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Abstract
An Aspect-Oriented, declarative, security policy specification lan-
guage is presented, for enforcement by In-lined Reference Mon-
itors. The semantics of the language establishes a formal con-
nection between Aspect-Oriented Programming and In-lined Ref-
erence Monitoring wherein policy specifications denote Aspect-
Oriented security automata—security automata whose edge la-
bels are encoded as pointcut expressions. The prototype language
implementation enforces these security policies by automatically
rewriting Java bytecode programs so as to detect and prevent pol-
icy violations at runtime.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.4.6 [Operating Sys-
tems]: Security and Protection—access controls; F.3.2 [Logics
and Meanings of Programs]: Semantics of Programming Lan-
guages—denotational semantics

General Terms Languages, Security

Keywords Aspect-Oriented Programming, In-lined Reference
Monitors, Object-Oriented Programming, Runtime Verification,
security automata

1. Introduction
Over the past 15 years, In-lined Reference Monitors (IRM’s) [26]
have emerged as a powerful, flexible method of enforcing secu-
rity policies over untrusted, mobile code. In an IRM framework,
untrusted codes (e.g., binary executables) are automatically rewrit-
ten according to a security policy specification before they are ex-
ecuted. The rewriting process inserts dynamic security checks into
the untrusted code to detect and prevent impending policy vio-
lations at runtime. The resulting self-monitoring program can be
safely executed without additional security checks imposed by the
operating system or hardware.

Independently of this research, Aspect-Oriented Programming
(AOP) [18] has emerged as an elegant paradigm for expressing
cross-cutting code transformations at the source level. An aspect
consists of source code fragments (advice), and pointcut specifica-
tions that dictate where these fragments should be injected through-
out the code. At compile-time an aspect weaver merges the aspects
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with the rest of the code to create a single executable. Aspects are
useful because they allow programmers to consolidate code associ-
ated with a given cross-cutting concern. For example, the require-
ment that all file operations must be logged could be implemented
by an aspect that injects the appropriate logging operation just be-
fore every file operation.

Numerous authors (cf., [27, 28, 6, 7]) have observed that AOP
lends itself to the implementation of security enforcement mecha-
nisms like IRM’s. For example, the Java-MOP [5] runtime verifi-
cation system is implemented atop AspectJ [19], an AOP extension
for Java. Similarly, the Polymer system [4] implements IRM’s for
Java through what is essentially an aspect-weaving process. The
approach is quite powerful, having been shown to enforce a large
class of important security properties that includes both safety and
some liveness properties [23]. However, one disadvantage of rep-
resenting security policies as aspects is that full aspects contain
non-declarative code fragments (the advice) that can be difficult for
policy-writers to write and reason about correctly. Aspect-weaving
is a complex process that can result in surprising and unforeseen
runtime behavior once the aspects are merged into the rest of the
code; so it can be unclear whether a given aspect actually enforces
the higher-level security concern it was intended to implement.

We present the design and implementation of a purely declara-
tive, Aspect-Oriented security policy specification language for In-
lined Reference Monitoring. In our analysis we define a formal de-
notational semantics for our language that merges the semantics of
AOP languages and that of IRM’s. The result is a language in which
policies denote Aspect-Oriented security automata—security au-
tomata whose edge labels are encoded as pointcut expressions.
Each policy in our language therefore encodes a property that can
be said to be true or false of rewritten code apart from any orig-
inal, unmodified code from which it may have been derived. The
property modeled by a policy is the acceptance condition of the
automaton it denotes.

The existence of a formal denotational semantics for the lan-
guage is useful because it provides a means of formally proving that
untrusted code satisfies a specified security policy. This provides
the necessary theoretical foundation whereby a certifying compiler
(cf., [24]) or certifying In-lined Reference Monitoring system (cf.,
[17, 2]) can generate a proof of policy-adherence for the code it pro-
duces. Code-recipients can use such proofs to independently verify
that the code is safe to execute even when the code-producer is not
trusted. A denotational semantics also facilitates the stronger objec-
tive of formally verifying that a program-rewriting system always
produces policy-adherent code.

The purely declarative nature of our language means that poli-
cies define what security property to enforce without overspecify-
ing how it is to be enforced. For any given policy there will typically
be many possible rewriting strategies that enforce it. This flexibil-
ity affords IRM implementations the freedom to choose an opti-
mal rewriting algorithm based on architectural details, the results of
program analyses, and other information that becomes available at



read

¬read ¬send

Figure 1. A security automaton prohibiting send after read

rewriting time. This also makes our language suitable for separate
certification as discussed above. That is, a separate verifier could
in principle examine rewritten code to determine whether it actu-
ally satisfies the security policy. We consider this to be important
for building trustworthy IRM systems since it constitutes an extra
level of redundancy for detecting and debugging incorrect policy
specifications.

In making policies purely declarative we do not exclude the
possibility that some rewriter implementations might also accept
additional input from the policy-writer suggesting how the pol-
icy should be enforced. For example, policy-writers might suggest
remedial actions (e.g., premature termination, roll-back, etc.) ex-
pressed as imperative code fragments to be executed in the event
that a policy violation would have otherwise occurred. However,
this information is not trusted and therefore remains separate from
the policy. Hence, if the implementation of roll-back includes an
operation that constitutes a violation of the security policy, this flaw
in the rewriting algorithm can be detected and rejected by a verifier.

The remainder of the paper is structured as follows. Section 2
describes the syntax of our policy specification language, called
SPoX, and informally describes its semantics. A formal denota-
tional semantics for SPoX is provided in Section 3 along with dis-
cussion of various rewriting strategies that can be employed to en-
force SPoX policies. Section 4 discusses our prototype implemen-
tation of a Java IRM framework for SPoX. Section 5 discusses re-
lated work and Section 6 concludes.

