
Infinite-State Backward Exploration
of Boolean Broadcast Programs

Peizun Liu and Thomas Wahl
Northeastern University, Boston, USA {lpzun|wahl}@ccs.neu.edu

Abstract—Assertion checking for non-recursive unbounded-
thread Boolean programs can be performed in principle by con-
verting the program into an infinite-state transition system such
as a Petri net and subjecting the system to a coverability check, for
which sound and complete algorithms exist. Said conversion adds,
however, an additional heavy burden to these already expensive
algorithms, as the number of system states is exponential in the
size of the program. Our solution to this problem avoids the
construction of a Petri net and instead applies the coverability
algorithm directly to the Boolean program. A challenge is that,
in the presence of advanced communication primitives such
as broadcasts, the coverability algorithm proceeds backwards,
requiring a backward execution of the program. The benefit
of avoiding the up-front transition system construction is that
“what you see is what you pay”: only system states backward-
reachable from the target state are generated, often resulting in
dramatic savings. We demonstrate this using Boolean programs
constructed by the SATABS predicate abstraction engine.

I. INTRODUCTION

Infinite-state system verification continues to be an active
field of research. A highly sought-after target are algorithms
for the reachability of state sets “upward-closed” with respect
to a given well quasi-order; a problem referred to as cov-
erability. Recent years have seen intense work on designing
practical coverability algorithms that attempt to defy the high
computational lower bounds known for this problem.

The application of these algorithms to programs — with
variable assignments and control flow — rather than state
transition systems, is more involved. The data complexity
of programs is typically addressed via predicate abstraction.
Recent work has pushed the limits of this technique to
encompass multi-threaded software [1]. The abstractions are
finite-state “Boolean” programs executed concurrently by a
possibly unbounded number of threads.

What remains is to close the gap between these programs
and the framework of well quasi-ordered systems (WQOS) [2],
for which coverability problems are decidable. In principle,
this can be achieved by formally translating the (symmetric)
unbounded-thread Boolean programs into transition systems
such as forms of Petri nets: thread-local variable valuations be-
come local states, which in turn are converted into unbounded
counter variables, recording the number of threads occupying
the corresponding local state at a given time.

In practice, however, this naive method only works for
programs with few variables, since the number of states in
the resulting WQOS is of course exponential in the size of

This work is supported by NSF grant no. 1253331.

the program. This explosion — before any kind of system
analysis has been performed — makes subsequent coverability
analysis intractable but for small programs. In finite-state
model checking, the classical method to curb the explosion
incured during the program-to-system translation is to avoid
the translation altogether and instead build the transition
system on the fly: system states are converted to program
states, the program is simulated one step, and the resulting
program state is converted back into a system state.

In this paper, we build on this idea and present a coverability
algorithm — a variant of infinite-state backward search [2] —
that operates directly on the Boolean program. What makes the
classical on-the-fly technique challenging in this context is:

1) the WQOS constructed on the fly does not encode the
simulated multi-threaded program directly, but a counting
abstraction of it: WQOS states store numbers of threads
in certain local states. This additional level of indirection
must be unraveled before the program can be executed
on a system state; and

2) the coverability algorithm [2] proceeds backwards. That
is, after unfolding a system state into a program state,
we have to execute the program backwards in order
to find predecessors. Moreover, the algorithm computes
preimages consisting not only of direct predecessors, but
also of cover predecessors: predecessors of states “larger”
than the current state.

The computation of cover predecessors is a consequence of
the infinite-state operation of the algorithm; how to do this
for Boolean programs is a main technical contribution of this
paper. The backward direction of the algorithm is essential
to be able to handle broadcasts, such as produced by a recent
predicate abstraction method [1]. Alternative, forward-directed
infinite-state algorithms such as the Karp-Miller procedure [3]
are known not to extend naturally to broadcast programs [4].

To summarize, we present in this paper the first, to our
knowledge, coverability algorithm for the broad class of
Boolean broadcast programs that avoids an up-front con-
struction of (broadcast|Petri) nets or other transition systems.
The exploration cost is thus proportional to the backward-
reachable system states, rather than the size of the conceivable
state space. We show experimental results on 30 predicate-
abstracted C programs that convincingly demonstrate how our
method speeds up algorithms otherwise known to be well-
performing coverability checkers.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 155

II. PREPARATIONS

This paper presents an approach to applying Abdulla’s
infinite-state backward search algorithm [2], designed for
well quasi-ordered transition systems (WQOS), to a Boolean
program family. In this section we sketch syntax and semantics
of Boolean programs, the notion of WQOS and their relation
to Boolean program families, and the basics of Abdulla’s
algorithm to decide certain reachability questions over WQOS.

A. Boolean Broadcast Programs

Boolean programs typically arise from predicate abstrac-
tions of C or Java code. All variables are of type bool. Control
flow constructs are optimized for automated analysis, rather
than ease of programming.

