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Abstract

Software reuse is inhibited by the many different ways in which equivalent data
can be represented. We describe methods by which views can be constructed semi-
automatically to describe how application data types correspond to the abstract types
that are used in numerical generic algorithms. Given such views, specialized versions
of the generic algorithms that operate directly on the application data can be produced
by compilation. This enables reuse of the generic algorithms for an application with
minimal effort. Graphical user interfaces allow views to be specified easily and rapidly.
Algorithms are presented for deriving, by symbolic algebra, equations that relate the
variables used in the application data to the variables needed for the generic algorithms.
Arbitrary application data structures are allowed. Units of measurement are converted
as needed. These techniques allow reuse of a single version of a generic algorithm
for a variety of possible data representations and programming languages. These
techniques can also be applied in data conversion and in object-oriented, functional,
and transformational programming.

*@G. S. Novak, Jr. is with the Department of Computer Sciences, University of Texas, Austin, TX 78712.
An on-line demonstration of the software described in this paper is available on the World Wide Web
via http://www.cs.utexas.edu/users/novak in the Automatic Programming Server demo, Mathematical
View option. A workstation running X windows is required.
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1 Introduction

An algorithm should be like a mathematical theorem in the sense that once the algorithm
has been developed, it should be reusable and should never have to be recoded manually.
Like other engineering artifacts, however, algorithms that are used in an application must
be adapted to fit the other parts of the application. Almost everyone is willing to reuse
the standard algorithm for sqrt, but algorithms such as testing whether a point is inside a
polygon are less likely to be reused. The argument and result types of sqrt match application
types; however, there are many possible polygon representations, so an application is unlikely
to use the same data types as a library program.

Strong typing is an important optimization: by checking types statically, a compiler
can avoid generation of runtime type-checking code, thus providing type safety while saving
time and storage. Unfortunately, rigidity of types inhibits reuse. Traditional ways of making
application data match a procedure that is to be reused are costly and discourage reuse [24].
An effective method of reuse must minimize two costs:

1. Human cost: the time required by the programmer to find the program to be reused,
to understand its documentation, and to adapt the reused program and/or application
so that they fit.

2. Computational cost: the added cost of running a reused program, compared to a
hand-written version.

This paper describes methods for reuse using views that describe how application data
types correspond to the abstract types used in generic algorithms. Algorithms based on
symbolic algebra create the views from correspondences that are specified via an easily used
graphical interface. Given the views, a compiler produces efficient specialized versions of
generic algorithms that operate directly on the application data. A single copy of a generic
algorithm can be specialized for a variety of application data representations and for a
variety of programming languages. The efficiency, encapsulation, and type safety of strong
type checking are retained, while the barriers to reuse caused by type rigidity are eliminated.
The techniques described here are an enabling technology that makes software reuse easy
and practical.

The graphical interface is illustrated in Fig. 1. In this example, we assume that the
user has existing data that describes a Christmas tree; the user would like to reuse a small
program, which calculates the area of the side of a cone, on this data. A view of the type
xmas-tree as a cone is made using the program mkv (“make view”):

(mkv ’cone ’'xmas-tree)
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Figure 1: Viewing a Christmas Tree as a Cone

The view is specified by correspondences between the application data type and the abstract
representation of a cone. The user first selects a “button” on the cone diagram, then selects
a corresponding item within the menu of fields of the xmas-tree type. The system draws
lines between the selected items to show the correspondences. Using these correspondences
together with equations associated with a cone, the system constructs a view of a xmas-tree
as a cone. Any generic procedure associated with cone can then be specialized and used for
the xmas-tree data:

(gldefun t1 (tree:xmas-tree)
(side-area (cone tree)))

This function, written in a Lisp-like functional form, requests the side-area of the cone
view of the tree. The function is compiled into Lisp code that computes the side-area
directly from the application data structure:

(LAMBDA (TREE)
(* 3.1415926535897931
(*x (FIFTH TREE)
(SQRT (+ (EXPT (FIFTH TREE) 2)
(EXPT (THIRD TREE) 2))))))

Mechanical translation can produce code for applications in other languages, such as C

float tlc (tree)
CMAS_TREE tree;
{ return 3.1415926535897931



* tree->base_radius
* sqrt(square(tree->base_radius)
+ square(tree->branches_height));

3

The user obtains this specialized code without having to understand the algorithm and
without having to understand the implementation of the cone abstract data type. The user
only needs to select the items in the diagram that correspond to the application data.

In this paper, we concentrate on numerical data of the kinds used in scientific and
engineering programs. We have previously described [33] [34] [35] techniques for reuse of
generic algorithms that deal with discrete data structures such as linked lists and trees;
those methods, together with the methods described in this paper, allow reuse of algorithms
that involve both discrete data structures and numerical data. The generic algorithms that
can be specialized range from simple formulas, such as the formula for the area of a circle,
to larger procedures such as testing whether a point is inside a polygon.

Section 2 gives a formal definition of views. Section 3 presents the algorithms that
construct views from correspondences using algebraic manipulation of equations. Section 4
describes the graphical user interface for specifying views. Section 5 describes several ways in
which views enable software reuse: by specialization of generic procedures, by translation of
data to a desired form, and in object-oriented, functional, or transformational programming.
Section 6 surveys related work, and a Section 7 presents conclusions. Finally, an on-line
demonstration of the program is described.

2 Representation and Views

Traditional data types combine two issues that should be separated to facilitate reuse:

1. the way in which application data are represented

2. procedures associated with a conceptual kind of object

These are termed implementation inheritance and interface inheritance in object-oriented
programming [9]. When the two are combined, the code of a procedure implicitly states
assumptions about details of data representation. This inhibits software reuse, since any
assumptions made in writing a procedure become requirements that must be met if the
procedure is to be reused. For effective reuse, assumptions must be minimized. Object-
oriented programming and functional programming partly separate the two issues, but still
make some representation assumptions and also incur performance penalties, as we discuss
later. Views make a clean separation between representation and procedures; compilation
techniques yield good performance and can produce code in multiple target languages.

