
On Optimization Methods for Deep Learning

Quoc V. Le quocle@cs.stanford.edu

Jiquan Ngiam jngiam@cs.stanford.edu

Adam Coates acoates@cs.stanford.edu

Abhik Lahiri alahiri@cs.stanford.edu

Bobby Prochnow prochnow@cs.stanford.edu

Andrew Y. Ng ang@cs.stanford.edu

Computer Science Department, Stanford University, Stanford, CA 94305, USA

Abstract

The predominant methodology in training
deep learning advocates the use of stochastic
gradient descent methods (SGDs). Despite
its ease of implementation, SGDs are diffi-
cult to tune and parallelize. These problems
make it challenging to develop, debug and
scale up deep learning algorithms with SGDs.
In this paper, we show that more sophisti-
cated off-the-shelf optimization methods such
as Limited memory BFGS (L-BFGS) and
Conjugate gradient (CG) with line search
can significantly simplify and speed up the
process of pretraining deep algorithms. In
our experiments, the difference between L-
BFGS/CG and SGDs are more pronounced
if we consider algorithmic extensions (e.g.,
sparsity regularization) and hardware ex-
tensions (e.g., GPUs or computer clusters).
Our experiments with distributed optimiza-
tion support the use of L-BFGS with locally
connected networks and convolutional neural
networks. Using L-BFGS, our convolutional
network model achieves 0.69% on the stan-
dard MNIST dataset. This is a state-of-the-
art result on MNIST among algorithms that
do not use distortions or pretraining.

1. Introduction

Stochastic Gradient Descent methods (SGDs)
have been extensively employed in machine
learning (Bottou, 1991; LeCun et al., 1998;
Shalev-Shwartz et al., 2007; Bottou & Bousquet,

Appearing in Proceedings of the 28 th International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

2008; Zinkevich et al., 2010). A strength of SGDs is
that they are simple to implement and also fast for
problems that have many training examples.

However, SGD methods have many disadvantages.
One key disadvantage of SGDs is that they require
much manual tuning of optimization parameters such
as learning rates and convergence criteria. If one does
not know the task at hand well, it is very difficult to
find a good learning rate or a good convergence cri-
terion. A standard strategy in this case is to run the
learning algorithm with many optimization parame-
ters and pick the model that gives the best perfor-
mance on a validation set. Since one needs to search
over the large space of possible optimization param-
eters, this makes SGDs difficult to train in settings
where running the optimization procedure many times
is computationally expensive. The second weakness of
SGDs is that they are inherently sequential: it is very
difficult to parallelize them using GPUs or distribute
them using computer clusters.

Batch methods, such as Limited memory BFGS (L-
BFGS) or Conjugate Gradient (CG), with the presence
of a line search procedure, are usually much more sta-
ble to train and easier to check for convergence. These
methods also enjoy parallelism by computing the gra-
dient on GPUs (Raina et al., 2009) and/or distribut-
ing that computation across machines (Chu et al.,
2007). These methods, conventionally considered to
be slow, can be fast thanks to the availability of large
amounts of RAMs, multicore CPUs, GPUs and com-
puter clusters with fast network hardware.

On a single machine, the speed benefits of L-BFGS
come from using the approximated second-order in-
formation (modelling the interactions between vari-
ables). On the other hand, for CG, the benefits come
from using conjugacy information during optimization.
Thanks to these bookkeeping steps, L-BFGS and CG



On Optimization Methods for Deep Learning

can be faster and more stable than SGDs.

A weakness of batch L-BFGS and CG, which require
the computation of the gradient on the entire dataset
to make an update, is that they do not scale grace-
fully with the number of examples. We found that
minibatch training, which requires the computation
of the gradient on a small subset of the dataset, ad-
dresses this weakness well. We found that minibatch
LBFGS/CG are fast when the dataset is large.

Our experimental results reflect the different strengths
and weaknesses of the different optimization meth-
ods. Among the problems we considered, L-BFGS is
highly competitive or sometimes superior to SGDs/CG
for low dimensional problems, especially convolutional
models. For high dimensional problems, CG is more
competitive and usually outperforms L-BFGS and
SGDs. Additionally, using a large minibatch and line
search with SGDs can improve performance.