An overview of the syntax of Boolean programs is given in
Fig. 1 and mostly compatible with that used in the CPROVER
toolkit1. A program is a top-level declaration of Boolean
variables — called shared — with compile-time computable,
possibly nondeterministic initial values, followed by a list of
function definitions. A function definition is an initializing
declaration of Boolean variables called local, followed by a
list of labeled statements.

prog ::= decl initvarlist; func∗

func ::= name (varlist) { decl initvarlist; [label: stmt;]∗ }
stmt ::= seqstmt

| start thread label
| atomic { [stmt;]∗ }
| wait
| broadcast

seqstmt ::= skip
| goto labellist
| assume (expr)
| varlist := exprlist [constrain expr]
| if (expr) then seqstmt else seqstmt fi
| assert (expr)

Fig. 1: Boolean program syntax (partial; slightly simplified)

A formal description of the semantics of Boolean program
statements is beyond the scope of this paper. We sketch here
the main concepts; for some details see Table I, for more
details see [5]. The skip statement advances the program
counter (pc); goto labellist nondeterministically chooses one
of the given labels as the next pc; assume terminates ex-
ecutions that do not satisfy the given expression. The :=
statement assigns the values of the given expressions to the
respective variables, in parallel, but terminates the execution
if the result does not satisfy the constrain expression, if any.
The semantics of if is standard; assert indicates assertions for
verification and otherwise acts like skip. In all cases, expr is
a Boolean expression over shared and local variables of the
program, the constants 0 and 1, and the choice symbol ? ; the
latter nondeterministically evaluates to 0 or 1. For example,
the statement assume (b ∧ ?) behaves like skip in states

1http://www.cprover.org/boolean-programs/grammar.pdf

where b = 1, and terminates the execution in states where
b = 0. Function calls and return statements are omitted; they
have standard semantics.

The remaining statements in Fig. 1 support threading in
Boolean programs. Their intuitive semantics is as follows:
start thread label (i) advances the pc of the executing thread

to the next statement, and (ii) creates a new thread
whose local variables are copied from those of the
executing thread and whose pc is given by label.

atomic {stmt∗} denotes atomic execution: a thread executing
inside an atomic section cannot be preempted.

wait blocks the execution of a thread (see next).
broadcast advances the pc of the executing thread, and wakes

up all threads currently blocked at a wait statement,
if any, i.e. it advances their pc as well. A broadcast
is thus non-blocking. (More general models may of-
fer distinct pairs of wait/broadcast statements, using
condition variables.)

Thread termination is omitted, as — for the purposes of
reachability analysis — it can be simulated by trapping the
terminating thread in a self loop. Fig. 2 (left) shows a Boolean
program with an assertion. We are interested in this paper in
detecting assertion violations: does there exist a multi-threaded
execution of the program in which some thread reaches a
failing assertion?

B. From Programs to Infinite-State Transition Systems

Let B be a Boolean program defined over sets of shared
and local Boolean variables VS and VL, respectively, and let
{1, . . . , pcmax} be the set of program locations. B gives rise to
an infinite-state transition system M∞ as follows. The states
of M∞ have the form (s, `1, . . . , `n), where s is a valuation
of the shared variables of B and is called the shared state.
Symbol `i is a valuation of the pc and the local variables of
B and is called the local state of thread i. We write s.v (`i.v)
for the value of shared (local) variable v in shared (local) state
s (`i), and `i.pc for thread i’s current pc value. Finally, n is
a positive integer, intuitively the number of threads currently
running. The state space of M∞ is therefore the infinite set

S∞ = {0, 1}|VS | ×
∞⋃
n=1

(
{1, . . . , pcmax} × {0, 1}|VL|

)n
.

A transition of M∞ is of the form

(s, `1, . . . , `n) → (s′, `′1, . . . , `
′
n′)

such that one of the following conditions holds:
1) n′ = n and there exists i ∈ {1, . . . , n} such that (i) the

statement at `i.pc is a seqstmt; executing it atomically
from the variable valuation given by (s, `i) results in
the variable valuation given by (s′, `′i), and (ii) for
j ∈ {1, . . . , n} \ {i}, `′j = `j .

2) n′ = n + 1, s′ = s and there exists i ∈ {1, . . . , n}
such that (i) the statement at `i.pc is of the form
start thread x, (ii) `′i.pc = `i.pc + 1 and `′i.v =

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 156

`i.v for v ∈ VL, (iii) `′n′ .pc = x and `′n′ .v = `i.v for
v ∈ VL, and (iv) for every j ∈ {1, . . . , n} \ {i}, `′j = `j .

3) n′ = n, s′ = s and there exists i ∈ {1, . . . , n} such that
(i) the statement at `i.pc is broadcast, (ii) `′i.pc =
`i.pc + 1 and `′i.v = `i.v for v ∈ VL, (iii) for every
j ∈ {1, . . . , n} \ {i} such that the statement at `j .pc is
wait, `′j .pc = `j .pc+ 1 and `′j .v = `j .v for v ∈ VL, and
(iv) for every j ∈ {1, . . . , n}\{i} such that the statement
at `j .pc is not wait, `′j .pc = `j .pc and `′j .v = `j .v for
v ∈ VL.

In each case, thread i is called active, the others passive. We
omit the precise formalization of atomic blocks, which is,
however, straightforward. The initial states of M∞ are given
by (i) n = 1 and (ii) s and `1 determined by the (nondeter-
ministically) initializing declarations in B and by `1.pc = 1.

Transition system M∞ thusly defined is a well quasi-
ordered transition system (WQOS) [2]. That is, there exists
a well-quasi order � on S∞ that satisfies a monotonicity
property: for states x, y, x′ with x → x′ and y � x, we can
find y′ such that y′ � x′ and y → y′. This order is the covers
relation:

(s̄, ¯̀
1, . . . , ¯̀̄

n) � (s, `1, . . . , `n)

whenever s̄ = s and [¯̀1, . . . , ¯̀̄
n] ⊇ [`1, . . . , `n], where [·]

denotes a multiset. The well-quasi orderedness follows from
properties of ⊇ and Dixon’s lemma; the monotonicity of →
with respect to � follows since actions of a thread in a state
cannot be disabled by adding threads to the state; see semantics
of M∞. These are standard concepts.

