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Abstract—Tight frames, also known as general Welch-bound-
equality sequences, generalize orthonormal systems. Numerous
applications—including communications, coding, and sparse
approximation—require finite-dimensional tight frames that
possess additional structural properties. This paper proposes an
alternating projection method that is versatile enough to solve a
huge class of inverse eigenvalue problems (IEPs), which includes
the frame design problem. To apply this method, one needs only
to solve a matrix nearness problem that arises naturally from the
design specifications. Therefore, it is the fast and easy to develop
versions of the algorithm that target new design problems. Alter-
nating projection will often succeed even if algebraic constructions
are unavailable.

To demonstrate that alternating projection is an effective tool for
frame design, the paper studies some important structural proper-
ties in detail. First, it addresses the most basic design problem: con-
structing tight frames with prescribed vector norms. Then, it dis-
cusses equiangular tight frames, which are natural dictionaries for
sparse approximation. Finally, it examines tight frames whose indi-
vidual vectors have low peak-to-average-power ratio (PAR), which
is a valuable property for code-division multiple-access (CDMA)
applications. Numerical experiments show that the proposed algo-
rithm succeeds in each of these three cases. The appendices inves-
tigate the convergence properties of the algorithm.

Index Terms—Algorithms, code-division multiple access
(CDMA), eigenvalues and eigenfunctions, extremal problems,
frames, geometry, inverse problems, sequences.

1. INTRODUCTION

IGHT frames provide a natural generalization of or-
thonormal systems, and they arise in numerous practical
and theoretical contexts [1]. There is no shortage of tight
frames, and applications will generally require that the vectors
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comprising the frame have some kind of additional structure.
For example, it might be necessary for the vectors to have
specific Euclidean norms, or perhaps they should have small
mutual inner products. Thus arises a design problem: How do
you build a structured tight frame?

A. Contributions

To address the design question, this paper proposes a numer-
ical method based on alternating projection that builds on our
work in [2], [3]. The algorithm alternately finds the nearest tight
frame to a given ensemble of structured vectors; then it finds the
ensemble of structured vectors nearest to the tight frame; and it
repeats the process ad infinitum. This technique is analogous to
the method of projection on convex sets (POCS) [4], [5], except
that the class of tight frames is nonconvex, which complicates
the analysis significantly. Nevertheless, our alternating projec-
tion algorithm affords simple implementations, and it provides a
quick route to solve difficult frame design problems. We argue
that similar techniques apply to a huge class of inverse eigen-
value problems (IEPs).

This paper demonstrates the elegance and effectiveness of
the alternating projection approach with several examples that
are motivated by applications. First, we address the most basic
frame design problem: building tight frames with prescribed
vector norms. This problem arises when constructing signature
signatures for direct-spread, synchronous code-division mul-
tiple-access (DS-CDMA) systems [6]-[8]. Second, we discuss
equiangular tight frames, which have the property that each
pair of distinct vectors meets at the same (acute) angle. These
frames have many applications in coding and communications
[9]-[12], and they also form natural dictionaries for sparse ap-
proximation [13]-[15]. Third, we examine tight frames whose
individual vectors have low peak-to-average-power ratio (PAR),
which is another valuable property for DS-CDMA signatures
[3]. Our experiments show that alternating projection outper-
forms some algorithms that were specifically designed to solve
these problems.

The appendices investigate the convergence properties of the
algorithm. Although alternating projection between subspaces
and convex sets has been studied in detail, very few results
are available for an alternating projection between two non-
convex sets. This paper provides a rigorous treatment of the
algorithm’s behavior in this general setting by means of the
theory of point-to-set maps. In particular, we establish a weak
global convergence result, and we show that, under additional
hypotheses, the algorithm exhibits stronger local convergence
properties.
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Note that there is a major conceptual difference between the
use of finite models in the numerical calculation of infinite-di-
mensional frames and the design of finite-dimensional frames.
In the former case, the finite model plays only an auxiliary role
in the approximate computation of an infinite-dimensional tight
frame [1]. In the latter case, the problem under consideration is
already finite dimensional, thus, it does not involve discretiza-
tion issues. In this paper, we consider only finite-dimensional
tight frames.

B. Previous Work

At root, finite-dimensional frame design is an algebraic
problem. It boils down to producing a structured matrix with
certain spectral properties, which may require elaborate dis-
crete and combinatorial mathematics. In the past, most design
methods have employed these techniques. To appreciate the
breadth of this literature, one might peruse Sarwate’s recent
survey paper about tight frames comprised of unit-norm vec-
tors [16]. The last few years have also seen some essentially
algebraic algorithms that can construct tight frames with non-
constant vector norms [7], [17], [18].

When algebraic methods work, they work brilliantly. A nu-
merical approach like alternating projection can hardly hope
to compete with the most profound insights of engineers and
mathematicians. On the other hand, algebraic and combinatoric
tools are not always effective. For example, we might require a
structured tight frame for a vector space whose dimension is
not a prime power. Even in these situations, alternating pro-
jection will often succeed. Moreover, it can help researchers
develop the insight necessary for completing an algebraic con-
struction. The power of alternating projection comes from re-
placing the difficult algebra with a simple analytic question:
How does one find an ensemble of structured vectors nearest
to a given tight frame? This minimization problem can usually
be dispatched with standard tools, such as differential calculus
or Karush—-Kuhn-Tucker (KKT) theory.

The literature does not offer many other numerical ap-
proaches to frame design. It appears that most current algo-
rithms can be traced to the discovery by Rupf—-Massey [6] and
Viswanath—Anantharam [7] that tight frames with prescribed
column norms are the optimal sequences for DS-CDMA
systems. This application prompted a long series of papers,
including [19]-[23], that describe iterative methods for con-
structing tight frames with prescribed column norms. These
techniques are founded on an oblique characterization of tight
frames as the minimizers of a quantity called total squared
correlation (TSC). It is not clear how one could generalize these
methods to solve different types of frame design problems.
Moreover, the alternating projection approach that we propose
significantly outperforms at least one of the TSC-minimization
algorithms. Two of the algebraic methods that we mentioned
above, [7] and [18], were also designed with the DS-CDMA
application in mind, while the third algebraic method [17]
comes from the soi-disant frame community. We are not aware
of any other numerical methods for frame design.

C. Outline

Section II continues with a short introduction to tight frames.
Then, in Section III, we state two formal frame design prob-
lems. Connections among frame design problems, IEPs, and
matrix nearness problems are established. This provides a nat-
ural segue to the alternating projection algorithm. Afterward,
we apply the basic algorithm to design three different types
of structured frames, in order of increasing implementation
difficulty. Section IV discusses tight frames with prescribed
column norms; Section V covers equiangular tight frames; and
Section VI constructs tight frames whose individual vectors
have low PAR. Each of these sections contains numerical ex-
periments. The body of the paper concludes with Section VII,
which discusses the method, its limitations, and its extensions.

The back matter contains the bulk of the analysis. Appendix I
offers a tutorial on point-to-set maps, and Appendix II applies
this theory to obtain a rigorous characterization of the algo-
rithm’s convergence behavior. Appendix I also contains a brief
survey of the alternating projection literature.

II. TIGHT FRAMES

This section offers a terse introduction to the properties of
tight frames that are essential for our method. For more details,
see [1], for example.

A. Frames

Let o and /3 be positive constants. A finite frame for the com-
plex! Hilbert space C¢ is a sequence of N vectors {z, }Y_;
drawn from C? that satisfies a generalized Parseval condition

N
allvll; <> [ <8 vll;,  forallve € (1)
n=1

We denote the usual Hermitian inner product with (-, -), and we
write ||-||, for the associated norm. The numbers o and 3 are
called the lower and upper frame bounds. The number of vectors
in the frame may be no smaller than the dimension of the space
(e, N > d).

Ifitis possible to take oo = (3, then we have a tight frame or an
a-tight frame. When the frame vectors all have unit norm, i.e.,
|||, = 1, the system is called a unit-norm frame. Unit-norm
tight frames are also known as Welch-bound-equality sequences
[12], [24]. Tight frames with nonconstant vector norms have
also been called general Welch-bound-equality sequences [7].

B. Associated Matrices
Form a d x N matrix with the frame vectors as its columns

Ty ] .
This matrix is referred to as the frame synthesis operator, but we
will usually identify the synthesis operator with the frame itself.
Two other matrices arise naturally in connection with the
frame. We define the Gram matrix as G %= X*X. (The symbol *
indicates conjugate transposition of matrices and vectors.) The
diagonal entries of the Gram matrix equal the squared norms
of the frame vectors, and the off-diagonal entries of the Gram

X= [.’L‘1 Tro I3

'We work with complex vectors for complete generality. The adaptations for
real vectors are transparent.
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matrix equal the inner products between distinct frame vectors.
The Gram matrix is always Hermitian and positive semidefinite
(PSD), and it has rank d.

The positive-definite matrix XX* is usually called the frame
operator. Since

N
V(XX v =" |(v,2,)]
n=1
we can rewrite (1) as
o< U g 2)
vy

That is, any Rayleigh quotient of XX* must lie between « and
(. 1t follows from the Rayleigh—Ritz theorem [25, p. 176] that
each eigenvalue of the frame operator lies in the interval [, (].

When the frame is a-tight, the condition (2) is equivalent with
the statement that XX* = « ;. Three other characterizations of
an «a-tight frame follow directly.

Proposition 1: A d x N frame X is a-tight if and only if it
satisfies one (hence all) of the following conditions.

1) The d nonzero singular values of X equal /.

2) The d nonzero eigenvalues of the Gram matrix X*X
equal a.

3) The rows of o~ /2 X form an orthonormal family.

These properties undergird our method for constructing tight
frames. It is now clear that the being a tight frame is a spectral
requirement on the matrix X.

C. Norms of Frame Vectors

Throughout this paper, we will denote the squared norms of
the frame vectors as
dﬁf
[
There is an intimate relationship between the tightness param-
eter of an a-tight frame and the norms of its columns. The com-
putation is straightforward

N N
=TeXX =) [zlly =) o 3)
n=1 n=1

The notation Tr (-) represents the matrix trace operator, which
sums the diagonal entries of its argument.

A related point is that one cannot construct a tight frame with
an arbitrary set of column norms. According to the Schur—-Horn
theorem, a Hermitian matrix can exist if and only if its diagonal
entries majorize? its eigenvalues [25, pp. 193-197]. If X is a
d x N tight frame, the d nonzero eigenvalues of its Gram matrix
allequal ), c,/d. Meanwhile, the diagonal entries of the Gram
matrix are cq, ..., , cv . In this case, the majorization condition is
equivalent with the system of inequalities

1
0<e Egcn

2The literature equivocates about the direction of the majorization relation.
‘We adopt the sense used by Horn and Johnson [25, p. 192].

ad = Tr XX*

foreachk =1,...,N. @
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It follows that a tight frame with squared column norms
c1, ..., cn exists if and only if (4) holds. For an arbitrary set of
column norms, the frames that are “closest” to being tight have
been characterized in [7], [26].

III. DESIGN VIA ALTERNATING PROJECTIONS

This section begins with formal statements of two frame de-
sign problems. Next, we establish a connection with IEPs. It
becomes clear that an alternating projection algorithm offers
a simple and natural approach to general IEPs, including both
frame design problems. We then solve the matrix nearness prob-
lems that arise when implementing the proposed algorithm. The
section concludes with a discussion of the algorithm’s conver-
gence properties.