There are many ways in which representations of equivalent data can differ:

1. names of individual variables,



2. data representations and units of measurement of variables,
3. data structures used to aggregate variables,
4. the set of variables chosen to represent an object, and

5. the conceptual method, or ontology [30], of a representation.

For example, a vector could be represented using Cartesian coordinates or polar coordinates.
In order to reuse a generic algorithm for application data, it must be possible either to
translate the data into the form expected by the algorithm, or to modify the algorithm to
work with the existing data; both can be done using views.

A view describes how an application data type corresponds to an abstract type. In effect,
the view encapsulates the application data type and makes it appear to be of the abstract
type. Fig. 2 illustrates how an application type pipe can be viewed as a circle that is
defined in terms of radius. The radius of the circle corresponds to the inside-diameter
of the pipe divided by 2. The view makes visible only the name radius, hiding the names
of pipe; procedures defined for circle can be inherited through the view. Note that it is
not the case that a pipe is a circle; rather, a circle is a useful view of a pipe. A second
view of a pipe as a circle, using outside-diameter, is also useful.

pipe-as-circle

pipe
length
inside-diameter

radius

outside-diameter

material

Figure 2: View as Encapsulation of Application Data

We formalize the notion of views as follows. An abstract type is considered to be an
abstract record containing a set of basis variables. A view encapsulates the application type,
hiding its names, and presents an external interface that consists of the basis variables of
the abstract type. The view allows the basis variables to be both “read” and “written”. The
view emulates the abstract record by maintaining two properties:

1. Storage property: After a value z is “written” into basis variable v;, a “read” of v; will
yield the value z.

2. Independence property: 1If a “read” of basis variable v; yields the value z, and a value
is then “written” into some basis variable v; , 7 # 1, a “read” of v; will still yield =.



These two properties express the behavior normally expected of a record: stored values can
be retrieved, and storing into one field does not change the values of other fields. If these
properties are maintained, then the view faithfully emulates a record consisting of the basis
variables, using the application type as its internal storage. The view inherits all the generic
procedures associated with the abstract type. The view thus makes the application type
appear to be a full-fledged implementation of the abstract type. Smith [45] uses the term
theory morphism for a similar notion; Gries [17] uses the term coupling invariant and cites
the term coordinate transformation used by Dijkstra [7].

The example of Fig. 2 illustrates a simple view in which a pipe is viewed as a circle
in terms of the basis variable radius. A “read” of radius is accomplished by dividing the
inside-diameter by 2; a “write” of radius is implemented by multiplying the value to be
written by 2 and storing it into the inside-diameter. Source code that accesses the radius
through the view and equivalent compiled code in C are shown below.

(gldefun t5 (p:pipe)
(radius (circle p)) )

float t5 (p)
PIPE *p;
{ return p->inside_diameter / 2; }

(gldefun t6 (p:pipe r:real)
((radius (circle p)) := r)
p)

PIPE *t6 (p, T)
PIPE *p; float r;
{ p->inside_diameter = 2 * r;
return p; }

Because the view makes the application data appear to be exactly like the abstract type,
any generic procedure that is defined for the abstract type will produce the same results
using the application data through the view. With optimized in-line compilation of the
code for access to data through views, the specialized versions of generic algorithms operate
directly on the application data and are efficient.

In practice, it is often necessary to relax the storage and independence properties slightly:

1. The storage and independence properties are assumed to hold despite representation
inaccuracy, e.g. floating-point round-off error. For example, if an application type that
uses polar coordinates is viewed as a Cartesian vector, the value of x that is “read”
may be slightly different from the value of x that was “written”.

2. A view may be partial, i.e., may define only those basis variables that are used. For
example, to compute the area of a circle, only the radius is needed. Any use of an
undefined basis variable is detected as an error by the compiler.



3 Creation of Views from Correspondences

A view contains a set of procedures to read and write each basis variable of the abstract
type. These procedures could be written by hand. However, it is nontrivial to ensure that
the procedures are complete, consistent, efficient, and satisfy the storage and independence
properties. The procedures to view an application type as a line-segment (Fig. 5 below)
are 66 lines of code; it would be difficult to make such a view manually. This section
describes algorithms to derive the procedures for a view from correspondences, using symbolic
algebra. A later section describes the graphical user interface that makes it easy to specify
the correspondences.

3.1 Basis Variables and Equations

(setf (get ’circle ’basis-vars) ’(radius))

(setf (get ’circle ’equations)

' ((= diameter (*x 2 radius))
(= circumference (* pi diameter))
(: area (* pl (eXpt radius 2)))))

Figure 3: Equations for Circle

Each abstract type defines a set of basis variables and a set of equations. The basis
variables and equations for a simple circle abstract type are shown in Fig. 3; those for
a line-segment are shown in Fig. 4. The equations are written in a fully parenthesized
Lisp notation with the operator appearing first in each subexpression. The basis variables
are specified by the designer of the abstract data type and constitute a contract between
the implementer and user of the generic procedures: the implementer can assume that
every use of the generic procedures will behave as if the set of basis variables is directly
implemented, and the user can assume that if the view of the application data emulates
a direct implementation of the basis variables, the generic procedures will work for the
application data.

A view is created from the correspondences provided by the graphical interface and from
the equations. FEach correspondence is a pair, (abstract-var application-var), that
associates a variable of the abstract type with a corresponding variable of the application
type.! Correspondences are processed sequentially.

A view must have a procedure to read and write each basis variable, while maintaining
the storage and independence properties. The procedures are derived by symbolic algebra.
Although powerful packages such as Mathematica [54] exist, we use a simple equation solver

1Our interface actually allows an algebraic expression in terms of variables or computed quantities from
the application type.



