm that
is useful for verifying properties that are more complex than those typically
expressible by type-systems and more semantically flexible and abstract than
those typically encoded by contracts. Yet to our knowledge, model-checking has
not yet been applied to verify IRM’s. In this paper we describe and implement
a technique for doing so. The work’s main contributions are as follows:

– We present the design and implementation of a prototype IRM model-
checking framework for ActionScript bytecode.

– Our design centers around a novel approach for constructing a state abstrac-
tion lattice from a security automaton [2], for precise yet tractable abstract
interpretation of IRM code.

– Rigorous proofs of soundness and convergence are formulated for our system
using Cousot’s abstract interpretation framework [6].

– The feasibility of our technique is demonstrated by enforcing a URL anti-
redirection policy for ActionScript bytecode programs.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 gives an overview of our IRM framework, including an operational
semantics and the abstract interpretation algorithm. Section 4 provides a formal
soundness proof for our algorithm and a proof of fixed point convergence for the
abstract machine. Section 5 discusses the details of our implementation of the
system for ActionScript bytecode. Finally, Sect. 6 suggests future work.

2 Related Work

In-lined Reference Monitors were first formalized by Erlingsson and Schneider in
the development of the PoET/PSLang/SASI systems [10, 17], which implement
IRM’s for Java bytecode and Gnu assembly code. Subsequently, a variety of
IRM implementations have been developed. The Java-MOP system [5] allows
policy-writers to choose from a sizable collection of formal policy specification
languages, including LTL. Mobile [13] targets Microsoft .NET bytecode by trans-
forming untrusted CIL binaries into well-typed Mobile code (a subset of CIL).
ConSpec [1] restricts IRM-injected code to effect-free operations, which allows a
static analysis to verify that a rewritten program does not violate the intended
policy. Finally, SPoX [12] rewrites Java bytecode programs to satisfy declarative,
Aspect-Oriented security policies.

To our knowledge, ConSpec [1] and Mobile [13] are the only IRM systems to
yet implement automatic certification. The ConSpec verifier performs a static
analysis to verify that pre-specified guard code appears at each security-relevant
code point; the guard code itself is trusted. Mobile implements a more gen-
eral certification algorithm by type-checking the resulting Mobile code. While
type-checking has the advantage of being light-weight, it comes at the expense
of limited computational power. For instance, Mobile cannot enforce certain

Model-Checking In-Lined Reference Monitors 3

dataflow-sensitive security policies since its type-checking algorithm is strictly
control-flow based. While the security policies described by these systems are
declarative and therefore amenable to a more general verifier, both use a verifier
tailored to a specific rewriting strategy.

Related research on general model-checking is vast, but to our knowledge no
past work has applied model-checking to the IRM verification problem. A major-
ity of model-checking research has focused on detecting deadlock and assertion
violation properties of source code. For example, Java PathFinder (JPF) [15]
and Moonwalker [16] verify properties of Java and .NET source programs, re-
spectively. Model-checking of binary code is useful in situations where the code
consumer may not have access to source code. For example, CodeSurfer/x86
and WPDS++ have been used to extract and check models for x86 binary pro-
grams [3]. In prior work [9], we have presented a general model-checking system
for ActionScript bytecode implemented using co-logic programming [19]. This
paper extends that work by introducing new formalisms specific to the verifica-
tion of safety policies enforced by IRM’s.

ActionScript is a binary virtual machine language by Adobe Systems similar
to Java bytecode. It is important as a general web scripting language and is
widely used in portable web ads, online games, streaming media, and interac-
tive webpage animations. The ActionScript VM includes standard object-level
encapsulation as well as a sandboxing model. While useful, these protections are
limited to enforcing a restricted class of low-level, coarse-grained security poli-
cies. Several past malware attacks have used ActionScript as a vehicle within
the past few years, including several virus families [11], as well as an emerg-
ing class of malicious URL-redirection attacks. URL-redirection attacks allow
an embedded webpage widget (possibly served by a third party) to redirect the
user’s browser to a different website. These attacks are particularly problematic
in the context of web advertising, since in these scenarios the security policy is
typically a fusion of constraints prescribed by multiple independent parties, such
as ad distributors and web hosts, who lack access to the applet source code. We
apply our certified IRM framework to protect against such attacks in Sect. 5.

3 System Overview

3.1 IRM Framework

Figure 1 depicts the core of our IRM framework, consisting of a collection of
rewriters that automatically transform untrusted ActionScript bytecode into
self-monitoring ActionScript bytecode, along with a model-checking verifier that
certifies the resulting IRM against the original security policy.1 The untrusted
code is obtained from ShockWave Flash (SWF) binary archives, which package
ActionScript code with related data such as images and sound. Once the raw
bytecode is extracted, a Definite Clause Grammar (DCG) [18] parser converts it
to an annotated abstract syntax tree (AST) for easy analysis and manipulation.

