CI-MODELS ARISING AMONG 4 RANDOM

VARIABLES
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ABSTRACT

Let &1, &2, €3,&4 be a system of 4 finitely-valued random variables. By
the CI-model (CI = conditional independence) induced by {&;,..., &}
we understand the list of triplets of disjoint subsets of {1,2,3,4}
{(A, B|C); [&]ica 1s cond. independent of [¢;];ep given [£]iec}. The
subject of this contribution is the problem which lists of such triplets
are Cl-models induced by a system of 4 finitely-valued random vari-
ables.

1. INTRODUCTION

The concept of CI has been studied in probability theory and statis-
tics for many years (Dawid, 1979), (Spohn, 1980), (Mouchart and
Rolin, 1984). Its role in probabilistic reasoning was discerned and
highlighted by the group around J. Pearl (1988) (A. Paz, D. Geiger,
T. Verma), but many other researchers dealt more or less explicitly
with this concept (Lauritzen et al., 1990), (Shachter, 1990), (Smith,
1989), (Malvestuto, 1994). Moreover, the concept of CI has appeared
to be important also for nonprobabilistic approaches to reasoning
(Shenoy, 1994).

The idea of Pearl and Paz (1987) to describe CI-models as ‘depen-
dency models’ closed under ‘inference rules’ motivated our research
in this area (Studeny, 1992), (Mat13, 1992). One of our special goals
is to decide which dependency models over {1,2,3,4} are CI-models.
We hope that the solution of this problem will help us to obtain a
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good view on the general case. Indeed, 3 variables are too little to
reveal general aspects of CI and 5 variables are too much to be han-
dled. From this point of view the case of 4 variables is a reasonable
compromise — it is sufficiently complicated to show deeper properties
of CI but still (although hardly) managable by humans.

The aim of this contribution is to describe the history of that prob-
lem, review clearly latest results from (Matis and Studeny, 1995),
(Matus, 1995) and formulate the questions which are still open.

2. BASIC CONCEPTS

Throughout the paper we will deal with 4 random variables &,...,&
where &; takes values in a finite nonempty set X; (we will call X; the
range of &). The joint distribution of the collection {&1,82,€3,&4} is
a probability distribution over {1,2,3,4}:

DEFINITION 1 (probability measure over N, marginal measure)

Let N be a basic index set. In this paper we have N = {1,2.3,4}.
A probability measure over N is specified by a collection of nonempty
finite sets {X;,7 € N} and by a probability measure on the cartesian
product HieN X;.

Whenever § £ § & N define a probability measure over S called the
marginal measure of P and denoted by P* as follows:

P5(A) = P(Ax [Licnys Xi) whenever A C J[,.4 Xi.

Moreover, PV is defined as P itself.

The focus of our interest is the concept of CI.

DEFINITION 2 (counditional independence)

Suppose that P is the joint distribution of a collection of finite-valued
random variables [§;];. v (on [[;cy Xi concretely). Having a triplet
(A, B|C) of pairwise disjoint subsets of N, where A, B are nonemp-
ty, we say that [];c 4 is conditionally independent of [&i];c 5 given
[Eilicc if YV [zi]ien € [Lien Xi

PABC([zi]icanc) - PC([wilicc) = PAY([xi)icac) - PPC([xi]ienc).!
We will also say that the CI-statement ALB|C is valid for P and
write AL B|C(P).

IThe juxtaposition AB is used to denote the union A U B, P(a) is written
instead of P({a}) and the convention Pm([(v,j]ie(@) =1 is accepted here.
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Remarks

a) This definition involves also the ordinal stochastic independence as
a special case when there is no conditioning variable i.e. C' is empty.
b) Note that the order of componentsin the triplet used in this paper
differs from (Pearl, 1988) where the conditioning areais placed on the
second position. We follow the original notation in probability theo-
ry: the conditioning area is on the last position after the separator |.

Pearl (1988) proposed to describe Cl-structures among random vari-
ables by means of the concept of dependency model.

DrrINITION 3 (dependency model, CI-model)

Let us denote by T(N) the set of all ordered triplets (4, B|C') where
A, B,C C N are pairwise disjoint and A, B nonempty. Every subset
of T(N) will be called a dependency model over N.

Let P be a probability measure over N. A dependency model [ is
called the model of the Cl-structure of P iff I is the set of triplets
representing valid Cl-statements for P.

The following lemma from (Geiger and Pearl, 1990) or (Studeny,
1992) will appear to be very useful in the sequel.

LEMMaA 1
The intersection of two CI-models is also a CI-model.?

The lemma indicates one of possible ways to description of Cl-struc-
tures arising among fixed number of variables. One need not to keep
the list of all CI-models over NV since proper intersections of CI-models
can be removed.

DErFINITION 4 (irreducible CI-model)
We will say that a CI-model I is #rreducible iff it cannot be written
as the intersection of two CIl-models different from I.

As each Cl-model can be written as intersection of irreducible CI-
models it suffices focus only on irreducible Cl-models. However, one
can find even more economic way by considering permutations of the
basic index set.

