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Recognizing Disfluencies in Conversational Speech
Matthew Lease, Student Member, IEEE, Mark Johnson, and Eugene Charniak

Abstract—We present a system for modeling disfluency in
conversational speech: repairs, fillers, and self-interruption points
(IPs). For each sentence, candidate repair analyses are generated
by a stochastic tree adjoining grammar (TAG) noisy-channel
model. A probabilistic syntactic language model scores the fluency
of each analysis, and a maximum-entropy model selects the most
likely analysis given the language model score and other features.
Fillers are detected independently via a small set of deterministic
rules, and IPs are detected by combining the output of repair and
filler detection modules. In the recent Rich Transcription Fall
2004 (RT-04F) blind evaluation, systems competed to detect these
three forms of disfluency under two input conditions: a best-case
scenario of manually transcribed words and a fully automatic case
of automatic speech recognition (ASR) output. For all three tasks
and on both types of input, our system was the top performer in
the evaluation.

Index Terms—Disfluency modeling, natural language pro-
cessing, rich transcription, speech processing.

I. INTRODUCTION

I N spontaneous speech, speakers form their utterances on the
fly and subject to various cognitive constraints and prag-

matic factors. As a result, such speech is often disfluent, con-
taining partial words (or word fragments), fillers1 (e.g., , ,

, , etc.), and repairs, such as that shown in Fig. 1.
While the presence of disfluencies rarely poses any compre-
hension problem to an engaged listener, they have been shown
to negatively impact both the readability of transcribed speech
[2] and the accuracy of automated analysis performed on it [3].
Such findings demonstrate the importance of moving beyond
bare stream-of-words automatic speech recognition (ASR) to
instead generate enriched transcriptions, in which disfluencies
and sentence2 boundaries are recognized in addition to words.
This line of research has been notably pursued in recent years
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1While the term filler has traditionally been synonymous with filled pause, we
adopt recent Linguistic Data Consortium (LDC) SimpleMDE [1] conventions in
using the term to describe a broad set of vocalized space-fillers which includes
filled pauses.

2We use sentence and sentence-like unit (SU) interchangeably in this text.
While SU is more precise [1], the notion of sentences is widely understood.

Fig. 1. Structure of a typical repair, with crossing dependencies between
reparandum and alteration.

via the Defense Advanced Research Projects Agency (DARPA)
EARS program.

In previous work, we presented two systems for detecting
speech repairs [3], [4], showing that a noisy-channel model
based on a tree adjoining grammar (TAG) outperformed an
earlier word-based classifier. In this paper, we add support
for filler and self-interruption point (IP) detection and further
improve repair detection via maximum-entropy modeling.

The overall architecture of our system is sketched in Fig. 2.
The TAG model (Section II) takes tokenized3 input sentences
and proposes candidate repair analyses, where each analysis
identifies zero or more hypothesized repair locations for a given
sentence. For each analysis, the fluency of the remaining, nonre-
pair words in the sentence is scored using a syntactic language
model (Section III). Given these analyses and their associated
scores, a maximum-entropy classifier (Section IV) is then used
to rerank the hypotheses and select the most probable one. Use
of maximum-entropy modeling permits us to use a wide range of
additional information to identify the best sentence-level anal-
ysis, something that would be harder to realize in the first-stage
generative model.

A limitation of the system described above is that the only
form of disfluency modeled is speech repairs. While the TAG
also identifies fillers involved in speech repairs, most fillers ac-
tually occur outside of repair contexts and so are not identified
by that model. To address this, we augmented our TAG-based
model with a small set of hand-crafted, deterministic rules for
filler detection (Section V). While our eventual goal is to in-
corporate filler detection directly into the noisy-channel model,
these simple rules have proven to be surprisingly effective. Sup-
port for IP detection was added via deterministic combination
of repair and filler predictions (Section VII).

Section VI describes data used in training and evaluating our
system, and Section VII presents system performance in the
Rich Transcription Fall 2004 (RT-04F) blind evaluation [5]. As
part of this evaluation, system performance was measured on
two types of input: a best-case condition of manually transcribed
words and a fully automatic case of ASR output. For all three
tasks and on both types of input, our system was the top per-
former in the evaluation. The results on ASR output are particu-
larly encouraging in showing that syntactic language modeling
features continue to be useful even in the presence of significant
word recognition errors (Table II).