2. Language Syntax
SPoX (Security Policy XML) is an XML-based security pol-
icy specification language suitable for enforcement by IRM’s. A
SPoX specification defines a security automaton [26]—a finite-
or infinite-state machine that accepts all and only those event se-
quences that satisfy a security policy. For example, the security au-
tomaton in Figure 1 encodes the policy that prohibits any network
send operation after a file read operation. Such a policy might be
used to prevent untrusted code from leaking files over the network.
Observe that the transitions of the automaton are labeled with pred-
icates that denote sets of security-relevant events—program oper-
ations that change the security state of the program. Any program
operation satisfying the label of an outgoing edge from the current
state causes the automaton to transition to the destination state. If
no outgoing edge label satisfies the next operation to be executed,
the operation is a policy violation and the automaton rejects.

A grammar for the core language of SPoX is given in Figure 2.
SPoX specifications are lists of edge declarations, each consisting
of three parts:

• Pointcut expressions identify sets of related security-relevant
events that programs might exhibit at runtime. These serve as
edge labels for the automaton.

n ∈N natural numbers c ∈C class names

sv ∈SV state variables md ∈MD method names

iv ∈ IV iteration variables fd ∈FD field names

id ∈ ID object identifiers

pol ::= edg∗ policies
edg ::= edges

<edge>pcd ep∗</edge> edgesets

| <forall var="iv" from="a1" iteration
to="a2">edg</forall>

pcd ::= pointcuts
<call>c.md</call> method calls

| <get>c.fd</get> | <set>c.fd</set> field accesses

| <arg num="n" obj="id">vp</arg> stack args

| <and>pcd1pcd2</and> conjunction

| <or>pcd1pcd2</or> disjunction

| <not>pcd</not> negation

| <cflow>pcd</cflow> temporal ops

ep ::= <nodes [obj="id"] var="sv"> edge endpoints
a1,a2

</nodes>

vp ::= <true /> | <isnull /> value predicates
a ::=n | iv | a1+a2 | a1-a2 arithmetic
| a1*a2 | a1/a2 | (a)

Figure 2. SPoX core language syntax

• Security-state variable declarations abstract the security state
of an arbitrary program. These serve as node labels for the
automaton.
• Security-state transitions describe how events cause the secu-

rity automaton’s state to change at runtime. These define the
transition relation for the automaton.

In the following paragraphs we define the language of edge labels
(pointcuts), state labels (security-state variables), and transition re-
lations supported by SPoX, along with an informal description of
their semantics. A more formal treatment of the denotational se-
mantics of SPoX along with strategies for enforcing SPoX policies
are given in Section 3.

Pointcuts. SPoX expresses security automaton edge labels as
pointcut designator expressions in the style of Aspect Oriented
Programming (AOP) [18]. A pointcut designator defines a set of
program-states that constitute security-relevant events, where a
program-state consists of the complete runtime memory image
of the program including the stack, code, and program-counter
(i.e., the next instruction to be executed). For easy machine pars-
ing, SPoX expresses pointcut expressions in an XML syntax. For
example, the pointcut expression

<and>

<call>File.renameTo</call>
<not><arg num="1" obj="x"><isnull /></arg></not>

</and>

denotes the set of all program-states in which the next instruction to
be executed is a call to the renameTo method of a Java File object,
and the first argument being passed to the method is non-null.

The core language of pointcut expressions in Figure 2 in-
cludes support for method calls, field accesses, inspection of
stack arguments, boolean operators, and the cflow temporal op-
erator from AspectJ [19]. (Informally, a program state satisfies



<cflow>p</cflow> if its call stack contains a frame satisfying
p.) The full SPoX pointcut language includes all relevant1 pointcut
operators from AspectJ including support for constructors, static
initializers, exceptions, lexical scoping (e.g., “within”), and other
temporal operators (e.g., “cflowbelow”). In addition to AspectJ
pointcuts, the full language has an <instr> tag that can be used
to identify any individual Java bytecode instruction as a security-
relevant operation. The core language supports predicates that test
the nullity of stack arguments; the full language additionally sup-
ports integer comparisons and string regular-expression matching.

Security states. A security state in a SPoX policy is a set of
security-state variables and their integer values. These sets are
dynamic in size; state transitions can add or remove state variables
as well as change the value of existing state variables. Security-state
variables come in two varieties:

• Global security-state variables are members of every security
state; they cannot be added or removed by state transitions.
• Instance security-state variables describe the security state of

an individual runtime object. Such variables are added to the
security state by program operations that create a new instance
of a security-relevant object, and they are removed from the
security state by program operations that destroy a security-
relevant object.

Instance security-state variables allow SPoX specifications to
express policies that include per-object security properties. For
example, a policy could require that each File object can be read
at most ten times by defining an instance security-state variable
associated with each File object and defining state transitions
that increment the object’s security-state variable each time that
individual File object is read (up to ten times). Global security-
state variables allow SPoX specifications to express policies that
include instance-independent security properties. For example, a
policy could require that at most ten File objects may be created
during the lifetime of the program by defining a global security-
state variable that gets incremented each time any File object is
created (up to ten times).

Security-state variables are not program variables; they are
meta-variables declared by the SPoX specification purely for the
purpose of defining the structure of a security automaton that en-
codes the policy to be enforced. However, rewriters might imple-
ment the security policy by reifying these meta-variables into the
untrusted code and tracking their values at runtime. For example,
a rewriter might add a new global runtime variable for each global
security-state variable, and might add a new object field for each
instance security-state variable. The rewriter could then add new
runtime operations that update these new program variables when-
ever security-relevant operations occur, and might consult their
values to decide whether an impending operation is a policy viola-
tion.

To simplify the core language syntax in Figure 2 we leave
security-state variable declarations implicit. That is, for all variable
names sv ∈ SV the policy implicitly declares a global security-
state variable with name sv and an instance security-state variable
with name sv associated with every class in C. Only a few of
these meta-variables actually appear in any given SPoX policy,
so the rewriter described above need only reify a small subset of
these into rewritten programs. Our full-scale SPoX policy language
makes security-state variable declarations explicit to help policy-
writers detect mistyped variable names, typing errors, and other
inconsistencies in the policy specification.