More significant speed improvements of L-BFGS and
CG over SGDs are observed in our experiments with
sparse autoencoders. This is because having a larger
minibatch makes the optimization problem easier for
sparse autoencoders: in this case, the cost of esti-
mating the second-order and conjugate information is
small compared to the cost of computing the gradient.

Furthermore, when training autoencoders, L-BFGS
and CG can be both sped up significantly (2x) by
simply performing the computations on GPUs. Con-
versely, only small speed improvements were observed
when SGDs are used with GPUs on the same problem.

We also present results showing that Map-Reduce style
optimization works well for L-BFGS when the model
utilizes locally connected networks (Le et al., 2010)
or convolutional neural networks (LeCun et al., 1998).
Our experimental results show that the speed improve-
ments are close to linear in the number of machines
when locally connected networks and convolutional
networks are used (up to 8 machines considered in the
experiments).

We applied our findings to train a convolutional net-
work model (similar to Ranzato et al. (2007)) with L-
BFGS on a GPU cluster and obtained 0.69% test set
error. This is the state-of-the-art result on MNIST
among algorithms that do not use pretraining or dis-
tortions.

Batch optimization is also behind the success of fea-
ture learning algorithms that achieve state-of-the-art
performance on a variety of object recognition prob-
lems (Le et al., 2010; Coates et al., 2011) and action
recognition problems (Le et al., 2011).

2. Related work

Optimization research has a long history. Exam-
ples of successful unconstrained optimization methods
include Newton-Raphson’s method, BFGS methods,
Conjugate Gradient methods and Stochastic Gradient
Descent methods. These methods are usually associ-
ated with a line search method to ensure that the al-
gorithms consistently improve the objective function.

When it comes to large scale machine learning, the
favorite optimization method is usually SGDs. Re-
cent work on SGDs focuses on adaptive strategies
for the learning rate (Shalev-Shwartz et al., 2007;
Bartlett et al., 2008; Do et al., 2009) or improving
SGD convergence by approximating second-order in-
formation (Vishwanathan et al., 2007; Bordes et al.,
2010). In practice, plain SGDs with constant learning
rates or learning rates of the form α

β+t
are still pop-

ular thanks to their ease of implementation. These
simple methods are even more common in deep learn-
ing (Hinton, 2010) because the optimization prob-
lems are nonconvex and the convergence proper-
ties of complex methods (Shalev-Shwartz et al., 2007;
Bartlett et al., 2008; Do et al., 2009) no longer hold.

Recent proposals for training deep networks argue for
the use of layerwise pretraining (Hinton et al., 2006;
Bengio et al., 2007; Bengio, 2009). Optimization tech-
niques for training these models include Contrastive
Divergence (Hinton et al., 2006), Conjugate Gradi-
ent (Hinton & Salakhutdinov, 2006), stochastic diag-
onal Levenberg-Marquardt (LeCun et al., 1998) and
Hessian-free optimization (Martens, 2010). Convolu-
tional neural networks (LeCun et al., 1998) have tra-
ditionally employed SGDs with the stochastic diagonal
Levenberg-Marquardt, which uses a diagonal approxi-
mation to the Hessian (LeCun et al., 1998).

In this paper, it is our goal to empirically study the
pros and cons of off-the-shelf optimization algorithms
in the context of unsupervised feature learning and
deep learning. In that direction, we focus on compar-
ing L-BFGS, CG and SGDs.

Parallel optimization methods have recently attracted
attention as a way to scale up machine learn-
ing algorithms. Map-Reduce (Dean & Ghemawat,
2008) style optimization methods (Chu et al., 2007;
Teo et al., 2007) have been successful early ap-
proaches. We also note recent studies (Mann et al.,
2009; Zinkevich et al., 2010) that have parallelized
SGDs without using the Map-Reduce framework.

In our experiments, we found that if we use tiled (lo-
cally connected) networks (Le et al., 2010) (which in-
cludes convolutional architectures (LeCun et al., 1998;



On Optimization Methods for Deep Learning

Lee et al., 2009a)), Map-Reduce style parallelism is
still an effective mechanism for scaling up. In such
cases, the cost of communicating the parameters across
the network is small relative to the cost of computing
the objective function value and gradient.