3http://www.cis.upenn.edu/~treebank/tokenizer.sed
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Fig. 2. Overall system architecture. Roman script identifies processing steps,
while italic script identifies data. Input IP probabilities serve as additional
features for reranking (Section IV).

II. TAG CHANNEL MODEL

The TAG model is responsible for proposing candidate re-
pair analyses for each sentence. We follow previous work on
speech repairs [6], [7] in dividing a repair into three parts: the
reparandum (the material repaired), the interregnum (or editing
term) that typically consists of zero or more fillers, and the al-
teration. Fig. 1 shows these three parts for a typical repair. As
this figure shows, the alteration can often be understood as a
rough copy of the reparandum, using the same or very similar
words in roughly the same order [7]. In other words, a speech
repair seems to involve cross-serial dependencies between the
reparandum and the alteration, as shown in Fig. 1. Languages
with an unbounded number of cross-serial dependencies cannot
be described by a context-free or finite-state grammars, and
crossed dependencies like these have been used to argue nat-
ural languages are not context-free languages [8]. Fortunately,
mildly context-sensitive grammar formalisms such as TAGs and
combinatory categorial grammars can model cross-serial depen-
dencies, and this is why we adopt a TAG-based model here.

Fig. 3 shows our TAG model’s dependency structure for the
repair of Fig. 1. Interestingly, if we trace the temporal word
string through this dependency structure, aligning words next
to the words they are dependent on, we obtain a “helical” type
of structure familiar from genomics, and in fact TAGs are being
used to model genomes for very similar reasons [9].

To effectively model both the crossed-dependencies of re-
pairs and the more usual linear or tree-structured dependencies

Fig. 3. The “helical” dependency structure induced by the generative model
of speech repairs for the repair depicted in Fig. 1.

of nonrepaired speech, we adopt the noisy channel paradigm [7],
[10]. We begin by imagining that speakers intend to say source
sentences (with no repairs), but may mistakenly insert one or
more repairs, producing observed sentences . Our goal is for
each observed sentence to recover the most likely source sen-
tence . Applying Bayes Rule, we can formulate this problem
in canonical noisy channel form

The channel model defines a stochastic mapping of
source sentences into observed sentences via the optional in-
sertion of one or more repairs, and the language model
defines a probability distribution over source sentences. This is
the same general setup that has also been effectively applied to
speech recognition [11] and machine translation [12]. In our ap-
plication, the channel model is realized as a TAG, and we train
our syntactic language model (Section III) on sentences with the
speech repairs removed.

The channel model nondeterministically predicts repairs at
every position in the input string, conditioned on the preceding
word. Because of this conditioning, it captures the well-known
effect that repairs are more likely to occur at the beginning of
a sentence than elsewhere. The interregnum is generated by a
simple unigram model over words or pairs of words such as
I mean, etc. Each reparandum word is generated conditioned
on the word preceding it and the word in the alteration string
corresponding to it. The TAG transducer is effectively a simple
first-order Markov model (albeit one that captures string non-
local dependencies).

A. Formal Description

The TAG channel model defines a stochastic mapping of
source sentences into observed sentences . There are
several ways to define transducers using TAGs such as [13], but
the following simple method inspired by finite-state transducers
suffices for the application here. The TAG defines a language
whose vocabulary is the set of pairs ,
where is the vocabulary of the observed sentences . A
string in this language can be interpreted as a pair of strings

, where is the concatenation of the projection of
the first components of and is the concatenation of the
projection of the second components. For example, the string

