
Design and Verification of Secure Systems

Reprint of a paper presented at the 8th ACM Symposium on Operating System Principles,
Pacific Grove, California, 14–16 December 1981. (ACM Operating Systems Review Vol.

15 No. 5 pp. 12-21)

John Rushby∗

Computer Science Laboratory
SRI International

Menlo Park CA 94025 USA

Abstract

This paper reviews some of the difficulties that arise in the verification of kernel-
ized secure systems and suggests new techniques for their resolution.

It is proposed that secure systems should be conceived as distributed systems in
which security is achieved partly through the physical separation of their individual
components and partly through the mediation of trusted functions performed within
some of those components. The purpose of a security kernel is simply to allow such
a ‘distributed’ system to actually run within a single processor; policy enforcement is
not the concern of a security kernel.

This approach decouples verification of components which perform trusted func-
tions from verification of the security kernel. This latter task may be accomplished by
a new verification technique called ‘proof of separability’ which explicitly addresses
the security relevant aspects of interrupt handling and other issues ignored by present
methods.

∗This work was performed while the author was with the Computing Laboratory, University of Newcastle
upon Tyne, England, and was sponsored by (what was then) the Royal Signals Radar Establishment.
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Introduction

A formally verified security kernel is widely considered to offer the most promising basis
for the construction of truly secure computer systems, at least in the short term. A number
of kernelized systems have been constructed [12, 19, 25] and various models of security
have been formulated to serve as the basis for their verification [6, 9, 28].

Despite the enthusiasm for this approach, there remain certain difficulties and prob-
lems in its application (see, for example [1]). I shall expand on these later, but briefly they
include the difficulty of verifying the ‘trusted processes’ that seem necessary in most appli-
cations, concern about the extent to which current techniques verify the implementation of
the kernel (as opposed to its specification), and doubts about whether present security mod-
els really capture the essential characteristics of a security kernel with sufficient accuracy
to provide a sound technical basis for their verification. Also, current approaches to kernel
design and verification developed out of concern for the problem of providing multilevel
secure operation on general-purpose multi-user systems—whereas many of the present-day
applications which require some form of guaranteed security are special-purpose, single-
function systems [5, 11, 13, 24, 33] whose security requirements are somewhat different to
those enshrined in the multilevel models. Attempts to support these applications on a con-
ventional kernel have led to systems of considerable complexity whose verification presents
difficulties that are quite at variance with the evident simplicity of the task which the system
is intended to perform [2].

The purpose of this paper is to present a new approach (or, rather, a re-working of some
old approaches [3, 26, 27]) to the design and verification of secure systems and to argue
that the problems of conventional kernelized systems are thereby avoided or overcome.

The presentation is divided into four sections. In the first, I shall argue that the problems
with conventional systems have their roots in the use of a security kernel which attempts
to impose a single security policy over the whole system. The second section will propose
that distributedsystems avoid many of these difficulties and provide a more appropriate
conceptual base for the design of secure systems. In such a system, the subjects of the
security policy are assigned to private and physically isolated single-user machines and
are able to communicate with each other and to access shared resources only through the
mediation of specialised (and verified) ‘trusted components’ that reside in similarly isolated
and dedicated machines. The overall security of such a distributed system rests partly on
the physical separation of its components and partly on the critical functions performed by
the trusted components. The concrete nature of the services provided by these components,
and the limited interaction between them, enables their security properties to be specified
and verified comparatively easily, and by existing techniques.

Next, in section 3, I shall argue that a conceptually distributed system can be supported
on a single processor, while retaining its security properties, if a type of security kernel
which I call a ‘separation kernel’ is used to simulate the distributed environment. There is
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absolutely no interaction between the properties required of a kernel of this type and the
security properties required of the system components which it supports.

Finally, in Section 4, I shall outline a precise specification of the role of a separation
kernel and sketch an appropriate method of verification which I call ‘Proof of Separability’
and which is developed formally in a companion paper to this [31]. The mathematical model
which underlies this method of verification explicitly addresses the interpretive character
of a security kernel and provides a sound formal basis for verifying the security relevant
aspects of interrupt handling and other issues concerning the flow of control which are
ignored by present methods.

1 The Problem of Trusted Processes

The primary motivation for the use of a security kernel is the desire to isolate and localise
all ‘security critical’ software in one place—the kernel. Then, if the kernel can be proven
‘secure’ in some appropriate sense, all non-kernel software becomes irrelevant to the se-
curity of the system. Security kernels differ in the extent to which they are cognizant of
the overall security policy of the system. Some kernels (for example, that of UCLA Secure
UNIX [25]) have the character of a sophisticated protection mechanism and guarantee that
no object supported by the kernel may be accessed in any way unless its recorded ‘protec-
tion data’ explicitly permits that type of access. The task of setting up the protection data
so that it enforces some overall security policy is delegated to a ‘policy manager’ outside
the kernel. The limitation of this approach is that it is concerned only to protect the phys-
ical representations of information, rather than information itself. Thus it does not control
the ‘leakage’ of information through covert signalling paths [15, 17], nor is the notion of
such ‘information flow’ expressible in the model [28, 32] which underlies the verification
of these kernels.