2The construction of the corresponding probability distribution used to prove
this lemma has first of all theoretical value as it enlarges exponentially ranges of
random variables.
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DEFINITION 5 (permutation of dependency models)

Let 1 : N — N be a permutation of the basic index set N. It can
be considered as an autobijection of T'(N): one can assign the triplet
(r(A), 7(B)|n(C)) to every (A, B|C) € T(N).?

Thus, having dependency models I,.J over N we will say that I and
J are permutably equivalent iff there exists a permutation 7 of IV such
that I = {(x(A),n(B)|r(C)); (4, B|C) € J }, i.e. I is the image of .J

by the corresponding autobijection of T(NV).

Of course, it is indeed an equivalence relation on the class of depen-
dency models over N which moreover respects Cl-models:

Lemma 2
Supposing I and .J are permutably equivalent dependency models T

is a CI-model iff J is a CI-model.*

It makes no problem to derive from the previous lemma that also
irreducibility of CI-models is saved by the considered equivalence.
Therefore, one need not keep the whole list of irreducible CI-models,
it suffices to have only one representative for each equivalence class.

3. INFERENCE RULES

The characterization of CI-models by means of the list of irreducible
representatives is one of the possible ways. The dual approach is
to describe Cl-models as dependency models closed under inference
rules.

DEFINITION 6 (inference rule)

In general, an inference rule with r antecedents (r > 1) in an (r +1)-
nary relation on T'(N). But in practice we are interested in inference
rules expressed by an informal schema, which defines such an (r +1)-
nary relation for each basic index set IV, like the following examples

(A,B|C) — (B, A|C) symmetry
(A,BC|D) — (A,C|D) decomposition
(A,BC|D) — (A, B|CD) weak union
[(4,B|CD), (A,C|D)] — (A, BC|D) contraction.

3Here 7(A) = { n(z); * € A} denotes the image of a set A.
4Hint: if J is the Cl-model induced by [gi]ieN and 7 is the pertinent permu-

tation of N, then I is induced by [5”—1(i)]‘e’v'
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An example is the most effective way of indicating what is meant,
but the formal definition is more awkward. So-called regular infer-
ence rule with r antecedents will be specified by the following items:

a)

b)

Now,

A finite set of symbols S = {4;,..., 4, }, possibly including a
special symbol @, is given (n > 3).

For each k = 1,...,7 + 1 an ordered triplet [SF,S¥ SK] of
nonempty disjoint subsets of S is given. The only requirement
is that whenever S¥ contains the symbol §) then no other sym-
bol is in S¥. The syntactic record of the described inference
rule is

[(SLSHSH o (ST ISP — (S77.8571]85)

where each set SF is depicted by the juxtaposition of its ele-
ments. To avoid redundancy we suppose that each symbol in
S is contained in some set S¥ and that no couple of different
symbols is contained in exactly same collection of sets Sl]”

For every basic set N a set of (r+1)-tuples of triplets from T'(N)
is specified as follows: whenever there exists a substitution map-
ping m assigning to every symbol A € S a subset m(A4) C N
(the empty set is allowed, we even require that m(() is the emp-
ty set) such that {m(A4;); i =1....,n} is a disjoint collection
and for each k = 1,...,7 4+ 1 both U{m(A4); A € Sf} # @ and
U{m(B); B € S¥} # 0, i.e. the triplets

(Ufm(A): A € SE. Ulm(B); B € SEH Um(C):C € S)
form an (r + 1)-tuple of elements of T(N) called inference in-
stance. First r triplets (for k < r) in such an inference instance
are called antecedents, the last one (corresponding to k = r+1)
is called the consequent. The described regular inference rule is
then the set of all its inference instances.

we are to explain how inference rules can be used to describe

Cl-models.

DEFINITION 7 (probabilistically sound inference rule, semigraphoid)
Having a regular inference rule and a dependency model I C T(N)
we will say that I is closed under that inference rule if the consequent
(of each inference instance of that rule) belongs to I provided that
the antecedents (of that instance) belong to I. An inference rule is
probabilistically sound iff every Cl-model is closed under it.
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A dependency model closed under symmetry, decomposition, weak
union and contraction mentioned in Definition 6 is called a sems-
graphoid.

Note that all semigraphoid inference rules are probabilistically sound
according to well-known basic properties of CI (Dawid, 1979). The
original idea of Pear]l and Paz (1987) was to describe Cl-structures as
dependency models closed under a finite number of regular inference
rules, concretely Pearl (1988) conjectured that CI-models coincide
with semigraphoids.

4. OUR FIRST ATTEMPTS

We started our research in this area by the above mentioned Pearl’s
conjecture, which was identical with an unpublished Spohn’s conjec-
ture from 1980 — as we learned from (Spohn, 1994). Unfortunately,
we found in (Studeny, 1989) that there exist probabilistically sound
inference rules not derivable from the semigraphoid inference rules.”