: a flight:flight to: Boston: uh: I: mean: to:to
Denver:Denver on:on Friday:Friday has the observed string

flight to Boston uh I mean to Denver on Friday and the
source string flight to Denver on Friday. Fig. 4 shows
the TAG rules used to generate this example.
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Fig. 4. TAG rules used to generate the example shown in Fig. 1, their respective weights, and the corresponding derivation and derived trees. The nonterminals
in this grammar are of the form N , R , and I , where w is a word appearing in the source string, and w is a word appearing in the observed string.
Informally, theN nonterminals indicate that the preceding word w was analyzed as not being part of a repair, while the R that the preceding words w
and w were part of a repair with w in the alteration corresponding to w in the reparandum. The nonterminal I generates words in the interregnum of a repair.
R indicates the foot node in an auxiliary (repair) tree. Encoding the preceding words in the TAG’s nonterminals permits the channel model to be sensitive to
lexical properties of the preceding words. The start symbol isN , where “$” is a distinguished symbol used to indicate the beginning and end of sentences. Details
of the associated conditional probability distributions above can be found in [4].

B. Model Estimation

To estimate weights on the TAG productions described in
Section II-A, we need to know the TAG derivation of each
sentence in the training data. Uniquely determining this requires
knowingboththe locationsofeachreparandum, interregnum,and
alteration regions of each repair (which are annotated—see Sec-
tion VI) and the crossing dependencies between the reparandum
and alteration words (as indicated in Fig. 1), which are not

annotated. We obtain the latter by aligning the reparandum and
repair strings of each repair using a minimum-edit distance
string aligner like [14] with the following alignment costs:

0 identical words;
2 words with the same POS tag;
4 an insertion or a deletion;
5 words with POS tags that begin with the same letter;
7 an arbitrary substitution.
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These costs were chosen so that a substitution will be selected
over an insertion followed by a deletion, and the lower cost for
substitutions involving part-of-speech (POS) [15] tags beginning
with the same letter is a rough and easy way of establishing a pref-
erence for aligning words whose POS tags come from the same
broad class, e.g., it results in aligning singular and plural nouns,
present and past participles, etc. While we did not quantitatively
evaluate the quality of the alignments (since they are not in them-
selves the object of this exercise), manual inspection convinced
us they were sufficiently accurate for our purposes.

From our training data, we estimate a number of condi-
tional probability distributions (see [4] for full details). These
estimated distributions are the linear interpolation of the corre-
sponding empirical distributions from the main subcorpus using
various subsets of conditioning variables (e.g., bigram models
are mixed with unigram models, etc.) using Chen’s bucketing
scheme [16]. As is commonly done in language modeling,
the interpolation coefficients are determined by maximizing
the likelihood of the heldout data counts using expectation
maximization (EM). Special care was taken to ensure that all
distributions over words ranged over (and assigned nonzero
probability to) every word that occurred in the training corpora;
this turns out to be important as the size of the training data for
the different distributions varies greatly.

C. Computation

While we assume that the source sentence is a substring of
the observed string , the number of possible s grows expo-
nentially with the length of , so exhaustive search is probably
infeasible. However, polynomial-time dynamic programming
parsing algorithms available for TAGs can be used to search
for repairs. To use these algorithms, it is necessary that the in-
tersection (in language terms) of the TAG channel model and
the language model itself be describable by a TAG. One way
to guarantee this is to use a finite-state language model, so we
use a bigram language model with the TAG to generate candi-
date analyses for each sentence. The syntactic language model
is then run on the nonrepaired portions of these to refine the bi-
gram language model scores.

We use the standard bottom-up dynamic programming TAG
parsing algorithm to search for candidate parses. Because our
TAG only involves adjunction of single words rather than ar-
bitrary phrases, the general TAG parsing algorithm runs in

time, where is the length of the string. There is an addi-
tional optimization we use to reduce running time. Even though
our sentences are often long, it is extremely unlikely that any re-
pair will be longer than, say, 12 words. So to increase processing
speed, we only compute analyses for strings of length 12 or less.
For every such substring that can be analyzed as a repair, we
calculate the repair odds, i.e., the probability of generating this
substring as a repair divided by the probability of generating this
substring via the nonrepair rules, or equivalently, the odds that
this substring constitutes a repair. The substrings with high odds
are likely to be repairs.