3. Deep learning algorithms

3.1. Restricted Boltzmann Machines

In RBMs (Smolensky, 1986; Hinton et al., 2006), the
gradient used in training is an approximation formed
by a taking small number of Gibbs sampling steps
(Contrastive Divergence). Given the biased nature of
the gradient and intractability of the objective func-
tion, it is difficult to use any optimization methods
other than plain SGDs. For this reason we will not
consider RBMs in our experiments.

3.2. Autoencoders and denoising autoencoders

Given an unlabelled dataset {x(i)}m
i=1, an autoencoder

is a two-layer network that learns nonlinear codes
to represent (or “reconstruct”) the data. Specifi-
cally, we want to learn representations h(x(i);W, b) =
σ(Wx(i) + b) such that σ(WT h(x(i);W, b) + c) is ap-
proximately x(i),

minimize
W,b,c

m
X

i=1

‚

‚

‚
σ

`

W
T
σ(Wx

(i) + b) + c
´

− x
(i)

‚

‚

‚

2

2
(1)

Here, we use the L2 norm to penalize the difference
between the reconstruction and the input. In other
studies, when x is binary, the cross entropy cost can
also be used (Bengio et al., 2007). Typically, we set
the activation function σ to be the sigmoid or hyper-
bolic tangent function.

Unlike RBMs, the gradient of the autoencoder objec-
tive can be computed exactly and this gives rise to an
opportunity to use more advanced optimization meth-
ods, such as L-BFGS and CG, to train the networks.

Denoising autoencoders (Vincent et al., 2008) are also
algorithms that can be trained by L-BFGS/CG.

3.3. Sparse RBMs and Autoencoders

Sparsity regularization typically leads to more in-
terpretable features that perform well for clas-
sification. Sparse coding was first proposed
by (Olshausen & Field, 1996) as a model of simple cells
in the visual cortex. Lee et al. (2007); Raina et al.
(2007) applied sparse coding to learn features for ma-
chine learning applications. Lee et al. (2008) com-
bined sparsity and RBMs to learn representations that

mimic certain properties of the area V2 in the visual
cortex. The key idea in their approach is to penal-
ize the deviation between the expected value of the
hidden representations E

[

hj(x;W, b)
]

and a preferred
target activation ρ. By setting ρ to be close to zero,
the hidden unit will be sparsely activated.

Sparse representations have been employed suc-
cessfully in many applications such as object
recognition (Ranzato et al., 2007; Lee et al., 2009a;
Nair & Hinton, 2009; Yang et al., 2009), speech
recognition (Lee et al., 2009b) and activity recogni-
tion (Taylor et al., 2010; Le et al., 2011).

Training sparse RBMs is usually difficult. This is
due to the stochastic nature of RBMs. Specifically,
in stochastic mode, the estimate of the expectation
E

[

hj(x;W, b)
]

is very noisy. A common practice to
train sparse RBMs is to use a running estimate of
E

[

hj(x;W, b)
]

and penalizing only the bias (Lee et al.,
2008; Larochelle & Bengio, 2008). This further com-
plicates the optimization procedure and makes it hard
to debug the learning algorithm. Moreover, it is im-
portant to tune the learning rates correctly for the
different parameters W , b and c. Consequently, it can
be difficult to train sparse RBMs.

In our experience, it is often faster and simpler to ob-
tain sparse representations via autoencoders with the
proposed sparsity penalties, especially when batch or
large minibatch optimization methods are used.

In detail, we consider sparse autoencoders with a tar-
get activation of ρ and penalize it using the KL diver-
gence (Hinton, 2010):

n
X

j=1

DKL

“

ρ

‚

‚

‚

1

m

m
X

i=1

hj(x
(i); W, b)

”

, (2)

where m is the number of examples and n is the num-
ber of hidden units.