The multi-threaded assertion violation question can now be
phrased as a coverability problem for the derived WQOS M∞:
let Q be the set of (shared, local) state pairs (s, `) such that the
statement at `.pc is an assertion that is violated by the variable
valuation given by (s, `). Coverability of the “bad-states set” Q
asks whether a state z is reachable such that, for some q ∈ Q,
z � q. Coverability is decidable but of high complexity, e.g.
Ackermann-complete for Petri nets with broadcasts (a form of
WQOS), which means that the complexity grows as fast as
the Ackermann function [6].

C. Backward Search

A sound and complete algorithm to decide coverability for
WQOS is the backward search algorithm by Abdulla et al.
[2], [7], a high-level version of which is shown in Alg. 1. In
this listing, symbol ↑ U stands for the upward closure of U :
↑ U = {ū : ∃u ∈ U : ū � u}. Input to Alg. 1 is a set of initial
states I ⊆ S∞, and a target set Q ⊆ S∞. The algorithm
maintains a work set W ⊆ S∞ of unprocessed states, and a
set U ⊆ S∞ of minimal encountered states. It successively
computes minimal cover predecessors

CovPre(w) = min{p : ∃w̄ � w : p→ w̄} (1)

starting from elements in Q, and terminates either by
backward-reaching an initial state (thus proving coverability
of some q ∈ Q), or when no unprocessed vertex remains (thus
proving uncoverability).

Algorithm 1 BWS(I,Q)
Input: initial states I , target set Q disjoint from I

1: W := Q ; U := Q
2: while ∃w ∈W
3: W := W \ {w}
4: for p ∈ CovPre(w)\ ↑ U
5: if p ∈ I then
6: “some q ∈ Q coverable”
7: W := min(W ∪ {p})
8: U := min(U ∪ {p})
9: “no q ∈ Q coverable”

III. BOOLEAN PROGRAM BACKWARD SEARCH: OVERVIEW

We illustrate our approach using the Boolean program B
in Fig. 2 (left). The program is started by one thread; the
nondeterministic goto in Line 1 determines whether to launch
an additional thread in Line 2. Suppose not (we proceed in
Line 3). Then the left branch starting at the node corresponding
to Line 4 (Fig. 2, right) is not executable since t = 0 violates
assume(t). Along the right branch, local variable m is not
modified, assume(!t) passes, and so does the assert(!m)
in Line 10.

d e c l t := ?;
main() {

d e c l m := 0;
1: goto 2,3;
2: s t a r t t h r e a d 3;
3: t := 0;
4: goto 5,8;
5: assume(t);
6: m := 1;
7: goto 9;
8: assume(!t);
9: t := !t;

10: a s s e r t(!m);
}

1

2 3

4

5 8

6

7

9

10

goto 2 goto 3

start thread 3

t := 0

goto 5 goto 8

assume(t)

m := 1

goto 9

assume(!t)

t := !t

Fig. 2: A Boolean program with VS = {t}, VL = {m} (left);
its control flow graph (right)

Nonetheless, program B permits an assertion violation, as
the backward trace in Fig. 3 shows. The target set is {(0|10/1),
(1|10/1)}; the trace shown starts from (0|10/1). Our backward
search algorithm proceeds from a given state w in two steps:
(i) we select a thread in w as active and compute all direct
predecessors that B permits; (ii) we try to find expanded
predecessors of w, explained below.

Let us first consider a direct predecessor example, using
state (1|7/1) in the first row. The algorithm first consults
the control flow graph, shown in Fig. 2 (right), for possible
control predecessors of pc′ = 7. There is only one, pc = 6.
The statement along this edge is m := 1. We therefore now
compute the weakest precondition of state t = 1,m = 1 under
this statement, i.e.

WPm := 1(t ∧m) = t ,

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 157

(0|10/1) (1|9/1) (1|7/1) (1|6/0)

(1|5/0)(1|5/0,
10/0)(0|5/0,

9/0)(0|5/0,
8/0)

(0|5/0,
4/0) (0|4/0,

4/0) (0|3/0,
4/0)

(1|3/0,
3/0)(1|2/0)(1|1/0)

t1 t1 t1

t1

�t2t2

t1

t1 t1

t2

t1t1

Fig. 3: Coverability analysis using backward search, applied
to the program in Fig. 2 (left). Targets are the states (s, `)
satisfying `.pc = 10, `.m = 1. Notation (t0|pc1/m1 , . . .)
denotes a global state with shared variable t = t0 and the given
values for the local variables pc and m, for the various threads.
Labels atop transitions indicate the active thread; � indicates
expansion

indicating {(1|6/0), (1|6/1)} as the set of direct predecessors.
Both are recorded in our algorithm; the trace shown in Fig. 3
continues with state (1|6/0).

