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Abstract—We present a factor analysis method that accounts
for possible temporal misalignment of the factor loadings across
the population of samples. Our main hypothesis is that the data
contains a subset of variables with similar but delayed profiles
obeying a consistent precedence ordering relationship. Our model
is motivated by the difficulty of gene expression analysis across
subjects who have common patterns of immune response but
show different onset times after a uniform innoculation time of a
viral pathogen. The proposed method is based on a linear model
with additional degrees of freedom that account for each subject’s
inherent delays. We present an algorithm to fit this model in a
totally unsupervised manner and demonstrate its effectiveness on
extracting gene expression factors affecting host response using
a flu-virus human challenge study dataset.

Index Terms—Parallel Factor Analysis, Dictionary Learning,
Low-rank Matrix Approximation

I. I NTRODUCTION

With the advent of high-throughput data collection tech-
niques, low-dimensional representations have become an es-
sential tool for pre-processing, interpreting or compressing
high-dimensional data. They are widely used in a variety of
domains including electrocardiogram [1], image [2] or sound
[3] processing. In traditional matrix factorization, the data is
modeled as a linear combination of a number of factors. Thus,
given ann× p data matrixX, we have:

X = MA+ ǫ,

where M is a n × f matrix of factors,A is a f × p
matrix of scores andǫ is a small residual. In order to obtain
a low dimensional factorization, it is typical to assume that
the matrixA is sparse and the number of factors is small:
f ≪ rank(X).

In many situations, we observe not one but several matrices
Xi and there are physical grounds for believing that theXi’s
share an underlying model. This happens for instance when
the observations consist of different time-blocks of soundfrom
the same music piece [3] or when theXi’s contain gene
expression data from different individuals inoculated with the
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same viral entity [4]. One way to model this situation would
be to assume that the factors are constant across observations
while enforcing some form of consistency on the loading
matrices:

Xi = MAi + ǫi. (1)

This correponds to the usual linear factor analysis model.
Depending on the constraints imposed onM ,Ai, different
methods arise such as Principal Components Analysis (PCA)
[5], sparse PCA [1], k-SVD [6], structured PCA [2] or Non-
Negative Matrix Factorization (NNMF) [7].

However, it is sometimes impossible to model the data with
fixed factors, even though some sort of invariance exists. An
example of this situation arises for instance when trying to
analyze the immune system response to a viral entity through
gene expression data. Figure 1 shows the gene expression
levels for a single gene and different observations, each one
corresponding to a different subject. In this real data example,
all persons experience the same sort of expression response
after viral inoculation (called ”upregulation”) but the moment
when upregulation occurs is clearly not the same. If we attempt
to train model (1) on this data, we will not be able to fit all
subjects accurately. A more sensible approach for the data in
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Fig. 1. Example of temporal misalignment of an upregulationmotif across
different subjects for geneCCRL2.

Figure 1 would be to fit each subject with a translated version
of a common upregulation factor. This motivates the following
class of models where the factors are allowed to vary across
observations:

Xi = MiAi + ǫi. (2)

By restricting our factors to be linear transformations of
a common set of factors, we obtain a 3-way model which
has been extensively considered in the signal processing and
chemometrics literature [8], [9]. In this work we consider a
restricted version of this model, where the constraints naturally
arise from characteristic features of gene expression time



series. In particular, we restrict the columns ofMi to be
circularly shifted versions of a common set of factors.

Our contributions are the following. First, we propose a
constrained 3-way linear model that accounts for temporally
misaligned factors. Second, we give a simple algorithm that
allows us to fit this model in reasonable time. Finally, we
demonstrate that our methodology is able to succesfully extract
the main features of a real dataset.

This paper is organized as follows. In Section 2 we first
define our target structure and link it to a mathematical model.
Second, we state the optimization problem associated to the
fitting of our model and give a simple algorithm to find one
of its local minima. In Section 4 we present the application
of our methodology to a real gene expression dataset.

II. M ODEL AND ALGORITHM

In this section, we first present our model hypotheses and
translate them into a constrained factor model. Finally, we
propose an efficient method for fitting it. Specifically, we
consider the following hypotheses on the structure of gene
expression data. Further motivation can be found in [10]:

• H1: Motif consistency across subjects: Gene expression
patterns have consistent (though not-necessarily time
aligned) motifs across all subjects.

• H2: Motif sequence consistency across subjects: If motif
X precedes motifY for subjecti, the same precedence
must hold for subjectj 6= i.

• H3: Motif consistency across groups of genes: There are
groups of genes that exhibit the same temporal expression
patterns for a given subject.