In military applications,all unauthorized flow of information, whether due to direct ac-
cess or indirect leakage, is unacceptable and, in consequence, security kernels intended for
these applications must not only enforce the security policy of the system on all non-kernel
software, but must also adhere to it themselves, in order that their own internal variables
may not become a channel for insecure information flow [17, 20]. This implies that the
kernel must enforce and obey a single, system-wide security policy. But once this approach
is adopted, it is soon discovered that certain system functions cannot be accommodated
within its discipline. A line-printer spooler provides a simple example of such a function:
if the spooler and its spool files are at the highest security classification, then users of more
lowly classification cannot inspect their own spool files—even for the innocent purpose of
discovering the progress of their jobs. For this reason, it is usual for spool files to be classi-
fied at the level of their owners while the spooler continues to run at the highest level so that
it may read spool files of all classifications. But then the spooler cannot delete spool files
after their contents have been printed—for such action conflicts with the (kernel enforced)
*-property [6] of multilevel security. In order to provide an acceptable user interface, while
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avoiding the proliferation of used spool files, it seems necessary that the spooler should
become a ‘trusted process’ and be allowed to violate the *-property.

In real systems there are many functions which require the privileges of trusted pro-
cesses in order to evade or override the security controls normally enforced by the kernel.
In KSOS, for example, the trusted processes contain

“support software to aid the day-to-day operation of the system (e.g., secure
spoolers for line printer output, dump/restore programs, portions of the inter-
face to a packet switched communications network etc.).” [7, page 365]

Once trusted processes are admitted to the system, however, the kernel is no longer the
sole arbiter of security; it is necessary to be sure that the special privileges granted to trusted
processes are not abused by those processes and may not be usurped by other, untrusted,
processes. In order to guarantee security, therefore, we must verify the whole of the ‘trusted
computing base’—that is, the combination of kernel and trusted processes. The difficulty is
that existing formal models do not provide a basis for the verification of this combination:
we do not know what it is that we have to prove! Landwehr, for example, observes:

“. . . in the final version of their model, Bell and LaPadula did include trusted
processes. What is not included in their exposition is a technique for establish-
ing when a process may be trusted.” [16, page 46]

In the absence of any precise formulation of the role of trusted processes within a model
of secure system behaviour, and in the absence of any formal understanding of how proper-
ties proved of trusted processes combine with those proved of a security kernel in order to
establish the security of the complete system, there is no real justification for speaking of
the ‘verification’ of the security of such systems at all.

The existence of trusted processes within kernelized systems and the attendant difficul-
ties of verifying the security of those systems should not be attributed to deficiencies in the
design of individual kernels, however. Rather:

“to a large extent they [trusted processes] represent a mismatch between the
idealizations of the multilevel security policy and the practical needs of a real
user environment.” [7, page 365]

The true roots of the difficulties caused by trusted processes are not to be found in those
processes themselves, nor in the functions which they perform, but in the conception that a
security kernel should act as a centralized agent for the enforcement of a uniform system-
wide security policy. Even within a system which is intended to enforce a single security
policy at its external interface, the rules and restrictions that govern the behaviour of its
own components cannot simply be that overall policy in microcosm, but must be particular
to the function of each component and to its individual role within the larger system. The
properties required of a secure line-printer spooler, for example, depend as much on the fact
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that it is a line-printer spooler as on the security policy that is to be enforced. We should seek
a system structure that allows each component to make its own contribution to the security
of the overall system and that treats all contributions equally—as befits the ‘weakest link’
nature of security. We should not elevate the security requirements particular to one class of
components to a special status and impose them system-wide at whatever inconvenience to
components with different requirements. The truth of this proposition becomes self-evident
when we consider some of the specialised applications of secure systems. The ACCAT
Guard provides a good example [33].