1 The IRM framework includes a rewriter per security policy class.

4 Meera Sridhar and Kevin W. Hamlen

ABC Extractor

Original SWF File

Parser

ABC File

BINARY REWRITERS

Abstract Syntax Tree (AST)

R1 R2 · · · Rn

Code Generator

Instrumented AST

IRM
FRAMEWORK

Parser

Instrumented
ABC File

Model-checker +
Abstract Interpreter

AST

VERIFIER

Reject +
Counterexample

ABC Injector

Accept +
Verified ABC File

Safe SWF File

Original
SWF Data

Trusted Computing Base

Fig. 1. Certifying ActionScript IRM architecture

We implemented this parser in Prolog so that the same code functions as a code
generator due to the reversible nature of Prolog predicates [9]. Modified AST’s
produced by the rewriter are thereby transformed back into bytecode, and the
ABC Injector reconstructs a modified SWF file by packaging the new code with
the original data.

In practice it is usually infeasible to develop only one binary rewriter that
can efficiently enforce all desired policies for all untrusted applications. Our IRM
framework therefore actually consists of a collection of rewriters that have been
tailored to different policy classes and rewriting strategies, and that are subject
to change as new policies and runtime efficiency constraints arise. All rewriters
remain untrusted since their output is certified by a single, trusted verifier. The
verifier is more general than the rewriters, and therefore less subject to change.
This results in a significantly smaller trusted computing base than if all rewriters
were trusted.

The rewriter implementation is discussed in Sect. 5; the remainder of this
section discusses the verifier.

3.2 Verifier Overview

The verifier is an abstract machine that non-deterministically explores all control-
flow paths of untrusted code, inferring an abstract state for each code point. This
process continues, bottom-up, until it converges to a (least) fixed point. The
model-checker then verifies that each inferred abstract state is policy-satisfying.

A standard challenge in implementing such an abstract interpreter is to
choose an expressive yet tractable language of state abstractions for the abstract
machine to consider. A highly expressive state abstraction language allows very
precise reasoning about untrusted code, but might cause the iteration process
to converge slowly or not at all, making verification infeasible in practice. In

Model-Checking In-Lined Reference Monitors 5

contrast, a less expressive language affords faster convergence, but might result
in conservative rejection of many policy-adherent programs due to information
lost by the coarseness of the abstraction.

In what follows, we describe a state abstraction that is suitably precise to
facilitate verification of typical IRM’s, yet suitably sparse to facilitate effective
convergence. Section 4 proves these soundness and convergence properties for-
mally. To motivate our choice of abstractions, we begin with a discussion of an
important implementation strategy for IRM’s—reified security state.

In order to enforce history-based security policies, IRM’s typically maintain
a reified abstraction of the current security state within the modified untrusted
code. For example, to enforce a policy that prohibits event e2 after event e1
has already occurred, the IRM framework might inject a new boolean variable
that is initialized to false and updated to true immediately after every program
operation that exhibits e1. The framework then injects before every e2 operation
new code that dynamically tests this injected variable to decide whether the
impending operation should be permitted.

When security policies are expressed as security automata [2], this reification
strategy can be generalized as an integer variable that tracks the current state of
the automaton. Security automata encode security policies as Büchi automata
that accept the language of policy-satisfying event sequences. Formally, a deter-
ministic security automaton A = (Q,Σ, q0, δ) can be expressed as a set of states
Q, an alphabet of security-relevant events Σ, a start state q0 ∈ Q, and a transi-
tion relation δ : Q × Σ → Q. For the purpose of this paper, we assume that Q
is finite.2 The automaton accepts all finite or infinite sequences for which δ has
transitions. Security automata therefore accept policies that are prefix-closed.
That is, to prove that infinite executions of an untrusted program satisfy such a
policy, it suffices to prove that every finite execution prefix satisfies the policy.
We therefore define the set of finite prefixes P of the security policy denoted by
a deterministic security automaton as follows.

Definition 1 (Security Policy). Let A = (Q,Σ, q0, δ) be a deterministic se-
curity automaton. The security policy PA for automaton A is defined by PA =
ResA(Q), where notation ResA(q) denotes the residual [8] of state q in automa-
ton A—that is, the set of finite sequences that cause the automaton to arrive in
state q—and we lift ResA to sets of states via ResA(Q) = ∪q∈QResA(q). When
automaton A is unambiguous, we will omit subscript A, writing P = Res(Q).

Our verifier accepts as input security policies expressed as security automata
and IRM’s that implement reified security state as integer automaton states.
To verify that the untrusted code accurately maintains these state variables to
track the runtime security state, our abstract states include an abstract trace
and abstract program variable values defined in terms of this automaton.

2 Any actual implementation of an IRM must have a finite Q since otherwise the IRM
would require infinite memory to represent the current security state.

6 Meera Sridhar and Kevin W. Hamlen

Definition 2 (Abstract Traces). The language SS of abstract traces is SS =
{(Res(Q0), τ) | Q0 ⊆ Q, τ ∈ Σ∗, |τ | ≤ k} ∪ {>SS} where >SS = Σ∗. Abstract
traces are ordered by subset relation ⊆, forming the lattice (SS ,⊆).

Intuitively, Definition 2 captures the idea that an IRM verifier must track
abstract security states as two components: a union of residuals Res(Q0) and
a finite sequence τ of literal events. Set Res(Q0) encodes the set of possible
security states that the untrusted program might have been in when the reified
state variable was last updated by the IRM to reflect the current security state.
The actual current security state of the program can potentially be out of sync
with the reified state value at any given program point because IRM’s typically
cannot update the state value in the same operation that exhibits a security-
relevant event. Thus, trace τ models the sequence of events that have been
exhibited since the last update of the state value. In general, an IRM may delay
updates to its reified state variables for performance reasons until after numerous
security-relevant events have occurred. Dynamic tests of reified state variables
therefore reveal information about an earlier security state that existed before
τ occurred, rather than the current security state. This distinction is critical for
accurately reasoning about real IRM code.

