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Abstract
We present a framework for content based retrieval (CBR)
of remotely sensed imagery. The main focus of our
research is the segmentation step in CBR. A bank of gabor
filters is used to extract regions of homogeneous texture.
These filter responses are utilized in a multiscale
clustering technique to yield the final segmentation. Novel
area morphological filters are utilized for the purpose of
scaling. The resultant segmentation yields regions that are
homogeneous in terms of texture and are significant in
terms of scale. These regions are used for the purpose of
extracting shape and textural features (on a global and
local basis) that provide important similarity cues in CBR
of remotely sensed imagery. In comparison to solutions
which use region merging, the segmentation from the
texture / scale space does not require heuristic post-
processing, nor knowledge of the number of significant
regions.

1. INTRODUCTION

To manage and utilize large multimedia databases,
content based retrieval (CBR) tools for diverse
applications like automated inspection, database
management and web based searches [1], [2] have emerged
recently. Due to increases in the number of satellites,
available bandwidth, and in commercial applications of
remote sensing, image databases containing remotely
sensed images have been expanding rapidly. Remote
sensing data are finding applications in many diverse areas
including agriculture, meteorology, geology and urban
planning. Traditionally these databases have been accessed
by means of metadata which contain keyword descriptors
of the database entities. Obvious issues such as access

automation and metadata relevancy limit the effectiveness
of such keyword based search methods.

In this paper we present a CBR method for remotely
sensed imagery based on the efficient extraction of texture
and shape features. Our work hinges on an image
segmentation technique that exploits both texture and
scale. This approach explores the clustering of image
positions in a 4-D texture / scale space. We also study an
important aspect of matching large-scale texturally
homogeneous regions. Finally we present our feature
similarity computation strategies and give experimental
results involving a prototype database consisting of
Landsat TM imagery.

2. TEXTURE ANALYSIS FOR
SEGMENTATION

Our CBR approach models each remotely sensed
image as a union of segments with various texture and
shape properties. A vast literature exists on texture
segmentation and classification including gray level co-
occurrence matrices, Gabor filters, moments, entropy,
Moran autocorrelation functions, fractal methods and
principal component analysis. The Gabor filterbank
approach provides a versatile model for texture description
and optimizes the balance between localization in the
spatial and frequency domains [3]. Moreover, Gabor filters
are known to mimic the biological perception of texture.
The texture analysis presented in this paper utilizes a bank
of Gabor filters to create a texture space. Within the
texture space, we can perform both texture-based feature
extraction and segmentation.

A 2-D Gabor function is a complex sinusoidal grating
modulated by a 2-D Gaussian function:
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are rotated coordinates, and ),( yxg  is a 2-D Gaussian

function with aspect ratio λ , scale parameter σ , and

major axis oriented at an angle φ  from the x-axis. The pair

(U, V) gives the center frequencies of the Gabor filter.
Textures at different orientations and frequencies can be
extracted by means of applying a number of Gabor filters
tuned at different frequencies and orientations. These
frequencies and orientations can be specified in terms of
the Gabor half-peak frequency and orientation bandwidths
[3]. Ideally, several Gabor filters (e.g., 41 filters) would be
used to provide coverage and to discriminate between the
possible textures. In our experiments we have used a
reduced set of g Gabor filters to balance the tradeoffs
between computation time and efficient feature extraction,
where g ranges from 5 to 17. The texture space is realized
by convolving each of the Gabor filters with the input
image.

Recently a fuzzy c-means (FCM) based clustering
technique was introduced to segment images through a
scale-space [4]. (A scale-space contains a set of scaled
images varying from coarse to fine.) A similar vector FCM
based technique could be used here to cluster vectors
within the texture space. However, segmentation results
based solely on the texture space may contain insignificant
or spurious regions in terms of area, which lead to errors
and increased computational burden in CBR. Our emphasis
within the context of CBR has been on matching large
scale regions that are similar in terms of texture. The
solution presented here overcomes the difficulties with
small scale regions by utilizing a combined texture / scale
space. For each texture space layer (each Gabor-convolved
result), a set of scaled representations is created via area
morphological operations.