The Guard is basically a facility for the exchange of messages between a highly clas-
sified system and a more lowly one. Messages from the LOW system to the HIGH one
are allowed through the Guard without hindrance, but messages from HIGH to LOW must
be displayed to a human ‘Security Watch Officer’ who has to decide whether they may
be declassified to the level of the LOW system and then allowed through. Notice that the
Guard supports information flow between the LOW and HIGH systems inbothdirections
and has to enforcedifferentsecurity requirements on each. It is plainly inappropriate, there-
fore, to base its construction on a security kernel that enforces the requirements for just one
direction of transfer—yet this is exactly what has been done. The Guard is based on the
KSOS kernel—which enforces a multilevel security policy that permits information flow in
only the LOW to HIGH direction. Consequently, the HIGH to LOW transfers have to be
accomplished by trusted processes whose purpose is to get round the fundamental security
principle of the KSOS kernel. It is not clear how the use of this kernel has contributed to
the overall security or verifiability of the Guard and it is certainly no surprise to learn that:

“Verification of the trusted processes to be used in the Guard has consumed far
more resources than originally planned.” [16, page 46]

2 Security and Distributed Systems

The combination of a security kernel and trusted processes is hard to understand and even
harder to verify because it does not represent a separation of concerns but a confusion of the
same: neither member of the combination is independent of the properties of the other. If we
are to gain a clearer understanding of the nature of secure systems, and a more compelling
basis for their verification, then we should attempt to separate the properties required of a
security kernel from the issues that give rise to trusted processes.

A very simple and natural—in fact obvious—model for a computer system where se-
curity does not rely upon a central mechanism (such as a security kernel) is a functionally
distributed system: one whose various functions are provided by specialised individual
subsystems which are physically separated from each other and provided with only limited
channels for communication with one another. Once such a system structure is adopted, a
lot of security problems just vanish and others are considerably simplified.

5



Consider, for example, the problem of providing a multilevel secure service to a num-
ber of users in which files are to be the only medium of information flow between users of
different security classifications. We can imagine an idealized system in which each user is
given his own private, physically isolated, single-user machine and a dedicated communi-
cation line to a common, shared file-server. The only component of this system that needs
to be trusted is the file-server. Provided that single component adheres to and enforces the
multilevel security policy, the security of the rest of the system follows from the physical
separation of its components and the absence of direct communications paths between users
of different classifications.

Now consider the file-server in more detail. It is a system dedicated to a single pur-
pose: it supports no user programming and needs no operating system since it runs just
one program—the file-server program. In order to guarantee the security of the whole
system, all we need to do is to verify that single program with respect to an appropriate
specification of its security requirements. It turns out that the role of a multilevel secure
file-server matches the security model developed at SRI [9] (which is more than can be said
of a security kernel—a point I shall return to later) and this model therefore provides both
a specification for the security requirements of the file-server and the justification for its
verification by the method of ‘information flow analysis’ [8, 20, 21].

We can add further shared resources to the system in just the same way as the file-server.
A central printing facility, for example, can be provided by a self-contained printer-server
connected to each single-user machine (and probably the file-server also) by additional,
dedicated communication lines. The printer-server must obviously satisfy some security
requirements. It must, for example, print the correct security classification of each job on
its header page and must not print parts of one job within another, nor feed inputs from one
user back to another, and so on. Furthermore, the printer-server may need to co-operate
with the file-server and may require services from the file-server that are different from
those provided to ordinary users (for example, the ability to delete spool files of all security
classifications). Whatever the full set of requirements for a secure printer-server are, they
must be, at least in part, specific to its particular function; we cannot expect the security
requirements of so specialised a task to be completely expressed by, or even to be totally
consistent with, some general set of properties such as the ss- and *-properties of multilevel
security [6]—even though enforcement of multilevel security is the overall goal.

We are, however, in a much better position to tackle the important problem of deciding
just whatare the requirements for a secure printing service when all responsibility for this
service is completely isolated and exposed within a self-contained component, than when
it is divided, uneasily and obscurely, between a trusted process and a security kernel.

A real system will contain more security-critical functions than just file and printer-
servers. There must, for example, be some additional mechanism to authenticate the iden-
tities of users as they log in to the single-user machines and to inform the file and printer-
servers of the security classifications associated with each user.
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I contend that the security properties required of these and other critical services can
best be studied if they, too, are isolated as separate, specialised components within a dis-
tributed system. The task of the system designer is then to identify and formulate the secu-
rity properties that must be required of each component individually so that, in combination,
they enforce the security policy required of the system overall.

Of course, sceptics will point out that this is a formidable task: the components of the
system interact and cannot be studied independently of each other. The printer-server, for
example, requires special services of the file-server and both of these components depend
upon information provided by the authentication mechanism. But the difficulties that appear
formidable here are no less so in a conventional, kernelized system: the same functions and
the same interactions must be present there also—and will be no less significant, merely
less visible. Furthermore, the interactions in a distributed system are between its critical
components. These components have concrete tasks to perform and their interactions can
also be specified concretely: we can state precisely what the special services are that the
printer-server requires of the file-server and we can satisfy ourselves that the ramifications
of these special services are fully understood. This is quite different to granting the line
printer spooler of a kernelized system a dispensation to flout the *-property.