(setf (get ’line-segment ’basis-vars)
’(pix ply p2x p2y))

(setf (get ’line-segment ’equations)

' ((= p1 (tuple (x pix) (y piy)))
= pix (x p1))
=ply (ypD)
= p2 (tuple (x p2x) (y p2y)))
= p2x (x p2))
=p2y (y p2))
= deltax (- p2x pix))
= deltay (- p2y ply))
= slope (/ deltay (float deltax)))
= slope (tan theta))
= slope (/ 1.0 (tan phi)))
= length (sqrt (+ (expt deltax 2)

(expt deltay 2))))

(= theta (atan deltay deltax))
(= phi (- (/ pi 2.0) theta))
(= phi (atan deltax deltay))
(= deltay (* length (sin theta)))
(= deltax (* length (cos theta)))
(= deltay (* length (cos phi)))
(= deltax (* length (sin phi))) ) )

Figure 4: Equations for Line-Segment

and a relatively large (and possibly redundant) set of simple equations, as in Fig. 4. The
equations that describe abstract data types typically are simple, so that a simple equation
solver has been sufficient.

Equations are solved by algebraic manipulations. The equation solver is given a formula
and a desired variable. If the left-hand side of the formula is the desired variable, the equation
is solved. Otherwise, an attempt is made to invert the right-hand side, using algebraic
laws, to find the desired variable; for example, the equation (= x (+ y z)) is equivalent to
(= (-xy) z)or (= (- x 2) y). These manipulations are performed recursively until
the desired variable is isolated. Of course, this procedure assumes that the desired variable
occurs exactly once in the equation.

The equations that specify a variable as a tuple of other variables are used to describe
grouping relationships. Application data might specify a point in terms of separate x and y
components, or as a data structure that represents a point as a whole (either by containing
x and y components directly or by having a view that defines x and y). The user of the
graphical interface should be able to specify either the whole representation of the point,



or one or more of its components; however, it would be incorrect to specify both the whole
and a component. The treatment of tuple equations, described below, guarantees that only
correct combinations can be specified. Corresponding to each tuple definition are equations
that define how to extract the components from the tuple.

3.2 Incremental Equation Solving

An equation set is initialized by making a copy of the equations of the target abstract
type. As each correspondence between an abstract variable and an application variable is
processed, the equation set is examined to see whether any equations can be solved. This
incremental solution of the equations accomplishes several goals:

1. It produces equations for computing variables of the abstract type in terms of stored
variables of the application type. These equations are later compiled into code.

2. It produces efficient ways of computing the variables, as described below.

3. The algorithm returns a list of all variables that are defined or computable based on
the correspondences entered thus far. The buttons for these variables are removed from
the user interface, preventing the user from entering a contradictory specification.

The following algorithm, which we call var-defined, is performed for each correspondence,
(abstract-variable application-variable).

1. The abstract variable is added to a list of defined variables and to a list of solved
variables, i.e., variables that are computable from the correspondences specified so far.

2. Each equation is examined to determine what unsolved variables it contains:

(a) If there is exactly one unsolved variable, and the equation can be solved to produce
a new equation defining that variable, then

i. The right-hand side of the new equation is symbolically optimized using a
pattern-matching optimizer.

ii. The new equation is saved for later use in generating code.
iii. The variable is added to the list of solved variables.
iv. The equation is deleted.

(b) If there are no unsolved variables, the equation is deleted. This case can occur
if the equation set contains multiple equations for computing the same variable.
Assuming that the equation set is consistent, the equation will represent a math-
ematical identity among variables that have already been defined.

(c) If the equation defines a tuple variable, and some component of the tuple has
been solved, the variable is added to a list of deleted tuple variables, and the
equation is deleted.



(d) If the equation contains a deleted tuple variable, the equation is deleted. A
deleted tuple variable can never become defined.

3. If any variables were solved in step 2.a., step 2 is repeated.

4. Finally, a list of variables is returned; this list includes the newly defined variable, any
variables that were solved using equations, and any deleted tuple variables.
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Figure 5: Viewing LS1 as a Line Segment

Fig. 5 shows correspondences between an application type LS1 and a line-segment.
When the correspondences are specified using the graphical user interface, var-defined is
called as each individual correspondence is specified. The correspondences are saved so that
a view can be remade without using the graphical interface. Fach correspondence is a pair
of an abstract variable and a field of the application type; for the example of Fig. 5 the
correspondences are:

((P1Y LOW)
(LENGTH SIZE)
(THETA ANGLE)
(P2X RIGHT))

Fig. 6 shows the calls to var-defined and the actions performed as each correspondence is
processed; each action is labeled with the number of the step in the algorithm.

After all correspondences have been processed, two results have been produced:

1. a list of abstract variables that are defined as references to the application type.

2. a list of equations that define other abstract variables.

10
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Figure 6: Incremental Equation Solving
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Figure 7: Variable Dependency Graph for LS1

The equations form a directed acyclic graph that ultimately defines each variable on the
left-hand side of an equation in terms of references to the application type; Fig. 7 shows the
graph for the LS1 example. If each variable on the right-hand side of an equation is replaced
by its defining equation, if any, and the process is repeated until no further replacements are
possible, the result will be an expression tree whose leaves are references to the application
type. 2 This is easily proved by induction. Initially, the only solved variables are those that
are defined by correspondence with the application type. Each variable that becomes solved
via an equation is defined in terms of previously solved variables. Therefore, the graph of
variable references is acyclic, and replacement of variables by their equational definitions will
result in an expression tree whose leaf nodes are references to the application type.

In general, the abstract type will define procedures that compute all of the variables
shown in the diagram, as functions of the basis variables. Therefore, it is only strictly
necessary for the view type to define procedures to compute the basis variables; all other
variables could be derived from those. However, this approach might be inefficient. For
example, it would be inefficient to calculate the LENGTH from the basis variables for the
LS1 application type, since the LS1 type stores the LENGTH directly as the field SIZE. It
is desirable to compute each variable as directly as possible from the application data, i.e.,
using as few data references and operations as possible. The var-defined algorithm operates
incrementally and produces an equation to calculate each abstract variable as soon as it is
possible to do so; the equations therefore are close to references to the application type.
It would be possible to guarantee optimal computation of each variable by implementing a
search algorithm:

2This replacement process is performed by the GLISP compiler when code that uses the view is compiled.
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1. Assign to each abstract variable that is defined as a field of the application type a cost
of 1 and mark it solved.