Specifically, the area open-close operation [6] is used to
remove connected components within the image level sets
(thresholded image representations) that do not meet the
specified minimum area (where the minimum area depends
on the sensor resolution and the particular remote sensing
application). For a level set B, we can define the area open
operation by

(x, y) ∈ 
s
$ (B) if |CB(x, y)| ≥ s,

where |CB(x, y)| is the cardinality (area) of the connected
component at location (x, y), and s is the minimum area.

On the other hand, the area open implies that (x, y) ∉ 
s
$ (B)

if |CB((x, y))| < s. The area close operation is similarly
constructed, using instead the Boolean complement of B.

For grayscale imagery, each level set is area open-
closed independently, and the grayscale result is computed
by a stacking operation. Traditionally these operations
have been cumbersome and time-consuming due to
connected component labeling at each level set. The
drawback of computational cost has been overcome by
means of a fast algorithm for this area morphological
process. Given a fast algorithm for the area open
algorithm, we can produce an area close result by
employing the Boolean complement of the input level sets
used in the area open operation.

In the fast algorithm used here, we have utilized the
standard open filter as the starting point. Any connected
components within the level sets that (partially) survive the
open operation are fully reconstructed. In the morphology
literature, the original image has been termed the mask
image I , the opened image a marker image M , and the final
product the grayscale reconstruction R. Although the fast
algorithm improves vastly upon the computational cost
required, it is not equivalent to the area open operation. It
should be regarded instead as an approximate algorithm.
This is because the opening by reconstruction is not
equivalent to an area opening, since some connected
components that exceed the area criterion may not survive
the opening. We now elaborate on the fast algorithm for
area open-close.

2.1. Marker image creation using the open filter

In order to ensure that connected components of
insufficient area do no survive the filtering process we
apply a square or circular structuring element K  of total
size of a. In this case, a is the minimum area parameter.
This marker image is used as a precursor to the
reconstruction process discussed below.

2.2. Reconstruction by geodesic dilation

The process of reconstruction involves taking a partial
connected component (within any level set, obtained from
marker image M ) and reconstructing the entire connected
component, based on intensities in the input image I . The
reconstruction of the connected components is achieved by
selectively dilating these components (one pixel at a time).
Essentially, if a connected component in the marker image
has a neighboring pixel (in 4-connectivity) of lower
intensity than that of the input image, then that pixel is
increased to the minimum intensity between the dilated
image and the input image:
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where MR =0 , and +K is a 3x3 cross-shaped

structuring element with the origin at the center. Upon
complete reconstruction of each of the marked connected
components the update in the above equation stabilizes.
This requires T total updates. This value T is bound by the
maximum geodesic distance between a boundary pixel of a
connected component in M  and the boundary in the
reconstructed connected component in R. Further details
regarding a formal computational complexity analysis of
such fast algorithms for area morphology can be found in
[6].

For each position (x, y) in the input image, each scale
s and each texture layer t, we have intensities I(x, y, s, t) in
the 4-D texture / scale space. These intensities are used to
cluster vectors for each position (x, y) using the FCM
algorithm. We can consider a vector I (x, y) as the
evolution of the pixel intensity at (x, y) through scale s and
texture t. The fuzzy clustering technique is based on
minimizing an objective functional that quantifies the
distance between cluster centers and the data within the
various clusters. This objective functional is given by
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Here, U is the fuzzy C – class partition of the texture/scale-
space, where C is the number of classes. µ is the set of
cluster centers, and Ω is the domain over which the

clustering is done, i.e. ( ) Ω∈yx, . Given a texture / scale

space vector I (x,y) at location (x, y), the measure
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is the distance between the texture / scale space vector and

the i th cluster center iµ . The distance is weighed by the

fuzzy membership value (of each texture / scale space

vector) ),( yxui  corresponding to i th class. The fuzzy

exponent m has the range [ ]∞∈ ,1m . The objective

functional is iteratively minimized. This iteration is subject
to the conditions
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At each iteration the fuzzy membership value for each
texture / scale-space vector I (x,y) is computed by
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Initially this membership value is computed using a
uniformly-distributed random number generator. At each

iteration, the cluster center iµ  is updated according to
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The clustering proceeds in this iterative fashion until
convergence, where convergence is defined by
insignificant changes in the observed objective functional
between two consecutive iterations.