Although I have been using a general-purpose multi-user system as a familiar example
to introduce the idea, political and economic considerations generally dictate that secure
general-purpose systems should emulate some existing system—and this hampers the adop-
tion of a radically different implementation technique. Special-purpose, single-function
systems are not so constrained—and are more able and more likely, therefore, to take ad-
vantage of a ‘distributed’ approach to security. A design for a type of ‘secure network front
end’ (SNFE) will serve as an illustration.

A SNFE is a device that is interposed between host machines and a network in order
to provide end-to-end encryption around the network. Some of the general design issues
for such a device are discussed by Auerbach [4] and a particular design is described by
Barnes [5]. Basically, the issues are as follows. As well as a cryptographic device (a
‘crypto’) the SNFE must certainly contain components for handling the protocols, message
buffering and so on required at its interfaces with the communications lines to the host on
one side and the network on the other. We can call the component on the host side the ‘red’
component and that on the network side the ‘black’ component. (This terminology stems
from cryptological usages.) Packets of cleartext data from the host are received by the red
component and passed to the crypto from where they travel, in encrypted form, to the black
component for transmission over the network. In order to allow for red-black co-operation
(essentially, the exchange of packet headers), a second, unencrypted channel (the ‘cleartext
bypass’) must also connect the red and black components.

The security requirement of the system is that user data from the host must not reach
the network in cleartext form. It is therefore necessary to be sure that the red component
does not use the cleartext bypass to send user data directly to the black component. The
software in the red component is considered too large and complex to allow its verification
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and so a ‘censor’ is inserted into the bypass to perform rigid procedural checks on the traf-
fic passing through—to check that it has the appearance of legitimate protocol exchanges,
rather than raw cleartext. A fairly simple censor can reduce the bandwidth available for
illicit communication over the bypass to an acceptable level.

--

6

-

?

-

Crypto

BlackRed

Bypass

Observe that the crucial issue here is notwhetherred and black can communicate, but
what channelsare available for that communication: the channels via the censor and the
crypto are allowed, but there must be no others. It is not clear how this requirement could
be expressed in terms of the models that underly current conceptions of a security kernel
but it is easily formulated and understood in the context of a distributed system design: the
four components of the system are housed in separate, isolated boxes and connected by
just the communications lines shown in the diagram. The only software which performs
a security critical task in this design is that of the censor (the crypto is a trusted physical
device); security is otherwise achieved by the physical distribution of the components and
the physically limited communications provided between them.

3 Re-introducing the Security Kernel

So far I have argued that distributed systems offer a natural basis for the design of computer
systems that must satisfy certain security requirements. Recent hardware developments
make it feasible, for certain applications, to implement such designs directly—that is, as
physically distributed systems composed of independent processors connected by external
communications lines.
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More commonly, however, and especially when the number of components in the dis-
tributed design is large relative to the overall scale of the system, it will be more cost-
effective to implement the entire system on a single processor. In this case, the security
characteristics of the distributed system must be provided by logical rather than physical
mechanisms and this can be accomplished by re-introducing the concept of a security ker-
nel, but in a different guise to that seen previously.

The overall security of a distributed system rests partly on the physical separation of its
components and partly on the critical functions performed by some of those components.
The role which I propose for a security kernel is simply that it should re-create, within a sin-
gle shared machine, an environment which supports the various components of the system,
and provides the communications channels between them, in such a way that individual
components of the systemcannot distinguishthis shared environment from a physically
distributed one. If this can be achieved, then surely the shared implementation retains all
the security properties of a truly distributed system. Observe that such a kernel knows noth-
ing of the security policy enforced by the system—that responsibility remains embedded in
the critical components. And notice, too, that those critical components require no special
privileges of the kernel; we have completely decoupled the properties required of the secu-
rity kernel from those concerned with the larger questions of the system’s overall purpose
and policy.

In an ideal, physically distributed implementation, each component of the system runs
on its own private and physically isolated machine. The task of a security kernel, there-
fore, is to provide an isolated ‘Virtual Machine’ (VM) for each component and to handle
communications between these virtual machines. A kernel of this form is obviously very
similar to a ‘Virtual Machine Monitor’ (VMM): that is, a system which provides each of
its users with a separate, simulated copy of its hardware base (VM/370 is, perhaps, the best
known example of such a system). It is widely recognised that VMMs provide a suitable
basis for the construction of secure systems and at least two systems have been constructed
along these lines [12, 26]. However, the type of kernel which I am proposing differs from
a VMM in that there is no requirement for it to provide VMs which are exact copies of the
base hardware (or even for all the VMs to be alike)—but there is a requirement for it to pro-
vide communications channels between some of its VMs. In order to avoid confusion with
established terminology, I shall call this new type of security kernel a ‘separation kernel’
and I shall speak of the VMs which it supports as ‘regimes.’