Direct predecessor computation alone will never increase
the number of involved threads and thus cannot detect multi-
threaded assertion violations. Alg. 1 involves a step we call
expansion of w to a larger state w̄, by adding to w a thread in
a suitable local state not present in w. Expanded predecessors
of w are then the (minimal) direct predecessors of w̄, obtained
by backward-executing the added thread. Sections IV and V
present the details of this step, especially that adding a single
thread to w is sufficient, what a “suitable” local state is, and
that direct and expanded predecessors constitute exactly the
set of all cover predecessors of w (Eq. (1)).

Consider the example of state (1|5/0) in Fig. 3. The only
direct predecessor is (1|4/0), from which there is no further
direct predecessor: the only CFG edge entering Line 4 is
labeled with statement t := 0, which does not permit t = 1
in the current state. We thus try to expand. As we will see,
expansion is only useful if the added thread gives rise to a
predecessor with a modified shared state. Only few statements
in B change t; one is t := !t in Line 9. Expansion therefore
adds a thread with pc = 10, namely in local state 10/0.
The direct global predecessor state (0|5/0,

9/0) has changed t
by backward-executing t := !t. From now on the backward
search proceeds with two threads until we encounter the
start thread command; backward-executing it eliminates
thread 2. At the end, the search reaches the initial state (1|1/0),
proving reachability of the violated assertion.

IV. BOOLEAN PROGRAM BACKWARD SEARCH

This section presents our infinite-state backward search al-
gorithm, applied to an unbounded-thread Boolean program B.

A. Data Structures and Prerequisites

While exploring B, the algorithm builds — on the fly —
the infinite-state structure M∞. States τ = (s,m1, . . . ,mn)

of this structure are stored in the form

τ = 〈s, {(`1, n1), . . . , (`k, nk)}〉 (2)

where `1, . . . , `k are the distinct local states occurring in τ ,
and for i ∈ {1, . . . , k}, ni = |{j : mj = `i}|. That is, instead
of listing the local states of all n threads in τ , (2) collapses
multiple occurrences of local states and lists their count.
Threads in the same local state are equivalent under standard
symmetry equivalence; their order in τ and their identities are
immaterial. By construction, ni > 0 for all i.

The algorithm assumes the control flow graph (CFG) of B
is given as G = ({1, . . . , pcmax}, E). The CFG is a directed
graph over the program locations of B. Each edge e ∈ E, with
source and target source(e) and target(e), resp., is labeled
with the statement e.stmt of B that carries the control from
source(e) to target(e). For example, Line 1 of the program
in Fig. 2 (left) induces two edges in G, as shown on the right.

For a statement stmt and states (s, `) and (s′, `′) of B, let
WPstmt(s, `, s′, `′) be a Boolean formula asserting that state
(s, `) satisfies the weakest precondition for state (s′, `′) under
statement stmt . That is, WPstmt(s, `, s′, `′) holds exactly
if executing stmt from state (s, `) results in state (s′, `′).2

Examples for sequential statements are given in Table I.

Statement stmt WPstmt (s, `, s′, `′)
skip `′.pc = `.pc+ 1 ∧ invar
assume (t = m) s.t = `.m ∧ `′.pc = `.pc+ 1 ∧ invar
t := ? `′.m = `.m ∧ `′.pc = `.pc+ 1

TABLE I: Examples for weakest precondition formulas for a
program B with VS = {t} and VL = {m}. Symbol invar
stands for “data invariance”: s′.t = s.t ∧ `′.m = `.m

B. Cover Predecessor Computation

Our algorithm is an instance of the high-level scheme shown
in Alg. 1. The only (albeit substantial) modification is the
computation of the cover predecessor function in Line 4.
The definition of this function, Eq. (1), poses the following
challenges for an implementation:

1) given w, expanded elements w̄ � w need to be explored;
2) given w̄, a preimage needs to be computed.

Regarding 2), our algorithm will use the CFG of B and
weakest precondition transformers to compute preimages of
states. In order to meet challenge 1), we need an “upper
bound” on the expanded elements w̄. This is accomplished
by the following lemma. We denote by |w| the number of
threads in state w ∈ S∞, e.g. |(s, `1, . . . , `n)| = n.

Lemma 1. For a transition relation → induced by a Boolean
broadcast program, and states p, w, w̄ ∈ S∞,

p ∈ CovPre(w) ∧ w̄ � w ∧ p→ w̄ ⇒ |w̄| ≤ |w|+ 1.

Proof: Since p is a minimal cover predecessor of w, there
are no states o ≺ p and v̄ such that v̄ � w and o → v̄. Note
that o ≺ p abbreviates o � p ∧ ¬(o � p).

2We note that all atomic (non-compound) statements of B are terminating.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 158

We prove |w̄| ≤ |w| + 1 via contraposition: assume |w̄| ≥
|w|+2. From this assumption and w̄ � w, we conclude that w̄
contains, in some permutation, all |w| local states that w also
contains, and at least two more local states, say at positions
j1 and j2 with j1 6= j2. Let i be the index of the thread active
during transition p→ w̄. We observe that, since j1 6= j2, there
exists j ∈ {j1, j2} such that j 6= i. Let now o and v̄ be the
same states as p and w̄, respectively, except that thread j is
dropped. Then: (i) o ≺ p; (ii) o → v̄, because thread j is
not active in p → w̄, and dropping j does not invalidate the
transition; and (iii) v̄ � w, since w̄ � w and |w̄| ≥ |w| + 2,
and we have dropped only one thread from w̄ to obtain v̄.
Properties (i)–(iii) contradict the minimality of p, as stated at
the beginning of the proof.

