Vol. 00 no. 00 2008
Pages 14

A New Challenge for Text Mining: Cancer Risk

Assessment

lan Lewin !, llona Silins 2, Anna Korhonen ' Johan Hogberg?, Ulla Stenius ?

!Computer Laboratory, University of Cambridge, 15 JJ Thomson Avenue, Cambridge CB3 OFD, UK
2Institute of Environmental Medicine, Karolinska Institutet, S-17177, Stockholm, Sweden

ABSTRACT

Motivation: Cancer Risk Assessment (RA) of chemicals is an
important and challenging multi-step task which requires combining
scientific expertise with elaborate literature search and review. Due to
the rapidly growing volume of RA literature, the increasing complexity
of experimental evidence, and the accelerating need for chemical
assessment, the task is now getting increasingly challenging to
manage via manual means. Text Mining (TM) technology specifically
tailored for the needs of the task could lead to considerably more
systematic and efficient RA. In this paper we present the first steps
taken towards the development of such technology.

Results: We have downloaded a corpus of 830 abstracts from
PubMed and manually annotated the abstracts according to their
relevance and the type of evidence they provide for cancer RA of
selected test chemicals. The result is a taxonomy which classifies the
key types of scientific evidence required for RA. The taxonomy can aid
manual RA and is a starting point for the development of an approach
based on TM. Using the annotated corpus we have demonstrated that
supervised machine learning of large portions of the taxonomy and
overall document relevance yields high accuracy and can be useful
for the first step of cancer RA: finding the articles relevant for the
task. We are now installing the automated classifier into the pipeline
so that we can assess its impact on the RA process as a whole.

1 INTRODUCTION

The amount of scientific evidence showing a strong link between
environmental chemicals and cancer calls for urgent efforts to
issue exposure limits on the use of harmful chemicals. Without
such precautionary actions public health and the environment are
at risk. The critical tool used by authorities (e.g. governmental
agencies) in making decisions on exposure limits is Risk Assessment
(RA). Cancer RA involves examining existing published evidence
to determine the relationship between exposure to a substance and
the likelihood of developing cancer from that exposure (US-EPA,
2005). Performed by teams of experts in health related institutions
worldwide (e.g the International Agency for Research on Cancer
(IARC), the World Health Organization (WHO), the European
Chemicals Agency (EHCA)), RA is a costly and challenging
task which requires combining scientific expertise with elaborate
literature search and review. It involves manually searching, locating
and interpreting the relevant information in repositories of scientific
peer reviewed journal articles - a process which can be extremely
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time-consuming because the data required for RA of just a single
carcinogen may be scattered across thousands of journal articles.
Given the exponentially growing volume of articles under inspection
(e.g. PubMed expanded with over 0.5M references last year), the
rapid development of molecular biology techniques, the increasing
knowledge of mechanisms involved in cancer development, and the
accelerating need for chemical assessment, RA is gradually getting
too challenging to manage via manual means.

We are investigating a more effective approach to cancer RA
based on text mining (TM). TM has been used to support various
tasks in biomedicine (Ananiadou and McNaught, 2006) but to our
knowledge no technology has yet been developed for cancer RA.
TM could greatly assist risk assessors with the management of large
textual data, increase their productivity, aid knowledge discovery,
and lead into more consistent and standardized RA. From the
perspective of TM, cancer RA provides a suitably complex use case
for tackling the most timely problems in the field.

The task involves (1) identifying the optimal set of journal articles
relevant for RA of the chemical in question and (2) studying the
experimental results in these articles to determine (i) whether and
(ii) exactly how the chemical causes cancer. Each step requires
identifying and examining specific types of scientific evidence in
journal articles. This is not straightforward because many articles
report multiple results for several chemicals, only some of which
may be relevant. Furthermore, no comprehensive and detailed
specification of the range of evidence required and typically used
for RA is publicly available which would enable developing a fully
systematic and automatic approach.

In this first paper on the topic, we describe the work we did on
identifying and organizing the key types of scientific evidence into a
taxonomy. The taxonomy is based on expert annotation of a corpus
of 830 abstracts downloaded from relevant PubMed journals. We
also report experiments which show that the automatic classification
of corpus data into classes in the taxonomy is highly accurate and
can aid the first, time-consuming step of RA: the search of relevant
literature.