2. Examine each equation in the equation set to determine which variables can be solved
in terms of existing solved variables. Assign, as the cost of such a solution, the sum of
the costs of its components and the cost of each operator. If the variable is unsolved
or has a higher cost, adopt the new equation as its definition and the new cost as its
cost.

3. Repeat step 2 until no further redefinitions occur.

We have not implemented this algorithm because the var-defined algorithm approximates
it and has produced excellent results in practice; this algorithm would be useful if some
operators had much higher cost than others.

3.3 Storing Basis Variables

Some generic procedures both read and write data; thus, it is necessary to define methods
that “store” into basis variables through the view. We assume that values can be stored only
into basis variables; this is a reasonable restriction, since it corresponds to a record consisting
of the basis variables in an ordinary programming language. Each storing method is a small
procedure whose arguments are an instance of the application type and a value that is to be
“stored” into the basis variable. The procedure must update the application data in such a
way that the storage and independence properties are maintained. Without this constraint,
the method used to “store” a variable would be ambiguous, and generic algorithms might
behave differently with different data implementations.

The variables of the abstract type that correspond directly to fields of the application
type are called transfer variables; a list of these is saved. In Fig. 7, the transfer variables
are P1Y, LENGTH, THETA, and P2X. Storing new values for all transfer variables following a
change in value of a basis variable would accomplish a storing of the basis variable. Such a
procedure could be derived in a trivial way:

1. compute the values of all basis variables, other than the one to be stored, from the
application data;

2. compute values of the transfer variables from the basis variables;

3. store these values into the application data structure.

However, such a procedure might be inefficient. It is desirable to update the smallest possible
subset of stored variables. The algorithm below accomplishes this.

1. A set of basis equations is created. This is done by initializing an equation set with
all equations of the abstract type, then calling var-defined for each basis variable.

13



The result is a set of equations for computing each non-basis variable in terms of
basis variables and, implicitly, a dependency graph that shows the dependency of all
variables on basis variables.

2. The set xfers is computed; this is the subset of the transfer variables that depend
on the basis variable that is to be stored. Dependency is determined by recursively
computing the union of the leaf nodes of the expression tree for the transfer variable,
as implicitly defined by the basis equations.

3. The set dep is computed; this is the subset of the basis variables that some member of
xfers depends on.

4. Code is generated to compute each basis variable in dep, other than the basis variable
to be stored, from the application data.

5. Code is generated to compute each transfer variable in xfers and to store it into the
corresponding field of the application structure. Temporary variables are generated
for intermediate variables that are used in computing the transfer variables if they are
used more than once; otherwise, the intermediate variables are expanded using the
basis equations.

The result of this algorithm is a procedure that revises the application data structure
only as much as necessary to emulate a “store” into a basis variable while leaving the values
of other basis variables unchanged. One such procedure is created for each basis variable. In
the special case where a basis variable corresponds exactly to a transfer variable and does
not affect the value of any other transfer variable, no procedure needs to be created.

(GLAMBDA (VAR-LS1 P1Y)
(LET ((P1X (P1X VAR-LS1))
(P2X (P2X VAR-LS1))
(P2Y (P2Y VAR-LS1))
DELTAY DELTAX)
(DELTAY := (- P2Y P1Y))
(DELTAX := (- P2X P1X))
((LOW (LS1 VAR-LS1)) := P1Y)
((SIZE (LS1 VAR-LS1)) :=
(SQRT (+ (EXPT DELTAX 2)
(EXPT DELTAY 2))))
((ANGLE (LS1 VAR-LS1))
:= (ATAN DELTAY DELTAX))
P1Y))

Figure 8: Method to Store P1Y into a LS1 Data Structure
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An example of a procedure to store the basis variable P1Y into an LS1 is shown in Fig. 8.
Although P1Y corresponds directly to the LOW field, it is also necessary to update the values
of the SIZE and ANGLE fields in order to leave the value of the basis variable P2Y unchanged.
The RIGHT field does not need to be updated.

3.4 Creating Application Data from Basis Variables

Some generic procedures create new data structures; for example, two vectors can be added
to produce a new vector. Therefore, a view must have a procedure that can create an instance
of the application type from a set of basis variable values. This is similar to storing a basis
variable, except that all basis variables are stored simultaneously.

(GLAMBDA (SELF P1X P1Y P2X P2Y)
(LET (DELTAY DELTAX)

(DELTAY := (- P2Y P1Y))
(DELTAX := (- P2X P1X))
(A Ls1

LOW P1Y

SIZE (SQRT (+ (EXPT DELTAX 2)

(EXPT DELTAY 2)))
ANGLE (ATAN DELTAY DELTAX)
RIGHT P2X)))

Figure 9: Method to Create a LS1 Data Structure from Basis Variables

Fig. 9 shows the procedure that creates a LS1 data structure from a set of line-segment
basis variables. Two local variables, DELTAX and DELTAY, have been created since these
variables are used more than once. When compiled by GLISP, the A function produces
an instance of the LS1 data structure with the specified component values. When tuple
substructures are involved, additional A functions are inserted to create them as well. The
GLISP compiler invokes this method when compiling an A function; as a result, the use of
views can be recursive. For example, a line-segment could be specified by two points P1
and P2, each of which is in polar coordinates r and theta with a view as a Cartesian vector.
In this case, creating a new line-segment instance would also create new polar components.

