Order-preserving factor discovery from misaligned data.
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Abstract—We present a factor analysis method that accounts same viral entity [4]. One way to model this situation would
for possible temporal misalignment of the factor loadings aross pe to assume that the factors are constant across obsasvatio

the population of samples. Our main hypothesis is that the d& \ypjle enforcing some form of consistency on the loading
contains a subset of variables with similar but delayed profes matrices:

obeying a consistent precedence ordering relationship. GQumodel
is motivated by the difficulty of gene expression analysis @aoss X, =MA,; +¢. ()
subjects who have common patterns of immune response but

show different onset times after a uniform innoculation time of a  This correponds to the usual linear factor analysis model.
viral pathogen. The proposed method is based on a linear motle Depending on the constraints imposed b, A;, different

with additional degrees of freedom that account for each sulect's  methods arise such as Principal Components Analysis (PCA)

inherent delays. We present an algorithm to fit this model in a [5], sparse PCA [1], k-SVD [6], structured PCA [2] or Non-
totally unsupervised manner and demonstrate its effectiveess on » SP ' !

extracting gene expression factors affecting host respoasusing Neégative Matrix Factorization (NNMF) [7].

a flu-virus human challenge study dataset. However, it is sometimes impossible to model the data with
Index Terms—Parallel Factor Analysis, Dictionary Learning, fixed factors, even though some sort of invariance exists. An
Low-rank Matrix Approximation example of this situation arises for instance when trying to

analyze the immune system response to a viral entity through
gene expression data. Figure 1 shows the gene expression
With the advent of high-throughput data collection techayels for a single gene and different observations, ea@h on
nigues, low-dimensional representations have become -an &responding to a different subject. In this real data lam
sential tool for pre-processing, interpreting or compress g persons experience the same sort of expression response
high-dimensional data. They are widely used in a variety @fter viral inoculation (called "upregulation”) but the ment
domains including electrocardiogram [1], image [2] or sbunyhen upregulation occurs is clearly not the same. If we gitem
[3] processing. In traditional matrix factorization, thatd is o train model (1) on this data, we will not be able to fit all

given ann x p data matrixX, we have:

X =MA + e,
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where M is an x f matrix of factors,A is a f x p
matrix of scores and is a small residual. In order to obtain

a low dimensional factorization, it is typical to assumettha ‘ ‘ ‘ ‘ ‘ ‘
the matrix A is sparse and the number of factors is small: o 2 e % 100
f < rank(X).
S iddg 1.
In many situations, we observe not one but several matri (ﬁ%erem
X, and there are physical grounds for believing that Xags

share an underlying model. This happens for instance Whegyyre 1 would be to fit each subject with a translated version
the observations consist of different time-blocks of soffoth  of 5 common upregulation factor. This motivates the follugyi

the same music piece [3] or when th¥;'s contain gene cjass of models where the factors are allowed to vary across
expression data from different individuals inoculatedhwtite  gpservations:

Expression Level

Example of temporal misalignment of an upregulatiootif across
subjects for gen€CRL2.
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Programme. arise from characteristic features of gene expression time



series. In particular, we restrict the columns Bf; to be On the other hand, each column of the matAx describes
circularly shifted versions of a common set of factors. the mixing weights of the factors that model a specific gene

Our contributions are the following. First, we propose &rajectory. By H3, we expect each factor to parsimoniously
constrained 3-way linear model that accounts for tempprakxplain a large number of genes, the columnsAdfare to be
misaligned factors. Second, we give a simple algorithm thspparse. ByH1, the sparsity pattern is expected to be consistent
allows us to fit this model in reasonable time. Finally, wacross subjects, thus we will requif to have a group-sparse
demonstrate that our methodology is able to succesfullgekt structure across different subjects.
the main features of a real dataset.

This paper is organized as follows. In Section 2 we first
define our target structure and link it to a mathematical rhode
Second, we state the optimization problem associated to the
fitting of our model and give a simple algorithm to find one
of its local minima. In Section 4 we present the application
of our methodology to a real gene expression dataset.