We limit the length of τ in our definition to a fixed constant k to keep our
abstract interpretation tractable. This means that when an IRM performs more
than k security-relevant operations between state variable updates, our verifier
will conservatively approximate traces at some program points, and might there-
fore conservatively reject some policy-adherent programs. The choice of constant
k dictates a trade-off between IRM performance and verification efficiency. A
low k forces IRM’s to update security state variables more frequently in order
to pass verification, potentially increasing runtime overhead. A high k relaxes
this burden but yields a larger language of abstract states, potentially increasing
verification overhead. For our implementation, k = 1 suffices.

Reified state values themselves are abstracted as integers or >VS (denoting
an unknown value). For simplicity, our formal presentation treats all program
values as integers and abstracts them in the same way.

Definition 3 (Abstract Values). Define VS = Z ∪ {>VS} to be the set of
abstract program values, and define value order relation ≤VS by (n ≤VS n) and
(n ≤VS >VS) ∀n ∈ VS. Observe that (VS ,≤VS) forms a height-2 lattice.

3.3 Concrete Machine

The abstract states described above abstract the behavior of a concrete machine
that models the actual behavior of ActionScript bytecode programs as inter-
preted by the ActionScript virtual machine. We define the concrete machine to
be a tuple (C, χ0, 7→), where C is the set of concrete configurations, χ0 is the initial
configuration, and 7→ is the transition relation in the concrete domain. Figure
2 defines a configuration χ = 〈L : i, σ, ν,m, τ〉 as a labeled instruction L : i, an
operand stack σ, a local variable store ν, a reified security state value m, and

Model-Checking In-Lined Reference Monitors 7

χ ::= 〈L : i, σ, ν,m, τ〉 (configurations)

L (code labels)

i ::= ifle L | getlocal n | setlocal n | jmp L |
event e | setstate n | ifstate n L

(instructions)

σ ::= · | v :: σ (concrete stacks)

v ∈ Z (concrete values)

ν : Z→ v (concrete stores)

m ∈ Z (concrete reified state)

e ∈ Σ (events)

τ ∈ Σ∗ (concrete traces)

χ0 = 〈L0 : p(L0), ·, ν0, 0, ε〉 (initial configurations)

ν0 = Z× {0} (initial stores)

P ::= (L, p, s) (programs)

p : L→ i (instruction labels)

s : L→ L (label successors)

Fig. 2. Concrete machine configurations and programs

a trace τ of security-relevant events that have been exhibited so far during the
current run. A program P = (L, p, s) consists of a program entrypoint label L,
a mapping p from code labels to program instructions, and a label successor
function s that defines the destinations of non-branching instructions.

To simplify the discussion, we here consider only a core language of Action-
Script bytecode instructions. Instructions ifle L and jmp n implement condi-
tional and unconditional jumps, respectively, and instructions getlocal n and
setlocal n read and set local variable values, respectively. Instruction event e
models a security-relevant operation that exhibits event e.

The setstate n and ifstate n L instructions set the reified security state and
perform a conditional jump based upon its current value, respectively. While the
real ActionScript instruction set does not include these last three operations,
in practice they are implemented as fixed instruction sequences that perform
security-relevant operations (e.g., system calls), store an integer constant in a
safe place (e.g., a reserved private field member), and conditionally branch based
on that stored value, respectively. The bytecode language’s existing object en-
capsulation and type-safety features are leveraged to prevent untrusted code
from corrupting reified security state.

Figure 3 provides a complete small-step operational semantics for the con-
crete machine. Observe that in Rule (CEvent), policy-violating events cause the
concrete machine to enter a stuck state. Thus, security violations are modeled
in the concrete domain as stuck states. The concrete semantics have no explicit
operation for normal program termination; we model termination as an infinite

8 Meera Sridhar and Kevin W. Hamlen

n1 ≤ n2

〈L1 : ifle L2, n1::n2::σ, ν,m, τ〉 7→ 〈L2 : p(L2), σ, ν,m, τ〉 (CIflePos)

n1 > n2

〈L1 : ifle L2, n1::n2::σ, ν,m, τ〉 7→ 〈s(L1) : p(s(L1)), σ, ν,m, τ〉 (CIfleNeg)

〈L : getlocal n, σ, ν,m, τ〉 7→ 〈s(L) : p(s(L)), ν(n)::σ, ν,m, τ〉 (CGetlocal)

〈L : setlocal n, n1::σ, ν,m, τ〉 7→ 〈s(L) : p(s(L)), σ, ν[n := n1],m, τ〉 (CSetlocal)

〈L1 : jmp L2, σ, ν,m, τ〉 7→ 〈L2 : p(L2), σ, ν,m, τ〉 (CJmp)

τe ∈ P
〈L : event e, σ, ν,m, τ〉 7→ 〈s(L) : p(s(L)), σ, ν,m, τe〉 (CEvent)

〈L : setstate n, σ, ν,m, τ〉 7→ 〈s(L) : p(s(L)), σ, ν, n, τ〉 (CSetstate)

〈L1 : ifstate n L2, σ, ν, n, τ〉 7→ 〈L2 : p(L2), σ, ν, n, τ〉 (CIfstatePos)

m 6= n

〈L1 : ifstate n L2, σ, ν,m, τ〉 7→ 〈s(L1) : p(s(L1)), σ, ν,m, τ〉 (CIfstateNeg)

Fig. 3. Small-step operational semantics for the concrete machine

stutter state. The soundness proof in Sect. 4 shows that any program that is ac-
cepted by the abstract machine will never enter a stuck state during any concrete
run; thus, verification is sufficient to prevent policy violations.