3.5 Data Translation through Views

Suppose that there are two data types ¢; and {5, each of which has a view as abstract
type a. Then it is easy to translate data d; of type ¢; into type ¢; :

1. For each basis variable v; of the abstract type a, compute its value from data d; using
the view from type t; to a.

15
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Figure 10: Application Data that Share a View

2. Create a data structure of type ¢y from the set of basis variables using the view from
type i to a.

However, this algorithm might not be efficient. For example, types ¢; and {5 might store
the same non-basis variable, which could be transferred directly without computing basis
variable values. For this reason, we have developed another algorithm for creating data
translation procedures. The algorithm begins by finding the unique abstract type a that is
the intersection of the views from the source and goal types (the name of the view to be
used for each type can be specified if the intersection is not unique). Next, the set xfers
is computed; this is the set of transfer variables of the goal type, i.e., the variables of the
abstract type that correspond to stored fields in the goal type. Code is then generated to
create an instance of the goal type using the values of the transfer variables from the shared
view, a, of the source type. Since the view computes these transfer variables as close to the
source data as possible, the resulting code is often more efficient, and never worse, than a
version that computes basis variables first. Optimal code could be guaranteed by a search
process, as described earlier.

3.6 Unit Conversion

Application data can use various units of measurement. Most programming languages omit
units of measurement entirely: there is no way to state the units that are used, much less
to check consistency of units. GLISP allows units to be specified, and it automatically
performs unit conversion [37] and checks validity. Therefore, unit conversion is performed
automatically for all uses of views described in this paper.

3.7 Error Checking

A user could specify a partial set of correspondences between the abstract type and applica-
tion type: some generic procedures defined by the abstract type may involve only a subset
of the basis variables. For example, it is possible to compute the slope of a 1ine-segment
if only the abstract variable theta is defined. However, any actual errors are detected by
our system.

After the user enters correspondences, mkv issues a warning if any basis variables remain
unsolved. A method to store a basis variable is produced only if that variable was solved and
all basis variables in the set dep (described in section 3.3) were solved. A method to create
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an application data structure from basis variables is produced only if all basis variables were
solved. An attempt to specialize a generic procedure that uses missing parts of a view type
will result in errors detected by the GLISP compiler.

It is possible for the user to specify a correspondence that can be computed, but cannot
be “stored”. For example, a variable of the abstract type could be defined as the sum of two
stored fields of the application type; it is not possible to determine unambiguously how to
“store into” this variable. An attempt to store into such a variable will result in an error

detected by the GLISP compiler.

Views do not replace or evade strong typing. Indeed, all of the code that is produced
is correctly typed and can be mechanically translated to a strongly typed language. Views
enhance type checking by checking units of measurement, and they provide encapsulation:
when a view is used, only the operations defined by the view are available. The view
mechanism provides the benefits of encapsulation while enhancing reusability and producing
more efficient code than other encapsulation mechanisms [9].

4 Graphical User Interface

A graphical user interface makes it easy to specify correspondences between an application
type and an abstract type using a mouse pointing device. The program, called mkv (for
“make view”), is called with the goal abstract type and source type as arguments. mkv opens
a window and draws a menu of the values available from the source type and a diagram or
menu of variables of the abstract type (Fig. 1).

The user selects items from the goal diagram by clicking the mouse on labeled “buttons”
on the diagram. The interface program highlights a button when the mouse pointer is moved
near it; clicking the mouse selects the item. The user then selects a corresponding item from
the menu that represents the application data; a line is drawn between the two items to
show the correspondence. The user can also specify an algebraic expression, involving one
or more application data fields, by selecting OP from the command menu and specifying an
expression tree of operators and operands.

A diagram can present buttons for many ways to represent a given kind of data.> With
such a diagram, it is likely that there will be buttons that correspond directly to the
existing form of the data. Fig. 11 shows the diagram for a line-segment. Even though
line-segment is a simple concept, a line segment could be specified in many ways: by two
end points, or by one end point, a length, and an angle, etc. The diagram is intended
to present virtually all the reasonable possibilities as buttons. This interface has several
advantages:

1. Diagrams are easily and rapidly perceived by humans [26], and they are widely used
in engineering and scientific communication [11].

31f there were alternative representations that were sufficiently different to require different diagrams, a
menu to select among alternative diagrams could be presented to the user first.
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2. The interface is self-documenting: the user does not need to consult a manual, or know

Figure 11: Initial Diagram for a Line Segment

details of the abstract data type, to specify a view.

3. The interface is very fast, requiring only a few mouse clicks to create a view.

4. The user does not have to perform error-prone algebraic manipulations.

It is easy to add diagrams for new abstract types. A drawing program allows creation
of diagrams, including buttons. The only other thing that is needed is a specification of the

basis variables and equations for the abstract type, as shown in Figs. 3 and 4.

5 Achieving Reuse with Views

Views are important for practical reuse because they achieve a clean separation between the
representation of application data and the abstract data types used in generic procedures.
The user obtains the benefits of reuse without having to understand and conform to a
standard defined by someone else. In this section, we describe several ways in which views

can be applied to achieve reuse:

1. by specialization of generic procedures through views

2. by translation of data

3. by creation of wrappers or transforms for use with object-oriented, functional, or

transformational programming.
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5.1 Specialization of Generic Procedures

The GLISP compiler [31, 32] can produce a specialized version of a generic procedure by
compiling it relative to a view. The result is a self-contained procedure that performs the
action of the generic procedure directly on the application data. The specialized procedure
can be used as part of the application program. GLISP is a high-level language with abstract
data types that is compiled into Lisp; it is implemented in Common Lisp [47]. GLISP types
include data structures in Lisp and in other languages. GLISP is described only briefly here;
for more detail, see [33] and [31].

Data representation is a barrier to reuse in most languages because the syntax of program
code depends on the data structures that are used and depends on whether data is stored
or is computed. This prevents reuse of code for alternative implementations of data. GLISP
uses a single syntax, similar to a Lisp function call, to access features of an object [33]:

( feature object )
The interpretation of this form depends on the compile-time type of the object:

1. If feature is the name of a data field of object, code to access that field is compiled.
2. If feature is a message selector that is defined for the type of object, then

(a) a runtime message send can be compiled, or

(b) the procedure that implements the message can be specialized or compiled in-line,
recursively.

3. If feature is the name of a view defined for the type of object, then the type of object
is locally changed to the view type.