A. Structured Tight Frames
Define the collection of d X N «-tight frames

L X e €PN XX = ady). 5)
We fix the tightness parameter « for simplicity. It is easy to ex-
tend our methods to situations where the tightness is not prede-
termined, and one can apply similar ideas to construct frames
with prescribed upper and lower frame bounds, viz. the param-
eters o and £ in (1). It is worth noting that X, is essentially
a Stiefel manifold, which consists of all sets of d orthonormal
vectors in CV[27, p. 63].

Let S denote a closed? collection of d X [N matrices that pos-
sess some structural property. In the sequel, we will explore sev-
eral different structural constraints that have arisen in electrical
engineering contexts. Section IV considers tight frames with
specified column norms, and Section VI shows how to construct
tight frames whose individual vectors have a low PAR. Many
other structural properties are possible.

Each constraint set S raises a basic question.

Problem 1: Find a matrix in S that is minimally distant from
X, with respect to a given norm.

If the two sets intersect, any solution to this problem is a struc-
tured tight frame. Otherwise, the problem requests a structured
matrix that is “most nearly tight”” A symmetric problem is to
find a tight frame that is “most nearly structured.”

B. Structured Gram Matrices

If the structural constraints restrict the inner products between
frame vectors, it may be more natural to work with Gram ma-
trices. Define a collection that contains the Gram matrices of all
d X N a-tight frames

Go € {GeCV*N .G =G"and

G has eigenvalues («

d

The set G,, is essentially a Grassmannian manifold, which con-
sists of d-dimensional subspaces of CV[27, p. 63]. One may

3We equip C**N and CN*N with the topology induced by the Frobenius
norm, which is identical with every other norm topology [25, p. 273].
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also identify the matrices in G, as rank-d orthogonal projec-
tors, scaled by a.. (An orthogonal projector can be defined as an
idempotent, Hermitian matrix. The rank of a projector equals
the dimension of its range.)

Let H be a closed collection of N x N Hermitian matrices
that possess some structural property. In Section V, for example,
we will consider equiangular tight frames. The Gram matrices
of these frames have off-diagonal entries with identical moduli,
and it is an important challenge to construct them.

Once again, a fundamental question arises.

Problem 2: Find a matrix in G, that is minimally distant
from H with respect to a given norm.

If the two sets intersect, any solution to this problem will lie in
the intersection. Otherwise, the problem requests a tight frame
whose Gram matrix is “most nearly structured.” We do not men-
tion the problem of producing a matrix in A that is nearest to
G, because it is not generally possible to factor a matrix in ‘H
to obtain a frame with dimension d X N.

C. Inverse Eigenvalue Problems

We view Problems 1 and 2 as inverse eigenvalue problems. As
Chu explains in [29], an IEP is an inquiry about structured ma-
trices with prescribed spectral properties. These spectral proper-
ties may include restrictions on eigenvalues, eigenvectors, sin-
gular values, or singular vectors. According to Proposition 1, the
defining characteristic of a tight frame is its spectrum, so frame
design is an IEP.

In the study of IEPs, the two fundamental questions are solv-
ability and computability. The former problem is to find nec-
essary or sufficient conditions under which a given IEP has a
solution. The latter problem is how to produce a matrix that has
given spectral properties and simultaneously satisfies a struc-
tural constraint. The solvability and computability of some clas-
sical IEPs have been studied extensively by the matrix analysis
community, although many open problems still remain. The ar-
ticles [29], [30] survey this literature.

Although specific IEPs may require carefully tailored nu-
merical methods, there are a few general tools available. One
scheme is the coordinate-free Newton method, which has been
explored in [31]-[33]. Newton-type algorithms do not apply
to all problems, and they only converge locally. Another gen-
eral method is the projected gradient approach developed by
Chu and Driessel in [34]. This technique involves numerical
integration of a matrix differential equation, which relies on
advanced software that may not be readily available. Another
problem with Newton methods and projected gradient methods
is that they may not handle repeated singular values well. This
shortcoming makes them a poor candidate for constructing tight
frames, which have only two distinct singular values.

This paper concentrates on alternating projection, which has
occasionally been used to solve IEPs (in [35] and [36], for ex-
ample). But alternating projection has not been recognized as a
potential method for solving any type of IEP. The most general
treatment of alternating projection in the IEP literature is prob-
ably [37], but the authors do not offer a serious analysis of their
algorithm’s behavior.

Here is the basic idea behind alternating projection. We seek
a point of intersection between the set of matrices that satisfy a
structural constraint and the set of matrices that satisfy a spectral
constraint. An alternating projection begins at a matrix in the
first set, from which it computes a matrix of minimal distance in
the second set. Then the algorithm reverses the roles of the two
sets and repeats the process indefinitely. Alternating projection
is easy to apply, and it is usually globally convergent in a weak
sense, as we show later.

D. Alternating Projections

Let us continue with a formal presentation of the generic al-
ternating projection method for solving IEPs. Suppose that we
have two collections, Y and Z, of matrices with identical di-
mensions. Of course, we are imagining that one collection of
matrices incorporates a spectral constraint while the other col-
lection incorporates a structural constraint. To ensure that the
algorithm is well posed, assume that one collection is closed
and the other is compact.

Algorithm 1 (Alternating Projection):
INPUT:
¢ An (arbitrary) initial matrix Y, with appropriate dimensions
¢ The number of iterations, .J
OUTPUT:
e A matrix Y in ) and a matrix Z in £
PROCEDURE:
1) Initialize 7 = 0.
2) Find a matrix Z; in Z such that

Z; ‘min [|Z — Y|y -
j € argin | illp

We use ||-|| to indicate the Frobenius norm.
3) Find a matrix Y41 in ) such that

Vi1 € argmin [[Y — Zj|p .

4) Increment j by one.
5) Repeat Steps 24 until j = J.
6)LletY =Y andZ =Zj5_4.

A solution to the optimization problem in Step 2 is called a
projection of Y; onto Z in analogy with the case where Z is a
linear subspace. Step 3 computes the projection of Z; onto ). In
a Hilbert space, it can be shown geometrically that a given point
has a unique projection onto each closed, convex set. Projec-
tions onto general sets may not be uniquely determined, which
fiercely complicates the analysis of Algorithm 1.

von Neumann, in 1933, was the first to consider alternating
projection methods. He showed that if ) and Z are closed, linear
subspaces of a Hilbert space, then alternating projection con-
verges to the point in )) N Z nearest to Y [38]. In 1959, Cheney
and Goldstein demonstrated that alternating projection between
two compact, convex subsets of a Hilbert space always yields
a point in one set at minimal distance from the opposite set
[4]. These two results inspired the application of Algorithm 1
to the IEPs, Problems 1 and 2. Of course, the constraint sets
that we consider are generally not convex. For a more exten-
sive discussion of the literature on alternating projection, turn
to Appendix I-G.
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To implement the alternating projection algorithm, one must
first solve the minimization problems in Steps 2 and 3. For ob-
vious reasons, these optimizations are called the matrix near-
ness problems associated with ) and Z. Already there is an
extensive literature on matrix nearness problems. See, for ex-
ample, the articles [39]-[41], the survey [42], and many sections
of the book [25]. Section III-F exhibits solutions to the nearness
problems associated with the spectral constraints X, and G, .
Even when it is necessary to solve a new nearness problem, this
task often reduces to an exercise in differential calculus. This is
one of the great advantages of Algorithm 1. In this paper, we
will always measure the distance between matrices using the
Frobenius norm ||-|| because it facilitates the solution of ma-
trix nearness problems. Of course, one could develop a formally
identical algorithm using other norms, metrics, or divergences.

Since the constraint sets are generally nonconvex, alternating
projection may not converge as well as one might wish. This
explains why we have chosen to halt the algorithm after a fixed
number of steps instead of waiting for ||Y; — Y, 1]/ to decline
past a certain threshold. Indeed, it is theoretically possible that
the sequence of iterates will not converge in norm. In practice,
it appears that norm convergence always occurs. Section III-G
provides a skeletal discussion of the theoretical convergence of
alternating projection. We do not flesh out the analysis until
Appendices I and II because a proper treatment requires some
uncommon mathematics.

E. Application to Problems 1 and 2

To solve Problem 1, we propose an alternating projection be-
tween the structural constraint set S and the spectral constraint
set X,,. Two matrix nearness problems arise. In the next subsec-
tion, we demonstrate how to find a tight frame in &, nearest to
an arbitrary matrix. Sections IV and VI contain detailed treat-
ments of two different structural constraints.

To solve Problem 2, we alternate between the spectral con-
straint G, and the structural constraint 7{. In the next subsec-
tion, we show how to produce a matrix in G, that is nearest to
an arbitrary matrix. In Section V, we analyze a specific struc-
tural constraint H. After performing the alternating projection,
it may still be necessary to extract a tight frame from the output
Gram matrix. This is easily accomplished with a rank-revealing
QR factorization or with an eigenvalue decomposition. Refer to
[43, Sec. 5.4 and Ch. 8] for details.

F. Nearest Tight Frames

Standard tools of numerical linear algebra can be used to cal-
culate an a-tight frame that is closest to an arbitrary matrix in
Frobenius norm.

Theorem 2: Let N > d, and suppose that the d x N matrix
Z has singular value decomposition UXV*. With respect to the
Frobenius norm, a nearest a-tight frame to Z is given by a UV*.
Note that UV* is the unitary part of a polar factorization of Z.

Assume in addition that Z has full row-rank. Then o UV*
is the unique «-tight frame closest to Z. Moreover, one may
compute UV* using the formula (ZZ*)~1/2 Z.
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Proof: The proof of this well-known result is similar to
that of Theorem 3, which appears below. See also [25, pp.
431-432]. Classical references on related problems include
[44], [45]. The formula for the polar factor may be verified with
a direct calculation. |

It is also straightforward to compute a matrix in G,, nearest to
an arbitrary Hermitian matrix. This theorem appears to be novel,
so we provide a short demonstration.

Theorem 3: Suppose that Z is an N x N Hermitian matrix
with a eigenvalue decomposition UAU*, where the diagonal en-
tries of A are arranged in algebraically nonincreasing order. Let
U, be the N x d matrix formed from the first d columns of U.
Then e UgUy™ is a matrix in G,, that is closest to Z with respect
to the Frobenius norm. This closest matrix is unique if and only
if Ay strictly exceeds Agy1.

Proof: Given an Hermitian matrix A, let A(A) denote
the vector of its eigenvalues, arranged in algebraically nonin-
creasing order.

We must minimize ||Z — a G| over all rank-d orthogonal
projectors G. In consequence of the Wielandt—Hoffman theorem
[25, p. 368], the objective function is bounded as follows:

1Z = aGllp 2 |A(Z) = a A(G)]l, -

Equality obtains if and only if Z and G are simultaneously diag-
onalizable by the same unitary matrix.
Suppose that Z has eigenvalue decomposition

U (diag A(Z)) U™.

A rank-d orthogonal projector of dimension N has d eigen-
values equal to one and (N — d) eigenvalues equal to zero.
Therefore, one minimizer of the objective function is the matrix

G=U (Id (S ON—d) u*.