3.4 Abstract Machine

We define our abstract machine as a tuple (A, χ0,), where A is the set of
configurations of the abstract machine, χ0 is the same initial configuration as
the concrete machine, and is the transition relation in the abstract domain.
Abstract configurations are formally defined in Fig. 4. Figure 5 lifts the ≤VS

relation to operand stacks and stores to form a lattice (A,≤χ̂) of abstract states.
That is, stacks (stores) are related if their sizes (domains) are identical and their
corresponding members are related.

The small-step operational semantics of the abstract machine are given in
Fig. 6. When the abstract machine can infer concrete values for operands, as in
Rule (AIflePos), it performs a transition resembling the corresponding concrete
transition. However, when operand values are unknown, as in Rule (AIfleTop),
the abstract machine non-deterministically explores all possible control flows
resulting from the operation.

The premises of rules (AEvent), (ASetstate), and (AIfstateNeg) appeal
to a model-checker that decides subset relations for abstract states according to
Definition 2. Thus, the abstract machine enters a stuck state when it encounters a
potential policy violation (see Rule (AEvent)). Abstract stuck states correspond
to rejection by the verifier.

Model-Checking In-Lined Reference Monitors 9

χ̂ ::= ⊥ | 〈L : i, σ̂, ν̂,m, (Res(qm), τ̄)〉 | 〈L : i, σ̂, ν̂,>VS , τ̂〉 (abstract configs)

σ̂ ::= · | v̂ :: σ̂ (evaluation stacks)

v̂ ∈ VS (abstract values)

ν̂ : Z→ v̂ (abstract stores)

m̂ ∈ Z ∪ >VS (abstract reified state)

τ̄ ∈ ∪n≤kΣn (bounded traces)

τ̂ ∈ SS (abstract traces)

Fig. 4. Abstract machine configurations

⊥ ≤χ̂ χ̂ · ≤VS ·
σ̂ ≤VS σ̂

′ ν̂ ≤VS ν̂
′ Rmτ ⊆ Rmτ ′

〈L : i, σ̂, ν̂,m, (Rm, τ)〉 ≤χ̂ 〈L : i, σ̂′, ν̂′,m, (Rm, τ ′)〉
σ̂1 ≤VS σ̂2 va1 ≤VS va2

va1 :: σ̂1 ≤VS va2 :: σ̂2

σ̂ ≤VS σ̂
′ ν̂ ≤VS ν̂

′ τ̂ ⊆ τ̂ ′

〈L : i, σ̂, ν̂, m̂, τ̂〉 ≤χ̂ 〈L : i, σ̂′, ν̂′,>, τ̂ ′〉
ν̂1(n) ≤VS ν̂2(n) ∀n ∈ Z

ν̂1 ≤VS ν̂2

Fig. 5. State-ordering relation ≤χ̂

n1 ≤ n2

〈L1 : ifle L2, n1::n2::σ̂, ν̂, m̂, τ̂〉 〈L2 : p(L2), σ̂, ν̂, m̂, τ̂〉 (AIflePos)

n1 > n2

〈L1 : ifle L2, n1::n2::σ̂, ν̂, m̂, τ̂〉 〈s(L1) : p(s(L1)), σ̂, ν̂, m̂, τ̂〉 (AIfleNeg)

>VS ∈ {va1, va2} L′ ∈ {L2, s(L1)}
〈L1 : ifle L2, va1::va2::σ̂, ν̂, m̂, τ̂〉 〈L′ : p(L′), σ̂, ν̂, m̂, τ̂〉 (AIfleTop)

〈L : getlocal n, σ̂, ν̂, m̂, τ̂〉 〈s(L) : p(s(L)), ν̂(n)::σ̂, ν̂, m̂, τ̂〉 (AGetlocal)

〈L : setlocal n, va1::σ̂, ν̂, m̂, τ̂〉 〈s(L) : p(s(L)), σ̂, ν̂[n := va1], m̂, τ̂〉 (ASetlocal)

〈L1 : jmp L2, σ̂, ν̂, m̂, τ̂〉 〈L2 : p(L2), σ̂, ν̂, m̂, τ̂〉 (AJmp)

τ̂ e ⊆ τ̂ ′ ⊆ P
〈L : event e, σ̂, ν̂, m̂, τ̂〉 〈s(L) : p(s(L)), σ̂, ν̂, m̂, τ̂ ′〉 (AEvent)

τ̂ ⊆ Res(qn)