1 The relevant AspectJ pointcut operators are those that do not concern
advice.

The start state of a SPoX security automaton is the state that
assigns 0 to all global security-state variables and that has no in-
stance security-state variables (since no objects yet exist at pro-
gram start). Each security-relevant program operation changes the
current security state by adding or removing a finite set of zero or
more instance security-state variables (corresponding to the finite
set of security-relevant objects the operation creates or destroys at
runtime). Security-relevant operations change the values of exist-
ing security-state variables (described in more detail below). Thus,
each security state consists of a countably infinite set of security-
state variables and their values, and the total number of security
states in the automaton is at most countably infinite.

Security-state Transitions. Each edge in a security automaton is
modeled as a triple (q0, p, q1), where q0 is a source state, q1 is a
destination state, and p is an edge label. In SPoX, edge labels are
pointcut expressions and states are sets of security-state variables
and their values. Since SPoX security automata have a potentially
infinite number of states, we allow a single <edge> element to in-
troduce a possibly infinite set of edges to the automaton. For ex-
ample, the following SPoX fragment introduces an edge from ev-
ery state in which global variable g has value 3 to a corresponding
state in which g has value 4 (and all other security-state variables
are unchanged):

<edge>p<nodes var="g">3,4</nodes></edge>

The effect is that program operations matching pointcut expression
p will change the security state of variable g from 3 to 4.

To refer to instance security-state variables, pointcut expres-
sions declare object identifiers associated with the security-relevant
arguments of operations that match the expression. For example,
the pointcut expression given by

<and>

<call>File.renameTo</call>
<and><arg num="0" obj="x"><true /></arg>

<arg num="1" obj="y"><true /></arg></and>

</and>

declares two identifiers x and y that refer (respectively) to the File
object whose renameTo method is about to be invoked and the
object that is being passed as its first argument. One could then
write

<nodes obj="x" var="v">0,1</nodes>

<nodes obj="y" var="v">0,0</nodes>

to specify that when the v security-state variable of both objects
is 0, then the v security-state variable of the object whose method
was invoked should change to 1, but that of the other object should
remain unchanged. Note that <nodes> elements in an <edge>
element are conjunctive. That is, a transition is introduced for each
pair of states that satisfy all <nodes> elements given.

The security automata corresponding to many realistic security
policies have repetitive, redundant structure. For example, the secu-
rity automaton that permits at most 1000 read operations consists
of 1001 states with edges from one to the next, each labeled read .
To allow policy-writers to elegantly specify such structure, SPoX
introduces a third kind of variable for iteration. As an example,
the following fragment introduces the 1000 transitions described
above:

<forall var="i" from="0" to="999">

<edge>read
<nodes var="g">i,i+1</nodes></edge>

</forall>

Here, i is an iteration variable that ranges from 0 to 999. Security-
state variables and iteration variables can appear in simple arith-
metic expressions (constants, addition, subtraction, multiplication,
and division) to define the source and destination states of the tran-
sitions.



o ∈ Obj objects

v ::= o | null values

jp ::= 〈〉 | 〈k, v∗, jp〉 join points

k ::= call c.md | get c.fd | set c.fd join kinds

Figure 3. Join points

q ∈ Q = (SV ] (Obj × SV ))→ N security states
S ∈ SM = (SV ] (ID × SV )) ⇀ N state-variable maps
I ∈ IM = IV ⇀ N iteration var maps
b ∈ Bnd = ID ⇀ Obj bindings
r ∈ OBnd = Bnd ] {Fail} optional bindings

P : pol →
(
Υ× 2Q ×Υ× policy denotations
((Q× JP)→ 2Q)

)
ES : edg → IM → 2(JP→OBnd)×SM×SM edgeset denotations
PC : pcd → JP → OBnd pointcut denotations
EP : s→ IM → (SM × SM ) endpoint constraints
A : a→ IM → N arithmetic

P[[edg1 . . . edgn]] = (Q, {q0}, JP , δ)
where q0 = (SV ] (Obj × SV ))× {0}
and δ(q, jp) = {q[S′[b]] | (f, S, S′) ∈ ∪1≤i≤nES[[edgi]]⊥,

f(jp) = b, S[b] v q}
ES[[<forall var="iv" from="a1" to="a2">edg</forall>]]I =

∪A[[a1]]I≤j≤A[[a2]]I ES[[edg]](I[j/iv ])

ES[[<edge>pcd ep1 . . . epn</edge>]]I ={
(PC[[pcd ]], t1≤j≤nSj , t1≤j≤nS′j)

}
where ∀j ∈ N . (1 ≤ j ≤ n)⇒ ((Sj , S

′
j) = EP[[epj ]]I)

PC[[pcd ]]jp = match-pcd(pcd)jp

EP[[<nodes var="sv">a1,a2</nodes>]]I =(
{(sv ,A[[a1]]I)}, {(sv ,A[[a2]]I)}

)
EP[[<nodes obj="id" var="sv">a1,a2</nodes>]]I =(

{((id , sv),A[[a1]]I)}, {((id , sv),A[[a2]]I)}
)

A[[n]]I = n A[[a1+a2]]I = A[[a1]]I +A[[a2]]I

A[[iv ]]I = I(iv) A[[a1-a2]]I = A[[a1]]I −A[[a2]]I

A[[a1*a2]]I = A[[a1]]I · A[[a2]]I
A[[a1/a2]]I = A[[a1]]I/A[[a2]]I

Figure 4. Denotational semantics for SPoX

3. Analysis
3.1 Denotational Semantics
In this section we define a formal semantics for SPoX that unam-
biguously identifies what a policy specification means, and what it
means for a program to satisfy a SPoX policy. We begin by defin-
ing join points in Figure 3. Following the operational semantics of
AOP [30], a join point is a recursive structure that abstracts the
control stack. Join point 〈k, v∗, jp〉 consists of static information
k found at the site of the current program instruction, dynamic in-
formation v∗ consisting of the arguments about to be consumed by
the instruction, and recursive join point jp modeling the rest of the
control stack. The empty control stack is modeled by the empty join
point 〈〉.