Form a matrix U, by extracting the first d columns of U. Then
our minimizer may be expressed more simply as G = UgzUy".
That is, G is the orthogonal projector onto a d-dimensional
subspace spanned by eigenvectors corresponding to the d al-
gebraically largest eigenvalues of Z. This subspace is uniquely
determined if and only if the dth and (d + 1)th eigenvalues
of Z are distinct. The orthogonal projector onto a subspace is
unique, and the uniqueness claim follows. O

It may be valuable to know that there are specialized algo-
rithms for performing the calculations required by Theorems
2 and 3. For example, Higham has developed stable numerical
methods for computing the polar factor of a matrix [46], [47]
that are more efficient than computing a singular value decom-
position or applying the formula (ZZ*)~'/2 Z.

G. Basic Convergence Results

It should be clear that alternating projection never increases
the distance between successive iterates. This does not mean
that it will locate a point of minimal distance between the con-
straint sets. It can be shown, however, that Algorithm 1 is glob-
ally convergent in a weak sense.
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Define the distance between a point M and a set ) via

dist(M, ) = inf [IY — Ml|p..

Theorem 4 (Global Convergence of Algorithm 1): Let) and
Z be closed sets, one of which is bounded. Suppose that alter-
nating projection generates a sequence of iterates {(Y;,Z;)}.
This sequence has at least one accumulation point.

* Every accumulation point lies in J x Z.
* Every accumulation point (Y, Z) satisfies

IY =2l = lim Y = Zjll-

* Every accumulation point (Y, Z) satisfies
Z

Y = Z||, = dist(Y, 2) = dist(Z,)).

For a proof of Theorem 4, turn to Appendix II-A. In some
special cases, it is possible to develop stronger convergence re-
sults and characterizations of the fixed points. We will mention
these results where they are relevant. The convergence of Algo-
rithm 1 is geometric at best [48]-[51]. This is the major shortfall
of alternating projection methods.

Note that the sequence of iterates may have many accumula-
tion points. Moreover, the last condition does not imply that the
accumulation point (Y, Z) is a fixed point of the alternating pro-
jection. So what are the potential accumulation points of a se-
quence of iterates? Since the algorithm never increases the dis-
tance between successive iterates, the set of accumulation points
includes every pair of matrices in ) X Z that lie at minimal dis-
tance from each other. It is therefore reasonable to claim that the
algorithm tries to solve Problems 1 and 2.

IV. PRESCRIBED COLUMN NORMS

As a first illustration of alternating projection, let us consider
the most basic frame design problem: How does one build a tight
frame with prescribed column norms?

This question has arisen in the context of constructing op-
timal signature sequences for DS-CDMA channels. There are
some finite algorithms available that yield a small number of
solutions to the problem [7], [18]. These methods exploit the
connection between frames and the Schur—Horn theorem. They
work by applying plane rotations to an initial tight frame to ad-
just its column norms while maintaining its tightness. Casazza
and Leon [17] have also developed a finite method that seems
different in spirit.

To construct larger collections of frames, some authors have
proposed iterative algorithms [19]-[23]. These techniques at-
tempt to minimize the TSC of an initial matrix subject to con-
straints on its column norms. The TSC of a matrix is defined as

def %
TSC(S) = [IS*Sllp = D {8, 8a)I™-

If we fix the squared column norms of S to be cq, ..
short algebraic manipulation shows that minimizing the TSC is
equivalent to solving

.,CN, A

msin 1SS* — a Ll

where @ = ) ¢, /d. In words, minimizing the TSC is equiv-
alent to finding a frame with prescribed column norms that is
closest in Frobenius norm to a tight frame [52].

In comparison, alternating projection affords an elegant way
to produce many tight frames with specified column norms. It
focuses on the essential property of a tight frame—its singular
values—to solve the problem. In this special case, we provide a
complete accounting of the behavior of the alternating projec-
tion. Moreover, experiments show that it outperforms some of
the other iterative algorithms that were developed specifically
for this problem.

A. Constraint Sets and Nearness Problems

The algorithm will alternate between the set of matrices with
fixed column norms and the set of tight frames with an appro-
priate tightness parameter.

Let the positive numbers ci,...,cy denote the squared
column norms that are desired. We do not require that these
numbers satisfy the majorization inequalities given in (4),
although one cannot hope to find a tight frame if these in-
equalities fail. In that case, we would seek a matrix with the
prescribed column norms that is closest to being a tight frame.
In the DS-CDMA application, the column norms depend on the
users’ power constraints [6], [7].

In light of (3), the relation between the tightness parameter
and the column norms, it is clear that v must equal ). ¢, /d.
The spectral constraint set becomes

X X e CHN  XX* = (X, en/d) I} .

Given an arbitary d X N matrix, one may compute the closest
tight frame in X, using Theorem 2.

The structural constraint set contains matrices with the cor-
rect column norms

def

SE{S e CVN |18, = ¢}

It is straightforward to solve the matrix nearness problem asso-
ciated with this collection.

Proposition 5: Let Z be an arbitrary matrix with columns
{2, }. A matrix in S is closest to Z in Frobenius norm if and
only if it has the columns

8, = {Cn zn/|1Znlly

Cn Un,

2, %20
2,=0
where u,, represents an arbitrary unit vector. If the columns of
Z are all nonzero, then the solution to the nearness problem is
unique.

Proof: We must minimize ||S — Z|| over all matrices S
from S. Square and rewrite this objective function as

N
2 2
IS =Zllg = llsn — 2all;-
n=1

We can minimize each summand separately. Fix an index n, and
. 2
expand the nth term using ||8,,||; = cn.

8
o =21} = 0+l =2 /5 Re (02, ).

&N
18015
If 2, # 0, the unique maximizer of Re (u, 2,,) over all unit
vectors is u = 2,/ ||2,,||,. If 2,, = 0, then every unit vector u
maximizes the inner product. O
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B. Convergence Results

In this setting, alternating projection converges in a fairly
strong sense.

Theorem 6: Let Sy have full rank and nonzero columns, and
suppose that the alternating projection generates a sequence of
iterates {(S;, X;)}. This sequence possesses at least one accu-
mulation point, say (S, X).

* Both S and X have full rank and nonzero columns.

» The pair (S, X) is a fixed point of the alternating projec-
tion. In other words, if we applied the algorithm to S or to
X every pair of iterates would equal (S, X).

* The accumulation point satisfies

IS = Xlp = Hm 1S =Xl
* The component sequences are asymptotically regular, i.e.,
1Xj+1 = Xjllg = 0.
* Either the component sequences both converge in norm,
IS =Sllp =0 and [[X; = X][z — 0,

or the set of accumulation points forms a continuum.
Proof: See Appendix II-C. O

||Sj+1 — S]HF — 0 and

In the present case, it is also possible to characterize com-
pletely the fixed points of the algorithm that lie in S.

Proposition 7: A full-rank matrix S from S is a fixed point
of the alternating projection between S and X, if and only if the
columns of S are all eigenvectors of SS*. That is, SS*S = SA,
where A € CNV*¥ is diagonal and positive with no more than d
distinct entries.

Proof: Refer to Appendix II-D. O

Many of the fixed points in S do not lie at minimal distance
from X, so they are not solutions to Problem 1. Nevertheless,
the fixed points still have a tremendous amount of structure.
Each fixed point can be written as a union of tight frames for mu-
tually orthogonal subspaces of C?, and the set of fixed points is
identical with the set of critical points of the TSC functional sub-
ject to the column norm constraint [23], [52]. The Ulukus—Yates
algorithm, another iterative method for designing tight frames
with specified column norms, has identical fixed points [20].

C. Numerical Examples

We offer a few simple examples to illustrate that the algo-
rithm succeeds, and we provide some comparisons with the
Ulukus—Yates algorithm.

Suppose first that we wish to construct a unit-norm tight
frame for R? consisting of five vectors. Initialized witha 3 x 5
matrix whose columns are chosen uniformly at random from
the surface of the unit sphere, the algorithm returns

_ 0.1519 0.4258 —0.7778 0.0160 —0.9258
S = 0.9840 —0.6775 0.1882 0.3355 —0.3024
—0.0926 0.5998 0.5997 0.9419 —0.2269

Each column norm of the displayed matrix equals one to ma-
chine precision, and the singular values are identical in their first
eight digits. In all the numerical examples, the algorithm was
terminated on the condition that ||S;1; — S|l < 107%. Im-
plemented in Matlab, the computation took 65 iterations, which
lasted 0.0293 s on a 1.6-GHz machine.
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Now let us construct a tight frame for R? whose five vectors
have norms 0.75,0.75,1,1.25, and 1.25. With random initial-
ization, we obtain

_ —0.1223 0.1753 —0.7261 0.0128 —1.0848
S = 0.7045 —0.6786 0.6373 0.0972 —0.6145
—0.2263 0.2670 0.2581 1.2461 —0.0894

The column norms are correct to machine precision, and the
singular values are identical to seven digits. The computation
took 100 iterations, which lasted 0.0487 s.

Next we examine a case where the column norms do not sat-
isfy the majorization condition. Suppose that we seek a “nearly
tight” frame with column norms 0.5,0.5,1,1, and 2. Random
initialization yields

B —0.1430 0.1353 —0.4351 —-0.0941 —1.8005
S=| 04293 -0.4213 0.7970 —0.2453 —0.7857].
—0.2127 0.2329 0.4189 0.9649 —0.3754

The column norms are all correct, but, as predicted, the frame is
not tight. Nevertheless, the last vector is orthogonal to the first
four vectors, which form a tight frame for their span. This is an
optimal solution to the frame design problem. The calculation
required 34 iterations over 0.0162 s.

Of course, alternating projection can produce complex-
valued tight frames, as well as larger frames in higher di-
mensional spaces. Such ensembles are too large to display
in these columns. To give a taste of the algorithm’s general
performance, we have compared it with our implementation
of the Ulukus—Yates algorithm [20]. To construct unit-norm
tight frames of various sizes, we initialized each algorithm
with the same random matrix. Then we plotted the comparative
execution times. Fig. 1 shows the results for 64 real dimensions,
and Fig. 2 shows the results for 64 complex dimensions. Note
the different scales on the time axes.

Both algorithms perform slowly when N is small because
tight frames are relatively scarce, which makes them difficult
to find. Indeed, it is known that (modulo rotations) there exists
a unique tight frame of (d + 1) vectors in d-dimensional space
[53, p. 13]. Another reason that the alternating projection algo-
rithm performs better as the problem grows is that a collection
of N uniformly random unit-vectors converges almost surely to
a tight frame as NV tends to infinity [54, Theorem 1]. It is there-
fore perplexing that the Ulukus—Yates algorithm performs more
and more slowly. One might attribute this behavior to the fact
that the algorithm does not act to equalize the singular values of
the frame.

V. EQUIANGULAR TIGHT FRAMES

In this section, we will consider a frame design problem that
leads to a simple structural constraint on the Gram matrix. The
goal of the alternating projection will be to design a suitable
Gram matrix, from which the frame may be extracted afterward.