4. If feature is defined as a function, the code is left unchanged as a function call.

5. Otherwise, a warning message is generated that feature is undefined.

In this way, a generic program can access a feature of an application type without making
assumptions about how that feature is implemented. This is similar to object-oriented
programming; however, since actual data types are known at compile time, message sending
can be eliminated and replaced by in-line compilation or by calls to specialized procedures.
This is equivalent to making transformations to the code, and it significantly improves
efficiency of the compiled code.

A view is implemented as a GLISP type whose stored form is the application data; the
abstract type associated with the view is a super-class of the view type. The view type
defines messages to compute the basis variables of the abstract type from the application
type. As a simple example, consider a (handwritten, for simplicity) view of a pipe as a
circle (Fig. 2):
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(pipe-as-circle (p pipe)
prop ( (radius
( (inside-diameter p) / 2) ) )
supers (circle))

The stored form of pipe-as-circle is named p and is of type pipe. The basis variable
radius is defined as the inside-diameter of the pipe divided by 2. circle is a superclass,
so all methods of circle are inherited by pipe-as-circle:

(gldefun t7 (p:pipe) (area (circle p)))

float t7 (p)
PIPE *p;
{
return 0.78539816
* square(p->inside_diameter);

b

The function t7 has an argument p whose type is pipe. The code (circle p) changes the
type of p to the view type pipe-as-circle. The definition of area is inherited from circle
and compiled in-line; this definition is in terms of the radius, which is expanded in-line
as the inside-diameter of the pipe divided by 2. The use of the view has zero cost at
runtime because the optimizer has combined the translation from the view with the constant
7, producing a new constant 7 /4.

Once a view has been made, all of the generic procedures of the abstract type are available
by automatic specialization. Thus, a single viewing process allows reuse of many procedures.
As a larger example, we consider a function that finds the perpendicular distance of a point
to the left of a directed line segment (if the point is to the right, the distance will be negative).
Although this is not a large function, it is not easy to find an effective algorithm in a reference
book or to derive it by hand: graduate students assigned to produce such a procedure by
hand for the LS1 data type report that it takes from 20 minutes to over an hour. Books
often omit important features: [3] assumes that a human will determine the sign of the
result. Even if a formula is found, it may not be expressed in terms of the available data.
Some versions of the formula involve division by numbers that can be nearly zero. Reuse of a
carefully developed generic procedure is faster, less costly, and less error-prone than writing
one by hand.

Code that results from the viewing and compilation process is presented below. We do not
expect a user of our system to read or understand such code. While some authors [42] have
proposed that the user read and edit code that is produced by an automatic programming
system, we do not: it is not easy to read someone else’s code, and this is especially true for
machine-generated code that has been optimized. We expect that users will treat the output
of our system as a “black box”, as is often done with library subroutines.

Fig. 12 shows the generic function line-segment-leftof-distance. Fig. 13 shows a
specialized version of it for a LS1 record in C. This code was produced by GLISP compilation
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(gldefun
line-segment-leftof-distance
(1s:line-segment p:vector)
( ( (deltax 1s) * ( (y p) - (ply 1s) )
- (deltay 1s) * ( (x p) - (plx 1s) ) )
/ (length 1s) ) )

Figure 12: Generic Function: Distance of Point to the Left of a Line Segment

float 1lsdist (1, p)
CLS1 =*1;
CVECTOR =*p;
{
return cos(l->angle)
* (p->y - 1->low)
- sin(1l->angle)
* (p—>X
- (1->right
- 1->size * cos(l->angle)));

Figure 13: leftof-distance specialized for LS1 in C

followed by mechanical translation into C; the resulting C code has no dependence on Lisp.
Since the LS1 type is quite different from the abstract type line-segment, this example
illustrates that a single generic procedure can be reused for a variety of quite different
implementations of data. The specialized version is efficient (two multiplies and division
by the length were removed by algebraic optimization) and is expressed in terms of the
application data, without added overhead. While repeated subexpressions sometimes appear
in specialized code, these can be removed by the well-understood compiler technique of
common subexpression elimination [43].

A useful viewpoint is that there is a mapping between an abstract data type and the
corresponding application type, and an isomorphism between the two based on a generic
algorithm and a specialized version of that algorithm. Just as compilation of a program in
an ordinary programming language produces an equivalent program in terms of lower-level
operations and data implementations, specialization of a generic procedure produces an
equivalent procedure that is more tightly bound to a specific implementation of the abstract
data. Similar viewpoints are found in mathematical definitions of isomorphism (e.g., [39], p.
129), in denotational semantics [15], and in work on program transformation [45] [17]. [13]
describes views in terms of such isomorphisms. However, we note that many applications
use approximations that do not satisfy the strict mathematical definition of isomorphism.
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5.2 Reuse by Data Translation

One way to reuse a program with data in a different format is to translate the data into
the right form; translation is also required to combine separate data sets that have different
formats. As use of computer networks increases, users will often need to combine data from
different sources or use data with a program that assumes a different format. The ARPA
Knowledge-Sharing Project [30] addresses the problem of sharing knowledge bases that were
developed using different ontologies. Writing data translation programs by hand requires
human understanding of both data formats. [40] presents a language for describing parameter
lists and a system that produces interface modules that translate from a source calling
sequence to a target calling sequence. Our paper [33] described automatic construction of
translation procedures from correspondences; the techniques in this paper extend those.

Standardization of data representations and formats is one way to achieve interoperability.
However, it is difficult to find standards that fit everyone’s needs, and conformity to standards
is costly for some users. Views provide the benefits of standardization without the costs. As
described in Section 3.5, if there are views from two application types to a common abstract
type, a data conversion procedure to convert from one application type to the other can
be generated automatically. Thus, interchange of data requires only that the owner of each
data set create a view that describes how the local data format corresponds to an abstract
type. Only n views are needed to translate among any of n data formats, and knowledge
of others’ data formats is unnecessary. Use of remote procedure calls to servers across a
network could be facilitated by advertising an abstract data type expected by the remote
procedure; if users create views of their data as the abstract data, the translation of data
can be performed automatically.