A SPoX security policy denotes a security automaton whose
alphabet is the universe JP of all join points. We refer to such
an automaton as an Aspect-Oriented security automaton. Such an
automaton accepts or rejects (possibly infinite) sequences of join

match-pcd(<call>c.md</call>)〈call c.md , v∗, jp〉 = ⊥
match-pcd(<get>c.fd</get>)〈get c.fd , v∗, jp〉 = ⊥
match-pcd(<set>c.fd</set>)〈set c.fd , v∗, jp〉 = ⊥
match-pcd(<arg num="n" obj="id">vp</arg>)〈k,v0 ···vn ···, jp〉
= {(id , vn)} if vp=<true /> or (vp=<isnull /> and vn=null)

match-pcd(<and>pcd1pcd2</and>)jp =
match-pcd(pcd1)jp ∧ match-pcd(pcd2)jp

match-pcd(<or>pcd1pcd2</or>)jp =
match-pcd(pcd1)jp ∨ match-pcd(pcd2)jp

match-pcd(<not>pcd</not>)jp = ¬match-pcd(pcd)

match-pcd(<cflow>pcd</cflow>)〈k, v∗, jp〉 =

match-pcd(pcd)〈k,v∗, jp〉∨ match-pcd(<cflow>pcd</cflow>)jp

match-pcd(pcd)jp = Fail otherwise

b ∨ r = b Fail ∧ r = Fail ¬Fail = ⊥
Fail ∨ r = r b ∧ Fail = Fail ¬b = Fail

b ∧ b′ = b t b′

Figure 5. Matching pointcuts to join points

points. A formal denotational semantics is provided in Figure 4.
We use ] for disjoint union, Υ for the class of all countable
sets, 2A for the power set of A, v and t for the partial order
relation and join operation (respectively) over the lattice of partial
functions, and ⊥ for the partial function whose domain is empty.
For partial functions f and g we write f [g] = {(x, f(x)) | x ∈
Dom(f)\Dom(g)} t g to denote the replacement of assignments
in f with those in g. When S ∈ SM is a state-variable map and
b ∈ Bnd is a binding of object identifiers to objects, we let S[b]
denote the partial function that results from substituting b into the
domain of S:

S[b] ={((b(id), sv), n) | ((id , sv), n) ∈ S}t
{(sv , n) | (sv , n) ∈ S}

Security automata [26] are modeled in the literature as tuples
(Q,Q0, E, δ) consisting of a set Q of states, a set Q0 ⊆ Q
of start states, an alphabet E of events, and a transition function
δ : (Q × E) → 2Q. Security automata are non-deterministic; the
automaton accepts an event sequence if and only if there exists an
accepting path for the sequence. In the case of Aspect-Oriented
security automata, Q is the set of partial functions from security-
state variables to values, Q0 = {q0} is the initial state that assigns
0 to all security-state variables, E = JP is the universe of join
points, and δ is defined by the set of edge declarations in the policy
(discussed below).

Each edge declaration in a SPoX policy defines a set of source
states and the destination state to which each of these source states
is mapped when a join point occurs that matches the edge’s pointcut
designator. The process of matching a pointcut designator to a join
point binds identifiers in the pointcut to runtime objects in the pro-
gram state abstracted by the join point. Thus, pointcut designators
denote mappings from join points to bindings. The denotational
semantics in Figure 4 defines this matching process in terms of the
match-pcd function from the operational semantics of AspectJ [30].
We adapt this definition to SPoX syntax in Figure 5.

Defining what it means for a program to satisfy a policy re-
quires an operational semantics that defines what it means to exe-
cute a program. For this purpose we adopt Flatt, Krishnamurthi and
Felleisen’s small-step operational semantics of CLASSICJAVA, as
defined in [13] (with two minor changes introduced below). CLAS-
SICJAVA programs consist of a sequence of class and interface
declarations followed by an entrypoint expression that models the



P ::= def ∗(let input = v in e) programs

def ::= class c { . . . } | . . . class defs

e ::= v | se | mc | retc.md(v∗)e expressions

se ::= new c | var simple expr
| (e :c).fd | (e :c).fd = e
| view c e | let var = e in e

mc ::= e.md(e∗) | (super ≡ this :c).md(e∗) method calls

E ::= [ ] | (E :c).fd eval contexts
| (E :c).fd = e | (v :c).fd = E
|E.md(e∗) | v.md(v∗Ee∗)
| (super ≡ v :c).md(v∗Ee∗)
| view c E | let var = E in e

Figure 6. Syntax of CLASSICJAVA with ret (CJR)

P `CJ 〈E[se], S〉 ↪→ 〈E[e′], S′〉
P `CJR 〈E[se], S〉 ↪→ 〈E[e′], S′〉

P `CJ 〈E[o.md(v∗)], S〉 ↪→ 〈E[e′], S′〉 S(o) = 〈c, F 〉
P `CJR 〈E[o.md(v∗)], S〉 ↪→ 〈E[retc.md(v∗)e

′], S′〉
P `CJ 〈E[(super ≡ this :c).md(v∗)], S〉 ↪→ 〈E[e′], S′〉
P `CJR 〈E[(super ≡ this :c).md(v∗)], S〉

↪→ 〈E[retc.md(v∗)e
′], S′〉

P `CJR 〈E[retc.md(v∗)v], S〉 ↪→ 〈E[v], S〉
P `CJR 〈E[e], S〉 ↪→ 〈E[e′], S′〉

P `CJR 〈E[retc.md(v∗)e], S〉 ↪→ 〈E[retc.md(v∗)e
′], S′〉

Figure 7. Operational semantics of CJR in terms of those for
CLASSICJAVA

program’s main method. Small-step judgment P `CJ 〈e, S〉 ↪→
〈e′, S′〉 asserts that in program P , expression e in store S evaluates
to new expression e′ and new store S′. Stores S : Obj → (c× F )
map objects to class-tagged field records. A partial syntax is pro-
vided in Figure 6 for the reader’s convenience; for the full syntax
and semantics the reader is invited to consult [13].