A tight frame is a generalization of an orthonormal basis be-
cause they share the Parseval property. But orthonormal bases
have other characteristics that one may wish to extend. In partic-
ular, every orthonormal basis is equiangular. That is, each pair
of distinct vectors has the same inner product, namely zero. This
observation suggests that one seek out equiangular tight frames.
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Fig. 1. Comparison of alternating projection with the Ulukus—Yates algorithm in 64 real dimensions.
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Fig. 2. Comparison of alternating projection with the Ulukus—Yates algorithm in 64 complex dimensions.
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The underlying intuition is that these frames will contain vectors
maximally separated in space.

Define an equiangular tight frame to be a unit-norm tight
frame in which each pair of columns has the same absolute inner
product. Since we are considering unit-norm tight frames, the
absolute inner product between two frame vectors equals the co-
sine of the acute angle between the one-dimensional subspaces
spanned by the two vectors. For this reason, the frames are called
equiangular. One can show that each inner product in an equian-
gular tight frame has modulus

)

It is a remarkable fact that every ensemble of /N unit vectors
in d dimensions contains a pair whose absolute inner product
strictly exceeds p, unless the vectors form an equiangular tight
frame. Unfortunately, equiangular tight frames only exist for
rare combinations of d and N. In particular, a real equiangular
tight frame can exist only if N < 1 d(d + 1), while a complex
equiangular tight frame requires that N < d? [12, Theorem 2.3].
The paper [55] also contains detailed necessary conditions on
real equiangular tight frames and on equiangular tight frames
over finite alphabets.

One can view equiangular tight frames as a special type
of Grassmannian frame. In finite dimensions, Grassmannian
frames are unit-norm frames whose largest absolute inner
product is minimal for a given d and N [12]. Their name is
motivated by the fact that they correspond with sphere packings
in the Grassmannian manifold of all one-dimensional subspaces
of a vector space [28]. Grassmannian frames have applications
in coding theory and communications engineering [9]-[12].
They also provide a natural set of vectors to use for sparse
approximation [13]-[15].

In general, it is torturous to design Grassmannian frames. Not
only is the optimization difficult, but there is no general proce-
dure for deciding when a frame solves the optimization problem
unless it meets a known lower bound. Most of the current re-
search has approached the design problem with algebraic tools.
A notable triumph of this type is the construction of Kerdock
codes over Z5 and Z, due to Calderbank et al. [56]. Other ex-
plicit constructions are discussed in the articles [10], [12]. In the
numerical realm, Sloane has used his Gosset software to pro-
duce and study sphere packings in real Grassmannian spaces
[57]. Sloane’s algorithms have been extended to complex Grass-
mannian spaces in [58]. We are not aware of any other numerical
methods.

In this paper, we will construct equiangular tight frames for
real and complex vector spaces using alternating projection.
The method can easily be extended to compute Grassmannian
frames and packings in Grassmannian manifolds, but that is an-
other paper for another day [59, Ch. 7].

A. Constraint Sets and Nearness Problems

The signal of an equiangular tight frame is that each inner
product between distinct vectors has the same modulus. Since
the Gram matrix of a tight frame displays all of the inner
products, it is more natural to construct the Gram matrix of an
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equiangular tight frame than to construct the frame synthesis
matrix directly. Therefore, the algorithm will alternate between
the collection of Hermitian matrices that have the correct
spectrum and the collection of Hermitian matrices that have
sufficiently small off-diagonal entries.

Since we are working with unit-norm tight frames, the tight-
ness parameter o must equal N/d. This leads to the spectral
constraint set

gadg{GeCNXN:G:G*and
G has eigenvalues (N/d,...,N/d,0,...,0)}.
—_———

d

Theorem 3 shows how to find a matrix in G,, nearest to an arbi-
trary Hermitian matrix.

In an equiangular tight frame, each vector has unit norm but
no two vectors have inner product larger than u. Therefore, we
define the structural constraint set

’H”déf{HECNXN :H=H* diagH=1 and mix|hmn|§u}.

It may seem more natural to require that the off-diagonal entries
have modulus exactly equal to 4, but our experience indicates
that the present formulation works better, perhaps because H,,
is convex. The following proposition shows how to produce the
nearest matrix in H,,.

Proposition 8: Let Z be an arbitrary matrix. With respect to
Frobenius norm, the unique matrix in 7, closest to Z has a unit
diagonal and off-diagonal entries that satisfy

if |Zmn| < and

—
mn 1arg Zmn otherwise.

e
We use i to denote the imaginary unit.
Proof: The argument is straightforward. O

B. Convergence Results

The general convergence result, Theorem 4, applies to the
alternating projection between G, and H,. We also obtain a
local convergence result.

Theorem 9: Assume that the alternating projection between
Go and H,, generates a sequence of iterates {(G;,H;)}, and
suppose that there is an iteration .J during which

IGs = Hyllp < N/(dV2).

Then the sequence of iterates possesses at least one accumula-
tion point, say (G, H).
* The accumulation point lies in G, X H,,.
* The pair (G, H) is a fixed point of the alternating projec-
tion. In other words, if we applied the algorithm to G or to
H, every iterate would equal (G, H).
* The accumulation point satisfies

16— Hlp = lim JIG; —Hjll-
* The component sequences are asymptotically regular, i.e.,

1Gj+1 = Gjllp = 0 and  [[Hj11 = Hjllp — 0.
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* Either the component sequences both converge in norm

16, = Gllz =0 and [H; - K[|z -0
or the set of accumulation points forms a continuum.
Proof: See Appendix II-B. O

C. Numerical Examples

First, let us illustrate just how significant a difference there
is between vanilla tight frames and equiangular tight frames.
At the bottom of the page is the Gram matrix of a six-vector,
unit-norm tight frame for R? (see the first matrix). Notice that
the inner products between vectors are quite disparate, ranging
in magnitude between 0.2392 and 0.6303. These inner products
correspond to acute angles of 76.2° and 50.9°. In fact, this tight
frame is pretty tame; the largest inner products in a unit-norm
tight frame can be arbitrarily close to one.* The Gram matrix of a
six-vector, equiangular tight frame for R3 looks quite different
(see the second matrix at the bottom of the page). Every pair
of vectors meets at an acute angle of 63.4°. The vectors in this
frame can be interpreted as the diagonals of an icosahedron [28,
Table 1].

We have used alternating projection to compute equiangular
tight frames, both real and complex, in dimensions two through
six. The algorithm performed poorly when initialized with
random vectors, which led us to adopt a more sophisticated
approach. We begin with many random vectors and winnow
this collection down by repeatedly removing whatever vector
has the largest inner product against another vector. It is fast
and easy to design starting points in this manner, yet the results
are impressive. These calculations are summarized in Table .

Alternating projection can locate every real, equiangular tight
frame in dimensions two through six; algebraic considerations
eliminate all the remaining values of N [55, Theorem A and
Theorem 6.1]. Moreover, the method computes these ensem-
bles very efficiently. For example, the algorithm produced a
six-vector, equiangular tight frame for R?® after a single trial.
In this case, 70 iterations lasting 0.4573 s were sufficient to de-
termine the first eight decimal places of the inner products.

4To see this, consider a tight frame that contains two copies of an orthonormal
basis, where one copy is rotated away from the other by an arbitrarily small
angle.

TABLE 1
EQUIANGULAR TIGHT FRAMES
d d

N | 2 3 4 5 6 N |2 3 4 5 6
3 R R . . 20 | .. .. .
4 C R R . 21 .. . . C
5 . . R R . 22
6 R . R R 23
7 cC C . R 24
8 . C . 25 C
9 C . . C 26
10 . . R . 27
11 . C C 28
12 . . C 29
13 C . 30
14 . . 31 C
15 . 32
16 C R 33
17 . 34
18 | .. . . . . 350 . . L. .
19 | . . . . . 36 . . . . C

The notations R and C, respectively, indicate that alternating projection was able
to compute a real, or complex, equiangular tight frame. Note that every real
equiangular tight frame is automatically a complex equiangular tight frame. One
period (.) means that no real equiangular tight frame exists, and two periods (..)
mean that no equiangular tight frame exists at all.

In the complex case, the algorithm was able to compute every
equiangular tight frame that we know of. Unfortunately, no
one has yet developed necessary conditions on the existence of
complex, equiangular tight frames aside from the upper bound
N < d2, and so we have been unable to rule out the existence
of other ensembles. Some of the computations progressed
quite smoothly. After 1000 iterations and 18.75 s, alternating
projection delivered a collection of 25 vectors in five dimen-
sions whose inner products were identical in the first eight
decimal places. On the other hand, it took 5000 iterations and
85.75 s to produce 21 vectors in five dimensions whose inner
products reached the same level of accuracy. Even worse, we
were unable to locate the 31-vector equiangular tight frame in
CS until we had performed two dozen random trials that lasted
several minutes each. It is some consolation that the authors of
[58, Table 1] indicate their algorithm could not compute this
ensemble at all.

It seems clear that some equiangular tight frames are much
easier to find than others. We have encountered less success at
constructing equiangular tight frames in higher dimensions. But

r 1.0000 0.2414 —-0.6303 0.5402 —0.3564 —0.35437
0.2414 1.0000 —0.5575 —0.4578 0.5807 —0.2902
—0.6303 —0.5575 1.0000 0.2947 0.3521 —0.2847
0.5402 —0.4578 0.2947 1.0000 —0.2392 —0.5954
—0.3564 0.5807 0.3521 —0.2392 1.0000 —0.5955
[—0.3543 —0.2902 —-0.2847 —0.5954 —0.5955 1.00004
r 1.0000 0.4472 —0.4472 0.4472 —0.4472 —0.44727
0.4472 1.0000 —0.4472 —0.4472 0.4472 —0.4472
—0.4472 —0.4472 1.0000 0.4472 0.4472 —0.4472
0.4472 —0.4472 0.4472 1.0000 —0.4472 —0.4472
—0.4472 0.4472 0.4472 —0.4472 1.0000 —0.4472
1—0.4472 —0.4472 —0.4472 —0.4472 —0.4472 1.0000
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we have neither performed extensive experiments nor have we
attempted to fine-tune the method.

VI. PEAK-TO-AVERAGE-POWER RATIO

Finally, let us present a situation in which the matrix nearness
problem is much more difficult.

As we have mentioned, tight frames with prescribed vector
norms coincide with signature sequences that maximize sum
capacity in the uplink of DS-CDMA systems [6]-[8]. Unfortu-
nately, general tight frames can have properties that are undesir-
able in practice. In particular, the individual frame vectors may
have large peak-to-average-power ratio (PAR).

The PAR of an analog signal measures how the largest value
of the signal compares with its average power. Signals with large
PAR require higher dynamic range on the analog-to-digital con-
verters and the digital-to-analog converters. They may also re-
quire more linear (and thus higher cost) power amplifiers. In
DS-CDMA systems, the PAR is normally of concern only in
the downlink (see, e.g., [60]), where linear combinations of sig-
natures can conspire to have tremendous peak power. On the
uplink, the PAR problem is fundamentally different because it
only involves individual signatures. Conventionally, the uplink
PAR has not received attention because most systems use bi-
nary spreading sequences, which always have unit PAR. If gen-
eral sum-capacity-optimal sequences are to be used in real sys-
tems, then PAR side constraints should be included in the de-
sign problem. Therefore, we will consider how to construct tight
frames whose columns have prescribed norms and low PARs.