We now turn to the main result in this paper: the procedure
for cover predecessor computation (Alg. 2). Input is a state
τ ′ in format (2) (we attach a prime ′ to the input symbols
to suggest that we are computing preimages). The results are
collected in a set C.

The computation of cover predecessors according to Eq. (1)
involves finding an element w̄ satisfying w̄ � w, and then de-
termining predecessors of w̄. Condition w̄ � w is tantamount
to w̄ �� w ∨ w̄ � w (where w̄ �� w means equivalence:
w̄ � w ∧ w � w̄). The algorithm deals with the two cases
w̄ �� w and w̄ � w separately, as follows.

1) Direct predecessors: Condition w̄ �� w means that
there exists a thread permutation π such that w = π(w̄) (π
reorders threads in the local state vector representation of w̄).
By thread symmetry, w and w̄ therefore have the same sets
of → predecessors, up to applying local state permutations.
Now observe that states that are identical up to local state
permutations have the same thread counter representation (2).
This means that, in the case w̄ �� w, we can ignore the
“detour” through w̄ and directly compute predecessors of w:
those are the elements of CovPre(w). Naturally, we call such
elements direct predecessors.

To compute direct predecessors, Alg. 2 iterates through all
local states `′i (thus, implicitly, threads) present in τ ′. It then
consults the CFG for edges e leading to the current program
location `′i.pc of any of the threads in `′i (Lines 2 and 3).
Reversing edge e, i.e. executing it backwards on (s′, `′i), gives
us the desired predecessors.

To this end, the algorithm switches over the possible types
of statement e.stmt :
start thread x: this is possible exactly if the current

state τ ′ contains a “started” thread in some local state
`′j with `′j .pc = x and same data as the thread in `′i
(Line 6). If so, in the predecessor state τ , the thread
in `′i is unchanged except that its pc is the previous
program location (Line 7; notation `′i [pc 7→ Y] returns
`′i except pc replaced by Y). To construct τ , we
update the thread counters: those for `′i and `′j are
decremented; that of the predecessor local state `i is
incremented (the thread in `′j has just been created, so
going backwards it “disappears”). These updates are
done in Line 8 via a function UPDATE-COUNTERS

explained below. The updates are performed for all
eligible local states `′j ; the results are added to C.

broadcast: since broadcasts are non-blocking, they are ex-
ecutable from any predecessor state. The broadcasting
thread’s pc is decreased by one; the change is recorded
in a temporary variable Y . Line 13 selects all threads
with program counter pc such that the statement at
pc − 1 is wait: these threads may have just been
released by the broadcast. However they may also
have resided in location pc before the broadcast was
issued — the exact subset J of indices of threads that
are released cannot be determined when exploring B
backwards.
Therefore, the algorithm iterates through all such sets
J ⊆ J and threads j ∈ J (Line 16): these threads
are “unreleased”, i.e. their pc is set back to the wait
location. The updates to Z in Lines 18–19 (see Alg. 4
for the MERGE function) perform counter updates for
the synchronous state change of all unreleased threads.

default: this case takes care of all sequential statements: using
the weakest precondition function WP, we generate
all possible predecessor program states (s, `), update
the counters, and add the results τ to C. Solving
the Boolean formula WPe.stmt(s, `, s′, `′i) for (s, `) is
done with the aid of a SAT solver (see Sect. VI).

Note that the switch in Line 4 does not process wait state-
ments: these cannot backward-execute by themselves, as re-
leasing waiting threads happens in synchrony with broadcasts.

2) Expanded predecessors: We now consider the case
w̄ � w. We have to expand state w by adding threads to it,
followed by the computation of predecessors of the expanded
state w̄. The following observations render this step feasible:
• by Lemma 1, adding a single thread to w is sufficient;
• when computing predecessors p of w̄, those obtained

when the single added thread is active are sufficient:
predecessors triggered by threads already present in w
are handled as direct predecessors of w.

Alg. 2 implements the expanded predecessor computation
along those principles. In Line 25 we determine states (s, `)
of B such that there exists a local state m′ (= that of the added
thread) not present in τ ′ such that the following holds: (i) the
pc values of ` and m′ form an edge e ∈ E, and (ii) executing
e.stmt from (s, `) leads to (s′,m′).

The solutions to the constraint in Line 25 are determined
using a SAT solver, which is passed the constraint as an
existentially quantified Boolean formula. In this formula, all of
s′, `′1, . . . , `

′
k are Boolean constants; the only variables are s, `

(free) and m′ (quantified). The solutions (s, `) we are looking
for are the assignments satisfying this formula, projected to s
and `. To avoid excessive enumeration, we discuss in Sect. V
how the selection of candidate local states m′ for expansion
can be substantially and soundly restricted.