The next step is to deduce a precise statement of the security properties required of a
separation kernel and to develop a technique for verifying these properties. Before doing
so, however, it seems best to assist the reader’s intuition and to provide some motivation by
outlining the design of a particular separation kernel.
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An Example

The separation kernel concerned is an operational one known as the ‘Secure User Environ-
ment’ (SUE). It runs on a PDP-11/34 and was designed and constructed by T4 Division of
the Royal Signals and Radar Establishment at Malvern, England, in order to support ap-
plications similar to the SNFE described earlier. One of the chief design aims of the SUE
was that it should be minimally small and very simple [5]. (The SDC Communications
Kernel [11] is a similar system, though rather more complex.)

Because the SUE is only required to provide a fixed (and small) number of regimes, each
of which executes a fixed (and small) program, there is no need for it to support paging or
virtual memory management as found in the kernels of general-purpose systems such as
KVM/370 [12]. Instead, a much simpler memory-resident system is possible in which each
regime is permanently allocated to a fixed partition of real memory while the SUE itself
occupies another fixed partition. The SUE manipulates the memory management features
of the PDP-11/34 in order to arrange for its own protection and the mutual isolation of its
regimes.

In order to further reduce its size and simplify its design, the SUE performs no schedul-
ing functions. Regimes are given control on a round-robin basis and execute until they
suspend voluntarily (via a SWAP call to the SUE). Because the whole system is dedicated
to a single function, ‘denial of service’ is not a security problem (although it is clearly a
reliability issue).

Input/output via Direct Memory Access (DMA) poses a security threat on most ma-
chines (including PDP-11s) since it uses absolute addresses and thereby evades the pro-
tection of the memory management hardware. For this reason, conventional kernels must
handle or mediate all I/O operations and this is a source of significant complexity in their
design. The SUE adopts a far more ruthless approach: DMA is permanently excluded
from the system. (The efficiency problems this might seem to cause are overcome by the
use of special-purpose hardware [18].) With DMA excluded from the system, almost all
responsibility for I/O can be removed from the SUE since the memory management of a
PDP-11 allows device registers to be protected just like ordinary memory locations. Each
device supported by the system is permanently and exclusively allocated to a fixed regime
and its device registers are located in the address space of that regime. Responsibility for
each device then rests with the regime which controls its device registers. The only re-
sponsibility of the SUE with respect to I/O activity is to field interrupts (since the hardware
vectors these through kernel address space) and pass them on to the appropriate regime for
handling. Return from interrupts similarly requires minor assistance from the SUE.

Apart from the provision of the communications channels that are required between
certain regimes, this description has summaried just about the whole of the SUE. Readers
will appreciate that, in comparison with a conventional security kernel, the SUE is indeed
small and simple. (It occupies about 5K words, including all stack and data space.) What
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we seek now is a verification technique that exploits this simplicity in order to provide
perspicuous and compelling evidence of the SUE’s security.

4 Verification

The task of a separation kernel is to create an environment which is indistinguishable from
that provided by a physically distributed system: it must appear as if each regime is a
separate, isolated machine and that information can only flow from one machine to another
along known external communications lines. One of the properties we must prove of a
separation kernel, therefore, is that there are no channels for information flow between
regimes other than those explicitly provided. In the case of the SNFE described earlier, for
example, there must be no direct channels between the red and black regimes—although the
channels via the crypto and the censor are quite legitimate. By allowing certain channels
and demanding the absence of all others, we create a rather difficult verification problem.
It would be much easier to demand the absence ofall channels—that would correspond
to a policy of isolation and seems a more reasonable candidate for verification. Analogy
with a physically distributed system suggests how the original problem can be simplified in
this way: if we cut the communication channels that are allowed, then, provided there are
no illicit channels present,the components of the system will become completely isolated
from one another. It now remains to discover how to ‘cut’ communication lines that are not
physical wires but properties of the kernel software.

The solution to this problem is easily seen once we consider how communication is
actually accomplished in software—by the use of shared objects. If regimes A and B have a
communication channel between them, then there must, at bottom, be some shared object,
say X, which the sender can write and the receiver can read. If we now replace all of
A’s references to X by references to a new object, X1, and all of B’s references to X by
references to another new object, X2, then this is equivalent to ‘cutting’ the communication
channel represented by X, with X1 and X2 taking the parts of the two ‘ends’ produced by
the cut. If, following this ‘cutting’ of the ‘X channel,’ we are able to demonstrate that the A
and B regimes have become isolated, then it follows that this was theonlychannel between
them.