As discussed in Section IV, many algorithms have already
been developed for constructing tight frames with prescribed
vector norms, such as [7], [19], [20], [22]. Unfortunately, these
methods cannot accept additional constraints on the vectors, and
thus they are not suitable for finding tight frames whose vectors
have low PAR. We show that alternating projection provides a
way to produce these ensembles. The PAR problem makes an in-
teresting test case because it induces a matrix nearness problem
that is considerably more challenging than those we have exam-
ined in previous sections.

A. Constraint Sets and Matrix Nearness Problems

The PAR in a digital communication system is fundamentally
related to the analog waveforms that are generated. From the
perspective of sequence design, it usually suffices to consider
the PAR defined directly from the discrete sequence. The dis-
crete PAR of a vector z is the quantity

2
def MaXpy, |2 |

> lzml*/d

m

PAR(2)

Note that 1 < PAR(2) < d. The lower extreme corresponds to
a vector whose entries have identical modulus, while the upper
bound is attained only by (scaled) canonical basis vectors.
Suppose that we require the columns of the frame to have
squared norms cy, . . ., cn . In the DS-CDMA application, these

’ )
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numbers depend on the users’ power constraints [6], [7]. It fol-
lows from (3) that « = ), ¢, /d. The spectral constraint set
becomes

X, {x e CPN XX = <Z cn/d> Id} .
Theorem 2 delivers the solution to the associated matrix near-
ness problem.

Let p denote the upper bound on the PAR of the frame ele-
ments. Then the structural constraint set will be

S S e CN . PAR(s,) < pand [8n]% = cn ).

Given an arbitrary matrix Z, we must compute the nearest
element of S. Since the structural constraint on each column is
independent and the Frobenius norm is separable, each column
yields an independent optimization problem. For each column
2,, of the input matrix, we claim that the following algorithm
returns 8, the corresponding column of a nearest matrix S
from S.

Algorithm 2 (Nearest Vector with Low PAR):
INPUT:
* An input vector 2z from C?
* A positive number c, the squared norm of the solution vector
* A number p from [1, d], which equals the maximum permis-
sible PAR
OUTPUT:
* A vector s from C¢ that solves

min||s — 2|, subjectto PAR(8) < pand ||s||5 = c.
S

PROCEDURE:

1) Scale 2 to have unit norm; define § = \/c p/d; and initialize
kE = 0.

2) Let M index (d — k) components of z with least magnitude.
If this set is not uniquely determined, increment k and repeat
Step 2.

3) If z,,, = 0 for each m in M, a solution vector is

c—k 82
8 = d—k ?
6ei arg zm

4) Otherwise, let

when m € M and
when m ¢ M.

5)If v 2z, > 6 for any m in M, increment k and return to
Step 2.
6) The unique solution vector is

Y Zm, when m € M and
8= :
§el argzm7

when m ¢ M.

When p = 1, the output of the algorithm is a vector with uni-
modular entries that have the same phase as the corresponding
entries of z. On the other hand, when p = d, the output vector
equals z. We now prove that the algorithm is correct.
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Proof: We must solve the optimization problem
min ||s — 2|2 subjectto PAR(s) < pand ||s||3 = c.
S

Let us begin with some major simplifications. First, rewrite the
PAR constraint by enforcing the norm requirement and rear-
ranging to obtain the equivalent condition

max |$,,| < v/ep/d.
m

In the rest of the argument, the symbol § will abbreviate the
quantity v/c p/d. The PAR constraint becomes |s,,| < 6 for
eachm =1,...,d.

Now, expand the objective function and enforce the norm
constraint again to obtain

min [c —2Re (s, 2) + ||z||§} .
8

Observe that it is necessary and sufficient to minimize the
second term. It follows that the optimizer does not depend on
the scale of the input vector z. So take 2|, = 1 without loss
of generality.

Next, note that the PAR constraint and the norm constraint
do not depend on the phases of the components in 8. Therefore,
the components of an optimal 8 must have the same phases as
the components of the input vector 2. In consequence, we may
assume that both s and 2z are nonnegative real vectors.

We have reached a much more straightforward optimization
problem. Given a nonnegative vector z with unit norm, we must
solve

max (8,2) subjectto (8,8) =cand0 < s, <0.
S

Observe that every point of the feasible set is a regular point,
i.e., the gradients of the constraints are linearly independent.
Therefore, KKT theory will furnish necessary conditions on an
optimizer [61, Sec. 28].

We form the Lagrangian function

L8, 0,11, ) =~ (8,24 5 A((8,8) )~ (s, )+ (55 1,0)

The Lagrange multipliers g and v are nonnegative because they
correspond to the lower and upper bounds on s. Meanwhile,
the multiplier A is unrestricted because it is associated with the
equality constraint.

The first-order KKT necessary condition on a regular local
maximum 8* is that

0=(VsL)(8",\*, p*,v")
:—Z-I-)\*.S*—[J,*-}-l/* )
where pX, > 0 only if s, = 0 and v/¥, > 0 only if s}, = 4.
Notice that one of u}, or v, must be zero because they corre-

spond to mutually exclusive constraints. The second-order KKT
necessary condition on a regular local maximum is that

0 <y" (VZL)(s" N 0", v )y
_ )\* yT Y
for every vector y in the subspace of first-order feasible varia-

tions. This subspace is nontrivial, so A* > 0.
Solve (8) to obtain

N8* =z +p* —v*.

Whenever 17, > 0,both s}, = 0and v};, = 0. This combination
is impossible because z,, > 0. Therefore, we may eliminate u*
to reach

2\ 8% =z — v,

The cases A* = 0 and A\* > 0 require separate consideration.

If A\* = 0, it is clear that ¥* = z. Since v¥, > 0 only if
sy, = 6, we must have s}, = § whenever z,, > 0. Suppose that
k components of 8* equal 6. The remaining (d — k) components
are not uniquely determined by the optimization problem. From
the many solutions, we choose one such that

ko2
s,*n:\/cdfk7 for m where z,, = 0.

This formula ensures that 8* has the correct norm and that none
of its entries exceeds 6.
When A* > 0, the solution has the form

8" = [vz]s

where -y is positive and the operator [-], truncates to ¢ the com-
ponents of its argument that exceed ¢. It is clear that the largest
components of z are all truncated at the same time. We only
need to determine which components these are.

To thatend, observe that y — ||[7y 2], ||,, is a strictly increasing
function on [0, 6/ 2min|, Where zmiy is the least positive compo-
nent of z. For at most one value of -, therefore, does the vector
[ 2] have norm +/c. If this norm value were not attained, then
A* would equal zero. Let k be the number of entries of s* that
equal 6, and suppose that M indexes the remaining (d— k) com-
ponents. Then

c= |83 =k6"+9" D |zml’.
meM
Recall that v is positive. Therefore, is impossible that k 62 > c.
When k62 = ¢, it follows that z,, = 0 for each m in M.
Otherwise, z,, must be nonzero for some m in M. Then the
value of v must be

B. Convergence

For the alternating projection between the PAR constraint set
and the set of a-tight frames, we have not proven a more elabo-
rate convergence theorem than the basic result, Theorem 4, be-
cause it is not easy to guarantee that the solution to the PAR ma-
trix nearness problem is unique. We have been able to provide
a sufficient condition on the fixed points of the iteration that lie
in the PAR constraint set S. Note that similar fixed points arose
in Section IV.

Theorem 10: A sufficient condition for a full-rank matrix S
from S to be a fixed point of the alternating projection between
S and X, is that the columns of S are all eigenvectors of SS*.
Thatis, SS*S = SA, where A € CV*¥ is diagonal and positive,
with no more than d distinct entries.

Proof: Refer to Appendix II-E. O
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C. Numerical Examples

Let us demonstrate that alternating projection can indeed pro-
duce tight frames whose columns have specified PAR and spec-
ified norm. We will produce complex tight frames because, in
the real case, PAR constraints can lead to a discrete optimiza-
tion problem. The experiments all begin with the initial 3 X 6
matrix

0.0748 4- 0.3609i  0.0392 + 0.45581  0.5648 + 0.36351
0.5861 — 0.05701 —0.2029 4 0.8024i —0.5240 + 0.4759i
—0.7112 + 0.10761 —0.2622 — 0.1921i —0.1662 + 0.14161

—0.2567 + 0.44631  0.7064 + 0.6193i  0.1586 + 0.6825i
—0.1806 — 0.10151 —0.1946 — 0.1889i1

0.0202 + 0.83161  0.0393 — 0.20601 0.2819 + 0.41351

The respective PAR values of its columns are
1.5521,2.0551, 1.5034, 2.0760, 2.6475, and 1.4730.

Unit-PAR tight frames are probably the most interesting ex-
ample. In each column of a unit-PAR tight frame, the entries
share an identical modulus, which depends on the norm of the
column. Let us apply our algorithm to calculate a unit-PAR,
unit-norm tight frame

0.1345 4 0.56151  0.1672 + 0.55261  0.4439 + 0.3692i
0.5410 — 0.20171 —0.0303 4 0.57661 —0.5115 + 0.2679i
—0.5768 + 0.02521 —0.2777 — 0.50621 —0.2303 + 0.52941

—0.3358 4 0.46961  0.4737 4 0.3300i 0.0944 4 0.56961
—0.5432 — 0.19561 —0.3689 — 0.44421 0.5747 + 0.0554i | .
0.1258 + 0.56351 —0.0088 — 0.5773i 0.4132 4 0.4033i

Indeed, each of the columns has unit PAR and unit norm. The
singular values of the matrix are identical to eight decimal
places. The calculation required 78 iterations lasting 0.1902 s.

Alternating projection can also compute tight frames whose
columns have unit PAR but different norms. For example, if we
request the column norms 0.75,0.75,1,1,1.25, and 1.25, the
algorithm yields

0.3054 + 0.30701  0.1445 4 0.4082i  0.3583 + 0.4527i
0.4295 — 0.05491  0.1235 4 0.41501 —0.5597 + 0.1418i
—0.4228 — 0.09361 —0.0484 — 0.43031 0.0200 + 0.57701

—0.4264 + 0.38931  0.4252 + 0.5831i  0.3622 + 0.6242i
—0.5393 — 0.20601 —0.4425 — 0.5701i

0.2585 + 0.51621 —0.2894 — 0.66111  0.1291 + 0.71011

One can check that the column norms, PAR, and singular values
all satisfy the design requirements to eight or more decimal
places. The computation took 84 iterations over 0.1973 s.

Less stringent constraints on the PAR pose even less trouble.
For example, we might like to construct a tight frame whose
PAR is bounded by two and whose columns have norms
0.75,0.75,1,1,1.25, and 1.25. It is

0.0617 4 0.1320i  0.0184 + 0.2764i  0.4299 + 0.3593i
0.4256 — 0.10311 —0.0558 4 0.59381 —0.5920 + 0.4974i
—0.5912 + 0.00251 —0.1304 — 0.33631 —0.0807 + 0.28571

—0.1382 4 0.25111  0.6847 4 0.74361  0.2933 + 0.6939i
—0.4306 — 0.26501 —0.2095 — 0.3072i

0.0852 + 0.80931 —0.3504 — 0.52891  0.2918 + 0.60481

0.5080 + 0.0226i | .

0.7165 — 0.0863i | .