We conclude this algorithm description by explaining func-
tion UPDATE-COUNTERS(T, T ′, Z ′), shown in Alg. 3. It in-
crements/decrements the counters for all local states in T /T ′,
using the MERGE function from Alg. 4.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 159

Algorithm 2 CovPre(τ ′)
Input: τ ′ = 〈s′, Z ′〉, where Z ′ = {(`′1, n′1), . . . , (`′k, n

′
k)}

Output: cover predecessors of τ ′

1: C := ∅
2: for each i ∈ {1, . . . , k} B direct predecessors
3: for each e ∈ E s.t. target(e) = `′i.pc
4: switch e.stmt :
5: case start thread x, for some x:
6: for each j ∈ {1, . . . , k} \ {i} s.t. `′j .pc = x ∧ ∀v ∈ VL : `′j .v = `′i.v
7: `i := `′i [pc 7→ `′i.pc− 1]
8: τ := 〈s′,UPDATE-COUNTERS({`i}, {`′i, `′j}, Z ′)〉
9: C := C ∪ {τ}

10: case broadcast:
11: `i := `′i [pc 7→ `′i.pc− 1]
12: Y := UPDATE-COUNTERS({`i}, {`′i}, Z ′)
13: J := {j ∈ {1, . . . , k} \ {i} s.t. stmt. at `′j .pc − 1 is wait}
14: for each J ⊆ J
15: Z := Y
16: for each j ∈ J
17: `j := `′j [pc 7→ `′j .pc− 1]
18: Z := Z \ {(`′j , n′j)}
19: MERGE(`j , n′j , Z)
20: C := C ∪ {〈s′, Z〉}
21: default:
22: for each (s, `) s.t. WPe.stmt(s, `, s′, `′i)
23: τ := 〈s,UPDATE-COUNTERS({`}, {`′i}, Z ′)〉
24: C := C ∪ {τ}
25: for each (s, `) s.t. ∃m′ 6∈ {`′1, . . . , `′k} : e := (`.pc,m′.pc) ∈ E ∧ WPe.stmt(s, `, s′,m′) B expanded predecessors
26: τ := 〈s,UPDATE-COUNTERS({`}, ∅, Z ′)〉
27: C := C ∪ {τ}
28: return C

Algorithm 3 UPDATE-COUNTERS(T, T ′, Z ′)
Input: T : local states whose counter is to be incremented

T ′: local states whose counter is to be decremented
Z ′: thread counter vector

1: for each ` ∈ T
2: MERGE(`, 1, Z ′)
3: for each `′ ∈ T ′
4: let n′ be such that (`′, n′) ∈ Z ′ B n′ is unique
5: Z := Z ′ \ {(`′, n′)} ∪ (n′ > 1 ? {(`′, n′ − 1)} : ∅)
6: return Z

V. EFFICIENCY

In Sect. IV-B2 we saw two specializations of the generic
backward coverability Alg. 1 that apply to the computation
of expanded cover predecessors for Boolean programs. In
particular, the bound on the size of expanded states w̄ makes
CovPre(w) effectively computable. In this section we describe
two improvements that are essential to, among others, curb the
number of candidate local states m′ in Line 25.

The first improvement is that m′ can be restricted such that
the statement along edge e = (`.pc,m′.pc) changes the shared

Algorithm 4 MERGE(`, n, Z)
Input: `: local state, n: counter, Z: thread counter vector

1: if there exists n′ such that (`, n′) ∈ Z then
2: Z := Z \ {(`, n′)} ∪ {(`, n′ + n)}
3: else
4: Z := Z ∪ {(`, n)}

state. The justification is as follows. Suppose e.stmt does not
change the shared state, i.e. s = s′. The cover predecessor state
τ is thus of the form (s′, . . . , `, . . .). Any cover predecessor of
τ that is obtained by backward executing B from program state
(s′, `) is also a cover predecessor of the original τ ′: we simply
expand τ ′ by local state ` instead of m′.

This improvement is easy to implement: we change Line 25
in Alg. 2 to the following two lines:

for each e ∈ E s.t. e.stmt may modify the shared state
for each (s, `) s.t. s 6= s′ ∧ ∃m′ 6∈ {`′1, . . . , `′k} :
target(e) = m′.pc ∧ WPe.stmt(s, `, s′,m′)
τ := . . . B (continue with Line 26 of Alg. 2)

That is, we first select edges e that have the potential to
change the shared state. Such are edges that assign a variable

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 160

in VS ; they can be identified inexpensively up front, while
building the CFG. We then determine states (s, `) of B such
that (i) shared state s is actually different from s′, and (ii)
there exists a local state m′ not present in τ ′ whose pc is the
target of e and such that WPe.stmt(s, `, s′,m′).

This improvement is also highly effective: only few of
the syntactically possible statements may actually change the
shared state, and their frequency in Boolean programs is
proportionately small, as we demonstrate in Table II (Sect. VI).

The second improvement exploits that local states m′ that
are not forward-reachable from an initial state of M∞ can
be omitted, since they obviously are not part of any legal
execution. While the exact determination of reachability of
a local state is of course a coverability problem in itself, we
can employ very inexpensive overapproximating analyses that
soundly provide unreachability information.

One such analysis, adapted from [8], is to execute B
essentially as a single-threaded program. That is, statements
related to multi-threading are ignored (start thread in
particular). Sequential statements are honored, except that:

1) assignments to shared variables are ignored
2) conditionals that depend on shared variables are replaced

by ?, i.e. in assume, constrain, and if statements.
The set L of local states reachable in this single-threaded
program is cheap to compute and overapproximates the precise
set of local states reachable in the multi-threaded execution
of B. That is, local states not in L are unreachable. We exploit
this information by adding the requirement m′ ∈ L to the
second for each statement in the above modification to Alg. 2.