The syntax in Figure 6 differs from that in [13] in two important
respects. First, to model program input we adopt the convention
that the entrypoint expression must have the form (let input =
v in e), where input is a reserved variable name and value v is
the input supplied to the program. Thus, in our treatment each pro-
gram P actually denotes the equivalence class of CLASSICJAVA
programs obtained by substituting value v with any other value of
equivalent type. Second, we introduce the expression retc.md(v∗) e,
which indicates that subexpression e is the (partially reduced) body
of method md of class c that was called with values v∗ as parame-
ters. These ret expressions make method-returns explicit. They do
not affect expression evaluation but they make it possible to recover
the runtime call-stack from a partially reduced expression, which is
necessary for matching expressions to pointcut designators in our
analysis.

Hereafter we refer to our modified language as CJR (CLASSIC-
JAVA with ret). Figure 7 defines the small-step operational seman-
tics of CJR in terms of those for CLASSICJAVA.

Some (but not all) CJR configurations c = 〈e, S〉 are join
points. In the context of SPoX policies, we consider join points
to be abstractions of security-relevant program states. Function
J(c, 〈〉) yields the join point that abstracts configuration c (or the
empty join point 〈〉 if c is not security-relevant). We lift J to
configuration sequences χ and to setsX of configuration sequences

J : (e× jp)→ jp

J(〈E[(o :c).fd ], S〉, jp) = 〈get c.fd , S(o), jp〉
J(〈E[(o :c).fd = v], S〉, jp) = 〈set c.fd , S(o), jp〉
J(〈E[o.md(v∗)], S〉, jp) = 〈call c.md , o v∗, jp〉

where S(o) = 〈c, F 〉
J(〈E[(super ≡ o :c).md(v∗)], S〉, jp) = 〈call c.md , o v∗, jp〉
J(〈E[retc.md(v∗)e], S〉, jp) = J(〈e, S〉, 〈call c.md , v∗, jp〉)
J(〈e, S〉, jp) = 〈〉 for all other e

Figure 8. Mapping partially reduced CJR expressions to join
points

in the obvious ways: J(c1c2 · · · ) = J(c1, 〈〉)J(c2, 〈〉) · · · and
J(X) = {J(χ) | χ ∈ X}.

Armed with these definitions we are finally able to formally
define what it means for a CJR program to satisfy a SPoX policy:

Definition 1 (Executions). Let P = def ∗ (let input = v in e)
be a well-typed CJR program. An execution χ of P is a finite or
countably infinite sequence of configurations 〈e0, S0〉〈e1, S1〉 · · ·
such that e0 = e, S0 = {(input , v0)} where v0 has the same
type2 as v, and for all i < length(χ)− 1, P ` χi ↪→ χi+1

holds. Furthermore, if χ is finite then there exists no configuration
〈en, Sn〉 satisfying P ` χlength(χ)−1 ↪→ 〈en, Sn〉. We denote the
set of all executions of P by XP .

Definition 2 (Policy-adherence). A CJR program P satisfies SPoX
policy pol if and only if J(XP ) ⊆ L(P[[pol ]]) holds, where L(A)
denotes the language accepted by security automaton A.

The above asserts that program P satisfies policy pol if and only
if every execution of P is accepted by the Aspect-oriented security
automaton that pol denotes. Thus, executing P will never result in
a security violation.

3.2 Policy Enforcement
Most (but not all) SPoX policies can be enforced by an IRM system
through the insertion of dynamic security checks into the untrusted
code. Dynamic checks are required in general because many SPoX
policies are not statically decidable. In particular, SPoX policies
that involve predicates on runtime values (e.g., those with <arg>)
will typically not be statically decidable since the general problem
of deciding whether an arbitrary runtime value will satisfy an ar-
bitrary predicate is equivalent to the halting problem. However, we
argue in this section that SPoX policies are dynamically decidable,
and we sketch a simple algorithm for inserting runtime checks into
untrusted code to detect policy violations before they occur. This
algorithm is the basis for our prototype implementation of SPoX.

A means of detecting impending policy violations before they
occur is not always sufficient for an In-lined Reference Monitor to
enforce the policy, however. The IRM can still fail if the decision
algorithm for detecting policy violations commits a security viola-
tion when executed as part of the untrusted code. For example, the
SPoX policy <and>p<not>p</not></and> (where p is any point-
cut) is unsatisfiable, rejecting all program states. Therefore there is
no code that a rewriter could insert that would not itself violate the
security policy. Unsatisfiable policies are a trivial example of this
problem but there are more realistic policies that present similar

2 Formally, there exists a type τ such that CLASSICJAVA typing judg-
ments [13] P, {} `e v ⇒ v′ : τ and P, {} `e v0 ⇒ v′0 : τ both
hold.