Consider now the generative model in (2). LetF be a
matrix whose columns are thef commonalignable factors,
and letM (F ,d) be a matrix valued function that applies a
circular shift to each column ofF according to the vector of
parametersd, as depicted in Figure 2. Then, we have:

Mi = M
(

F ,di
)

. (3)

In the context of gene expression response after viral inoc-
ulation, the columns inF are the set of signals emitted by
the common immune system response and the vectord

i ∈
{0, · · · , n}

f parameterizes each subject’s incubation times.
Using circular shifts introduces periodicity in our model.Some
types of gene expression may display periodicity, e.g. circadian
transcripts, while others, e.g. transient host response, may not.
For transient gene expression profiles such as the ones we are
interested in here, we use a truncated version of this periodic
model (see [10]).

In order to enforceH2, the shiftsdi have to be such that
the precedence order of motifs in a subject is preserved across
all subjects. This can be achieved by ensuring that:

ds1j1 ≤ ds1j2 ⇔ ds2j1 ≤ ds2j2 ∀s2 6= s1, (4)

that is, if factorj1 precedes factorj2 in subjects1, then the
same ordering will hold in all other subjects. This can be
simplified to constrainingdi to be an element of the set:

K =
{

d ∈ {0, · · · , n}f : di+1 ≥ di, ∀i
}

. (5)

On the other hand, each column of the matrixAi describes
the mixing weights of the factors that model a specific gene
trajectory. By H3, we expect each factor to parsimoniously
explain a large number of genes, the columns ofA

i are to be
sparse. ByH1, the sparsity pattern is expected to be consistent
across subjects, thus we will requireAi to have a group-sparse
structure across different subjects.

Fig. 2. Each subject’s factor matrixMi is obtained by applying a circular
shift to a common set of factorsF parameterized by a vectordi.

We are now ready to formally state the factor analysis
for misaligned time series. Given a numberS (of possibly
incomplete)n × p matricesXi, our goal is to findS low
dimensional approximations of the form:

Xi = M
(

F ,di
)

Ai + ǫ,

with d
i, F andAi satisfying the assumptions stated above.

In this paper we seek an interpretable model, that is, a model
which effectively summarizes the features of the data while
fitting it accurately. Our methodology can be also used as a
dimensionality reduction pre-processing step previous toother
analyses, such as clustering of gene expression time signatures
[10].

We define the order-consistent dictionary learning problem
as follows:

min
∑S

i=1

∣

∣

∣

∣Xi −M
(

F ,di
)

Ai

∣

∣

∣

∣+

λP1 (A1, · · · ,AS) + βP2 (F ) (6)

s.t.
{

d
i
}

∈ K,F ∈ F ,A ∈ {Ai}

where ||·|| is the Frobenius norm,Pi (·) are suitable penalty
functions,λ, β are given tuning parameters. In our current
implementation, the convex setsF , A restrict the variable
space to the positive orthant (a key issue for interpretation,
as in NNMF [7]) andK is defined in (5). We use anl1 Total
Variation penalty onF to promote factors with few abrupt
changes and a Group LASSO [11] penalty on the scoresAi

in order to enforce consistency across subjects.
Problem (6) is a difficult, high dimensional, non convex

optimization problem. A common approach for finding a local
minima in such dictionary learning problems is to use block-
coordinate descent, which alternates between the minimization
with respect to the factorsF and the scoresAi. Here we pro-
pose to solve (6) with the Block Coordinate Descent approach
described in Algorithm 1, which iteratively minimizes (6) with
respect to the shifts, the scores and the factors while keeping
the other variables fixed.



Algorithm 1 : BCD algorithm for finding a local minima
of (6)
Input : Initial estimate ofF andA1, · · · ,AS .
Output : F , A1, · · · ,AS , d1, · · · ,dS

while Not Convergence do
[

d
1, · · · ,dS

]

← EstimateDelays(F ,A1, · · · ,AS)
[A1, · · · ,AS ]← EstimateScores

(

F ,d1, · · · ,dS
)

[F ]← EstimateFactors
(

A,d1, · · · ,dS
)

EstimateFactors and EstimateScores are convex penalized
regression problems which can be efficiently solved. In our
current implementation, we use a constrained iterative thresh-
olding algorithm [12]. EstimateDelays is trickier because
the optimization domain is discrete. An efficient branch-
and-bound approach is used to find the global solution to
EstimateDelays, see Appendix A for details.

III. G ENE EXPRESSION DATA ANALYSIS

In this section we apply our methodology to the study of
an influenza A H3N2Wisconsin challenge study with multi-
ple sampling time points of each subject for gene expres-
sion as part of the (DARPA) Predicting Health and Dis-
ease program [4]. This dataset consists of a collection of
272 microarray samples (of dimension12023 genes) from
17 individuals. All of these subjects were inoculated with
influenza A H3N2Wisconsin andn = 16 blood samples were
extracted before and after inoculation at prespecified time
points. Finally, the clinicians on the team established which
of these subjects developed symptoms, assigning a binary
label (Symptomatic (Sx) and Asymptomatic (Asx)) based on
a standardized symptom scoring method. The time point when
the strongest symptoms occurred (peak symptom onset time)
was also recorded. For more details on the PHD challenge
study experiment see [4].