This is an indirect argument and may appear specious to some: we prove a property
(isolation) of one system (that with its ‘wires cut’) and infer another property (absence of
illicit channels) of a different system. However, if the differences between the two systems
are of the very limited, controlled form that I have described (involving only the ‘aliasing’
of certain names), so that the consequences of the differences between them may be under-
stoodcompletely, then, surely, the technique is sound. (For more extended discussion, and
an example of the application of the technique, see [30].)

We now need a method for proving that a separation kernel (with its ‘wires cut’) en-
forces isolation on its regimes: we must prove the total absence of any information flow
from one regime to another. The technique which has been used to verify secure informa-
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tion flow in kernels constructed by the Mitre Corporation [20] and in KSOS [7, 10], and
which seems to be widely accepted, is known as ‘information flow analysis’ (IFA) [21]—
sometimes also called ‘security flow analysis.’ It might be thought that this will also provide
a satisfactory technique for verifying a separation kernel. But this is not so.

One reason for this is that IFA cannot verify some of the machine-level manipulations
that must be performed by a separation kernel—the SWAP operation provides a simple
example.

Consider a separation kernel supporting just two regimes, identified as RED and
BLACK. When the RED regime is executing, it may relinquish the CPU by performing
a SWAP operation. The effects of this operation must include the saving of the current
contents of the general registers in a RED save area, and their reloading with values from a
BLACK save area. Verification by IFA requires that operations invoked by RED may only
access RED values—but it is evident that the SWAP operationmustaccessbothRED and
BLACK values. It follows that IFA cannot verify the security of a SWAP operation, even
though it is manifestly secure (see [30] for more extended discussion and some worked ex-
amples). The cause of this failure is that IFA is a syntactic technique: it is concerned only
with the security classifications (‘colours’) of variables, not their values. This deficiency
can be overcome by applying IFA to a high-level specification of the kernel (in which, for
example, each regime is provided with its own set of general registers) rather than to the
kernel implementation itself. The security of the implementation can then be established
by showing it to be acorrect implementation of the secure high-level specifications [23]. In
conventional practice, however, this second stage is not performed. For KSOS, for example,
only ‘illustrative’ proofs of the implementation were provided [7].

Because the KSOS kernel contains, among other things, a mechanism to support a mul-
tilevel secure file system, verification of the security of its high-level specifications is a
significant task. It would be vastly more difficult and hugely expensive to verify the cor-
rectness of its implementation as well. Using a separation kernel, however, issues such as
the verification of a multilevel file-server are factored out and handled separately from the
verification of the kernel. Almost the entire activity of a separation kernel is concerned with
the detailed management of features of the base hardware. In order to apply IFA, we must
abstract away from these details and provide a high-level specification—whose verification
would amount to little more than exhibiting a tautology. Almost the whole burden of ver-
ifying the security of the real kernel would then fall to the ‘correctness’ stage. While this
procedure may be sound, it is very indirect and fails to provide one of the principal benefits
we should desire of a kernel verification technique: a sharpened understanding of the issues
that determine a kernel’s ‘security.’

A more conclusive argument against IFA as a verification technique for separation ker-
nels is that it is incomplete: it does not address matters concerning the flow of control—in
particular, the handling of interrupts. Recall that the SUE kernel does very little except field
interrupts and allow one regime to SWAP control to another—and IFA provides no basis
for the verification of these important and tricky matters. Questions relating to control flow
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cannot even be formulated within the mathematical model [9] that justifies IFA as a veri-
fication technique. In fact, it is doubtful whether that model really provides a sound basis
for the verification of any sort of security kernel—but then it was not formulated for that
purpose.

Feiertag’s model was intended to provide a basis for verifying the ‘Secure Object Man-
ager’ (SOM) of PSOS [22]—for which purpose it is eminently suitable. The model for-
mulates a specification of multilevel security for a system which consumes inputs that are
tagged with their security classifications and produces similarly tagged outputs. ‘Ordinary’
programs, such as the SOM or a file-server, are sound interpretations of this model. But a
kernel is different. A kernel is essentially an abstractinterpreter—it behaves like a hard-
ware extension and executes instructions on behalf of its regimes. The identity of the regime
on whose behalf it is operating at any time is not indicated by a tag affixed to the instruction
by some external agent, but is determined by the kernel’s own state.

To provide a sound basis for the verification of a kernel, we really need a model that
captures its essential characteristics more completely and realistically. Robinson, one of
those responsible for the verification of KSOS, has observed:

“Despite current successes in proving that a given piece of kernel software
provides security, it cannot be proven with existing techniques that there is no
way to circumvent that piece of software. The answer may be to add some ex-
plicit notion of interpretation to the state machine model. This extended model
would make it possible to address such concerns as parallelism, language se-
mantics, and interrupt handling.” [29]

A model with some of these characteristics is described in a companion paper to
this [31] and is used to justify a new method for verifying kernels which enforce the policy
of isolation. An informal explanation of this method is given in the next section.