G(edg1 . . . edgn)jp =
guard: do {

ES(edg1)jp . . . ES(edgn)jp
System.exit(1);

} while (false);

ES(<forall var="iv" from="a1" to="a2">edg</forall>)jp =
if (a1<=a2)

for (int iv=a1; iv<=a2; ++iv) { ES(edg)jp }

ES(<edge>pcd ep1 . . . epn</edge>)jp =
b = match-pcd(pcd)jp;
if ((b!=Fail) && EP(ep1) && . . . && EP(epn) ) {

EP ′(ep1) . . . EP ′(epn)
break guard;

}

EP(<nodes var="sv">a1,a2</nodes>) =
(SecurityState.sv == a1)

EP(<nodes obj="id" var="sv">a1,a2</nodes>) =
(b(id).sv == a1)

EP ′(<nodes var="sv">a1,a2</nodes>) =
SecurityState.sv = a2;

EP ′(<nodes obj="id" var="sv">a1,a2</nodes>) =
b(id).sv = a2;

Figure 9. Java pseudo-code for a rewriting algorithm for SPoX

difficulties. For example, the policy
<edge>

<not><arg num="1" obj="x"><true /></arg></not>

<nodes var="g">0, 0</nodes>
</edge>

rejects any program whose evaluation stack grows to more than
one element. This restriction disallows even basic arithmetic oper-
ations, prohibiting effective detection of policy violations through
runtime checks.

In what follows we make the simplifying assumption that code
inserted as part of the detection algorithm is not security-relevant.
In practice, a certifying In-lined Reference Monitoring system can
check this assumption by using the denotational semantics in Sec-
tion 3.1 to verify code produced by the rewriter. Rewritten code that
fails verification is rejected to prevent a security violation. Our pro-
totype implementation discussed in §4 checks this conservatively
by statically verifying that no rewriter-inserted operations satisfy
any pointcut expression in the policy; thus, no inserted operations
are security-relevant. More precise (but still conservative) verifica-
tion algorithms are obviously possible (e.g., see [17, 2]); we leave
the development of such a system to future work. To simplify the
discussion, we also limit our attention in this section to policies
that model deterministic security automata. Non-deterministic au-
tomata could be modeled by tracking sets of states at runtime in-
stead of individual states.

As outlined in Section 2, an IRM can track a program’s secu-
rity state at runtime by reifying security-state variables into the un-
trusted code. In particular, consider the following (non-optimized)
rewriting procedure:

1. Inject a new SecurityState class into the untrusted code
with a static field for each global security-state variable and an
instance field for each instance security-state variable.

2. Rewrite each instruction that manipulates an object of type
c ∈ C to instead manipulate an object pair of type c ×
SecurityState, where the first member of the pair is the orig-
inal object and the second member models the object’s security
state. This expands each original instruction into a chunk of one
or more rewritten instructions.

3. To each chunk, prepend an instruction sequence that first com-
putes jp = J(〈e, S〉, 〈〉), where J is defined in Figure 8 and
〈e, S〉 is the current program state; followed by instruction se-
quence G(pol)jp, where pol is the policy and G is defined in
Figure 9.

4. Finally, rewrite all static jumps in the original program to target
the beginning of whichever chunk contains their destination ad-
dresses. (The only computed jumps in Java are method returns,
which need not be rewritten.)

The rewriting procedure described above enforces a security
policy by inserting a runtime security check before each program
operation. When an impending security violation is detected, the
program is prematurely terminated. This is only one method of
rewriting untrusted code to enforce SPoX policies; clearly many
other approaches also exist. For example, instead of premature ter-
mination, rewriters could implement other remedial actions such as
event suppression, checkpointing with roll-back, or specific correc-
tive operations specified by advice external to the policy.

The simple rewriting algorithm presented here does not produce
particularly efficient code, but the code it produces can be signifi-
cantly optimized through partial evaluation. For example, for many
policies it can be statically determined that most instructions in the
untrusted code are not security-relevant (e.g., they match no point-
cut expression in the policy). For those instructions the code defined
in Figure 9 partially evaluates to an empty instruction sequence.
Thus, in practice a rewriter typically only inserts a few runtime
security checks around the few program operations that might be
security-relevant.

The code in Figure 9 can be optimized further by replacing
the for-loops with a more efficient integer linear programming
algorithm. In particular, each set of n nested <forall> elements
in a SPoX policy that surround m <nodes> elements defines a
rational polytope T ⊆ Qn with 2(n + m) linear constraints.
To decide whether the current runtime security state matches the
source state of any edge defined by this structure it suffices to
decide whether feasible region T contains an integer lattice point.
(See [3] for a summary of efficient algorithms for computing this.)
In the common case where each <forall> and <nodes> element
refers to at most one iteration variable, polytope T is a box, and
therefore the problem can be trivially decided with 2n integer
inequality tests and no loops.

The simple rewriting algorithm outlined in this section might
fail when applied to Java code that is self-modifying or multi-
threaded. Self-modifying code can be supported by adding the
rewriter to the load path of the Java virtual machine, so that it can
transform any modified code at runtime before it is first executed.
Multi-threaded code can be supported by making each chunk pro-
duced by the rewriting algorithm atomic. Each of these solutions
might have an adverse effect on performance so is worthy of further
study. Our prototype implementation described in the next section
leaves these enhancements to future work.

4. Implementation
Our implementation of SPoX is an application that rewrites Java
bytecode programs in accordance with a SPoX policy specification
by in-lining runtime security checks into the untrusted code. We
implemented our rewriter in Java using Apache’s BCEL API [14]
to read and write bytecode binaries. Discounting library code, the
rewriter currently consists of about 4000 lines of Java source code.

The rewriter is still in development and does not yet support
some features of SPoX, but already supports most core features
including method call and field access monitoring, dynamic tests
of argument values (<arg>), boolean operators, and global state-
variables. Simple forall-iteration is supported, but instance state-



variables and temporal operators are part of current development
work.3 The implementation also supports features not covered in
the core fragment of SPoX presented in this paper. This includes
class, method, and field names specified as AspectJ-style regu-
lar expressions, and support for an <instr> element that allows
individual Java bytecode instructions to be identified as security-
relevant operations.

As a preliminary evaluation of our prototype we enforced secu-
rity policies on two applications: RSSOwl and the SciMark bench-
mark suite. RSSOwl is a popular open-source RSS aggregator pro-
gram, and is sufficiently large and complex to be a useful test of
our implementation’s rewriting speed. It also makes extensive use
of socket and file operations, allowing us to enforce some realis-
tic example policies. SciMark is a benchmarking suite that focuses
mainly on numerical computations. We used it to assess the runtime
efficiency of rewritten programs.