〈L : setstate n, σ̂, ν̂, m̂, τ̂〉 〈s(L) : p(s(L)), σ̂, ν̂, n, (Res(qn), ε)〉 (ASetstate)

m̂ ∈ {n,>}
〈L1 : ifstate n L2, σ̂, ν̂, m̂, (S, τ)〉 〈L2 : p(L2), σ̂, ν̂, n, (Res(qn), τ)〉 (AIfstatePos)

m̂ 6= n (S − Res(qn))τ ⊆ τ̂
〈L1 : ifstate n L2, σ̂, ν̂, m̂, (S, τ)〉 〈s(L1) : p(s(L1)), σ̂, ν̂, m̂, τ̂〉 (AIfstateNeg)

Fig. 6. Small-step operational semantics for the abstract machine

10 Meera Sridhar and Kevin W. Hamlen

Rule (ASetstate) requires that acceptable programs must maintain a reified
security state that is consistent with the actual security state of the program
during any given concrete execution. This allows the (AIfstatePos) and (AIf-

stateNeg) rules of the abstract machine to infer useful security information
in the positive and negative branches of program operations that dynamically
test this state. The verifier can therefore reason that dynamic security guards
implemented by an IRM suffice to prevent runtime policy violations.

3.5 An Abstract Interpretation Example

Abstract interpretation involves iteratively computing an abstract state for each
code point. Multiple abstract states obtained for the same code point are com-
bined by computing their join in lattice (A,≤χ̂). This process continues until a
fixed point is reached.

���� ����
0 1-e-

L1 : ifstate 0 L3 〈. . . , 0, ε〉 t 〈. . . , 1, e〉 = 〈. . . ,>, ε+ e〉
L2 : jmp L2 ⊥ t 〈. . . ,>, e〉 = 〈. . . ,>, e〉
L3 : event e 〈. . . , 0, ε〉 t 〈. . . , 0, ε〉 = 〈. . . , 0, ε〉

setstate 1 〈. . . , 0, e〉 t 〈. . . , 0, e〉 = 〈. . . , 0, e〉
jmp L1 〈. . . , 1, e〉 t 〈. . . , 1, e〉 = 〈. . . , 1, e〉

Fig. 7. An abstract interpretation example

To illustrate this, we here walk the abstract interpreter through the simple
example program shown in the first column of Fig. 7, enforcing the policy ε+ e
whose security automaton is depicted at the top of the figure. Abstract states
inferred on first entry to each code point are written to the left of the t in the
second column. (All but the reified state value 0 and trace ε are omitted from
each configuration since they are irrelevant to this particular example.) Abstract
states inferred on second entry are written after the t, and the resulting join
of these states is written in the third column. In this example a fixed point is
reached after two iterations.

The abstract interpreter begins at entrypoint label L1 in initial configuration
χ0 = 〈. . . , 0, ε〉. Since the reified state is known, the abstract machine performs
transition (AIfstatePos) and arrives at label L3. Operation event e appends
e to the trace, operation setstate 1 updates the reified state, and operation
jmp L1 returns to the original code point.

The join of these two states yields a new configuration in which the reified
state is unknown (>), so on the second iteration the abstract machine non-
deterministically transitions to both L2 and L3. However, both transitions infer

Model-Checking In-Lined Reference Monitors 11

useful security state information based on the results of the dynamic test. Transi-
tion (AIfstatePos) to label L3 refines the abstract trace from ε+e to Res(q0) =
ε, and transition (AIfstateNeg) to label L2 refines it to ε+e−Res(q0) = e. These
refinements allow the verifier to conclude that all abstract states are policy-
satisfying. In particular, the dynamic state test at L1 suffices to prevent policy
violations at L3.

4 Analysis

4.1 Soundness

The abstract machine defined in Section 3.4 is sound with respect to the concrete
machine defined in Section 3.3 in the sense that each inferred abstract state
χ̂ conservatively approximates all concrete states χ that can arise at the same
program point during an execution of the concrete machine on the same program.
This further implies that if the abstract machine does not enter a stuck state
for a given program, nor does the concrete machine. Since concrete stuck states
model security violations, this implies that a verifier consistent with the abstract
machine will reject all policy-violating programs.

σ ≤VS σ̂ ν ≤VS ν̂ τ ∈ τ̂
〈L : i, σ, ν,m, τ〉 ∼ 〈L : i, σ̂, ν̂,>, τ̂〉 (SoundTop)

σ ≤VS σ̂ ν ≤VS ν̂ τ ∈ Res(qm)τ ′ τ ∈ Sτ ′

〈L : i, σ, ν,m, τ〉 ∼ 〈L : i, σ̂, ν̂,m, (S, τ ′)〉 (SoundInt)

Fig. 8. Soundness relation ∼

We define the soundness of state abstractions in terms of a soundness rela-
tion [7] written ∼⊆ C×A that is defined in Fig. 8. Following the approach of [4],
soundness of the operational semantics given in Figs. 3 and 6 is then proved via
progress and preservation lemmas. The preservation lemma proves that a bisim-
ulation of the abstract and concrete machines preserves the soundness relation,
while the progress lemma proves that as long as the soundness relation is pre-
served, the concrete machine does not enter a stuck state. Together, these two
lemmas dovetail to form an induction over arbitrary length execution sequences,
proving that programs accepted by the verifier will not commit policy violations.

