
www.ccsenet.org/jmr Journal of Mathematics Research Vol. 2, No. 4; November 2010

An Efficient Polynomial Approximation to the Normal Distribution

Function and Its Inverse Function

Winston A. Richards

The Department of Mathematics and Statistics

The Pennsylvania State University, Harrisburg, USA

Robin Antoine & Ashok Sahai (Corresponding author)

Department of Mathematics & Computer Science

The University of The West Indies, St.Augustine

Trinidad & Tobago, West Indies

E-mail: sahai.ashok@gmail.com

M. Raghunadh Acharya

Department of Statistics and Computer Science

Aurora’s Post Graduate College, Osmania University

Hyderabad, India

&

Department of Mathematics & Computer Science

The University of The West Indies, St.Augustine

Trinidad & Tobago, West Indies

Abstract

We propose approximations to the normal distribution function and to its inverse function using single polynomials in
each case. The absolute error of these approximations is significantly less than those of other approximations available
in the literature. We compare all the polynomial approximations empirically by calculating their respective percentage
absolute relative errors.
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1. Introduction

The problem of approximation arises in many areas of science and engineering in which numerical analysis and com-
puting are involved. The modern history of the subject may be said to have begun in 1885 with Weierstrass’s celebrated
approximation theorem on the approximation of continuous functions by polynomials. Later on, Bernstein gave a con-
structive proof of Weierstrass’s Theorem by furnishing explicitly, for every f ∈ C[0, 1], a sequence of polynomials (the
Bernstein polynomials) that converge to f

Bn ( f )(x) =
n∑

k=0

(
n

x

)
xk(1 − x)n−k. f

(
k

n

)
(1.1)

Polynomial functions are, of course, extremely well-behaved. Thus an approximation to the normal distribution function
which employs only a single polynomial is likely to be more efficient than existing approximations and easy to calculate.

Let X be a standard normal random variable and let F be the distribution function of X. We aim to construct single
polynomial approximations to both F and to the inverse function F−1 of F.

2. The Probabilistic Polynomial Approximation of Sahai (2004)

For the standard normal distribution, we know that
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F(3.0) = 0.5 +
∫ 3.0

0

‘1√
2π

exp(−x2/2).dx � 0.9987 (2.1)

= 0.5 +
∫ 1

0

3√
2π

exp(−4.5x2) dx

This places the computation of F(3.0) firmly within the C[0, 1] framework and enables us to use the ‘quadrature-polynomial
formula using the probabilistic approach’ of Sahai (2004) which we briefly describe.

Suppose that we are interested in integrating a continuous function over the interval [0, 1]. We divide [0, 1] into n equal
intervals. Let xi = i/n for i = 0, 1, ..., n. Consider a point x ∈ [0, 1]. Then, if X is a random point in [0, 1], P(X ≤ x) = x

and P(X > x) = 1 − x. Thus, of n randomly chosen points, the expected number of points that are less than or equal to x

is nx and the expected number greater than x is n(1 − x).

Now, to devise the weight function Ak(x) associated with the node xk, we simply place it in the same shoes as x. We know
that, using (n + 1) equidistant nodes, for any node xk, there are k nodes to the left of the node xk and (n − k) nodes to the
right of xk.Consequently, in this ‘probabilistic’ setup, the probability that the node xk is chosen is(

n

k

)(
n(1 − x)

n − k

)
/

(
n

n

)
=

(
n

k

)(
n(1 − x)

n − k

)
= Ak(x) (2.2)

This equation may be expressed in terms of the Gamma function in order to accommodate any real value of x ∈ [0, 1].