Materialization of a new data set may be computationally expensive, but the cost is
minor for small data sets. It is also reasonable to translate a large data set incrementally,
or as a whole if a large amount of computation will be performed on it; [25] found that
translation of data between phases of a large compiler was a minor cost.

5.3 Object-Oriented, Functional, and Transformational Program-
ming

The algorithms in this paper can be used with other styles of program development.

One benefit of object-oriented programming (OOP) is reuse of methods that have been
pre-defined. At the same time, OOP systems often impose restrictions that application
objects must meet, e.g., that an application object must have the same stored data as its
superclass or must provide certain methods with the same names that are used in the existing
methods. Thus, reuse with OOP requires conformance to existing standards. Views allow
new kinds of objects to be used with existing methods.

The term adapter or wrapper [9] denotes an object class that makes application data
appear to be an instance of a target class. The wrapper object contains a pointer to the
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application data and performs message translation to implement the messages required of
a member of the target class. In the pipe example shown in Fig. 2, a wrapper class
pipe-as-circle would implement the radius message expected by the class circle by
sending an inside-diameter message to the pipe and returning the result of this message
divided by 2. The algorithms and user interfaces described in this paper could be used
to create wrapper classes. The messages expected by the target class correspond to basis
variables. The equations produced in making views can easily be converted into methods
in the appropriate syntax for the OOP system. We have previously described [35] the use
of wrapper objects to allow display and direct-manipulation editing of user data by generic
editor programs.

There are two disadvantages of using wrapper objects [9]. It is necessary to allocate a
wrapper object at runtime, which costs time and storage. Second, since translation of data
is performed interpretively, there is overhead of additional message sending, and the same
translation may be performed many times during execution. However, in cases where these
costs are tolerable, wrapper objects are an easy way to achieve reuse.

Views can be used in a related way with functional programming. Functions can be
created to calculate the value of each basis variable from data of the application type. In the
pipe example, a function radius(p:pipe) would be created that returns the value of the
inside-diameter divided by 2. Storing of basis variables could be implemented by storing
into the application data, for functional languages that allow this, or by creating new data
with the updated values in the case of strict functional languages.

The Polya language [17] [8] allows a user to specify a set of transformations that are
made to the intermediate code of a generic algorithm; these transformations are equivalent
to the transformations performed by the GLISP compiler [31]. The algorithms presented
here could be used to generate transforms for a language such as Polya.

6 Related Work

6.1 Software Reuse

Krueger [24] is an excellent survey of software reuse; it also gives criteria for effective software
reuse. Biggerstafl and Perlis [4] contains papers on theory and applications of software
reuse. Mili [29] provides an extensive survey of approaches to software reuse, emphasizing
the technical challenges of reuse for software production. Artificial intelligence approaches
to software engineering are described in [1], [28], and [41]. Some papers from these sources
are reviewed individually in this section.
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6.2 Software Components

Weide [52] proposes a software components industry analogous to the electronic components
industry, based on formally specified and unchangeable components with rigid interfaces.
Because the components would be verified, unchangeable, and have rigid interfaces, errors
in using or modifying them would be prevented. Views, as described in this paper, allow
components to be adapted to fit the application.

6.3 Languages with Generic Procedures

Programming languages such as Ada, Modula-2 [21] [27], and C++ [48] allow parameter-
ized modules; by constructing a module containing generic procedures for a parameterized
abstract data type, the user obtains a specialized version of the module and its procedures.
However, these languages allow much less parameterization than is possible using views; for
example, it is not possible to define a procedure that works for either Cartesian or polar
vectors, and it is not even possible to state units of measurement in these languages.

6.4 Functional and Set Languages

ML [53] [38] is like a strongly typed Lisp; it includes polymorphic functions (e.g., functions
over lists of an arbitrary type) and functors (functions that map structures, composed
of types and functions, to structures). ML also includes references (pointers) that allow
imperative programming. ML functors can instantiate generic modules such as container
types. However, ML does not allow generics as general as those described here. Our system
allows storing into a data structure through a view; for example, a radius value can be
“stored” into a pipe through a view. Our system also allows composition of views.

Miranda [50] is a strongly typed, purely functional language that supports higher-order
functions. While this allows generic functions to be written, it is often difficult to write
efficient programs in a purely functional language [38]: a change to data values requires
creation of a new structure in a functional language.

6.5 Transformation Systems

Transformation systems generate programs starting from an abstract algorithm specification;
they repeatedly apply transformations that replace parts of the abstract algorithm with code
that is closer to an implementation, until executable code is finally reached. Our views specify
transformations from features of abstract types to their implementations.

Kant et al. [23] describe the Sinapse system for generating scientific programs involving
simulation of differential equations over large spatial grids for applications such as seismic
analysis. Sinapse accepts a relatively small program specification and generates from it a
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much larger program in Fortran or other languages by repeatedly applying transformations
within Mathematica [54]. This system appears to work well within its domain of applicability.

KIDS [46] can transform general algorithms into executable versions that are highly
efficient for combinatorial problems. The user selects transformations to be used and supplies
a formal theory for the domain of application. This system is interesting and powerful, but
its user must be mathematically sophisticated.

Gries and Prins [16] proposed a system that would use syntactic transformations to
specify the implementation of abstract algorithms. [31] describes related techniques that
were implemented earlier. Volpano [51] and Gries [17] describe transformation of programs
by syntactic coordinate transformations for variables or for patterns involving uses of vari-
ables. Our views require fewer specifications because they operate at semantic (type-based
and algebraic) levels, rather than at the syntactic level; most patterns of use are handled
automatically by the algebraic optimization of the compiler.

Berlin and Weise [2] used partial evaluation to improve the efficiency of scientific pro-
grams. Using information that some features of a problem are constant, their compiler
performs as many constant calculations as possible at compile time, resulting in a program
that is specialized and runs faster. Our system incorporates partial evaluation by means of
in-line compilation and symbolic optimization.