In fact, this insight not only applies to the selection of states
m′ during expanded predecessor computation: we can simply
ignore local states generated during the backward search
(Lines 7, 11, 17, 22 in Alg. 2) that do not belong to L. This
technique can be seen as an instance of combining forward
and backward analysis for increased efficiency (executing B
is tantamount to forward reachability analysis). This idea was
used in several other works, such as [9], where an incom-
plete forward-searching Karp-Miller procedure assists a slower
but complete backward coverability analysis. Incidentally, the
Karp-Miller implementation used in [9] may not terminate and
may thus underapproximate the set of coverable configurations
when applied to broadcast nets. In contrast, we need an
overapproximation, as our goal is to prune encountered states
that are guaranteed to be unreachable.

VI. EMPIRICAL EVALUATION

In this section, we evaluate our verifier UCOB3 on a set of
30 non-recursive concurrent C programs. Threads synchronize
through diverse communication primitives, such as shared vari-
ables, mutex variables, and broadcasts. All programs contain
procedures executed by an arbitrary number of threads, which
are dynamically spawned by the initial thread.

3 “Unbounded-thread coverability analysis for boolean programs”

For each benchmark, we consider verification of a safety
property, specified via an assertion. In total, the programs
include roughly 2300 lines of code; on average they feature 3
shared and 6 local variables (cf. Table II). The programs are
available from the homepage of the second author.

01–10: thread-safe algorithms: atomic counters (1–2); con-
current pseudo-random number generator (3–4); max-
imum element finding algorithm (5–8); stack data
structure with concurrent operations (9-10).

11–17: OS code: code from the FreeBSD (11–12), NetBSD
(13), Solaris (14) and Linux (15–17) open-source
operating systems.

18–22: pthread programs: several programs that use the C
Posix Threads library.

23–28: mutex algorithms: test-and-set lock (23); multiple
locks control access to a shared resource (24–26); two
ticket algorithms (27–28).

29–30: misc: two simple examples from [1].

Implementation: UCOB uses SATABS [10] to construct
Boolean programs from C. To compare with coverability tools
that don’t accept Boolean programs as input, we also use
SATABS to generate thread transition system (TTS) models
as input (option --build-tts). Finally, we use miniSAT
[11] to solve WP formulas. UCOB offers both optimizations
presented in Sect. V: the shared-variable restriction, and the
single-thread forward-reachable local states computation. The
latter employs the tool BOOM [12], which we call a “forward
oracle” in this context (a terminology suggested in [9]).

The experiments are performed on a 2.3GHz Intel Xeon
machine with 64 GB memory, running 64-bit Linux.

Comparison: For 1 ≤ k ≤ 30, Fig. 4 plots the total time
(log-scale) taken to solve the k easiest of our benchmark
problems, for the following tools:

UCOB: our tool with shared-variable optimization;
UCOB/BOOM: UCOB with BOOM as forward oracle;
MCOV: MCOV without forward oracle [9];
MCOV/GKM: MCOV with forward oracle [9];
BOOM-KM: Karp-Miller implementation in BOOM [12].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3010−1

100

101

102

103

k of benchmarks analyzed successfully

tim
e
t

to
an

al
yz

e
k

be
nc

hm
ar

ks
(s

ec
.)

UCOB

UCOB/BOOM

MCOV

MCOV/GKM

BOOM-KM

Fig. 4: Cactus plot comparing UCOB with other coverability
tools. For each curve, entry (k, t) shows the time t it took
to solve the k easiest — for the method associated with that
curve — benchmarks (order varies across methods).

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 161

TABLE II: Benchmark characteristics and results: SV / LV / LOC = # of shared / local C program variables / lines of code;
Mtx? / Bc? = presence of mutex vars / broadcasts (= “yes”); |VS | / |VL| / Its. = # of shared / local Boolean variables /
CEGAR iterations; Mod.Sh. = percentage of statements that may modify the shared state; Safe? = program safety

ID/Program C Program Boolean Program Safe?
SV LV LOC Mtx? Bc? |VS | |VL| Its. Mod.Sh.

01/INC-L 2 1 46 # 3 1 2 7.5
02/INC-C 1 3 57 # # 0 4 4 0
03/PRNSIMP-L 2 4 63 # 2 3 2 7.7
04/PRNSIMP-C 1 5 95 # # 0 5 2 0
05/MAXSIM-L 3 3 59 # 1 0 2 3.7
06/MAXSIM-C 2 5 79 # # 0 1 2 0
07/MAXOPT-L 3 4 69 # 1 1 2 3.1
08/MAXOPT-C 2 6 86 # 0 2 2 0
09/STACK-L 4 2 79 # 1 3 3 3.8
10/STACK-C 3 3 89 # # 3 1 2 6.4
11/BSD-AK 1 7 90 3 1 15 11.7
12/BSD-RA 2 21 87 3 0 19 12.3
13/NETBSD 1 28 152 3 1 30 10.1
14/SOLARIS 1 56 122 5 1 14 10.9
15/BOOP 5 2 89 # # 5 2 4 11.4 #

ID/Program C Program Boolean Program Safe?
SV LV LOC Mtx? Bc? |VS | |VL| Its. Mod.Sh.