2 CANCER RISK ASSESSMENT TAXONOMY
2.1 Data

The main types of evidence used for cancer RA are 1) scientific
tests related to the carcinogenic activity: human studies (e.g.
epidemiological studies), animal studies (in vivo) and cell studies
(in vitro), and 2) the mode of action (MOA) of the carcinogen. The
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two most frequently used MOA types are genotoxic (i.e. chemicals
cause mutations) and non-genotoxic (i.e. chemicals induce tumours
e.g. by increasing cell proliferation).

To obtain a more comprehensive and finer-grained classification
of relevant evidence, we composed a representative corpus of
RA data for further analysis. Four test chemicals were first
selected which are (i) well-researched using a wide range of
scientific tests and (ii) represent the two most frequent MOA types:
two genotoxic (1,3-butadiene, diethylnitrosamine) and two non-
genotoxic (phenobarbital, diethylstilbestrol) chemicals. A set of 15
journals were then identified which are used frequently for cancer
RA (e.g. Chemical Research in Toxicology, Toxicological Sciences,
Mutation Research) and cover the scientific tests relevant for the
task. Finally, from these 15 journals (years 1998-2008) the PubMed
abstracts including the 4 test chemicals were downloaded for further
analysis. We focussed on abstracts (rather than on full articles)
because they are the typical starting point in RA. The resulting
corpus of 830 abstracts is distributed as shown in Table 1.

2.2 Annotation Tool

An annotation tool was then designed for the analysis of the
abstracts and their titles by experts in cancer RA. The tool provides
two types of functionality. The first enables the experts to annotate
keywords (words and phrases) which indicate scientific evidence
relevant for examining the carcinogenic properties of chemicals.
Initially a shallow taxonomy (including only the three types of tests
and two types of MOA; see the above section) was integrated in the
tool. Any number of keywords could be classified, and the tool also
permits the same words to be classified in more than one way.

The second functionality enables to classify abstracts using the
classical Information Retrieval concept of Document Relevance.
These judgements are made at the document level. An abstract is
marked as relevant, or irrelevant if the user deems after reading the
title and the abstract that it is not relevant for cancer RA. Users can
also mark abstracts as unsure. They are asked to indicate whether
the relevance decision could be made simply based on the title or
whether the decision required reading the abstract also.

The tool was implemented inside the Mozilla Firefox browser
using its extension facility. The implementation enabled abstracts
to be viewed inside a familiar web-browsing environment and to
be classified by users according to their own specialized taxonomy.
Previous work has observed that integrating custom functions within
a familiar document browsing environment greatly encourages user
uptake (Karamanis et al., 2008). The RA analysed abstracts could be
stored, reviewed by others and edited. In this way, the deployment of
the analysis in a genuine RA scenario was able to be quickly tested.

2.3 Annotation

The annotation was carried out by three experts in cancer RA.
The 830 abstracts were annotated as follows: The abstracts for
two chemicals were first classified by one of the experts according
to the initial shallow taxonomy and document relevance. The
results were reviewed by another expert. This resulted in updates
to the classification and considerable extension of the taxonomy.
The entire exercise was then repeated with two further chemicals.
Only very minor changes were required after this second exercise,
indicating that the resulting taxonomy is relatively stable and that
the agreement between the annotators is fairly good. Because it was

necessary to allow discussion between the annotators in this initial
work, detailed assessment of inter-annotator agreement was left for
future work.

Many abstracts were classified with multiple classes in the
taxonomy. One article could refer e.g. to different scientific tests
as well as give MOA information. Also both MOAs (genotoxic
and non-genotoxic) could occur in the same abstract (our corpus
contained 17 such abstracts). For example, an abstract may refer
mainly to an investigation of genotoxicity but also assess non-
genotoxic modulating effects.

The experts found no difficulty in deciding on the relevance of the
abstracts, in highlighting keywords, and in attaching the taxonomic
concepts to pieces of text which they perceived to be relevant. When
the classifications by one expert were reviewed by the other, the
attachments (not just the allocated classes) proved highly valuable.

2.4 The Resulting Taxonomy and Corpus

The resulting taxonomy includes three classes at the top level. In
addition to scientific tests and MOA (see section 2.1) the experts
identified a third one: toxicokinetics. Each of these classes is
further broken down into constituent parts. The complete taxonomy
contains 45 nodes, with individual keywords falling under different
nodes. The hierarchy for scientific tests is shown in Figure 1.