Therefore, Sahai(2004)’s ‘probabilistic polynomial approximation’ for the distribution function F(x) is simply

F(x) � 0.5 +
∫ x

0

n∑
k=0

Ak(x) f (xk)dx (2.3)

where

f (xk) = 3(
1√
2π

) exp(−4.5x2
k) (2.4)

The last integral in Eq. 2.1 has no closed form expression. Most statistical books give the values of this integral in normal
tables. These tables may also be used to find the value of x when Φ(x) is known. Several authors give approximations
using polynomials (Chokri, (2003); Johnson (1994); Bailey (1981); Polya (1945)). These approximations give quite high
accuracy but require significant amounts of computation and have a maximum absolute error of more than 0.003. Only
the Polya approximation

F(x) = 0.5[1 +

√
(1 − exp(

−2
π

x2))] (2.5)

has one term to calculate. The others require more than one term. They are reviewed in Johnson et al (1994) and are as
follows:

(1) F1(x) = 1 − 0.5(a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5)−16, (2.6)

in which a0 = 0.9999998582, a1 = 0.487385796, a2 = 0.02109811045, a3 = 0.003372948927, a4 = 0.00005172897742
and a5 = 0.0000856957942.

(2) F2(x) = exp(2y)/(1 + exp(2y)), where y = 0.7988x(1 + 0.04417x2). (2.7)

(3) F3(x) = 1 − 0.5 exp[−(83x + 351)x + 562)/(703/x + 165)] (2.8)

(4) F4(x) = 0.5[1 +

√
(1 − exp(−

√
π

8
x2))] (2.9)
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The last approximation (2.9) was proposed by Aludaat and Alodat (2008) as an improvement on that of Polya’s in (2.5).
The others require substantial computation, since their inverse functions are quite intricate. Using our probabilistic ap-
proximation with n = 8, we get the 8th degree polynomial:

n∑
k=0

Ak(x) f (x) = 1.196826841 − 0.0144665656x − 5.0871271x2 + 2.3574816544x3 (2.10)

+ 1.32473472x4 − 18.16066369x5 − 5.33531361x6

+ 12.93269242x7 − 4.485957222x8

Hence, using (2.3), we get the following ninth-degree polynomial approximation to the distribution function of the stan-
dard normal distribution

F5(x) ≈ 0.5 +
∫ x

0

n∑
k=0

Ak(x) f (xk)dx (2.11)

= 0.5 + 1.196826841x − 0.00723328282x2 − 1.1695709047x3 − 0.5893704135x4

+ 0.264946944x5 − 3.026777282x6

− 0.7621876586x7 + 1.616586552x8 − 0.4984396913x9 (2.12)

Now, we consider the approximation of the inverse function F−1(p), since F(x) = p ⇔ F−1(p) = x, where 0 ≤ p ≤ 1.
This will have many applications in practical situations. One such application will be in generating random x-values for
standard normal variates.

The probability p may be generated using a random number generator with the uniform distribution U[0, 1]. If we
have generated p1, p2, ..., pn then the inverse distribution function may be used to generate the normal variates (xα;α =
1, 2, ..., n). We now consider approximations to F−1(p). As F−1(x) in (2.6) would have infinite terms, it could not be
expressed in a closed form via a finite degree polynomial. In the abscence of a closed form it would be very tedious
to generate a good approximation to the inverse function. Hence we consider only the approximations to the inverse
functions given above. These are:

F−1[2](p) = Real root between 0 and 2 of the equation

0.7988x(1 + 0.04417x2) = [log(p) − log(1 − p)]/2 (2.13)

F−1[3](p) =Real Root between 0 and 2 of the equation

(83x + 351)x + 562 + ((703/x) + 165)(log(2 − 2p)) = 0 (2.14)

F−1[4](p) =

√
− log(1 − (2p − 1)2)√

π/8
(2.15)

and

F−1[5](p) =Real Root between 0 and 2 of the equation

F5(x) − 0.5 = p (2.16)

as in (2.12).