To train sparse autoencoders, we need to estimate the
expected activation value for each hidden unit. How-
ever, we will not be able to compute this statistic un-
less we run the optimization method in batch mode. In
practice, if we have a small dataset, it is better to use
a batch method to train a sparse autoencoder because
we do not have to tweak optimization parameters, such
as minibatch size, λ as described below.

Using a minibatch of size m′ << m, it is typi-
cal to keep a running estimate τ of the expectation
E

[

h(x;W, b)
]

. In this case, the KL penalty is

n
X

j=1

DKL

“

ρ

‚

‚

‚
λ

1

m′

m′

X

i=1

hj(x
(i); W, b) + (1 − λ)τj

”

(3)



On Optimization Methods for Deep Learning

where λ is another tunable parameter.

3.4. Tiled and locally connected networks

RBMs and autoencoders have densely-connected net-
work architectures which do not scale well to large
images. For large images, the most common approach
is to use convolutional neural networks (LeCun et al.,
1998; Lee et al., 2009a). Convolutional neural net-
works have local receptive field architectures: each
hidden unit can only connect to a small region of
the image. Translational invariance is usually hard-
wired by weight tying. Recent approaches try to
relax this constraint (Le et al., 2010) in their tiled
convolutional architectures to also learn other invari-
ances (Goodfellow et al., 2010).

Our experimental results show that local architectures,
such as tiled convolutional or convolutional architec-
tures, can be efficiently trained with a computer clus-
ter using the Map-Reduce framework. With local ar-
chitectures, the cost of communicating the gradient
over the network is often smaller than the cost of com-
puting it (e.g., cases considered in the experiments).

4. Experiments

4.1. Datasets and computers

Our experiments were carried out on the standard
MNIST dataset. We used up to 8 machines for our
experiments; each machine has 4 Intel CPU cores (at
2.67 GHz) and a GeForce GTX 285 GPU. Most ex-
periments below are done on a single machine unless
indicated with “parallel.”

We performed our experiments using Matlab and its
GPU-plugin Jacket.1 For parallel experiments, we
used our custom toolbox that makes remote procedure
calls in Matlab and Java.

In the experiments below, we report the standard met-
ric in machine learning: the objective function evalu-
ated on test data (i.e., test error) against time. We
note that the objective function evaluated on the train-
ing shows similar trends.

4.2. Optimization methods

We are interested in off-the-shelf SGDs, L-BFGS and
CG. For SGDs, we used a learning rate schedule of

α
β+t

where t is the iteration number. In our experi-
ments, we found that it is better to use this learning

1http://www.accelereyes.com/

rate schedule than a constant learning rate. We also
use momentum, and vary the number of examples used
to compute the gradient. In summary, the optimiza-
tion parameters associated with SGDs are: α, β, mo-
mentum parameters (Hinton, 2010) and the number of
examples in a minibatch.

We run L-BFGS and CG with a fixed minibatch for
several iterations and then resample a new minibatch
from the larger training set. For each new mini-
batch, we discard the cached optimization history in
L-BFGS/CG.

In our settings, for CG and L-BFGS, there are two
optimization parameters: minibatch size and number
of iterations per minibatch. We use the default val-
ues2 for other optimization parameters, such as line
search parameters. For CG and LBFGS, we replaced
the minibatch after 3 iterations and 20 iterations re-
spectively. We found that these parameters generally
work very well for many problems. Therefore, the only
remaining tunable parameter is the minibatch size.

4.3. Autoencoder training

We compare L-BFGS, CG against SGDs for training
autoencoders. Our autoencoders have 10000 hidden
units and the sigmoid activation function (σ). As a
result, our model has approximately 8 × 105 param-
eters, which is considered challenging for high order
optimization methods like L-BFGS.3

Figure 1. Autoencoder training with 10000 units on one
machine.

2We used LBFGS in minFunc by Mark Schmidt and a
CG implementation from Carl Rasmussen. We note that
both of these methods are fairly optimized implementa-
tions of these algorithms; less sophisticated implementa-
tions of these algorithms may perform worse.

3For lower dimensional problems, L-BFGS works much
better than other candidates (we omit the results due to
space constraints).