Proof of Separability

The purpose of a separation kernel is to simulate a distributed environment. To the software
in each regime, the environment provided by a separation kernel should be indistinguishable
from that of an isolated machine dedicated to its private use. We can call this imaginary,
private machine the ‘abstract’ machine for that regime, while the single, shared system that
is actually available is called the ‘concrete’ machine. What we desire, for security, is that
each regime’s view of the concrete machine should exactly coincide with its own abstract
machine. A similar requirement expresses the ‘correctness’ criterion for implementations
of abstract data types. This latter criterion may be formulated precisely in terms of an
‘abstraction function’ [14]: that is, a function which maps from concrete to abstract states.
The interesting feature of a separation kernel is that it is required to supportseveraldifferent
abstractions simultaneously (a separate one for each regime) and it seems natural, therefore,
to formulate the properties required of it in terms ofmultipleabstraction functions.
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Take the simple case of a system supporting just two regimes—RED and BLACK. The
abstraction function REDABS will map the states of the concrete machine into those of
RED’s abstract machine, while BLACKABS does likewise for BLACK. Now suppose the
concrete machine performs some operation, COP, on behalf of the RED regime. We must
require that the effects of this operation, as perceived by the RED regime, are just as if some
operation REDOP had been performed by the RED abstract machine. Thus, if execution of
COP takes the concrete machine from an initial state X to a final state Y, we demand that
REDABS(Y ) is exactly the same state of the RED abstract machine as that which results
from applying the abstract operation REDOP to the abstract state REDABS(X). In other
words, we require the following diagram to commute:

6
-

-

6

REDABSREDABS

REDOP

COP

This condition ensures that the regime which is currently ‘active’ on the concrete ma-
chine cannot distinguish its actual environment from that of its abstract machine. But it is
also crucial that the execution of a concrete operation on behalf of the active regime should
not affect the state of the machine perceived by currently ‘inactive’ regimes. For isolation
between RED and BLACK, therefore, we require that the concrete state transition from X to
Y caused by executing COP on behalf of RED should causenocorresponding change in the
states of inactive regimes. That is, we require that BLACKABS(X) = BLACKABS(Y ),
or in diagrammatic form:
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Because I/O devices can directly observe and change aspects of the concrete machine’s
internal state (by reading and writing its device registers, for example), and can also in-
fluence its instruction sequencing mechanism (by raising interrupts), the activity of these
devices is relevant to security. Consequently, we must impose conditions on their behaviour.
Expressed informally (and only from the RED regime’s point of view), these conditions are:

a) If REDABS(X) = REDABS(Y ) and activity by a RED I/O device changes the state
of the concrete machine fromX to X ′, and the same activity will also change it from
Y to Y ′, then REDABS(X ′) = REDABS(Y ′) (i.e., state changes in the RED regime
caused by RED I/O activity must depend only on the activity itself and the previous
state of the RED regime).

b) If activity by a non-RED I/O device changes the state of the concrete machine fromX
to Y , then REDABS(X) = REDABS(Y ) (i.e., non-RED I/O devices cannot change
the state of the RED regime).

c) If REDABS(X) = REDABS(Y ), then any outputs produced by RED I/O devices
must be the same in both cases.

d) If REDABS(X) = REDABS(Y ), then the next operation executed on behalf of the
RED regime must also be the same in both cases.

Conditions a) and b) above are the analogues, for I/O devices, of the conditions imposed
on CPU operations by the commutative diagrams given earlier. All six conditions (the four
above and the two expressed in the commutative diagrams) constitute the basis for a kernel
verification technique which I call ‘Proof of Separability.’ A more precise statement of the
six conditions may be found in the Appendix to this paper. A formal derivation of the six
conditions, which attempts to demonstrate that they are exactly theright conditions, is given
in [31], while the relationship between this method and verification by IFA is examined
in [30], which also contains a small example of the application of the method. Description
of a more realistic series of example applications is currently in preparation.

‘Proof of Separability’ seems to be technically superior to other methods for security
kernel verification since it is based on a more realistic model and can address all the im-
portant issues, including those relating to interrupts, quite naturally. Also, it corresponds to
a straightforward intuition about what security ‘is’ and encourages the kernel designer to
examine his system from the viewpoint of each individual regime in order to ensure that the
results of every action invoked by a regime are capable ofcompletedescription in terms of
the objects known to that regime (and are invisible to all other regimes).