Il. MODEL AND ALGORITHM
In this section, we first present our model hypotheses and
translate them into a constrained factor model. Finally, we ) o ) ) )
propose an efficient method for fitting it. Specifically, weio: 2. Each subject's factor matrikZ; is obtained by applying a circular

. . hift to a common set of factorB' parameterized by a vectat®.
consider the following hypotheses on the structure of gene

expression data. Further motivation can be found in [10]: We are now ready to formally state the factor analysis
« H1: Motif consistency across subjects: Gene expression for misaligned time series. Given a numhgr(of possibly
patterns have consistent (though not-necessarily tiM@omplete)n x p matrices X;, our goal is to findsS low

aligned) motifs across all subjects. _ dimensional approximations of the form:
« H2: Motif sequence consistency across subjects. If motif ,
X precedes motit” for subjecti, the same precedence X; =M (F,d') A +e,

must ho_ld for .SUbJecj # - with d?, F and A; satisfying the assumptions stated above.
« H3: Moif consistency across groups of genes: There are In this paper we seek an interpretable model, that is, a model
groups of genes that exh_|b|t the same temporal EXPrESS@flich effectively summarizes the features of the data while
pat_terns for a given sub;ept. . fitting it accurately. Our methodology can be also used as a
Consider now the generative model in (2). LBt be a gimensionality reduction pre-processing step previousther
matrix whose columns are the commonalignable factors,  4na1yses, such as clustering of gene expression time sigsat
and letM (F,d) be a matrix valued function that applies g10).

circular shift to each column af" according to the vector of * \we gefine the order-consistent dictionary learning problem
parametersl, as depicted in Figure 2. Then, we have:

as follows:
M; =M (F,d). 3) min 37 || X; - M (F,d’) A]| +
In the context of gene expression response after viral inoc- APy (Ay, -+, As) + P (F) (6)
ulation, the columns inF" are the set of signals emitt_ed by s.t. {di} e, FeF,Ac{A;}
the common immune system response and the veftoe . . .
{0,---,n}’ parameterizes each subject's incubation time¥€re||-|| is the Frobenius norm; () are suitable penalty

functions, \, § are given tuning parameters. In our current

types of gene expression may display periodicity, e.gadiian implementation, t_h_e convex seig, A _restrict th_e variable_
transcripts, while others, e.g. transient host responag,mot. SPace to the positive orthant (a key issue for interpratatio

For transient gene expression profiles such as the ones wedgd? NNMF [7]) andC is defined in (5). We use ah Total
interested in here, we use a truncated version of this pieriodf@riation penalty onf” to promote factors with few abrupt
model (see [10]). changes and a Group LASSO [11] penalty on the scaetes

In order to enforceH2, the shiftsd’ have to be such that I Order to enforce consistency across subjects.

the precedence order of motifs in a subject is preservedsacro Problem (6) is a difficult, high dimensional, non convex
all subjects. This can be achieved by ensuring that; optimization problem. A common approach for finding a local
minima in such dictionary learning problems is to use block-

di} < d) & d < dj2 Vs # s1, (4)  coordinate descent, which alternates between the miniioiza
that is, if factorj, precedes factoy, in subjects;, then the With respect to the factor®’ and the scoresl;. Here we pro-
same ordering will hold in all other subjects. This can bRose to solve (6) with the Block Coordinate Descent approach

simplified to constrainingl’ to be an element of the set: ~ described in Algorithm 1, which iteratively minimizes (6)tiv
respect to the shifts, the scores and the factors while kgepi

K= {d € {0, ,n} 1 dipy > dsz} : (5) the other variables fixed.

Using circular shifts introduces periodicity in our modgbme



Algorithm 1: BCD algorithm for finding a local minima  error. The average relative error is beld® for all the sub-
of (6) jects. It is clear that the gene trajectories have been dmdot
Input: Initial estimate of F and A, - - - , Ag. while conserving their temporal alignment.

Output: F, Ay, -, Ag, d",--- ,d°
while Not Convergence do g
[d',--- ,d”] < EstimateDelay§F, Ay, -- , Ag) N

[A1, -, Ag] + EstimateScore(sF,«Sil, e, dd) 33%% = A %

[F] + EstimateFactor§A, d', - - - ,d¥) o w o o

Observed, Subject:1 Recovered, Subject:1 Observed, Subject:4 Recovered, Subject:4
11 11 11

0 2 @ w0 @ o 0 2 40 0 s 100
Observed, Subject:8 Recovered, Subject:8
11
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EstimateFactors and EstimateScores are convex pen : _%fé —onat

regression problems which can be efficiently solved. In "= —aom

current implementation, we use a constrained iterativesti .. 0 —c
olding algorithm [12]. EstimateDelays is trickier because = © @ = = e

the optimization dom‘.”“n IS dlscrgte. An efficient br?'nchzig. 3. Comparison of observed and fitted responses for thfrdee subjects
and-bound approach is used to find the global solution 4ed a subset of genes. All subjects are reconstructed wittative error below

EstimateDelays, see Appendix A for details. 4%.