16/QRCU-2 7 6 120 # # 3 0 16 10.1
17/QRCU-4 8 8 182 # # 5 2 28 9.8
18/BS-LOOP 0 6 24 # # 0 7 1 0 #
19/COND 1 3 56 # 0 3 2 0
20/FUNC-P 2 1 67 # 2 6 3 8.3
21/S-LOOP 5 0 60 # 4 0 20 22.8
22/PTHREAD 5 0 85 # 7 0 5 17.1 #
23/TAS-L 2 2 58 # # 3 1 2 14.9
24/DOUBLE-1 3 0 70 # 7 1 10 16.4
25/DOUBLE-2 3 0 73 # 6 1 23 18.2
26/DOUBLE-3 3 0 66 # 4 1 3 15.3
27/TICKET-HC 3 1 61 # # 5 1 5 18.4
28/TICKET-LO 3 1 46 # # 5 1 5 20.8
29/UNVEREX 2 1 25 # # 4 0 3 8.9
30/SPIN 2 0 37 # 3 0 2 15.5

The results in the chart demonstrate that UCOB solves
almost all of the benchmarks (29), and does so in less time
for most programs. Furthermore, the results for UCOB/BOOM
show that the forward oracle, despite being an overapproxima-
tion, can accelerate the backward search by pruning unreach-
able cover predecessors. MCOV/GKM is the most competitive
proof tool. For the small-scale benchmarks, where the TTS
construction does not blow up, it takes the least amount of
time. However, the efficiency drops sharply with increasing
cost of either TTS generation or verification. The only other
unbounded-thread on-the-fly verifier we are aware of, BOOM-
KM, benefits from forward search and is thus competitive
“early”, but reports runtime errors for some of the more
complex benchmarks. Others it cannot solve: the Karp-Miller
implementation in BOOM-KM does not support broadcasts.

VII. RELATED WORK AND CONCLUDING REMARKS

The issue of the blow-up incurred when translating a pro-
gram model B into a transition system model M is classically
addressed using an on-the-fly exploration. In the context of
symmetric concurrent systems, things are more complicated as
the transition system (a WQOS) does not model B directly, but
via a counting abstraction. In [13], this issue was addressed for
the finite-state case, by interleaving the counting abstraction
and transition system construction. We have borrowed the state
representation (2) and (mostly) the counter update function
UPDATE-COUNTERS (Alg. 3) from that work.

We are aware of very few attempts to address the issue
in connection with (much more complex) infinite-state verifi-
cation techniques. While these techniques have been applied
to programs directly [14], [15], the application is typically
preceded by a static compilation of the program into an explicit
transition system, which only works for small local state
spaces, for example when predicates used for abstraction are
hand-picked.

An on-the-fly implementation of the Karp-Miller algorithm
is available in BOOM [12]. This algorithm proceeds forward,
making the implementation much easier. On the other hand,
due to theoretical limitations of Karp-Miller (see e.g. [4]), this

tool cannot handle broadcast programs, our target language.
On non-broadcast programs, it suffers from the notoriously
high space complexity of the Karp-Miller procedure. We have
compared against this tool in Sect. VI.

Recent research has established that, for the rich class
of Boolean broadcast programs, forward search tends to be
efficient but incomplete (or unsound), while backward search
guarantees correctness but lags behind. The solution is to
combine both searches, which we have done here in a some-
what shallow fashion. A goal for future work is therefore
to implement our on-the-fly strategy directly on an advanced
WQOS coverability algorithm such as [9].

REFERENCES

[1] A. Donaldson, A. Kaiser, D. Kroening, M. Tautschnig, and T. Wahl,
“Counterexample-guided abstraction refinement for symmetric concur-
rent programs,” Formal Methods in System Design, 2012.

[2] P. A. Abdulla, “Well (and better) quasi-ordered transition systems,”
Bulletin of Symbolic Logic, 2010.

[3] R. M. Karp and R. E. Miller, “Parallel program schemata,” J. Comput.
Syst. Sci., 1969.

[4] J. Esparza, A. Finkel, and R. Mayr, “On the verification of broadcast
protocols,” in LICS, 1999.

[5] B. Cook, D. Kroening, and N. Sharygina, “Symbolic model checking
for asynchronous Boolean programs,” in SPIN, 2005.

[6] P. Schnoebelen, “Revisiting Ackermann-hardness for lossy counter ma-
chines and reset Petri nets,” in MFCS, 2010.

[7] P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay, “General
decidability theorems for infinite-state systems,” in LICS, 1996.

[8] A. Emerson and T. Wahl, “Efficient reduction techniques for systems
with many components,” Electr. Notes Theor. Comput. Sci., 2005.

[9] A. Kaiser, D. Kroening, and T. Wahl, “Efficient coverability analysis by
proof minimization,” in CONCUR, 2012.

[10] G. Basler, A. Donaldson, A. Kaiser, D. Kroening, M. Tautschnig, and
T. Wahl, “SATABS: A bit-precise verifier for C programs,” in TACAS,
2012.

[11] N. Eén and N. Sörensson, “An extensible SAT-solver,” in SAT, 2003.
[12] G. Basler, M. Hague, D. Kroening, L. Ong, T. Wahl, and H. Zhao,

“Boom: Taking Boolean program model checking one step further,” in
TACAS, 2010.

[13] G. Basler, M. Mazzucchi, T. Wahl, and D. Kroening, “Context-aware
counter abstraction,” Formal Methods in System Design, 2010.

[14] T. Ball, S. Chaki, and S. K. Rajamani, “Parameterized verification of
multithreaded software libraries,” in TACAS, 2001.

[15] G. Delzanno, J.-F. Raskin, and L. V. Begin, “Towards the automated
verification of multithreaded Java programs,” in TACAS, 2002.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 162