Conclusion

I have proposed an approach to the design and verification of secure systems which I sug-
gest is particularly appropriate to small special-purpose applications. I advocate that secure
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systems should be conceived as distributed systems in which security is achieved partly by
the physical separation of the individual components and partly by the trusted functions per-
formed by some of those components. The task of specifying and verifying the properties
required of the trusted components in order to achieve overall security should be tackled
at this level of abstraction and on the assumption that components are physically isolated
from one another. The purpose of a security kernel is simply to allow such a ‘distributed’
system to actually run within a single processor: its role is to provide each component of
the system with an environment which is indistinguishable from that which would be pro-
vided by a truly and physically distributed system. Policy enforcement is not the concern
of a security kernel. There is some similarity between these proposals and Popek’s notion
of ‘levels of kernels’ [26, 27] while the idea that the management of shared resources can
be handled by separate virtual machines can be traced back to Anderson [3].

This approach achieves a separation of concerns by completely decoupling the verifica-
tion of the components which perform trusted functions from the verification of the security
kernel. This latter task may be accomplished by a new verification technique which I call
‘proof of separability.’

Application of these techniques should assist the development of systems whose se-
curity is based on simpler mechanisms and whose verification is correspondingly simpler,
more complete and more compelling than is the case at present.

A Appendix

This appendix gives a more precise statement of the six conditions for ‘Proof of Separabil-
ity.’ The statement is expressed in terms of a particular formal model for computer systems.
Space permits only a terse description of the model here; a more complete description,
together with arguments for its suitability and justification for the particular choice of con-
ditions defining Proof of Separability may be found in [31].

The model comprises a finite set S ofstatesand a set OPS⊆ S → S of operationson
those states. The system interacts with its environment by consuming elements of a set I of
inputsand producing elements of a set O ofoutputs. At each time step, the system emits
an output and changes state. The output emitted depends upon the system’s state and this
action is modelled by the function OUTPUT: S → O.

State changes occur in two stages: the first is caused by the receipt of an input, and the
second by the selection and execution of an operation. The effect of receiving an input is
modelled by the function INPUT: S × I → S, while the operation selection mechanism
is modelled by the function NEXTOP: S → OPS. Thus, if the current state of the system
is s and the current value of the input available from the environment is i, the system will
emit the output OUTPUT(s) and move to the state NEXTOP(s)̄(s)̄, wheres=̄INPUT(s, i)
is the intermediate state resulting from consumption of the inputi.

A sharedsystem supports a number of ‘users’ who are identified with a set C of
‘colours.’ Exactly one user is ‘active’ at any time: he is the user upon whose behalf in-
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structions are currently being executed. The identity of the active user depends upon the
state of the system at the instant when an operation is selected for execution. It is deter-
mined by the function COLOUR: S → C.

The inputs and outputs of a shared system are composed of individual components
which are ‘private’ to each user. The projection function EXTRACT is used to pick out
components of a particular colour. Thus, whenc ∈ C, i ∈ I, ando ∈ O, EXTRACT(c, i)
and EXTRACT(c, o) denote the c-coloured components of the inputi and the outputo
respectively.

For a shared system to besecure, the input/output behaviour perceived by each user
must be completely consistent with that which could be provided by a non-shared system
dedicated to his exclusive use. This is achieved if each userc ∈ C can produce a setSc of
c-coloured ‘abstract states’ and a set OPSc ⊆ Sc → Sc of c-coloured ‘abstract operations,’
together with ‘abstraction functions’

Φc : S → Sc

and
ABOPc : OPS→ OPSc

which satisfy,∀c ∈ C,∀s, s′ ∈ S,∀op ∈ OPS,∀i, i′ ∈ I:

1) COLOUR(s) = c ⊃ Φc(op(s)) = ABOPc(op)(Φc(s)),

2) COLOUR(s) 6= c ⊃ Φc(op(s)) = Φc(s),

3) Φc(s) = Φc(s′) ⊃ Φc(INPUT(s, i)) = Φc(INPUT(s′, i)),

4) EXTRACT(c, i) = EXTRACT(c, i′) ⊃ Φc(INPUT(s, i)) = Φc(INPUT(s, i′)),

5) Φc(s) = Φc(s′)
⊃ EXTRACT(c, OUTPUT(s)) = EXTRACT(c, OUTPUT(s′)),

6) COLOUR(s) = COLOUR(s′) = c ∧ Φc(s) = Φc(s′)
⊃ NEXTOP(s) = NEXTOP(s′).

These are the formal statements of the six conditions for Proof of Separability. Condi-
tions 1) and 2) correspond to the two commutative diagrams in the text, while conditions 3)
to 6) correspond to those labelled a) to d) in the text.
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