This more local approach has a number of advantages over
computing a global analysis. First, as just noted it is much
more efficient to compute these partial analyses rather than
global analyses of the entire sentence. Second, there are rare

cases in which the same substring functions as both alteration
and reparandum (i.e., the alteration is also repaired). A single
global analysis would not be able to capture this (since the
TAG channel model does not permit the same substring to be
both a reparandum and an alteration), but we combine these
overlapping repair substring analyses in a post-processing
operation to yield an analysis of the whole sentence. (We do
insist that the reparandum and interregnum of a repair do not
overlap with those of any other repairs in the same analysis).

III. SYNTACTIC LANGUAGE MODEL

Given a set of candidate repair analyses for each utterance,
the syntactic language model is used to score the fluency of the
remaining nonrepair words under each analysis. To this end,
we apply the generative syntactic probabilistic model described
completely in [17]. When used for parsing, the model seeks to
maximize

(1)

where is a parse tree and is a sequence of words (an ut-
terance). For language modeling, rather than simply finding the
most probable parse, instead we sum the probability mass over
the set of most likely parse trees

(2)

to yield , the language model score for the utterance.

IV. MAXIMUM-ENTROPY RERANKER

The maximum-entropy reranker is responsible for choosing
the best repair analysis for each sentence from a set of hy-
potheses generated by the TAG channel model. Reranking has
the advantage that it permits us to experiment with a wide va-
riety of other features, including features derived from the string
and parse tree and features derived from other sources, such as
the syntactic context of repairs and prosodic information asso-
ciated with IPs. Reranking also allowed us a simple means of
addressing the mismatch between the training and evaluation
data used in our experiments (see Section VI).

The general setup employed here is the same as we used in
parse reranking [18]. The reranker selects from a set of analyses

the analysis with the maximum
score. A feature-extractor converts each analysis into a vector of
real-valued features (e.g., the value

of the feature could be the log probability of the analysis
under the syntactic language model). Each feature is asso-

ciated with a real-valued weight , and (the dot product
of the feature vector and the weight vector ) is a single scalar
score for each analysis. The reranker employs a maximum-en-
tropy estimator that selects the that minimizes the log loss of
the highest scoring analysis conditioned on (together with
a Gaussian regularizer to prevent over-training). Informally, is
chosen to make the correct analyses as likely as possible under
the (conditional) distribution defined by and .

The log probabilities produced by the TAG channel model
and the syntactic parser language model are the primary features
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used by the reranker; if these were the only features, the MaxEnt
reranker would essentially implement the standard noisy channel
model with adjustable mixing constants for the channel and lan-
guage models. An advantage of the MaxEnt reranker is that it
can incorporate a wide range of different features. In the system
described here, we added a variety of features based on the local
context of the reparandum based on the features we used in an
earlier word-based repair detector [3]. An informal error anal-
ysis of the two detection algorithms in [3] and [4] suggested that
the noisy channel model was better at detecting moderately long
speech repairs, but the word-based classifier was better at de-
tecting extremely short repairs, so we used many of the features
from [3] as features for our MaxEnt model.

We also added two additional types of features: syntactic and
prosodic. The syntactic features were the category labels im-
mediately dominating, preceding, and following the repair. The
prosodic features consisted of per-word IP probabilities (see Sec-
tion VI). We found that the most straight forward way of incor-
porating the prosodic features—taking the log probabilities as
features—was not successful, so instead we binned the proba-
bility values and used each distinct bin as a categorical variable
(the feature fires once whenever any word’s IP probability falls
into the bin). We suspect that the binning helps deal with non-
linearities in the probability estimates of the models involved
(i.e., one or both of the log probability distributions estimated by
the noisy channel and/or IP models is nonlinearly related to the
true log probability distribution, and this nonlinearity cannot be
corrected by a simple scaling constant of the kind that MaxEnt
estimates).

V. FILLER WORD DETECTION

SimpleMDE [1] annotates three filler types to be recovered.

• Filled Pauses (FPs): hesitation sounds that speakers em-
ploy to indicate uncertainty or to maintain control of a
conversation while thinking of what to say next. Exam-
ples include , , , , , etc.