For RSSOwl we enforced a policy that prevents new socket out-
put streams from being acquired after any file in the Windows direc-
tory has been opened. A formal statement of the policy is given in
the Appendix. Our rewriter enforced this policy by inserting dy-
namic checks before all constructor calls to classes whose fully
qualified names begin with java.io.File. The dynamic checks
included a regular expression match that tests whether the first ar-
gument passed to the method denotes a filename in the Windows
directory. Guard instructions were also inserted before all calls to
java.net.Socket.getOutputStream, forcing premature termi-
nation if such a call occurs after a restricted file has been accessed.
There are obviously ways for malicious code to circumvent this
simplistic policy (for example, by calling one of the Java runtime
library methods that accepts filenames as a non-constructor argu-
ment), but this policy is short, easy to read, and works well for the
RSSOwl program.

The original RSSOwl (v1.2.4) JAR file was approximately 5MB
in size, and rewriting introduced no measurable increase in size. (In
fact, the size decreased by about 65K, which we speculate is due to
BCEL’s binary-writing algorithm producing a slightly more com-
pact representation of some of the meta-data in the original binary.)
Rewriting the application on an Intel 2.66GHz Core 2 Duo pro-
cessor with 4GB of RAM took approximately 17.6 seconds at a
rate of about 300 K/sec. Of that time, only about 8.9 seconds (51%
of the total time) were spent analyzing and transforming the un-
derlying bytecode. The remaining 8.7 seconds can be attributed to
I/O operations, including unpacking and repacking the JAR’s con-
tents. The runtime performance of the rewritten code could not be
measured formally because RSSOwl requires user interaction when
executed; however we did not observe any noticeable performance
overhead due to the inserted security checks. Likewise, no behav-
ioral change to the application was observed except in the event of
a policy violation—reading a file from the Windows directory and
then attempting to access the network resulted in premature termi-
nation of the application as intended.

To measure the runtime overhead introduced by the rewriter
we applied a security policy to the SciMark benchmark suite and
measured the performance of each benchmark before and after
rewriting. SciMark includes five processor-intensive mathematical
routines: Fast Fourier Transform (FFT), Jacobi Successive Over-
Relaxation (JOR), Monte Carlo integration (MCI), sparse matrix
multiplication (SMM), and dense LU matrix factorization (LU).
The policy we applied prohibits a program from performing more
than n floating point multiplication operations during its lifetime,
where we set n to an unreachably high number to prevent the
application from violating the policy and terminating prematurely.

3 AspectJ [19] implementations exist for both of these features, which we
are porting to SPoX.
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Figure 10. Performance overhead from enforcing worst-case se-
curity policies on SciMark benchmarks

The rewriter enforced this policy by inserting runtime security
checks around every dmul instruction in the untrusted code.

Figure 10 graphs the runtime overhead introduced by our
rewriter by comparing the number of MFlops before and after
rewriting for each benchmark. Overall we observed an average
76% reduction in performance with individual benchmarks ranging
from 50% to 80%. We view these statistics as worst-case scenarios,
since this particular policy was designed to force the rewriter to in-
sert many dynamic checks within the innermost loops of intensive
numerical calculations. For less pathological policies that we tried
(e.g., monitoring method invocations), the runtime overhead intro-
duced was so small as to be unmeasurable. The SciMark JAR file
was 34K in size prior to rewriting and dropped to 31K afterward.
(See the discussion above for a possible explanation for the size
reduction.) Our rewriter loaded and transformed the entire suite in
less than 0.5 seconds.

The preliminary experiments reported above are admittedly ar-
tificial and intended only to demonstrate the feasibility of imple-
menting the core AOP features presented in this paper as part of an
IRM system. Future work will involve more realistic case studies
toward a more practical evaluation of the usefulness of the language
for enforcing real security policies.

5. Related Work
Aspect-Oriented Programming was introduced by Kiczales et. al.
[18] as a way of elegantly representing cross-cutting concerns at
the source language level. A cross-cutting concern is a program
feature whose implementation cuts across many different modules
in a traditional language. A canonical example is that of logging,
which traditionally requires inserting a call to the logging module
from every module that performs a logged operation. In contrast,
an Aspect-Oriented program implements each cross-cutting con-
cern as a single aspect, where an aspect consists of a pointcut spec-
ifying which operations throughout the rest of the code should be
modified by the aspect, and advice that provides code to be inserted
around each such operation. Later work established a formal oper-
ational semantics for AOP in terms of the lambda calculus [29] and
monadic theory [30].

AOP has been implemented as an extension to numerous lan-
guages. Two of the most widely used AOP extensions to Java are
Hyper/J [25] and AspectJ [19]. More recently, aspectual variants
of functional languages, such as AspectML [7], have been pro-
posed and are a subject of current development. Functional AOP
languages are particularly promising in the context of security en-
forcement because they can express provably effect-free advice [6],



which is guaranteed not to contain security-relevant operations for
certain common security policies.

In-lined Reference Monitors have existed in various guises since
the days of the earliest compilers and operating systems; however it
is only in the past decade that a formal theory of In-lined Reference
Monitoring has been established. Schneider’s [26] seminal work on
the subject was the first to propose In-lined Reference Monitors as a
means of implementing safety policies—policies that prevent some
“bad event” from happening. It showed that safety policies could
be modeled as security automata. Later work [16, 22] showed that
the general technique of program-rewriting could also be leveraged
to enforce even broader classes of policies, including important
classes of liveness policies.

The SASI system [11] was one of the earliest systems to im-
plement these ideas. SASI enforces safety policies by rewriting
x86 machine code programs and Java bytecode programs in accor-
dance with a security policy expressed in PSLang. PSLang [10] is
a simple imperative language that allows policy-writers to identify
security-relevant instructions and the code that the rewriter should
inject around each. Code specified in the policy and rewritten code
produced by the rewriter are both trusted.