0.7317 4 0.0928i | .
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The computer worked for 0.0886 s, during which it performed
49 iterations. As usual, the singular values match to eight dec-
imal places. It is interesting to observe that the frame exceeds the
design specifications. The respective PAR values of its columns
are 1.8640, 1.8971,1.7939,1.9867,1.9618, and 1.0897.

VII. DISCUSSION

As advertised, we have developed an alternating projection
method for solving frame design problems, and we have pro-
vided ample evidence that it succeeds. In this section, we dis-
cuss some implementation issues and some of the limitations of
the algorithm. We conclude with a collection of related prob-
lems that one can also solve with alternating projection.

A. The Starting Point

For alternating projection to succeed, it is essential to choose
a good starting point. Here are a few general strategies that may
be useful.

The simplest method is to select N vectors uniformly at
random from the surface of the unit sphere in C? and form
them into an initial matrix. Although this technique sometimes
works, it is highly probable that there will be pairs of strongly
correlated vectors, and it is usually preferable for the frame to
contain dissimilar vectors. Nevertheless, a collection of random
vectors converges almost surely to a tight frame as more vectors
are added [54, Theorem 1].

A more practical idea is to select many vectors, say 2dN,
and then use a clustering algorithm—such as Lloyd—Max [62],
spherical k-means [63], or diametrical clustering [64]—to
separate these vectors into IV clusters. The cluster representa-
tives will usually be much more diverse than vectors chosen at
random. A related approach would select many random vectors
and then greedily remove vectors that are highly correlated with
the remaining vectors. This method seems to furnish excellent
starting points for constructing equiangular tight frames. One
might also build up a collection of random vectors by allowing
a new vector to join only if it is weakly correlated with the
current members.

Another technique is to start with a tight frame that has been
developed for another application. By rotating the frame at
random, it is possible to obtain many different starting points
that retain some of the qualities of the original frame. In partic-
ular, equiangular tight frames make excellent initializers.

It is also possible to choose a collection of NV vectors from a
larger frame for C?. Similarly, one might truncate some coordi-
nates from a frame in a higher dimensional space. In particular,
one might truncate an orthonormal basis for CV to retain only d
coordinates. See [65], for example, which uses the Fourier trans-
form matrix in this manner.

B. Limitations

Alternating projection cannot alleviate all the pain of frame
design. While preparing this paper, we encountered several
difficulties.

A theoretical irritation is the lack of a proof that alternating
projection converges in norm. No general proof is possible, as
the counterexample in [66] makes clear. Nevertheless, it would
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be comforting to develop sufficient conditions that guarantee the
convergence of alternating projections between nonconvex sets.
The results of [66] are the best that we know of. We would also
like to develop conditions that can ensure convergence to a pair
of points at minimal distance. Here, the most general results are
probably due to Csiszar and Tusnady [67].

Another major inconvenience is that alternating projection
converges at a geometric rate (or worse) [48]-[51]. For large
problems, it can be painful to wait on the solution. An interesting
topic for future research would be a method of acceleration.

A more specific disappointment was the inability of alter-
nating projection to construct tight frames over small finite
alphabets. It is straightforward to solve the matrix nearness
problem associated with a finite alphabet, and it can be shown
that the algorithm always converges in norm to a fixed point.
But the algorithm never once yielded a tight frame. This failure
is hardly surprising; discrete constraints are some of the most
difficult to deal with in optimization. It may be possible to use
annealing to improve the performance of the algorithm. This
would be a valuable direction for future research.

C. Related Problems

We have permitted a great deal of freedom in the selection of
the structural constraint set, but we only considered the spectral
constraints that arise naturally in connection with tight frames.
Nevertheless, alternating projection offers a straightforward
method for addressing other IEPs. For example, one might try
to construct general frames with prescribed lower and upper
frame bounds, « and (. Instead of forcing the Gram matrix to
be a rank-d orthogonal projector, one might impose only a rank
constraint or a constraint on its condition number. To implement
the algorithm, it would only be necessary to solve the matrix
nearness problem associated with these spectral constraints.

One can also use alternating projection to construct PSD ma-
trices that have certain structural properties. Higham, for ex-
ample, has used a corrected alternating projection to produce
the correlation matrix nearest to an input matrix [36]. (A corre-
lation matrix is a PSD matrix with a unit diagonal.) Since the
PSD matrices form a closed, convex set, it is possible to prove
much more about the behavior of alternating algorithms.

We have also had good success using alternating projection to
compute sphere packings in real and complex projective spaces.
These methods can be extended to produce sphere packings in
real and complex Grassmannian manifolds [59]. It seems clear
that alternating projection has a promising future for a new gen-
eration of problems.

APPENDIX [
POINT-TO-SET MAPS

To understand the convergence of the algorithms, we rely on
some basic results from the theory of point-to-set maps. Zang-
will’s book [68] is a good basic reference with applications
to mathematical programming. More advanced surveys include
[69], [70]. de Leeuw presents statistical applications in [5S0]. We
have drawn from all these sources here.

A. Point-to-Set Maps

Let Y and Z be arbitrary sets. The power set of Z is the col-
lection of all subsets of Z, and itis denoted by 22 A point-to-set
map from ) to Z is a function 2 : ) — 22 In words, Q maps
each point of ) to a subset of Z.

There are several different ways of combining point-to-set
maps. Take two maps €. : JV — 2% and Q.,, : Z — 2W.
The composition of these maps carries a point y to a subset of

W via the rule
(2w 0 Qy2)(y) = U Qow(2)-
2€Qy:(y)

This definition can be extended in the obvious way to a longer
composition of maps. Now, suppose {2,,, maps U to 2Y. The
Cartesian product of ,,, and €2, is the point-to-set map from
UxYtoV x Z given by

(Qup X Qy2)(u,y) = Quo(u) X Qy2(y).

B. Topological Properties

Suppose that the underlying sets are endowed with topologies
so that we may speak of convergence. A map  : Y — 2%
is closed at the point i in )) whenever the statements y; — ¥,
zj € Q(y;),and z; — Z together imply that Z € (7). One may
interpret this definition as saying that the set Q(g) is “bigger”
than the sets in the sequence {€2(y;)}. On the other hand, the
map € is open at § in ) whenever the statements y; — § and
z € Q(y) together imply the existence of a number J and a
sequence of points {z;} such that z; — Z and z; € Q(y;) for
all 7 > J. More or less, this statement means that the set (%)
is “smaller” than the sets in the sequence {{2(y;)}. A map that
is both open and closed at 7 is said to be continuous at §. We
call Q an open map, closed map, or continuous map whenever
it has the corresponding property for every point in ).

Finite Cartesian products and finite compositions of open
maps are open. Finite Cartesian products of closed maps are
closed. If Q. : Y — 2% and Q.,, : Z — 2"V are closed and Z
is compact, then the composition (€., o ,.) is closed.

C. Fixed Points

Suppose that €2 is a point-to-set map from ) to itself. Let y
be a point of Y for which Q(y) = {y}. Then y is called a fixed
point of the map 2. In contrast, a generalized fixed point of )
is a point for which y € Q(y). When we wish to emphasize the
distinction, we may refer to a regular fixed point as a strong or
classical fixed point.

D. Infimal Maps

Minimizing functions leads to a special type of point-to-set
map. Suppose that f : ) x Z — R, is a real-valued function
of two variables, and let €2 be a point-to-set map from ) to Z.
Associated with f and €2 is an infimal map defined by

M= (y) def arg min f(y, 2).
2€Q(y)

If f(y,-) attains no minimal value on Q(y), then M*(y) = 0,
the empty set. Under mild conditions, infimal maps are closed.
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Theorem 11 (Dantzig—Folkman—Shapiro [71]): If €0 is con-
tinuous at § and f (7, -) is continuous on (%), then M~ is closed
at y.

In particular, the constant map €2 : y +— Z is continuous
whenever Z is closed. So minimizing a continuous function
over a fixed, closed set always yields a closed infimal map.

E. Iterative Algorithms

Zangwill was apparently the first to recognize that many pro-
cedures in mathematical programming find their most natural
expression in the language of point-to-set maps [68]. An algo-
rithmic map or algorithm is simply a function Q : ) — 2%,
Given an initial point yo of ), an algorithmic map generates a
sequence of iterates according to the rule

yj+1 € Qy;)-

Suppose that f : J — R is a continuous, nonnegative func-
tion. We say that the algorithm €2 is monotonic with respect to
f when

z € Uy) f(z) < fy)-

implies
An algorithm strictly monotonic with respect to f is a monotonic
algorithm for which

z€Qy)and f(z) = f(y)  imply z=uy.
Zangwill showed that a closed, monotonic algorithm converges
in a weak sense to a generalized fixed point. We present a
streamlined version of his result.

Theorem 12 (Zangwill [68, p. 91]): Let €2 be a closed algo-
rithmic map on a compact set )V, and assume that {2 is monotonic
with respect to a continuous, nonnegative function f. Suppose
that the algorithm generates a sequence of iterates {y;}.

* The sequence has at least one accumulation point in ).

* Each accumulation point § satisfies f(g) = lim; f(y;).

* Each accumulation point y is a generalized fixed point of
the algorithm.

Meyer [66] subsequently extended Zangwill’s theorem to
provide a more satisfactory convergence result for strictly
monotonic algorithms. One version of his result follows. For
reference, a sequence {y;} in a normed space is called asymp-
totically regular when ||y;+1 — y;|| — 0.

Theorem 13 (Meyer [66]): Let ) be a compact subset of a
normed space, and assume that €2 is a closed algorithm on ) that
it is strictly monotonic with respect to the continuous, nonnega-
tive function f. Suppose that €2 generates a sequence of iterates
{y;}. In addition to the conclusions of Zangwill’s theorem, the
following statements hold.

» Each accumulation point of the sequence is a (strong) fixed
point of the algorithm.

* The sequence of iterates is asymptotically regular. In con-
sequence, it has a continuum of accumulation points, or it
converges in norm.
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* In case that the fixed points of €2 on each isocontour of f
form a discrete set, then the sequence of iterates converges
in norm.

Under additional (burdensome) hypotheses, it is possible to
prove norm convergence. For example, there is also a striking
convergence theorem due to Opial [72], a proof of which ap-
pears in the recent paper [73].

F. Alternating Projection

An alternating projection can be interpreted as a kind of
monotonic algorithm. Suppose that f : V X Z — Ry isa
continuous function. Then f induces two natural infimal maps,

My (z) ef argmin f(y,z) and
yey

M(y) = arg i f(y, 2).
z€Z
If YV and Z are closed, then Theorem 11 shows that the maps
M, and M?Z are both closed.

We interpret alternating projection as an algorithm on the
product space Y X Z equipped with the usual product topology.
Given an initial iterate y, from ), alternating projection gener-
ates a sequence of iterates {(y;, z;)} via the rules

Zj € Mz(yj) and Y1 € My(Z])
for each j > 0. Formally, this algorithm can be written as the
composition of two subalgorithms, €2, and (¢, that are de-
fined as

Quo = (y,2) = {y} x M*(y) and

ero : (yvz) l—>My(Z) X {Z}

It follows that © % Qo 0 4o 18 a closed algorithm whenever
Y and Z are compact. Both subalgorithms decrease the value of
f, so it should also be clear that 2 is monotonic with respect to
f- Zangwill’s theorem tenders a basic convergence result.