We sketch interesting cases of the progress and preservation proofs below.

Lemma 1 (Progress). For every χ ∈ C and χ̂ ∈ A such that χ ∼ χ̂, if there
exists χ̂′ ∈ A such that χ̂ χ̂′, then there exists χ′ ∈ C such that χ 7→ χ′.

Proof. Let χ = 〈L : i, σ, ν,m, τ〉 ∈ C, χ̂ = 〈L : i, σ̂, ν̂, m̂, τ̂〉 ∈ A, and χ̂′ ∈ A be
given, and assume χ ∼ χ̂ and χ̂ χ̂′ both hold. Proof is by a case distinction

12 Meera Sridhar and Kevin W. Hamlen

on the derivation of χ̂ χ̂′. The one interesting case is that for Rule (AEvent),
since the corresponding (CEvent) rule in the concrete semantics is the only one
with a non-trivial premise. For brevity, we show only that case below.

Case (AEvent): From Rule (AEvent) we have i = event e and χ̂′ = 〈s(L) :
p(s(L)), σ̂, ν̂, m̂, τ̂ ′〉, where τ̂ e ⊆ τ̂ ′ ⊆ P holds. Choose configuration χ′ =
〈s(L) : p(s(L)), σ, ν,m, (τ, e)〉. From χ ∼ χ̂ we have τ ∈ τ̂ . It follows that
τ̂ e ⊆ P holds. By Rule (CEvent), we conclude that χ 7→ χ′ is derivable.

The remaining cases are straightforward, and are therefore omitted. ut

Lemma 2 (Preservation). For every χ ∈ C and χ̂ ∈ A such that χ ∼ χ̂, if
there exists a non-empty A′ ⊆ A such that χ̂ A′, then for every χ′ ∈ C such
that χ 7→ χ′ there exists χ̂′ ∈ A′ such that χ′ ∼ χ̂′.

Proof. Let χ = 〈L : i, σ, ν,m, τ〉 ∈ C, χ̂ = 〈L : i, σ̂, ν̂, m̂, τ̂〉 ∈ A, and χ′ ∈ C be
given such that χ 7→ χ′. Proof is by case distinction on the derivation of χ 7→ χ′.
For brevity we sketch only the most interesting cases below.

Case (CEvent): From Rule (CEvent) we have i = event e and χ′ = 〈s(L) :
p(s(L)), σ, ν,m, τe〉. Since A′ is non-empty, we may choose χ̂′ = 〈s(L) :
p(s(L)), σ̂, ν̂, m̂, τ̂ ′〉 such that τ̂ e ⊆ τ̂ ′ ⊆ P by (AEvent). We can then obtain
a derivation of χ′ ∼ χ̂′ from the derivation of χ ∼ χ̂ by appending event e to
all of the traces in the premises of (SoundTop) or (SoundInt), and observing
that the resulting premises are provable from τ̂ e ⊆ τ̂ ′.

Case (CSetstate): From Rule (CSetstate) we have i = setstate n and χ′ =
〈s(L) : p(s(L)), σ, ν, n, τ〉. Since A′ is non-empty, we may choose χ̂′ = 〈s(L) :
p(s(L)), σ̂, ν̂, n, (Res(qn), ε)〉 such that τ̂ ⊆ Res(qn) holds by Rule (ASet-

state). From χ ∼ χ̂ we have τ ∈ τ̂ . Thus, τ ∈ Res(qn) holds and relation
χ′ ∼ χ̂′ follows from Rule (SoundInt).

Case (CIfstatePos): From Rule (CIfstatePos) we have i = ifstate n L2 and
χ′ = 〈L2 : p(L2), σ, ν, n, τ〉. If m̂ = n 6= >, then τ̂ = (S, τ̄) by (AIfstatePos),
so choose a′ = 〈L2 : p(L2), σ̂, ν̂, n, (Res(qn), τ̄)〉. Relation χ ∼ χ̂ proves χ′ ∼
χ̂′ by (SoundInt). Otherwise m̂ = >, so choose χ̂′ = 〈L2 : p(L2), σ̂, ν̂,>, τ̂〉.
Relation χ ∼ χ̂ proves χ′ ∼ χ̂′ by (SoundTop).

Case (CIfstateNeg): From Rule (CIfstateNeg) we have i = ifstate n L2 and
χ′ = 〈s(L1) : p(s(L1)), σ, ν,m, τ〉, where n 6= m. If m̂ 6= > then τ̂ = (S, τ̄)
by (AIfstateNeg), so choose χ̂′ = 〈s(L1) : p(s(L1)), σ̂, ν̂, m̂, τ̂ ′〉 such that
(S − Res(qn))τ̄ ⊆ τ̂ ′ holds by (AIfstateNeg). In any deterministic security
automaton, every residual is disjoint from all others. Thus, m̂ 6= n implies
that τ̂ 6∈ Res(qn)τ̄ , and therefore τ̂ ⊆ (S − Res(qn))τ̄ . A derivation of χ′ ∼
χ̂′ can therefore be obtained from the one for χ ∼ χ̂ using (SoundInt).
Otherwise m̂ = >, and the rest of the case follows using logic similar to the
case for (CIfstatePos). ut

Theorem 1 (Soundness). If the abstract machine does not enter a stuck state
from the initial state χ0, then for any concrete state χ ∈ C reachable from the

Model-Checking In-Lined Reference Monitors 13

initial state χ0, the concrete machine can make progress. If state χ is a security-
relevant event then this progress is derived by rule (CEvent) of Fig. 3, whose
premise guarantees that the event does not cause a policy violation. Thus, any
program accepted by the abstract machine does not commit a policy violation
when executed.