• Discourse Markers (DM’s)4: words or phrases that func-
tion primarily as structuring units of spoken language.
Examples include , , , , ,

, etc.
• Explicit Editing Terms (EETs): overt statements from

the speaker recognizing the existence of an edit disfluency.
Examples include , , etc.

As shown in Fig. 2 and described in Section VI, input to our filler
detection component consists of tokenized words segmented by
detected sentence boundaries. As described below, we also ex-
ploit detected POS and syntactic information provided by the
syntactic language model (Section III), which outputs the most
likely parse tree as well as the language model score for each
repair analysis candidate generated by the TAG (Section II). Be-
cause EETs account for less that 1% of all filler words, as mea-
sured in the development section of our data (Section VI), we
do not model them in our system.

4While SimpleMDE’s definition of discourse marker is similar to that used
in discourse parsing literature [19], [20], the examples (and data) suggest that
what is being annotated is actually quite different. Rather than indicate discourse
structure, these items appear to function similarly to filled pauses.

FPs comprise about 30% of all filler words, and 95% of these
consist of , , , and . These words are always labeled as
FPs by our system. We do not model the remaining 5% of FPs,
which consist of unusual orthography and words which more
often function as nonfillers, other filler types, or backchannels
(i.e., words like - used to indicate the listener is still en-
gaged in the conversation).

DMs account for the remaining 70% of filler words. Like FPs,
DMs also have a rather peaked distribution: , ,

, , , , , comprise 95% of all
DMs. However, unlike FPs, these terms also occur frequently as
nonfillers:

• what ?
• he is busy, many who work.

As a result, classifying the terms above by their most frequent
labeling (DM or nonfiller) and detecting FPs as described ear-
lier only achieves a filler word detection (FWD) error of about
30%, where error is defined as the number of misclassifications
divided by the number of true filler words. To improve upon this,
a few simple lexical, POS, and syntactic rules were adopted, as
listed below.

Lexical rules reduced overall error to about 22%, POS rules
to about 20%, and syntactic rules to about 19%.

Lexical rules
• like: label as nonfiller if (a) preceded by ’ , ’ , ’ , ,

, , , , , , , ,
, or or (b) followed by or .

• oh: label as DM whenever it is not the first word of a
sentence or the sentence is longer than four words.

POS rules
• like: label as nonfiller if (a) followed by or or (b)

preceded , , or .
• so: label as nonfiller if followed by (a) , (b) preceded by

or , or (c) if the two preceding tokens were both .

Syntactic rules
• actually: label as DM only if it is either part of an inter-

jection (UH) phrase or if it begins the utterance
• so: label as nonfiller if part of an adjectival (ADJP) or

adverbial (ADVP) phrase.

As a final note, recall our earlier comment that the TAG model
identifies fillers involved in speech repairs, but that most fillers
actually occur outside of repair contexts. Because the determin-
istic rules above worked well in both repair and nonrepair con-
texts, we found that even oracle detection of fillers in repair con-
texts could only negligibly improve overall performance. There-
fore, we discarded filler predictions made by the TAG and pre-
dicted fillers entirely on the basis of the rules described above.

VI. INPUT DATA

Our system was trained and evaluated on conversational tele-
phone speech drawn from Switchboard [21] and Fisher:5

• TB3 Penn Treebank-3 (LDC99T42): contains 1126 disflu-
ency (Meteer) annotated [22] Switchboard conversations,
650 of which were treebanked [23], [24].

5http://www.ldc.upenn.edu/Fisher
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• Dev1 RT-04 MDE DevTest Set #1 V1.2 (LDC2004E16):
72 SimpleMDE [1] Switchboard and Fisher conversations
(6 h).

• Dev2 RT-04 MDE DevTest Set #2 V1.1 (LDC2004E29):
36 SimpleMDE Fisher conversations (3 h).

• Eval RT-04 MDE Eval Data V1.1 (LDC2004E50): 36
SimpleMDE Fisher conversations (3 h).