I1l. GENE EXPRESSION DATA ANALYSIS The three factors obained are shown in the middle plot of

In this section we apply our methodology to the study figure 4. Factor 1 is clearly associated to sustained upregu

an influenza A H3N2Wisconsin challenge study with multiation, factor_ 2 to sustained downregulation and factor & to
ple sampling time points of each subject for gene expre(ggwnregulatlon peak_. .
The top plot of Figure 4 shows the occurrence time of

sion as part of the (DARPA) Predicting Health and Dis-

ease program [4]. This dataset consists of a collection tttfle chosen feature (e.g. for factor_ 1, the time Wh_en the gene
272 microarray samples (of dimensiot2023 genes) from expression changes from low to high) for each aligned factor

17 individuals. All of these subjects were inoculated Witﬁogether with the peak symptom onset time determined by

influenza A H3N2Wisconsin and — 16 blood samples were clinical criteria. It is clear that the upregulation pattef the

extracted before and after inoculation at prespecified tirﬁ'éSt facftotr oct:cu_rtshelrl:ew houltrs befortte t(;u_e onls?:e t pehak t'nt}fs Thi
points. Finally, the clinicians on the team establishedcivhi IS consistent wi e results reported in [13], where the up

of these subjects developed symptoms, assigning a bink ulation peak was observed 36 hours before peak symptom

label (Symptomatic (Sx) and Asymptomatic (Asx)) based o e. Interestingly, the downregulatlon_monfs asso_ci atath :
a standardized symptom scoring method. The time point wh tor 2 and 3 cor_15|stently precede this up_regu_lat_|0n motif
the strongest symptoms occurred (peak symptom onset time n order to identify groups of genes showing similar expres-

was also recorded. For more details on the PHD challen§ h signatures, we perform hierarchical clustering orfittesl
study experiment see [4] cores{Ay,...,Ag} using a standardized euclidean distance

In this study we demonstrate how our method is able Yé?ith the median as a linkage function. Four well separated

accurately reconstruct the observed gene expressiortnttlsaje_C usters are obtained. From the bottom .plOt in Figure 4, it
is clear that factor 1 is strongly associated to Cluster 4,

ries with only 3 factors. We will also show that the estimateld factor 3 ds to cluster 2 and 3. Th .
subject time delays are consistent with the recorded pe\e( ereas lactor > corresponds to cluster 2 and 3. The expressi

symptom times. Our analysis was performed opet 300 signatures of_this clusters are in very gooq agreement W_viiht
significantly time-varying genes selected by Analysis ofiva Clusters pr_ewously found in [13] using _dlffere_nt techrigu
ance. We apply our methodology to tife= 9 symptomatic More details on these analyses are available in [10].
subjects in the study. Choosing the number to pe= 3 IV. CONCLUSIONS ANDFUTURE WORK
reduces the chances of overfitting and is motivated by thte fac
that most genes show either a steady, an upregulation o
downregulation response. To avoid wrap-around effects,
work with a periodical model of dimensiomr = 30, which
we truncate to fit the dimensiom = 16 of the data (see [10]
for more details). We compute our fit overbax 5 grid of
tpu;;ng parameterg), 5) and use a heuristic to select the beshe analysis of a large gene expression temporal dataset.
To illustrate the goodness-of-fit of our model, we plot in . . APPENDIX
Figure 3 the observed gene expression patterns of 9 stronfjlySolving EstimateDelays
varying genes and compare them to the fitted response foEstimateDelays requires solving uncoupled problems of
three of the subjects, together with the relative approtiona the form:

We have proposed a method of precedence-order structured
Elié‘tionary learning that accounts for possible temporat-mi
Vé(ﬁgnments in a population of subjects undergoing a com-
mon treatment. We have described a simple model based on
circular-shift translations of prototype motifs and hahewn

that the new factor analysis method can be a powerful tool for
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Fig. 4. Top Plot: Motif occurrence time for each factar)(and peak symptom time reported by clinicians (O). MiddletPAligned factors for each subject.
Factor 1 can be interpreted as an upregulation pattermprf@chs a persistent downregulation motif and factor 3 as dl stoanregulation peak. Bottom:
scores corresponding to each gene for each of the 3 facttgarly the first 2 factors account for most of the varianced #re majority of the genes are

strongly associated to only one of them.

min || X — M (F,d) Al|,
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