Proof. The theorem follows from the progress and preservation lemmas by an
induction on the length of an arbitrary, finite execution prefix. ut

4.2 Convergence

In practice, effective verification depends upon obtaining a fixed point for the
abstract machine semantics in reasonable time for any given untrusted program.
The convergence rate of the algorithm described in Sect. 3.5 depends in part on
the height of the lattice of abstract states. This height dictates the number of
iterations required to reach a fixed point in the worst case. All components of the
language of abstract states defined in Fig. 4 have height at most 2, except for the
lattice SS of abstract traces. Lattice SS is finite whenever security automaton
A is finite; therefore convergence is guaranteed in finite time. In the proof that
follows we prove the stronger result that lattice SS has non-exponential height—
in particular, it has height that is quadratic in the size of the security automaton.

Theorem 2. Let A = (Q,Σ, δ) be a deterministic, finite security automaton.
Lattice (SS ,⊆) from Definition 2 has height O(|Q|2 + k|Q|).

Proof. Let Q1, Q2 ⊆ Q and τ1, τ2 ∈ ∪n≤kΣn be given. For all i ∈ {1, 2} define
Li = Res(Qi)τi, and assume ∅ (L1 (L2 ⊆ P. Define

m(L) = (|Q|+ 1)|suf (L)| − |Pre(L)|

where suf (L) = max{τ ∈ Σ∗ | L ⊆ Σ∗τ} is the largest common suffix of all
strings in non-empty language L and Pre(L) = {q ∈ Q | Res(q)suf (L)∩L 6= ∅}
is the set of possible automaton states that an accepting path for a string in L
might be in immediately prior to accepting the common suffix. We will prove
that m(L1) > m(L2). By the pumping lemma, |suf (Li)| = |suf (Res(Qi)τi)| is
at most |Q| + k, so this proves that any chain in lattice (SS ,⊆) has length at
most O(|Q|2 + k|Q|).

We first prove that Res(Pre(Li))suf (Li) = Li ∀i ∈ {1, 2}. The ⊇ direction
of the proof is immediate from the definition of Pre; the following proves the
⊆ direction. Let τ ∈ Res(Pre(Li))suf (Li) be given. There exists q ∈ Pre(Li)
and τ ′ ∈ Res(q) such that τ = τ ′suf (Li). Since Li = Res(Qi)τi, τi is a suffix of
suf (Li), so there exists τ ′i ∈ Σ∗ such that suf (Li) = τ ′iτi. From q ∈ Pre(Li) we
obtain Res(q)suf (Li)∩Li = Res(q)τ ′iτi∩Res(Qi)τi = (Res(q)τ ′i∩Res(Qi))τi 6= ∅.
Thus, there is an accepting path for τ ′i from q to some state in Res(Qi). It
follows that τ ′τ ′i ∈ Res(Qi), so τ = τ ′τ ′iτi ∈ Res(Qi)τi = Li. We conclude that
Res(Pre(Li))suf (Li) ⊆ Li.

14 Meera Sridhar and Kevin W. Hamlen

From this result we prove that m(L1) > m(L2). Since L1 (L2, it follows
that suf (L2) is a suffix of suf (L1). If it is a strict suffix then the theorem is
proved. If instead suf (L1) = suf (L2) = x, then we have the following:

L1 (L2

Res(Pre(L1))x (Res(Pre(L2))x
Res(Pre(L1)) (Res(Pre(L2))

Since A is deterministic and therefore each residual is disjoint, we conclude that
Pre(L1) (Pre(L2) and therefore m(L1) > m(L2). ut

5 Implementation

We used our IRM framework to enforce and verify a URL anti-redirection policy
for ActionScript ad applets. ActionScript bytecode performs a URL redirection
using the navigateToURL system call, which accepts the URL target as its ar-
gument. To protect against malicious redirections, we enforced a policy that re-
quires check url(s) to be called sometime before any call to navigateToURL(s),
for each string constant s. Here, check url is a trusted implementation provided
by the ad distributor and/or web host, and may therefore rely on dynamic in-
formation such as the webpage that houses the current ad instance, the current
user’s identity, etc.

A näıve IRM can satisfy this policy by simply inserting a call to check url
immediately before each call to navigateToURL. Since calls to check url are
potentially expensive, our IRM takes the more efficient approach of reifying
a separate security state variable into the untrusted binary for each string con-
stant.3 The reified state tracks whether that string has yet passed inspection and
avoids duplicate calls for the same constant. In the less common case where the
untrusted code must call navigateToURL with a dynamically generated string,
the IRM resorts to the näıve approach described above. Maintaining persistent
internal state for dynamically generated strings is left for future work.