On Optimization Methods for Deep Learning

For L-BFGS, we vary the minibatch size in
{1000, 10000}; whereas for CG, we vary the minibatch
size in {100, 10000}. For SGDs, we tried 20 combi-
nations of optimization parameters, including varying
the minibatch size in {1, 10, 100, 1000} (when the mini-
batch is large, this method is also called minibatch
Gradient Descent).

We compared the reconstruction errors on the test set
of different optimization methods and summarize the
results in Figure 1. For SGDs, we only report the
results for two best parameter settings.

The results show that minibatch L-BFGS and CG with
line search converge faster than carefully tuned plain
SGDs. In particular, CG performs better compared to
L-BFGS because computing the conjugate information
can be less expensive than estimating the Hessian. CG
also performs better than SGDs thanks to both the line
search and conjugate information.

To understand how much estimating conjugacy helps
CG, we also performed a control experiment where we
tuned (increased) the minibatch size and added a line
search procedure to SGDs.

Figure 2. Control experiment with line search for SGDs.

The results are shown in Figure 2 which confirm that
having a line search procedure makes SGDs simpler
to tune and faster. Using information in the previous
steps to form the Hessian approximation (L-BFGS) or
conjugate directions (CG) further improves the results.

4.4. Sparse autoencoder training

In this experiment, we trained the autoencoders with
the KL sparsity penalty. The target activation ρ is
set to be 10% (a typical value for sparse autoencoders
or RBMs). The weighting between the estimate for
the current sample and the old estimate (λ) is set
to the ratio between the minibatch size m′ and 1000
(= min

{

m′

1000 , 1
}

). This means that our estimates of

the hidden unit activations are computed by averaging
over at least about 1000 examples.

Figure 3. Sparse autoencoder training with 10000 units,
ρ = 0.1, one machine.

We report the performance of different methods in Fig-
ure 3. The results show that L-BFGS/CG are much
faster than SGDs. The difference, however, is more
significant than in the case of standard autoencoders.
This is because L-BFGS and CG prefer larger mini-
batch size and consequently it is easier to estimate the
expected value of the hidden activation. In contrast,
SGDs have to deal with a noisy estimate of the hid-
den activation and we have to set the learning rate
parameters to be small to make the algorithm more
stable. Interestingly, the line search does not signifi-
cantly improve SGDs, unlike the previous experiment.
A close inspection of the line search shows that ini-
tial step sizes are chosen to be slightly smaller (more
conservative) than the tuned step size.

4.5. Training autoencoders with GPUs

Figure 4. Autoencoder training with 10000 units, one ma-
chine with GPUs. L-BFGS and CG enjoy a speed up of
approximately 2x, while no significant improvement is ob-
served for plain SGDs.

The idea of using GPUs for training deep learning al-



On Optimization Methods for Deep Learning

gorithms was first proposed in (Raina et al., 2009). In
this section, we will consider GPUs and carry out ex-
periments with standard autoencoders to understand
how different optimization algorithms perform.

Using the same experimental protocols described
in 4.3, we compared optimization methods and their
gains in switching from CPUs to GPUs and present
the results in Figure 4. From the figure, the speed
up gains are much higher for L-BFGS and CG than
SGDs. This is because L-BFGS and CG prefer larger
minibatch sizes which can be parallelized more effi-
ciently on the GPUs.

4.6. Parallel training of dense networks

In this experiment, we explore optimization methods
for training autoencoders in a distributed fashion using
the Map-Reduce framework (Chu et al., 2007).4 We
also used the same settings for all algorithms as men-
tioned above in Section 4.3.

Our results with training dense autoencoders (omitted
due to lack of space) show that parallelizing densely
connected networks in this manner can result in slower
convergence than running the method on a standalone
machine. This can be attributed to the communica-
tion costs involve in passing the models and gradients
across the network: the parameter vectors have a size
of 64Mb, which can be a considerable amount of net-
work traffic since it is frequently communicated.