Several other Java In-lined Reference Monitoring systems fol-
lowed, including Naccio [12], Java-MAC [20], Java-MOP [5],
and Polymer [4]. Naccio is a source-to-source translator that en-
forces resource bound policies over untrusted C programs. Policies
in Naccio are specified as a mixture of declarative and impera-
tive code, with separate files for defining system resources, safety
policies, and security-relevant operations specific to each archi-
tecture. Java-MAC and Java-MOP both enforce safety policies
through Java bytecode rewriting. Java-MAC policies are speci-
fied in MEDL/PEDL—a policy language that defines security-state
variables, security-relevant events (method calls or field accesses),
and state changes effected by events. Java-MOP extends this ap-
proach with multiple specification logic engines (e.g., one for
LTL [9] and another for JML [21]) and an implementation built
atop AspectJ [19]. Its use of formal specification logics made it one
of the first of these systems to have a formally defined denotational
semantics. Polymer focuses on enforcing composable security poli-
cies in Java through an extensible collection of higher-level policy
combinators. Policies in Polymer are specified in an AspectJ-like
imperative language whose semantics are operational rather than
denotational.

Mobile [17, 15] is a certifying In-lined Reference Monitoring
system for the Microsoft .NET framework. It rewrites .NET CLI
binaries according to a declarative security policy specification,
producing a proof of policy-adherence in the form of typing an-
notations in an effect-based type system (cf. [8]). These proofs are
verified by a trusted type-checker to guarantee policy-adherence
of rewritten code. We conjecture that Mobile’s policy specification
language is equivalent in power to SPoX; but unlike SPoX, Mo-
bile policies denote types in Mobile’s type system. Our work im-
proves upon this by formally linking SPoX policies to AOP seman-
tics and security automata, thereby establishing a closer connection
between a policy specification and the underlying security property
it encodes.

ConSpec [1] is a simplification of PSLang that restricts the non-
declarative subset of PSLang to effect-free operations. The result is
a language whose denotational semantics, like our work, is based
on security automata and is suitable for formal certification [2]. We
estimate that ConSpec has essentially the same expressive power as
SPoX except that it lacks a rich language for expressing security-
relevant events; security-relevant events in ConSpec are limited to
method calls and are declared with method prototypes. In contrast,
the central theme of our work is the incorporation of an AOP-style
pointcut language that includes boolean and temporal operators,

field access predicates, value predicates, and predicates that can
identify any instruction as security-relevent. This increases the ex-
pressive power of the language and promotes policy code-reuse, be-
cause individual state-update expressions can match more diverse
collections of events (see §3.1).

6. Conclusion
We presented the design and implementation of SPoX: a purely
declarative, Aspect-Oriented, security policy specification lan-
guage. Our formal denotational semantics for the language un-
ambiguously defined the security policy denoted by a SPoX speci-
fication as an Aspect-Oriented security automaton. The operational
semantics of AspectJ and CLASSICJAVA were then leveraged to
define what it means for a Java program to satisfy such a policy.
Our prototype implementation enforced SPoX policies by automat-
ically rewriting Java bytecode programs according to a SPoX spec-
ification. Preliminary evaluation of the prototype displayed good
performance for many common cases, but high overhead for cer-
tain unusual cases such as policies that place controls on numerical
operations in benchmark programs.

Our current implementation omits several important features
of SPoX, such as complete support for iteration variables and
instance security-state variables. Future work will therefore involve
completing the implementation of these missing features for a more
comprehensive evaluation of the tool. The current implementation
also skips many obvious opportunities for optimizing bytecode
during the rewriting process. Investigating these opportunities is
the subject of current research.

The denotational semantics and definition of policy-adherence
provided in this paper lays the foundation necessary for formally
proving policy-adherence of rewritten programs, or even proving
that a particular rewriting algorithm suffices to enforce a given class
of supported security policies. Future work should therefore carry
out such a proof, either by formally verifying a rewriter implemen-
tation or through the construction of a certifying rewriting system
for SPoX in the style of a certifying compiler.

Although the declarative nature of our language helps policy-
writers avoid many common mistakes that arise when policies are
expressed as code, there is still much room for error when writing
SPoX specifications. Part of our development work involves de-
vising type systems and other analysis tools to help policy-writers
verify that a given specification actually encodes the security pol-
icy they intend. Future work might also consider compiling SPoX
policies from higher-level specifications such as checkboxes or
flowcharts for a more user-friendly policy-development environ-
ment.

Finally, recent work on Aspect-Oriented functional languages
provides a welcome opportunity for researchers to implement
SPoX policies in languages more amenable to formal verifica-
tion than C or Java. Such implementations could allow SPoX to
be safely extended with more powerful runtime checking features
and provide stronger guarantees to users that the instrumentation
process is correct.
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[10] Úlfar Erlingsson. The Inlined Reference Monitor Approach to
Security Policy Enforcement. PhD thesis, Cornell University,
Ithaca, New York, January 2004.
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Appendix
The following is a SPoX specification for the RSSOwl policy de-
scribed in Section 4, which prohibits network sends after accessing
any file in the Windows directory:

<?xml version="1.0"?>
<policy>

<state name="s" />
<edge>

<and>
<call>java.io.File*</call>
<arg num="1">

<streq>[A-Za-z]*:\\WINDOWS\\.*</streq>
</arg>

</and>
<nodes var="s">0,1</nodes>

</edge>
<edge>

<call>java.net.Socket.getOutputStream</call>
<nodes var="s">1,#</nodes>

</edge>
</policy>

Some syntax in this specification extends the SPoX core language
fragment described in this paper. Of particular note is the use
of <state> elements to explicitly declare security-state variable
names, the value predicate <streq> for runtime regular expression
matching on strings, and the reserved security-state label # for
explicit policy violations (i.e., no security automaton edge).
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