We did not make use of the RT-04 MDE Training Data
(LDC2004E31) due to logistics of our participation in the evalu-
ation. There are important differences worth noting between the
annotation schemes used in these various corpora, particularly
in terms of disfluencies and sentence boundaries. Our goal was
to automatically recover disfluency annotations consistent with
SimpleMDE guidelines [1]. As such, one challenge of our work
was determining how to make best use of training data annotated
according to other schemes, and this is discussed further next.

The TAG transducer (Section II) was trained on the
Sections II and III of the Meteer-annotated Switchboard
corpus (932 conversations), with Section IV (194 conversa-
tions) reserved for future use. Meteer markup [22] was used
for training instead of SimpleMDE-annotated data because
TAG training requires the location of the alteration portion of
speech repairs not annotated under SimpleMDE. Section VIII
describes future work to facilitate use of SimpleMDE data for
TAG training.

The syntactic language model (Section III) was trained on
Sections II and III of the Switchboard treebank (496 conversa-
tions), with Section IV (154 conversations) reserved for future
use. Small sections of less formal text from TB3’s Brown corpus
were also found to be useful when included in training (though
use of TB3’s Wall Street Journal text was found to have no
statistically significant effect). Another case of annotation stan-
dard mismatch occurred here in conflicting notions of sentence
boundaries between TB3 syntax annotation and SimpleMDE.
This may be addressed in future work through use of the newly
released treebank of the RT-04 MDE development and evalua-
tion data (LDC2005E15), and through automatic parsing of the
RT-04 MDE Training data.

Once trained, the TAG and language model were run on ,
, and to generate scored analyses for reranking (Sec-

tion IV). During development, the reranker was trained on
and tested on . For the final system run, the reranker was
trained on both and and tested on . As men-
tioned in Section IV, one motivation for using MaxEnt is that
it helps us address the annotation mismatch between training
and evaluation data. While we do not report results here, we
did find that training the reranker on alone significantly
outperformed cross-validated training on TB3 Switchboard, de-
spite the much larger size of the latter.

For corpus preparation, partial words and capitalization were
stripped out of training data for ASR evaluation but preserved
when testing on manually transcribed words (per RT-04F guide-
lines [5]). We did not use word-type information (e.g., proper
noun, acronym, etc.) or temporal information (e.g., event onset
and duration times) that was available in the SimpleMDE rttm
data. We also made no direct use of the audio data, though it was
used indirectly through our collaboration with SRI-ICSI-UW
for the RT-04F evaluation.

TABLE I
ERROR RATES OF OUR MDE SYSTEM ON THE RT-04F EVALUATION

TASKS GIVEN REFERENCE AND ASR INPUT WORDS

As part of this collaboration, we were provided with ASR
output, detected s SU boundaries for both ASR and manual-tran-
scription conditions, and per-word IP probabilities (the proba-
bility of each word being followed by an IP event). The IP/SU
probabilities were generated by an ensemble of decision tree,
HMM, and maximum entropy models that leveraged lexical,
part-of-speech, and prosodic features [25]. For our part, whereas
the ASR words and SU boundaries represented fundamental in-
puts to our system (i.e., we take as input words segmented into
SUs), the IP probabilities simply provided an additional feature
for reranking (Section VI). Their benefit is shown in Table II.

VII. RESULTS

In this section, we report the performance of our system on
the following metadata detection tasks measured in the Rich
Transcription 2004 Fall (RT-04F) blind evaluation.

• Edit Word Detection (EWD): Label each token as to
whether or not it occurs in a speech repair reparandum.

• Filler Word Detection (FWD): Label each token as to
whether or not it occurs as part of a filler. Filler-type must
also identified: FP, DM, or explicit editing term (EET).
These types are described with examples in Section V.

• Interruption Point Detection (IPD): Label each inter-
word gap as to whether or not speech becomes disfluent at
that point. An IP occurs whenever the previous word ends
a reparandum or the next word begins a filler.

In terms of IP detection, since our EWD system identifies the
end of each reparandum region and our FWD system identifies
the start of each filler phrase, we were able to predict IPs by
simply taking the union of our EWD and FWD predictions.