Corollary 14: Let Y and Z be compact. Suppose that the
alternating projection between ) and Z generates a sequence
of iterates {(y;,2;)}.

» The sequence has at least one accumulation point.

» Each accumulation point of the sequence lies in ) x Z.

* Each accumulation point is a generalized fixed point of the
algorithm.

* Each accumulation point (7, z) satisfies

f(7,2) Zliylf(ymzj)-

If the infimal maps M, and M* are single valued, we can
achieve a much more satisfactory result.

Corollary 15: Let Y and Z be compact subsets of a normed
space, and assume that the infimal maps M, and M~ are single
valued. Suppose that the alternating projection between )’ and
Z generates a sequence of iterates {(y;, z;)}. In addition to the
conclusions of Corollary 14, we have the following.
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* Each accumulation point is a classical fixed point of the
alternating projection.
» The sequence of iterates is asymptotically regular.
» The sequence of iterates either converges in norm or it has
a continuum of accumulation points.
Proof: We just need to show that the algorithm is strictly
monotonic with respect to f. Suppose that

fy,2) = [(Qy, 2)).

Since the infimal maps never increase the value of f, we have
the equalities

[y, z) = f(y, M*(y))
= f((My o M*)(y), M*(y)) = f(Qy, 2))-

Since M?* yields the unique minimizer of f with its first argu-
ment fixed, the first equality implies that M*(y) = {z}. Like-
wise, the second equality yields (M, o M*)(y) = {y}. That s,
Qy,z) = {(y,2)}. An application of Meyer’s theorem com-
pletes the argument. O

This result is a special case of a theorem of Fiorot and Huard
[74]. In Appendix II, we will translate the language of these
corollaries into more familiar terms.

G. Literature on Alternating Projection

Like most good ideas, alternating projection has a long bi-
ography and several aliases, including alternating minimiza-
tion, successive approximation, successive projection, and pro-
Jjection on convex sets. This subsection offers a résumé of the
research on alternating projection, but it makes no pretense of
being comprehensive. Deutsch has written more detailed sur-
veys, including [51], [75], [76].

According to Deutsch [75], alternating projection first ap-
peared in a set of mimeographed lecture notes, written by John
von Neumann in 1933. von Neumann proved that the alternating
projection between two closed subspaces of a Hilbert space con-
verges pointwise to the orthogonal projector onto their intersec-
tion [38]. Apparently, this theorem was not very well advertised,
because many other authors have discovered it independently,
including Aronszajn [48] and Wiener [77]. It was shown by
Aronszajn [48] and Kayalar—Weinert [49] that both sequences
of iterates converge geometrically with a rate exactly equal to
the squared cosine of the (Friedrichs) principal angle between
the two subspaces.

It is natural to extend the alternating projection between
two subspaces by cyclically projecting onto several subspaces.
Halperin demonstrated that, in a Hilbert space, the cyclic pro-
jection among a finite number of closed subspaces converges
pointwise to the orthogonal projector onto their intersection
[78]. The convergence is geometric [79]. Optimal bounds on
the rate of convergence can be computed with techniques of
Xu and Zikatonov [80]. Bauschke et al. study methods for
accelerating cyclic projection in the recent paper [81].

It will come as no surprise that researchers have also studied
alternating projection between subspaces of a Banach space.
Unaware of von Neumann’s work, Diliberto and Straus intro-
duced an alternating method for computing the best sup-norm
approximation of a bivariate continuous function as the sum

of two univariate continuous functions, and they proved some
weak convergence results [82]. The norm convergence of the
sequence of iterates remained open until the work of Aumann
[83]. Golomb extended the Diliberto—Straus algorithm to other
best approximation problems [84]. For more information on al-
ternating algorithms in Banach spaces, see the monograph of
Cheney and Light [85].

Another fruitful generalization is to consider projection
onto convex subsets. The projector—or proximity map—onto
a closed, convex subset of a Hilbert space is well defined,
because each point has a unique best approximation from that
set. The basic result, due to Cheney and Goldstein, is that the
alternating projection between two closed, convex subsets of
a Hilbert space will converge to a pair of points at minimal
distance from each other, so long as one set is compact [4].
Dykstra [86], [87] and Han [88] independently developed a
cyclic projection technique that, given a point, can compute its
best approximation from the intersection of a finite number of
closed, convex sets in a Hilbert space. Their algorithm requires
a correction to each projection. Their method is closely related
to earlier optimization techniques of Hildreth [§9] and Bregman
[5]. Details of this connection appear in the book [90] and the
article [91]. Tseng develops a very important extension of the
Dykstra-Han algorithm in [92]. To date, the most detailed
treatment of projection on convex sets is probably the survey
article [93].

Most of the work on alternating projection has involved the
Euclidean distance, but it is possible to develop results for other
divergence measures. In particular, Csiszdr and Tusnddy have
shown that alternate minimization of the Kullback—Leibler di-
vergence can be used to find a pair of minimally distant points
contained within two convex sets of probability measures [67].

There has been some research on alternating projection
between nonconvex sets, but the theoretical results so far are
limited. Fiorot and Huard have applied the theorems of Zangwill
and Meyer to obtain weak convergence results for a class of
block relaxation schemes that include alternating and cyclic
projection onto nonconvex sets [74]. Combettes and Trussell
have developed a technique which inflates the nonconvex
sets into convex sets; they offer some qualified convergence
results [94]. Cadzow has also demonstrated empirically that
cyclic projections among nonconvex sets can effectively solve
some signal enhancement problems [95]. More research in this
direction would be valuable.

Alternating projection has found application to many dif-
ferent problems, of which we offer a (small) selection. The most
famous example from these pages must be the Blahut—Arimoto
algorithm for computing channel capacity and rate-distor-
tion functions [96], [97]. In the field of signal restoration
and recovery, we mention the work of Landau—-Miranker
[98], Gerchberg [99], Youla—Webb [100], Cadzow [95], and
Donoho—-Stark [101]. Cetin, Gerek, and Yardimci show that
projection on convex sets can compute multidimensional
equiripple filters [102]. Xu and Zikatonov discuss how alter-
nating projection can be used to solve the linear systems that
arise in the discretization of partial differential equations [80].
In the matrix analysis community, alternating projection has
been used as a computational method for solving IEPs [35],
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[37] and for solving matrix nearness problems [36], [103]. In
statistics, one may view the expectation maximization (EM)
algorithm as an alternating projection [104]. de Leeuw has
discussed other statistical applications in [50].

APPENDIX II
CONVERGENCE AND FIXED POINTS

Armed with the theory of the preceding appendix, we are fi-
nally girded to attack the convergence of Algorithm 1. The re-
sults on point-to-set maps will allow us to dispatch this dragon
quickly. Then we will turn our attention to the convergence of
the algorithm in the special case that the frame vectors have pre-
scribed norms. This problem will require a longer siege, but it
too will yield to our onslaught. The convergence results that we
develop here are all novel.

A. Basic Convergence Proof

In this subsection, we establish the convergence of the basic
alternating projection algorithm that appears in Section III-D.
Our main burden is to translate the language of point-to-set maps
into more familiar terms.

Theorem 16 (Global Convergence): Let Y and Z be closed
sets, one of which is bounded. Suppose that alternating projec-
tion generates a sequence of iterates {(Y;, Z;)}. This sequence
possesses at least one accumulation point, say (Y, Z).

e The accumulation point lies in ) x Z.
* The accumulation point satisfies

1Y =2l = lim Y = Z;]l,.-
* The accumulation point satisfies
IY = Z||, = dist(Y, 2) = dist(Z,)).

Proof: Assume without loss of generality that ) is the
compact set, while Z is merely closed. We must establish that
we have all the compactness necessary to apply Corollary 14.

Without loss of generality, assume that Yo € ). If
6 = ||[Yo — Zo||p, then subsequent iterates always satisfy

IY; = Zjllp <6 and
IYjr1 = Zjllp <6
Thus, we may restrict our attention to the sets

Vi ={Y €Y dist(Y, 2) < §}
Z,={Z € Z:dist(Z,)) < 6}.

and

Since ) is compact, )); is compact because it is a closed subset
of a compact set. On the other hand, Z; is compact because it is
the intersection of the closed set Z with a compact set, namely,
the collection of matrices within a fixed distance of ).

We may apply Corollary 14. Each of the conclusions of the
corollary has a straightforward analog among the conclusions of
the present theorem. The only question that may remain is what
it means for a pair of matrices (Y, Z) to be a generalized fixed
point of the alternating projection. A generalized fixed point of
an algorithm is a point which is a possible successor of itself. In
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the present case, a pair of matrices can succeed itself if and only
if the second component is a potential successor of the first and
the first component is a potential successor of the second. The
matrix Z can succeed the matrix Y if and only if

1Z- Y, = dist(¥, 2).
Likewise, Y can succeed Z if and only if

|Y =Z||, = dist(Z,)).
This observation completes the proof. O

Since the collection of a-tight frames and the collection of
their Gram matrices are both compact, the theorem has two im-
mediate corollaries.

Corollary 17: If X, is the collection of a-tight frames, and S
is a closed set of matrices, then Theorem 16 applies with Y = S
and Z = X,,.

Corollary 18: 1f G, contains the Gram matrices of all a-tight
frames, and H is a closed set of Hermitian matrices, then The-
orem 16 applies with Y = G, and Z = 'H.

B. Stronger Convergence Results

Meyer’s theorem suggests that it might be possible to pro-
vide a stronger convergence result for Algorithm 1 if we can en-
sure that the matrix nearness problems have unique solutions. In
many cases, the nearness problems are uniquely soluble when-
ever the iterates get sufficiently close together. This provides a
local convergence result that is much stronger than Zangwill’s
theorem allows. First, we prove a general version of this result.
Afterward, we show that it applies to an alternating projection
that involves one of the spectral constraint sets X, or G,.

Recall that the distance between a matrix M and a set ) is
defined as

. def .
dist(M, V) = inf M — Y|,
ist(M, ) Ylgyll g

Theorem 19: Let) and Z be closed sets of matrices, one of
which is compact. Suppose that the alternating projection be-
tween ) and Z generates a sequence of iterates {(Y;,Z;)}, and
assume that the matrix nearness problems

in|lY =M
{(nelgll g

in||Z - M
min | e

have unique solutions for any matrix M in the sequence of iter-
ates. Then we reach the following conclusions.

* The sequence of iterates possesses at least one accumula-
tion point, say (Y, Z).

* The accumulation point lies in ) X Z.

* The pair (Y,Z) is a fixed point of the alternating projec-
tion. In other words, if we applied the algorithm to Y or to
Z every iterate would equal (Y,Z).

* The accumulation point satisfies

1Y =2l = lim Y = Z;ll,.-
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* The component sequences are asymptotically regular, i.e.,

IYjr1 = Yillg = 0 and |[|Zj41 — Zjl|p — 0.

* FEither the component sequences both converge in norm

I, =Vl =0 and |2~ 2], =0
or the set of accumulation points forms a continuum.
Proof: The argument in the proof of Theorem 16 shows
that we are performing an alternating minimization between two
compact sets. The hypotheses of the theorem guarantee that each
iterate is uniquely determined by the previous iterate. Corol-
laries 14 and 15 furnish the stated conclusions.