Table 1 shows the distribution of data across the top level of the
taxonomy. Most abstracts are annotated with scientific tests (human
studies being the least frequent category). Just over one-third of
the abstracts are annotated for MOA, with an even distribution
of genotoxic and non-genotoxic. The number of abstracts with
toxicokinetic annotations is rather small. Also, at lower levels of
the taxonomy, the number of data items in the more discriminating
classes is fairly small. Table 2 shows the broad shape of the
distribution of abstracts across leaf nodes in the taxonomy. For
example, there are 6 leaf nodes under each of which more than
100 abstracts are categorized. All of these fall under scientific tests.
There are also 8 leaf nodes under scientific tests with very sparse
data. Although MOA abstracts are less popular overall, there are no
leaf nodes with less than 20 data points. The data for toxicokinetics
is small overall and nearly all located in one leaf node.

In the future, the taxonomy will be extended further by annotating
data for a wider range of chemicals representing e.g. less frequently
used MOA types. However, covering the main types of scientific
evidence, the current taxonomy provides a good starting point for
more systematic cancer RA. For example, classification of the
individual articles and experimental results in the articles according
to the taxonomy can be useful for risk assessors as it enables them
to examine the evidence covered at any point of the workflow.

Finally, looking at the expert annotations for document relevance,
just over 62% of the abstracts returned by the PubMed queries were
deemed relevant for the cancer RA task by the expert reviewers
(based on the title or the abstract). 10% were deemed as irrelevant
and 28% were marked as unsure.

3 AUTOMATIC CLASSIFICATION EXPERIMENTS
3.1 Taxonomic Classification

To determine whether the classes in the taxonomy are machine
learnable and thus optimal for TM, we trained and tested a series of
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Table 1. Total of abstracts per chemical and class

Chemical 2 Class b
1,3-butadiene 194 Evidence (total) 655
phenobarbital 270 Evidence: human 75
diethylnitrosamine 221 Evidence: animal 435
diethylstilbestrol 145 Evidence: cell 164
Total 830 Mode of Action (total) 287
Genotoxic MOA 145
Nongenotoxic MOA 159
Toxicokinetics 56

Table 2. Abstracts per taxonomic leaf node

abstracts (f) > Evi MoA ToxK
f > 100 6 6 0 0
50< f <100 4 1 3 0
20< f<50 11 4 6 |
f<20 11 8 0 3
Scientific
evidence for
carcinogenic
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Fig. 1. Part of the Cancer Risk Assessment taxonomy

multinomial Naive Bayes classifiers on the abstracts using document
level classifications. In this first experiment, we did not attempt
to reproduce the classification of the text strings which serve as
groundings for the classifications but only to classify abstracts
as a whole. Although sophisticated classifiers, such as support
vector machines, might deliver the highest accuracies attainable,
Naive Bayes classifiers are optimal for our initial exploratory work
because they offer good accuracy, are efficient to train, and are
useful in domains in which concept drift is an issue (Manning et al.,
2008) (which can indeed be significant in the cancer RA domain).
We used the WEKA software environment for implementation in
our experiments (Witten and Frank, 2005).

Naive Bayes text classifiers aim to select the class C' with
maximum probability given the document d. This can be calculated
via equations 1 (Bayes’ rule), 2 (Pr(d) is invariant across classes)
and 3 (a document is considered as a bag of words and, naively, each
word w is conditionally independent of the others given the class).

ArgMazc Pr(C|d)

Pr(C).Pr(d|C)
Pr(d)
= ArgMazc Pr(C).Pr(d|C) (2)

= ArgMaxc (D)

= ArgMazc Pr(C). Pr(X =w|C) ()

wed

Pr(C) can be estimated from the frequency of documents in class
C in the training corpus. In the multinomial model, Pr(X = w|C)
is estimated as the fraction of tokens in documents of class C' that
contain w. In addition, add-one smoothing is applied in the latter
frequency calculation so that each word has a non-zero probability.