Program Tested Size Before Size After
Rewriting
Time

Verification
Time

countdownBadge.abc 1.80 KB 1.95 KB 1.429s 0.532s
NavToURL.abc 0.93 KB 1.03 KB 0.863s 0.233s

Fig. 9. Experimental Results

The resulting instrumented binaries are independently certified by the model-
checking verifier using the original security policy expressed as a security automa-
ton. Figure 9 shows the results of rewriting and verifying binaries extracted from
two real-world SWF ads that perform redirections. All tests were performed on
3 The number of string constants is known at rewriting time based on the size of the

constant pool in the ActionScript binary.

Model-Checking In-Lined Reference Monitors 15

an Intel Pentium Core 2 Duo machine running Yap Prolog v5.1.4. In both cases
the IRM passed verification and prevented malicious URL redirections.

6 Conclusion

We have presented a technique for certifying IRM’s through model-checking.
Our technique derives a state abstraction lattice from a security automaton to
facilitate precise abstract interpretation of IRM code. Formal proofs of soundness
and convergence guarantee reliability and tractability of the verification process.
Finally, we demonstrate the feasibility of our technique by enforcing a URL
anti-redirection policy for ActionScript bytecode programs.

While our algorithm successfully verifies an important class of IRM imple-
mentations involving reified security state, it does not support all IRM rewriting
strategies. Reified security state that is per-object [13] instead of global, or that
is updated by the IRM before the actual security state changes at runtime rather
than after, are two examples of IRM strategies not supported by our model. In
future work we intend to investigate ways of generalizing our approach to cover
these cases.

We also plan to augment our system with support for recursion and mutual
recursion, which is currently not handled by our implementation. Finally, we also
plan to extend our technique to other binary languages and the IRM systems
that have been implemented for them.

Acknowledgments

The authors thank Peleus Uhley at Adobe Research for providing real-world
SWF applets of interest for testing and certification, and R. Chandrasekaran
and Feliks Kluzniak for various helpful discussions.

References

1. I. Aktug and K. Naliuka. ConSpec - a formal language for policy specification.
Science of Computer Programming, 74:2–12, 2008.

2. B. Alpern and F. B. Schneider. Recognizing safety and liveness. Distributed Com-
puting, 2:117–126, 1986.

3. G. Balakrishnan, T. W. Reps, N. Kidd, A. Lal, J. Lim, D. Melski, R. Gruian,
S. H. Yong, C.-H. Chen, and T. Teitelbaum. Model checking x86 executables
with CodeSurfer/x86 and WPDS++. In Proc. Computer-Aided Verification, pages
158–163, 2005.

4. B.-Y. E. Chang, A. Chlipala, and G. C. Necula. A framework for certified pro-
gram analysis and its applications to mobile-code safety. In Proc. Int. Conf. on
Verification, Model Checking, and Abstract Interpretation, 2006.

5. F. Chen. Java-MOP: A monitoring oriented programming environment for Java.
In Proc. Int. Conf. on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), pages 546–550, 2005.

16 Meera Sridhar and Kevin W. Hamlen

6. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proc.
Symposium on Principles of Prog. Languages, pages 234–252, 1977.

7. P. Cousot and R. Cousot. Abstract interpretation frameworks. J. Log. Comput.,
2(4):511–547, 1992.

8. F. Denis, A. Lemay, and A. Terlutte. Residual finite state automata. In Proc.
Annual Symposium on Theor. Aspects of Comput. Sci., volume 2010/2001 of LNCS,
pages 144–157, 2001.

9. B. W. DeVries, G. Gupta, K. W. Hamlen, S. Moore, and M. Sridhar. ActionScript
bytecode verification with co-logic programming. In Proc. ACM Workshop on
Prog. Languages and Analysis for Security (PLAS), 2009.

10. Ú. Erlingsson and F. B. Schneider. SASI enforcement of security policies: A retro-
spective. In Proc. New Security Paradigms Workshop, 1999.

11. fukami and B. Fuhrmannek. SWF and the malware tragedy. In Proc. OWASP
Application Security Conference, 2008.

12. K. W. Hamlen and M. Jones. Aspect-oriented in-lined reference monitors. In Proc.
ACM Workshop on Prog. Languages and Analysis for Security (PLAS), 2008.

13. K. W. Hamlen, G. Morrisett, and F. B. Schneider. Certified in-lined reference
monitoring on .NET. In Proc. ACM Workshop on Prog. Languages and Analysis
for Security (PLAS), 2006.

14. K. W. Hamlen, G. Morrisett, and F. B. Schneider. Computability classes for
enforcement mechanisms. In ACM Trans. Prog. Languages and Systems, 2006.

15. W. Kisser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking programs.
Automated Software Engineering Journal, 10(2), April 2003.

16. T. C. Ruys and N. H. M. A. de Brugh. MMC: the Mono Model Checker. Electron.
Notes Theor. Comput. Sci., 190(1):149–160, 2007.

17. F. B. Schneider. Enforceable security policies. ACM Trans. Information and
System Security, 3:30–50, 2000.

18. L. Shapiro and E. Y. Sterling. The Art of PROLOG: Advanced Programming
Techniques. The MIT Press, 1994.

19. L. Simon, A. Mallya, A. Bansal, and G. Gupta. Coinductive logic programming.
In Proc. Int. Conf. on Logic Programming, 2006.