The resultant segmentation provides region that are
homogeneous in terms of texture and are significant in
terms of minimum scale. In contrast to the solutions which
use heuristic region merging, the segmentation from
texture / scale space does not require post-processing, nor
knowledge of the number of significant regions. The
motivation for multi-scale, multi-texture clustering has
been that it improves classification by clustering members
of similar objects more effectively than a fixed scale
classifier [4]. An example of the superiority of the texture /
scale space approach over the segmentation approach that
only utilizes texture is given in the results.

3. GLOBAL AND LOCAL FEATURE
EXTRACTION

In addition to segmentation, the texture / scale space is
used for texture feature extraction. The types of texture
features extracted are the mean, standard deviation and
entropy of the Gabor-filtered images. Global and local
features are computed. The global features include the
global texture features and the number of segments, while
the local features are the segment specific texture and
shape features. In terms of matching regions of
homogeneous texture, it is not sufficient to simply match
by texture (granularity and directionality). Our CBR
engine also takes segment shape into account. Kauppinen
et al. [5] have described an experimental comparison of
various shape classification techniques and have shown
results that characterize Fourier based shape features as
having a high degree of accuracy. We have used Fourier
based features as well as simple features such as the
compactness parameter (Area/Perimeter2) for matching
segments based on shape.

The Fourier based features are derived from the
segment boundary representations. The boundary
representations used in our experiments include the
curvature, radius, complex coordinate and affine invariant
representations [5]. The actual Fourier based features are
appropriately weighted versions of the Fourier transform



coefficients of the boundary positions [5]. An affine
invariant shape feature has also been incorporated with a
view of matching remote sensing images of overlapping
land areas (w.r.t. a query image) taken at different satellite
positions (inferring a change in viewpoints, viz. affine
transformations). Notice that the circular objects in the
original image I  in Figure 1 are a result of center pivot
irrigation systems (CPIS). For example, these circular
segments can provide strong shape cues in a CBR query
where the user is interested in retrieving images with
similarly irrigated fields. Figures 1 and 2 show the sample
image I  and the corresponding scaled Gabor filter
responses.

Figure 3 provides an example of the importance of the
texture / scale space in segmentation. In Figure 3, a
Landsat TM image (band 3) is shown, along with the
corresponding segmentations achieved by clustering in the
texture space alone and by clustering in the texture / scale
space. The resultant segments from the texture / scale
space can be used for texture and shape based CBR.

4. FEATURE SIMILARITY
COMPUTATION AND QUERY
PROCESSING

An important aspect of our research includes the
actual computation of feature similarity. Simple matching
based on combination of local feature errors can be
undesirable in view of one feature error dwarfing another
feature error and thus skewing the total error magnitude.
Moreover, appropriate weighting of the texture and shape
features involved in CBR is still an evolving area of
research. We have used a novel sieve methodology to
combine different features intelligently. The sieve method
essentially trims the initial search space by using a
combination of the global features and a local feature – the
compactness parameter. A cutoff is imposed on the
matches from the first stage, and then those matches are
provided to the second stage search using local texture and
Fourier based shape features.

The second stage matches are presented as the final
matches. Segmentation and feature extraction are
performed off-line in view of the considerable size of the
database. The actual query processing is executed on-line.
The user specifies a query image while browsing the
database library. The query may be specified in the form of
a specific image or in the form of a specific segment /
region in a specific image. Figures 4 and 5 show some
sample CBR queries and results using the texture / scale
space approach.

5. CONCLUSIONS

A general texture / shape based framework has been
presented for content based retrieval of remotely sensed
imagery. A texture based segmentation scheme has been
utilized effectively to extract and match large texturally
homogeneous regions. Potential applications of the remote
sensing CBR engine include precision agriculture,
hydrology, meteorology and retrieval of cloud-free
imagery for image analysis.
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Figure 1 . (from left to right) Original image I  and its
scaled gabor filter response (area=25)



 
Figure 2 . (from left to right) Scaled gabor filter

responses of image I  from Fig. 1, Areas=100 and
225

 
Figure 3. (from left to right) Texture Space

segmentation, Texture / Scale Space
segmentation of image from Fig. 1

 

 

Figure 4. CPIS Query Image, Best matches – in
decreasing order of similarity (left to right, top to

bottom)

 

 
Figure 5. Riverbank query image, Best matches in

decreasing order of similarity (left to right, top to
bottom)