The words were extracted from the abstracts using very
simple methods: whitespace separation for tokenization, and a
standardization routine which includes lower-casing and removal
of non-alphabetic, numeric or hyphen characters. We built a
series of binary classifiers, one per node in the taxonomy, and
performed a standard 10-fold cross-validation experiment. For each,
we measured precision (P), recall (R) and F-score (F' = 2.P.R.(P+
R)™1). We also experimented with an extension to multinomial
Naive Bayes which has been shown to give dramatic improvements
in previous work (Kibriya ez al., 2004). In this scheme, TFIDF
scores are used in place of term frequencies in the probability
estimations. TFIDF (w) is defined in equation 4, where wy is the
frequency of w in a document, D is the total number of documents,
and dy is the number of documents containing w.

TFIDFw = log(ws + 1).log(d2) 4)

f

In addition, we experimented with automatic feature selection by
using Information Gain. Information Gain measures the reduction
in uncertainty about the value of the target class (the entropy) given
the value of the feature selected.

3.2 Relevance

We tested whether a similar multinomial Naive Bayes classifier
could prove a reliable predictor of document relevance. For this,
we counted documents labelled as “unsure” simply as irrelevant
and built a binary classifier. We focussed on attempting to
distinguish documents that were clearly relevant because these are
the documents that users are likely to look at first in the review
process. We judge that it is probably more important to be reliable
in directing attention to documents that deserve attention than in
separating off documents that may not.

4 RESULTS

Figure 2 gives the F-scores for the top-most levels of our
taxonomy for both the unextended multinomial Naive Bayes
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Fig. 2. F-scores per class

Table 3. Precision and recall per class

Class F P R

animal 0.88 0.88 0.88
cell 082 0.72 095
human 0.77 0.66 0.92
geno 0.81 0.72 092
nongeno 0.76 0.68 0.86
toxK  0.68 0.61 0.77

Table 4. Mean F-score, precision and recall per
taxonomic leaf node

no. of abstracts (f) leaves F P R

f > 100 6 075 0.65 09
50 < f <100 4 079 068 0.95
20 < f <50 11 059 052 0.7
f<20 11022 0.14 0.76

classifier (labelled nbayes) and the extension (ig500) which includes
both the use of Information Gain feature selection and the use
of TFIDF scores. We also experimented with the two additional
features individually but reliable improvements proved possible on
this dataset only with the two features operating in conjunction (data
not shown). All the F-scores are promisingly above 75% with the
exception of detecting documents relevant to toxicokinetics, which
was also the document class for which we had the smallest training
set. However, in this case the amount of improvement resulting from
the multinomial Naive Bayes extensions is also most dramatic.
Table 3 breaks down the F-scores shown in Figure 2 into precision
and recall. Recall is generally higher than precision and over 90%
in over half the cases. The extensions to the standard classifier
generally improve both measures, but recall by a greater degree.
Table 4 shows the distribution of performance measures across
the leaf-nodes in the taxonomy. For example, the 6 leaf-nodes with

more than 100 points each record F-scores in the vicinity of 0.75,
which is the mean (the standard deviation is very low: 0.4). Good
performance is also achieved for those with 50-100 data points but,
as the number of data points drops below 50, performance tails off.

The document relevance classifier performed very well indeed
with precision of 92.4, recall of 86.2 and F-score of 89.2

5 CONCLUSION AND FUTURE WORK

We have developed a taxonomy which classifies the key types of
scientific evidence required for cancer RA. The taxonomy provides
the means for more consistent manual RA and a starting point for
an automatic approach based on TM. We have demonstrated that
supervised machine learning of large portions of the taxonomy and
overall document relevance yield good results and can be useful for
the first step of cancer RA.

In the future, we plan to widen the scope of data collection beyond
the four chemicals considered so far in order to extend and enrich the
taxonomy further. We will compare the enriched taxonomy against
the MEDLINE’s Medical Subject Headings (MeSH) taxonomy to
investigate the degree of overlap and the potential utility of MeSH
in supporting the task. We have not yet exploited all the information
made available to us by the corpus collection or extractable from
the data, e.g. chemical named entities (Corbett et al, 2007).
Using such information we will fine-tune the classifiers to raise
their performance to the best achievable. Our plan is to embed
the improved classifiers into the RA workflow and evaluate, from
the perspective of human-computer interaction, the impact on the
work-flow and on overall task efficiency.

In the more distant future, we intend to expand on this initial
work and tackle the later stages of cancer RA, for which more
detailed research on RA practices and deeper linguistic analysis of
the content of full journal articles will almost certainly be required.
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