In this study we demonstrate how our method is able to
accurately reconstruct the observed gene expression trajecto-
ries with only 3 factors. We will also show that the estimated
subject time delays are consistent with the recorded peak
symptom times. Our analysis was performed overp = 300
significantly time-varying genes selected by Analysis of Vari-
ance. We apply our methodology to theS = 9 symptomatic
subjects in the study. Choosing the number to bef = 3
reduces the chances of overfitting and is motivated by the fact
that most genes show either a steady, an upregulation or a
downregulation response. To avoid wrap-around effects, we
work with a periodical model of dimensionnF = 30, which
we truncate to fit the dimensionn = 16 of the data (see [10]
for more details). We compute our fit over a5 × 5 grid of
tuning parameters(λ, β) and use a heuristic to select the best
pair.

To illustrate the goodness-of-fit of our model, we plot in
Figure 3 the observed gene expression patterns of 9 strongly
varying genes and compare them to the fitted response for
three of the subjects, together with the relative approximation

error. The average relative error is below4% for all the sub-
jects. It is clear that the gene trajectories have been smoothed
while conserving their temporal alignment.
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Fig. 3. Comparison of observed and fitted responses for threeof the subjects
and a subset of genes. All subjects are reconstructed with a relative error below
4%.

The three factors obained are shown in the middle plot of
Figure 4. Factor 1 is clearly associated to sustained upregu-
lation, factor 2 to sustained downregulation and factor 3 toa
downregulation peak.

The top plot of Figure 4 shows the occurrence time of
the chosen feature (e.g. for factor 1, the time when the gene
expression changes from low to high) for each aligned factor
together with the peak symptom onset time determined by
clinical criteria. It is clear that the upregulation pattern of the
first factor occurs a few hours before the onset peak time. This
is consistent with the results reported in [13], where the up-
regulation peak was observed 36 hours before peak symptom
time. Interestingly, the downregulation motifs associated with
factor 2 and 3 consistently precede this upregulation motif.

In order to identify groups of genes showing similar expres-
sion signatures, we perform hierarchical clustering on thefitted
scores{A1, ...,AS} using a standardized euclidean distance
with the median as a linkage function. Four well separated
clusters are obtained. From the bottom plot in Figure 4, it
is clear that factor 1 is strongly associated to Cluster 4,
whereas factor 3 corresponds to cluster 2 and 3. The expression
signatures of this clusters are in very good agreement with the
clusters previously found in [13] using different techniques.
More details on these analyses are available in [10].

IV. CONCLUSIONS ANDFUTURE WORK

We have proposed a method of precedence-order structured
dictionary learning that accounts for possible temporal mis-
alignments in a population of subjects undergoing a com-
mon treatment. We have described a simple model based on
circular-shift translations of prototype motifs and have shown
that the new factor analysis method can be a powerful tool for
the analysis of a large gene expression temporal dataset.

APPENDIX

A. Solving EstimateDelays

EstimateDelays requires solvingS uncoupled problems of
the form:
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Fig. 4. Top Plot: Motif occurrence time for each factor (2) and peak symptom time reported by clinicians (O). Middle Plot: Aligned factors for each subject.
Factor 1 can be interpreted as an upregulation pattern, factor 2 as a persistent downregulation motif and factor 3 as a small downregulation peak. Bottom:
scores corresponding to each gene for each of the 3 factors. Clearly, the first 2 factors account for most of the variance and the majority of the genes are
strongly associated to only one of them.

min
d∈K
||X −M (F ,d)A|| , (7)

where||·|| is the Frobenius norm and the setK is defined in
(5). We use a branch-and-bound [14] approach to solve (7).
For this purpose, we recursively branch (split) the set K into
two subsets. Consider the following standard decomposition
of the setK into two subsetsK = I1 ∪ I2, where:

I1 := {d ∈ K : dj ≤ γ} I2 := ∪{d ∈ K : dj ≥ γ} (8)

which holds for any1 ≤ j ≤ f , 0 ≤ γ ≤ n. The same
splitting procedure can be subsequently applied toI1, I2 and
its resulting subsets. Upon application of this decomposition
k times, the resulting subsets will be of the form:

It :=
{

d ∈ K : ∩ki=1dji ≤ (or ≥) γi
}

.

Next, each subproblem (7) constrained to a setIt can be
bounded as follows. First, we denote byg (d) the objective
function in (7) and define:

gmin (It) := min
d∈It

g (d) . (9)

We can relax the coupling induced byK to obtain the
following relaxation:

Rt :=
{

d ∈ {0, · · · , n}
f
: ∩ki=1dji ≤ (or ≥) γi

}

⊇ It (10)

and find a lower bound forgmin (It):

Φlb (It) := min
d∈Rt

g (d) ≤ gmin (It) , (11)

which can be evaluated throughf discrete line searches. On
the other hand, evaluating the objective at any point in the
feasible subsetIt gives an upper bound forgmin (It):

gmin (It) ≤ Φub (It) := g (d) for ∀d ∈ It. (12)
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