6.6 Views

Goguen describes a library interconnection language called LIL [12] and has implemented the
language OBJ3 [13] [14] that incorporates parameterized programming and views. A view in
OBJ3 is a mapping between a theory T and a module M that consistently maps sorts (types)
of T to sorts of M and operations of T to operations of M. OBJ3 is based on formal logical
theory using order-sorted algebra; it operates as a theorem prover in which computation is
performed by term rewriting. The authors state ([14], p. 56):

OBJ3 is not a compiler, but is rather closer to an interpreter. The associa-
tive/commutative rewrite engine is not efficient enough for very large problems...

Tracz [49] describes LILEANNA, which implements LIL for construction of Ada packages;
views in LILEANNA map types, operations, and exceptions between theories. Our system
creates views from correspondences between application types and mathematical objects; the
possible correspondences are more general than the one-to-one correspondences specified in
OBJ3 views. Our system produces efficient specialized procedures in ordinary programming
languages and is intended to be used as a program generation system.

Garlan [10] and Kaiser [22] use views to allow multiple tools in a program development
environment to access a common set of data about the program being developed. Their
MELD system can combine features, which are collections of object classes and methods, to
allow additive construction of a system from selected component features.
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Hailpern and Ossher [18] describe views in OOP that are subsets of the methods defined
for a class. They use views to restrict use of certain methods; for example, a debugger could
use methods that were unavailable to ordinary programs. This system has been used in the
RPDE? program development environment [19].

6.7 Data Translation

IDL (Interface Description Language) [25] allows exchange of large structured data, possibly
including structure sharing, between separately written components of a large software
system such as a compiler. IDL performs representation translation, so that different
representations of data can be used by the different components. Use of IDL requires that
the user write precise specifications of the source and target data structures.

Herlihy and Liskov [20] describe a method for transmission of structured data over a net-
work, with a possibly different data representation at the destination. Their method employs
user-written procedures to encode and decode the data into transmissible representations.
They also describe a method for transmission of shared structures. [5] describes a system
that automatically generates stub programs to interconnect processing modules that are in
different languages or processors; this work is complementary to the techniques presented in
this paper.

The Common Object Request Broker Architecture (CORBA) [6] includes an Interface
Definition Language and can automatically generate stubs to allow interoperability of objects
across distributed systems and across languages and machine architectures.

Purtilo and Atlee [40] describe a system that translates calling sequences by producing
small interface modules that reorder and translate parameters as necessary for the called
procedure.

In all of these cases, the emphasis is on relatively direct translation of data, focusing
on issues of record structure, number representation, etc. The techniques described in this
paper could be used to extend these approaches to cases where the ontology, or method
of description of objects, differs. Specialization of generic algorithms is more efficient than
interpretive conversion of data.

6.8 Object-oriented Programming

OOP is popular as a mechanism for software reuse; Gamma el al. [9] describe design patterns
that are useful for OOP. We have described how views could be used to construct wrapper
objects that make application objects appear to be members of a desired class. Use of views

with the GLISP compiler extends good ideas in OOP:

1. OOP makes the connection between a message and the corresponding procedure at
runtime; this is often a significant cost [9]. C++ [48] has relatively efficient message
dispatching, at some cost in flexibility. Because GLISP [31] can specialize a method
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in-line and optimize the resulting code in context, the overhead of interpretation is
eliminated, and often there is no extra cost.

2. Interpretation of messages in OOP postpones error checking to runtime. With views
and GLISP, type inference and in-line expansion cause this checking to be done stati-
cally.

3. Views provide a clean separation between application data and the abstract type, while
some OOP systems require conformance between an instance and a superclass, e.g.,
the instance may have to contain the same data variables. With views, there can be
multiple views as the same type, €.g. a pipe can be viewed as a circle in two distinct
ways. Views allow a partial use of an abstract type, e.g. the area of a circle can be
found without specifying its center.

4. In OOP, the user must learn the available classes and messages. Some OOP operating
systems involve over 1,500 classes, so this is nontrivial. With views, the user does not
have to understand the abstract type, but only has to indicate correspondences between
the application type and the abstract type. The user interface is self-documenting.

5. Our system allows translation to a separate application language, such as C, without
requiring that the application be written in a particular language.

7 Discussion and Conclusions

We believe that generation of application code by compilation through views is an efficient
and practical technique. Expansion of code through views is recursive at compile time,
so that composition of views is possible. Generic algorithms are often written in terms of
other generics. While the examples presented in this paper have been small ones for clarity,
the approach does scale to larger algorithms. We have produced specialized versions of
algorithms that comprise about 200 lines of code in C, e.g., finding the convex hull of a set
of points (which uses the leftof-distance generic function defined for a line-segment),
finding the perimeter, area, and center of mass of a polygon, etc. Compilation and translation
to C of a 200-line program takes approximately 10 seconds on a workstation; this is much
faster than human coding. The output code is efficient, often better than code produced by
human programmers. Because of the efficiency of the generated code, we consider specialized
compilation of generic procedures to be the best way to achieve reuse using views.

Our approach has several significant advantages:

1. The user interface is self-documenting and allows views to be created quickly and easily.
2. Specialized versions of generic algorithms for an application can be created in seconds.

3. The specialized algorithms can be produced in a standard programming language that
is independent of our system.
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4. The code that is produced is optimized and efficient.
5. Static error checking is performed at compile time.

Related techniques have been used to create programs by connecting diagrammatic
representations of physical and mathematical laws [36].

The sizes of the various components of the system, in non-comment lines of Lisp source
code, are shown in the following table:

Component: Lines:
Make Views: mkv 265
Symbolic Algebra 1,003
Graphical Interface | 1,020
GLISP Compiler 9,097
Translation to C 831
Total 12,216

The Symbolic Algebra component includes algorithms used by mkv and described in
this paper. The amount of code required for making views is not too large. Translation
of specialized code into languages other than C should not be difficult: the C translation
component is not large, and much of it could be reused for other languages; the translation
uses patterns that are easily changed.
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