For all tasks, the goal was to detect disfluency consistent
with SimpleMDE annotations [1], where error was measured as
the number of misclassifications divided by the number of true
events (true positives). For each task, system performance was
measured on both the best-case of manually transcribed (refer-
ence) words and the fully automatic case of ASR output. For all
three tasks and on both types of input, our system was the top
performer in the evaluation. Results of our system performance
are given in Table I.

To better understand the relative importance of the various
components of our EWD system, we performed several con-
trastive tests in which different subsets of features were used:

1) all features included (full system);
2) all features except the IP features;
3) all features except the Language Model probabilities;
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TABLE II
EWD ERROR RATE ON THE DEV2 DATASET AS A FUNCTION OF FEATURES

USED BY THE MAXIMUM-ENTROPY RERANKER (ALTERNATELY EXCLUDING

IP, SYNTACTIC LM, AND TAG CHANNEL FEATURES)

4) all features except the TAG Channel Model probabilities.
In these tests, the reranker was trained on the Dev1 data and
evaluated on the Dev2 data (we reserved further use of the
test set for final runs in future work). The results of these tests
are given in Table II.6

Since our noisy-channel repair detection module depends
heavily on input sentence boundaries, we were also interested
in examining the effect of boundary detection error on its
performance. Using reference sentence boundaries, our system
achieves a 44.3% EWD error rate, which is a 16% error rate
reduction over the 52.8% EWD error rate seen using auto-
matically detected sentence boundaries. This indicates our
repair detection module stands to gain significantly from future
advances in sentence boundary detection.

VIII. CONCLUSION AND FUTURE WORK

We extended a TAG-based model of speech repairs [4] with
a maximum-entropy reranker. We also augmented this system
with a set of manually constructed deterministic rules for de-
tecting fillers and showed that repair and filler predictions could
be combined to predict self-interruption points (IPs) as well.
System performance on these three tasks was measured on two
types of input: a best-case scenario of manually transcribed
words and a fully automatic case of ASR output. In all six
cases, our system improved the state-of-the-art, as measured
in the recent RT-04F evaluation. As noted earlier, we found
the results on ASR output to be particularly encouraging in
showing that syntactic language modeling features continue to
be useful even in the presence of significant word recognition
errors (Table II). Our existing system also stands to benefit
from additional data not used in this evaluation: the RT-04
MDE Training Data (Section VI) and the new RT-04 MDE
development and evaluation data treebank (LDC2005E15).

In regard to future work, we believe filler detection can be im-
proved by incorporating filler generation directly into the TAG-
based noisy-channel model. In addition to improving Rich Tran-
scription [5], there is strong evidence that improved filler detec-
tion can improve parsing [26], and we expect other automated

6Note that the reranker’s features in our system were chosen to complement
the parser-based language model and the TAG channel model, and were not
changed during these tests. It may be able to improve performance of a system
without these components by using other kinds of features.

processing of transcribed speech (e.g., machine translation) to
benefit similarly. On a related note, since little cross-linguistic
work has been done to date in evaluating the relationship be-
tween disfluency detection and parse accuracy, we are very in-
terested in evaluating the performance of our system on other
languages. Such work is needed to help us understand the ex-
tent to which existing techniques and findings our applicable
beyond English.

We would also like to explore the use of partially labeled and
unlabeled training data. In terms of language modeling, there
is a common misperception that syntactic language models can
only learn from hand annotated examples, thus restricting their
ability to scale up to the amount of data commonly used with
today’s best n-gram based models. We have already shown,
however, that additional unannotated data can be used to im-
prove both the perplexity and word-error rates of our syntactic
language model [11]. Moreover, a new method of semisuper-
vised parsing has demonstrated significantly improved parsing
accuracy over the previous state-of-the-art, and this in turn will
directly improve our ability to leverage unlabeled data in syn-
tactic language modeling [27]. In terms of the TAG channel
model, recall that its training requires knowing the location of
the alteration region of speech repairs, which is not annotated
under SimpleMDE. We believe an EM-based approach can be
applied to automatically locate these regions by constraining the
TAG to generate the alteration given the annotated reparandum
and interregnum regions. In addition to improving the accuracy
of our repair modeling, the ability to automatically locate al-
terations will be generally useful for automated processing of
speech.
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