The only point that may require clarification is what it takes
for a pair of matrices (Y, Z) to be a classical fixed point of the
alternating projection. A classical fixed point of an algorithm is
the only possible successor of itself. In the case of alternating
projection, the matrix Z must be the unique successor of the
Y, and the matrix Y must be the unique successor of Z. This,
observation completes the argument. O

Due to the peculiar structure of the spectral constraint sets &',
and G, the solutions to the associated matrix nearness prob-
lems are often unique. Therefore, the alternating projection al-
gorithms that we have considered in this paper sometimes have
better performance than the basic convergence result, Theorem
16, would predict.

We remind the reader that

X, L X ec™N . XX* = al;}, and
Go ' {GeCN*N : G=G*, and

G has eigenvalues (a, ..., ,0,...
——
d

;0)}-

The uniqueness of the matrix nearness problems will follow
from the Wielandt—-Hoffman theorem, a powerful result from
matrix analysis.

Theorem 20 (Wielandt—Hoffman [25, pp. 368 and 419]):

Suppose that A and B are N x N Hermitian matrices, and
let the vectors A(A) and A(B) list the eigenvalues of A and B in
algebraically nonincreasing order. Then

[IAA) = AB)[l; < [|A =Bl -

Suppose instead that A and B are d x N rectangular matrices
with d < N, and let 6(A) and o(B) list the largest d singular
values of A and B in nonincreasing order. Then

lo(A) =a(B)ll; < [IA=Blg- ©

Note that if we solving matrix nearness problems with respect
to the spectral norm, Weyl’s theorem would allow us to provide
stronger bounds [25, p. 367].

Corollary 21 (Local Convergence With Constraint X,,): Let
S be a closed set of d x N matrices for which the associated
matrix nearness problem

in|S - M
min || e

has a unique solution whenever dist(M, S) < e. Imagine that
the alternating projection between S and X, generates a se-
quence of iterates {(S;, X;)} in which

IS; — Xj||p < min{e, a}, for some index .J.

Then the conclusions of Theorem 19 are in force.

Proof: According to Theorem 2, the matrix in X, nearest
to a matrix M is unique so long as M has full rank. A d x N
matrix is rank deficient only if its dth largest singular value is
zero. Observe that the largest d singular values of each matrix
in X, all equal & > 0. According to the Wielandt—-Hoffman
theorem, any matrix sufficiently close to X, cannot be rank de-
ficient. More precisely, dist(M, X,) < « implies that M has
full rank, which in turn shows that M has a unique best approx-
imation in X,.

Define the constraint sets

yesn closure{S; : j > J}

z¥x,n closure{X; : j > J}.

and

Note that ) is closed and that Z is compact. We will apply
Theorem 19 to the tail of the sequence of iterates, beginning
with index J. For 7 > J, each matrix S; is close enough to Z
and each matrix X; is close enough to )} that we can ensure the
matrix nearness problems have unique solutions. O

Corollary 22 (Local Convergence With Constraint G, ): Let
‘H be a closed set of N x N matrices for which the associated
matrix nearness problem

in|H=M
gggll llg

has a unique solution whenever dist(M, H) < e. Imagine that
the alternating projection between G, and H generates a se-
quence of iterates {(G,, H;)} in which

|Gj — H,|lp < min{e, a/V2}, for some index J.

Then the conclusions of Theorem 19 are in force.

Proof: Theorem 3 indicates that the matrix in G, nearest
to a matrix M is unique so long as its dth and (d + 1)th
eigenvalues are distinct. Imagine that M is a matrix whose
dth and (d + 1)th eigenvalues both equal 7. Since the dth and
(d 4+ 1)th eigenvalue of a matrix in G, are « and zero, the
Wielandt-Hoffman theorem shows that

dist(M, Go)? > (o — 7)% + 72

Varying 7, the minimum value of the right-hand side is «?/2.
Therefore, dist(M, G,) < «/+/2 implies that the dth and (d +
1)th eigenvalues of M are distinct. In consequence, M has a
unique best approximation from G,,.

As before, define the constraint sets

Yy défHﬂclosure{Hj 23> J}

z%¥g, N closure{G; : j > J}.

and

The set ) is closed, and Z is compact. We will apply Theorem
19 to the tail of the sequence of iterates, beginning with index
J.For j > .J, each matrix H; is close enough to Z and each
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matrix G; is close enough to ) that we can ensure the matrix
nearness problems have unique solutions. O

C. Specified Column Norms

This subsection offers a detailed analysis of the alternating
projection between the set of a-tight frames and the collection
of matrices with specified column norms.

Let c1,...,cn be positive numbers that denote the squared
column norms we desire in the frame. Without loss of generality,
we assume that « = ) ¢,/d = 1 to streamline the proofs.

Then the structural constraint set is

SE S e PN 8,2 = cn} (10)

Since the tightness parameter o of the frame equals one, we
define the set of 1-tight frames as

X X e eV XX = 1)

Suppose that Sy is a full-rank matrix drawn from S, and per-
form an alternating projection between the sets S and A7 to
obtain sequences {S;} and {X;}. Proposition 23 of the sequel
shows that the sequence {S;} lies in a compact subset of S
whose elements have full rank, while the sequence {X;} lies in
a compact subset of X; whose elements have nonzero columns.
By an appeal to the matrix nearness results, Theorem 2 and
Proposition 5, we see that each iterate is uniquely determined
by its predecessor. We may therefore apply Corollary 15.

In this subsection, we complete the foregoing argument by
demonstrating that the iterates are well behaved. In the next sub-
section, we classify the full-rank fixed points of the alternating
projection between S and A7.

Set ¢nin = min,, ¢,, and define the diagonal matrix C whose

entries are \/c1,...,/cN.

Proposition 23: Assume that the initial iterate Sq is a full
rank matrix from S. For every positive index j,

1) the Euclidean norm of each column of X; is at least

V/Cmin/ [|C[|g; and

2) the smallest singular value of S; is at least \/Cmin.

The matrices that satisfy these bounds form compact subsets of
X; and S.

Proof: Assume that 5 > 0, and make the inductive as-
sumption that S; has full rank. First, we bound the top singular
value of S; by exploiting the relationship between the singular
values of a matrix and its Frobenius norm. Since C lists the
column norms of S, it follows that ||S; ||12: = ||C||?. The squared
Frobenius norm of S; also equals the sum of its squared singular
values. It is immediate that the maximum singular value of S;
satisfies

Oimax(S7)° < IICII5 - (1)
Next we use this relation to estimate the column norms of X;.
Let S; have singular value decomposition UXV*, and write the
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nth columns of S; and X; as 8,, and ,,. On account of the fact
that X; = (S;S,%)~Y/2S;, we have

lally = ||(58;%) 7728,
= Juz-ut s,
Z vV cmin/o'max(sj)

(12)

since the norm of 8,, is at least \/Ciin. Introducing the bound
(11) into inequality (12) yields the first part of the proposition.

Now, we show that the smallest singular value of S;j;; re-
mains well away from zero. Define T; to be the diagonal ma-
trix that lists the column norms of X;. Note that, since X; is
a submatrix of a unitary matrix, its column norms cannot ex-
ceed one, and so every entry of Tj_1 must be at least one. We
can now express the matrix in S nearest to X; with the formula
Sjy1 = X T;lc. It is well known that the smallest singular
value of S;; is equal to the square root of the smallest eigen-
value of S;41S;41". We will apply the Rayleigh-Ritz theorem
[25, p. 176] to provide a lower bound on this eigenvalue. Let v
be any nonzero, d-dimensional vector, and form the Rayleigh
quotient

v*(Sj+1S417)v _ ”*(XJTJTICZTJIXJ*)”

v*v v*v

Make the substitution w = Xj* v, and observe that
w*w = v (X;X;") v =v*v

since the matrix X; has orthonormal rows. Therefore, the
Rayleigh quotient satisfies

v (Sj15;417) v _
v*U

* 127171
w* (T, C°T; )'w'

w*w

It follows that the smallest eigenvalue of S; 1 is no less than the
smallest eigenvalue of T;1C2Tj_1. But this matrix is diagonal
with entries no smaller than cy,;,. Its smallest eigenvalue is no
less than c.,;,. We conclude that

Jmin(sj—l—l) Z V Cmin

and the second part of the proposition is complete.

Finally, we must make the compactness argument. We
have shown that the squared singular values of an iterate S;
must lie in the closed interval [\/Cmin, ||C||p]. The minimum
squared singular value of a matrix is a continuous function of
the matrix entries, which follows from conclusion (9) of the
Wielandt—Hoffman theorem. Therefore, the matrices whose
smallest singular value lies in this interval form a closed set.
We discover that the intersection of this set with the compact
set S is compact. The same type of argument implies that the
sequence {X;} lies in a compact subset of X; whose matrices
have column norms bounded away from zero. O



TROPP et al.: DESIGNING STRUCTURED TIGHT FRAMES VIA AN ALTERNATING PROJECTION METHOD 207

D. Fixed Points 1

It remains to characterize the fixed points of the alternating
projection between the set of matrices with fixed column norms
and the set of a-tight frames.

Proposition 24: The full-rank classical fixed points of an
alternating projection between S and X, are precisely those
full-rank matrices S from S whose columns are all eigenvec-
tors of SS*. That is, SS*S = SA, where A € CV*¥ is diagonal
and positive with at most d distinct values.

Proof: As before, we take a = 1 for simplicity. Define the
diagonal matrix T = T(S) whose entries are the column norms
of (SS*)~1/2s.

Suppose that S is a full-rank fixed point of the algorithm.
Thus, projecting S onto X3 and projecting back to S returns S.
Symbolically

S = ((S5*)"/28)(T10).

Define A = T~'C. Then the equation becomes (SS*)~'/2S =
SA~L. Due to the joint eigenstructure of a positive-definite ma-
trix and its positive-definite roots [25, p. 405], it follows that
(SS*)S = SAZ.

Conversely, suppose that S has full rank and that
(S5*)S = SA? for some positive diagonal matrix A. Equiva-
lently, (55*)8,, = A2 s,, for each n. It follows that

(S5*)"Y2%s, = A7 ls,,
Take norms to see that¢,, = A, L. /¢,.. Combine these equations

into the matrix equation A = T~!C. Thus, S is a fixed point of
the algorithm. O

for each n.

E. Fixed Points 11

Proposition 24 allows us to provide a partial characterization
of the fixed points of any alternating projection between the set
of a-tight frames &, and any structural constraint set Z that
contains matrices with fixed column norms. This result applies
even if the matrices in Z have additional properties.

Proposition 25: Suppose that the column norms of matrices
in Z are fixed. A sufficient condition for a full-rank matrix Z
in Z to be a fixed point of the alternating projection between
Z and X, is that the columns of Z are all eigenvectors of ZZ*.
Thatis, ZZ*Z = Z\, where A is a positive, diagonal matrix with
no more than d distinct entries.

Proof: Let S be the set defined in (10), and let Z be a
closed subset of S. Suppose that the matrix Z in Z is a fixed
point of the alternating projection between S and X, and let X
be the matrix in X, closest to Z. It follows that Z is the (unique)
matrix in S closest to X. In particular, Z is the matrix in Z closest
to X. Therefore, Z is also a fixed point of the alternating projec-
tion between Z and X,,. An appeal to Proposition 24 completes
the proof. O
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