4.7. Parallel training of local networks

If we use tiled (locally connected) networks (Le et al.,
2010), Map-Reduce style gradient computation can be
used as an effective way for training. In tiled networks,
the number of parameters is small and thus the cost of
transferring the gradient across the network can often
be smaller than the cost of computing it. Specifically,
in this experiment, we constrain each hidden unit to
connect to a small section of the image. Furthermore,
we do not share any weights across hidden units (no
weight tying constraints). We learn 20 feature maps,
where each map consists of 441 filters, each of size 8x8.

The results presented in Figure 5 show that SGDs are
slower when a computer cluster is used. On the other
hand, thanks to its preference of a larger minibatch
size, L-BFGS enjoys more significant speed improve-

4In detail, for parallelized methods, one central ma-
chine (“master”) runs the optimization procedure while the
slaves compute the objective values and gradients. At ev-
ery step during optimization, the master sends the param-
eter across all slaves, the slaves then compute the objective
function and gradient and send back to the master.

ments.5

Figure 5. Parallel training of locally connected networks.
With locally connected networks, the communication cost
is reduced significantly. The inset figure shows the (L-
BFGS) speed improvement as a function of number of
slaves. The speed up factor is measured by taking the
amount of time that requires each method to reach a test
objective equal or better than 2.

Also, the figure shows that L-BFGS enjoys an almost
linear speed up (up to 8 slave machines considered
in the experiments) when locally connected networks
are used. On models where the number of parameters
is small, L-BFGS’s bookkeeping and communication
cost are both small compared to gradient computa-
tions (which is distributed across the machines).

4.8. Parallel training of supervised CNNs

In this experiment, we compare different optimization
methods for supervised training of two-layer convolu-
tional neural networks (CNNs). Specifically, our model
has has 16 maps of 5x5 filters in the first layer, followed
by (non-overlapping) pooling units that pool over a
3x3 region. The second layer has 16 maps of 4x4 fil-
ters, without any pooling units. Additionally, we have
a softmax classification layer which is connected to all
the output units from the second layer. In this exper-
iment, we distribute the gradient computations across
many machines with GPUs.

The experimental results (Figure 4.8) show that L-
BFGS is better than CG and SGDs on this problem
because of low dimensionality (less than 10000 param-
eters). Map-Reduce style parallelism also significantly
improves the performance of both L-BFGS and CG.

5In this experiment, we did not tune the minibatch size,
i.e., when we have 4 slaves, the minibatch size per computer
is divided by 4. We expect that tuning this minibatch size
will improve the results when the number of computers
goes up.



On Optimization Methods for Deep Learning

Figure 6. Parallel training of CNNs.

4.9. Classification on standard MNIST

Finally, we carried out experiments to determine if L-
BFGS affects classification accuracy. We used a con-
volution network with a first layer having 32 maps of
5x5 filters and 3x3 pooling with subsampling. The sec-
ond layer had 64 maps of 5x5 filters and 2x2 pooling
with subsampling. This architecture is similar to that
described in Ranzato et al. (2007), with the following
two differences: (i) we did not use an additional hid-
den layer of 200 hidden units; (ii) the receptive field
of our first layer pooling units is slightly larger (for
computational reasons).

Table 1. Classification error on MNIST test set for some
representative methods without pretraining. SGDs with
diagonal Levenberg-Marquardt are used in (LeCun et al.,
1998; Ranzato et al., 2007).

LeNet-5, SGDs, no distortions (LeCun et al., 1998) 0.95%
LeNet-5, SGDs, huge distortions (LeCun et al., 1998) 0.85%
LeNet-5, SGDs, distortions (LeCun et al., 1998) 0.80%
ConvNet, SGDs, no distortions (Ranzato et al., 2007) 0.89%

ConvNet, L-BFGS, no distortions (this paper) 0.69%

We trained our network using 4 machines (with
GPUs). For every epoch, we saved the parameters
to disk and used a hold-out validation set of 10000
examples6 to select the best model. The best model
is used to make predictions on the test set. The re-
sults of our method (ConvNet) using minibatch L-
BFGS are reported in Table 1. The results show
that the CNN, trained with L-BFGS, achieves an en-
couraging classification result: 0.69%. We note that
this is the best result for MNIST among algorithms
that do not use unsupervised pretraining or distor-
tions. In particular, engineering distortions, typi-
cally viewed as a way to introduce domain knowl-
edge, can improve classification results for MNIST. In
fact, state-of-the-art results involve more careful dis-

6We used a reduced training set of 50000 examples
throughout the classification experiments.

tortion engineering and/or unsupervised pretraining,
e.g., 0.4% (Simard et al., 2003), 0.53% (Jarrett et al.,
2009), 0.39% (Ciresan et al., 2010).