2.1 A Numerical Comparison of the Approximations to F(x) and F−1(x)

In this section we compare the exact value of F(x) with its approximate ones. We make this comparison for the values
x = 0.1, 0.3, 0.6, 1.0 and 2.0. These values are tabulated in Table A1 given in the Appendix. The following table, Table
A2, gives the values of the Absolute Percentage Relative Error (APRE) for each of the various approximating functions
F(.)(x). We calculate APRE[F(J)(x)], where

APRE[F(J)(x)] =
|F(J)(x) − F(x)|

F(x)
100% (3.1)

The most favourable APRE value has been highlighted.
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It is quite evident that our proposed approximation F5 is doing well and is consistently better than that of the Aludaat and
Alodat (2008) approximation F4.

Similarly, we compare the exact value of F−1(p) with its approximated ones. We compare the numerical approx-
imations with the exact values of F−1(p) at the values p = 0.5539828, 0.617911, 0.725747, 0.841345, 0.933193 and
0.977250.These are given in Table A3 in the Appendix.

The following table A4 displays the values of the APRE for various approximations to F−1(p).Once again, the most
favourable value has been highlighted. Our approximation F−1[5](p) does quite well and is consistently better than that
of Aludaat and Alodat (2008).
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APPENDIX.

Table A.1. Values of Various Approximating Functions F (o) (x) & Actual Value of Normal Feller Function F (x)

x-values →
Apxg. Fns. ↓ 0.1 0.3 0.6 1.0 1.5 2.0

F (1) (x) 0.538972 0.615312 0.719751 0.830390 0.919689 0.966501

F (2) (x) 0.539873 0.618028 0.725877 0.841331 0.933053 0.977240

F (3) (x) 0.539872 0.617933 0.725693 0.841280 0.933172 0.977250

F (4) (x) 0.539519 0.617088 0.724700 0.841184 0.934699 0.979181

F (5) (x) 0.539823 0.617895 0.725733 0.841330 0.933179 0.977234

F (x)-Values: 0.539828 0.617911 0.725747 0.841345 0.933193 0.977250

Table A.2. Values of Abs. Per. Rel. Error [APRE] For Various Approximating Functions F (o) (x)

x-values →
Apxg. Fns. ↓ 0.1 0.3 0.6 1.0 1.5 2.0

APREF (1) (x) 0.158569 0.420611 0.826183 1.302082 1.447075 1.099923

APREF (2) (x) 0.008336 0.018935 0.017913 0.001664 0.015002 0.001023

APREF (3) (x) 0.008151 0.003560 0.007440 0.007726 0.002250 0.000000

APREF (4) (x) 0.057240 0.133191 0.144265 0.019136 0.161381 0.197595

APREF (5) (x) 0.000926 0.002589 0.001929 0.001783 0.001500 0.001637
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Table A.3. Values of Approximating Inverse Functions F-1(o) (p) & Actual Value of The Inverse Function F-1(p)

p-values →
Apxg. Fns. ↓ 0.539828 0.617911 0.725747 0.841345 0.933193 0.977250

F-1 (2) (p) 0.099887 0.299694 0.599611 1.000057 1.501082 2.000184

F-1 (3) (p) 0.099889 0.299943 0.600163 1.000269 1.500158 2.000006

F-1 (4) (p) 0.100785 0.302171 0.603140 1.000658 1.486901 1.965099

F-1 (5) (p) 0.100013 0.300041 0.600043 1.000061 1.500110 2.000288

F-1(p)-Values: 0.100000 0.299999 0.600000 1.000001 1.500002 2.000002

Table A.4. Values of Abs. Per. Rel. Error [APRE] For Various Approximating Functions F (o) (x)

p-values →
Apxg. Fns. ↓ 0.539828 0.617911 0.725747 0.841345 0.933193 0.977250

APREF-1 (2) (p) 0.113000 0.101667 0.064833 0.005600 0.072000 0.009100

APREF-1 (3) (p) 0.111000 0.018667 0.027167 0.026800 0.010400 0.000200

APREF-1 (4) (p) 0.785000 0.724002 0.523333 0.065700 0.873399 1.745148

APREF-1 (5) (p) 0.013000 0.014000 0.007167 0.006000 0.007200 0.014300

F-1(p)-Values: 0.100000 0.299999 0.600000 1.000001 1.500002 2.000002
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