5. Discussion

In our experiments, different optimization algorithms
appear to be superior on different problems. On con-
trary to what appears to be a widely-held belief, that
SGDs are almost always preferred, we found that L-
BFGS and CG can be superior to SGDs in many cases.
Among the problems we considered, L-BFGS is a good
candidate for optimization for low dimensional prob-
lems, where the number of parameters are relatively
small (e.g., convolutional neural networks). For high
dimensional problems, CG often does well.

Sparsity provides another compelling case for using L-
BFGS/CG. In our experiments, L-BFGS and CG out-
perform SGDs on training sparse autoencoders.

We note that there are cases where L-BFGS may not
be expected to perform well (e.g., if the Hessian is not
well approximated with a low-rank estimate). For in-
stance, on local networks (Le et al., 2010) where the
overlaps between receptive fields are small, the Hessian
has a block-diagonal structure and L-BFGS, which
uses low-rank updates, may not perform well.7 In such
cases, algorithms that exploit the problem structures
may perform much better.

CG and L-BFGS are also methods that can take better
advantage of the GPUs thanks to their preference of
larger minibatch sizes. Furthermore, if one uses tiled
(locally connected) networks or other networks with
a relatively small number of parameters, it is possible
to compute the gradients in a Map-Reduce framework
and speed up training with L-BFGS.

Acknowledgments: We thank Andrew Maas, An-
drew Saxe, Quinn Slack, Alex Smola and Will Zou for
comments and discussions. This work is supported by
the DARPA Deep Learning program under contract
number FA8650-10-C-7020.

References

Bartlett, P., Hazan, E., and Rakhlin, A. Adaptive online
gradient descent. In NIPS, 2008.

Bengio, Y. Learning deep architectures for AI. Foundations
and Trends in Machine Learning, pp. 1–127, 2009.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H.
Greedy layerwise training of deep networks. In NIPS,
2007.

7Personal communications with Will Zou.



On Optimization Methods for Deep Learning

Bordes, A., Bottou, L., and Gallinari, P. SGD-QN: Careful
quasi-newton stochastic gradient descent. JMLR, pp.
1737–1754, 2010.

Bottou, L. Stochastic gradient learning in neural networks.
In Proceedings of Neuro-Nı̂mes 91, 1991.

Bottou, L. and Bousquet, O. The tradeoffs of large scale
learning. In NIPS. 2008.

Chu, C.T., Kim, S. K., Lin, Y. A., Yu, Y. Y., Bradski, G.,
Ng, A. Y., and Olukotun, K. Map-Reduce for machine
learning on multicore. In NIPS 19, 2007.

Ciresan, D. C., Meier, U., Gambardella, L. M., and
Schmidhuber, J. Deep big simple neural nets excel on
handwritten digit recognition. CoRR, 2010.

Coates, A., Lee, H., and Ng, A. Y. An analysis of single-
layer networks in unsupervised feature learning. In AIS-
TATS 14, 2011.

Dean, J. and Ghemawat, S. Map-Reduce: simplified data
processing on large clusters. Comm. ACM, pp. 107–113,
2008.

Do, C.B., Le, Q.V., and Foo, C.S. Proximal regularization
for online and batch learning. In ICML, 2009.

Goodfellow, I., Le, Q.V., Saxe, A., Lee, H., and Ng, A.Y.
Measuring invariances in deep networks. In NIPS, 2010.

Hinton, G. A practical guide to training restricted boltz-
mann machines. Technical report, U. of Toronto, 2010.

Hinton, G. E. and Salakhutdinov, R.R. Reducing the di-
mensionality of data with neural networks. Science,
2006.

Hinton, G. E., Osindero, S., and Teh, Y.W. A fast learning
algorithm for deep belief nets. Neu. Comp., 2006.

Jarrett, K., Kavukcuoglu, K., Ranzato, M.A., and LeCun,
Y. What is the best multi-stage architecture for object
recognition? In ICCV, 2009.

Larochelle, H. and Bengio, Y. Classification using discrim-
inative restricted boltzmann machines. In ICML, 2008.

Le, Q. V., Ngiam, J., Chen, Z., Chia, D., Koh, P. W., and
Ng, A. Y. Tiled convolutional neural networks. In NIPS,
2010.

Le, Q. V., Zou, W., Yeung, S. Y., and Ng, A. Y. Learning
hierarchical spatio-temporal features for action recog-
nition with independent subspace analysis. In CVPR,
2011.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gra-
dient based learning applied to document recognition.
Proceeding of the IEEE, pp. 2278–2323, 1998.

LeCun, Y., Bottou, L., Orr, G., and Muller, K. Efficient
backprop. In Neural Networks: Tricks of the trade, pp.
5–50. Springer, 1998.

Lee, H., Battle, A., Raina, R., and Ng, Andrew Y. Efficient
sparse coding algorithms. In NIPS, 2007.

Lee, H., Ekanadham, C., and Ng, A. Y. Sparse deep belief
net model for visual area V2. In NIPS, 2008.

Lee, H., Grosse, R., Ranganath, R., and Ng, A.Y. Convo-
lutional deep belief networks for scalable unsupervised
learning of hierarchical representations. In ICML, 2009a.

Lee, H., Largman, Y., Pham, P., and Ng, A. Y. Unsuper-
vised feature learning for audioclassification using con-
volutional deep belief networks. In NIPS, 2009b.

Mann, G., McDonald, R., Mohri, M., Silberman, N., and
Walker, D. Efficient large-scale distributed training of
conditional maximum entropy models. In NIPS, 2009.

Martens, J. Deep learning via hessian-free optimization.
In ICML, 2010.

Nair, V. and Hinton, G. E. 3D object recognition with
deep belief nets. In NIPS, 2009.

Olshausen, B. and Field, D. Emergence of simple-cell re-
ceptive field properties by learning a sparse code for nat-
ural images. Nature, pp. 607–609, 1996.

Raina, R., Battle, A., Lee, H., Packer, B., and Ng, A.Y.
Self-taught learning: Transfer learning from unlabelled
data. In ICML, 2007.

Raina, R., Madhavan, A., and Ng, A. Y. Large-scale
deep unsupervised learning using graphics processors. In
ICML, 2009.

Ranzato, M., Huang, F. J, Boureau, Y., and LeCun, Y. Un-
supervised learning of invariant feature hierarchies with
applications to object recognition. In CVPR, 2007.

Shalev-Shwartz, S., Singer, Y., and Srebro, N. Pegasos:
Primal estimated sub-gradient solver for svm. In ICML,
2007.

Simard, P., Steinkraus, D., and Platt, J. Best practices
for convolutional neural networks applied to visual doc-
ument analysis. In ICDAR, 2003.

Smolensky, P. Information processing in dynamical sys-
tems: foundations of harmony theory. In Parallel dis-
tributed processing, 1986.

Taylor, G.W., Fergus, R., Lecun, Y., and Bregler, C.
Convolutional learning of spatio-temporal features. In
ECCV, 2010.

Teo, C. H., Le, Q. V., Smola, A. J., and Vishwanathan,
S. V. N. A scalable modular convex solver for regularized
risk minimization. In KDD, 2007.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol,
P. A. Extracting and composing robust features with
denoising autoencoders. In ICML, 2008.

Vishwanathan, S. V. N., Schraudolph, N. N., Schmidt,
M. W., and Murphy, K. P. Accelerated training of con-
ditional random fields with stochastic gradient methods.
In ICML, 2007.

Yang, J., Yu, K., Gong, Y., and Huang, T. Linear spatial
pyramid matching using sparse coding for image classi-
fication. In CVPR, 2009.

Zinkevich, M., Weimer, M., Smola, A., and Li, L. Paral-
lelized stochastic gradient descent. In NIPS, 2010.