Dealing with the natural question whether Cl-models could be
characterized as dependency models closed under a finite number of
inference rules one can limit attention to inference rules with nonre-
dundant antecedents:

DEFINITION 8 (minimal inference rule)

Consider a probabilistically sound (regular) inference rule with r an-
tecedents. In case it has at least one inference instance [t,...,t.11] €
T(N)"t1 such that no proper subset of the antecedent set {t1,...,#.}
has the property that each Cl-model containing it contains also the
consequent t,.41, we will say that the inference rule is menimal, the
inference instance will be called minimal. too.

Later we found that even stronger limitation is suitable.

DEFINITION 9 (perfect inference rule)

Cousider a probabilistically sound (regular) inference rule with r an-
tecedents. In case it has at least one inference instance [ty,...,t11] €
T(N)"+! where each proper subset of the antecedent set {t1,...,t,}
is a CI-model® the inference rule will be called perfect.

5They are denoted (A.3) in the sequel.
8 Equivalently: each subset of {t1,...,%,} of cardinality » — 1 is a Cl-model.
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Of course, a perfect inference rule is necessarily minimal, but the
converse is not true. For example, the inference rule

[(A, B|E). (4,C|BE) (4. D|CE)] — (4.D|E)

is a minimal probabilistically sound inference rule” which is not per-
fect since { ({1}, {2}H0), ({1}, {3}{2}) } is not a Cl-model®.

As a perfect inference instance cannot be derived using a nonper-
fect inference rule, all perfect inference rules have to be contained in
every complete system of probabilistically sound inference rules. This
was the clue which helped in (Studeny, 1992) to show that CI-models
cannot be characterized by means of a finite number of inference
rules. Nevertheless, we showed that CI-models can be characterized
by means of a countable number of minimal probabilistically sound
inference rules.” We hope that nonperfect inference rules can be re-
moved from such a system and dare to formulate:

CONJECTURE
CI-models can be characterized as dependency models closed under
(a countable number of) perfect inference rules.

The result on (finite) nonaxiomatizability of CI-models led to an al-
ternative approach to description of CI-models by means of so-called
imsets (Studeny, 1994, 1995). This approach makes it possible to
derive simply further probabilistically sound inference rules. For the
case of 4 variables we found the following perfect inference rules.

(A.1) (A, B|C) — (B, A|C)
(A.2) [(A,B|CD), (4,C|D)] — (A, BC|D)
(A.3) [(A, BICDE), (C,D|AE), (C,D|BE), (A, B|E)] —

— [(C, DIABE), (A, BICE), (A, BIDE), (C, D|E)]
(A4) [(A B|CDE), (4, D|BE), (C, D|AE), (B,C|E)] —

— [(A, DIBCE), (A, BIDE), (B,C|AE), (D.C|E)]
(A5) [(A,C|DE), (B,D|CE), (B,C|AE), (A, D|BE)] —

— [(A, DICE), (B,C|DE), (B, DIAE), (4,C|BE)]
(A.6) [(A, B|CE), (A,C|DE), (A, D|BE)] —

— [{A,C|BE), (A, D|CE), (A, B|DE)]

Tt is derived from the semigraphoid inference rules; substitute A = {1}, B =
{2}, € = {3}, D = 0 to get the corresponding minimal inference instance.

81t imlies ({1},{2,3}|0) by contraction.

9This was done under platonic assumption that all CI-models are captured by
the creator of that countable system.



(A7) [{A.B|CDE), (C,D|ABE), (A,C|E), (B, D|E)] —
— [(A,C|BDE), (B, D|ACE), (A, B|E), (C,D|E)]

Note that we used here a comperessed notation of inference rules.
The rules with the sames set of antecedents are collected in one en-
try having more than one consequent. Also two-way arrows are used
to denote alternative inference rules (with antecedents exchanged for
consequents). Thus, (A.2) is a compression of decomposition, weak
union and contraction.

At that time we hoped that all perfect inference rules could be pro-
duced by the new approach. In (Studeny, 1994) we specified a class
of structural semigraphoids which we had formerly conjectured to co-
incide with CI-models. We tried to verify it in case of 4 variables.

We found all 37 submaximal structural semigraphoids'® and found
that for our purpose it suffices to show that they are Cl-models'’.
Considering permutation (see Definition 5) only 10 construction (for
10 representatives of different classes of permutable equivalence) of
probability measures were needed. Unfortunately, we succeeded find
ouly 9 counstruction, the last type of structural semigraphoids ap-
peared not to be a Cl-model (Matus, 1994). We found later that it
can be explained by further independent probabilistically sound in-
ference rules announced in (Studeny, 1994).

5. LATEST RESULTS

On the other hand, the hypothesis that the 9 construction above give
all irreducible Cl-models appeared also untrue. Further 4 types of
irreducible CI-models (of course not submaximal!) were found — the
list of all known irreducible CI-models will be given in the last sec-
tion. We proceed in (Matis and Studeny, 1995) and (Matis, 1995)
by finding further independent inference rules. Three basic methods
of proving their probabilistic soundness can be distinguished. We will
not repeat the proofs, they are in (Matuis, 1995).

10A structural semigraphoid is submazimal iff the only structural semigraphoid
containing it properly is the full class T(N).

1 As every nonmaximal structural semigraphoid is intersection of submaximal
structural semigraphoids, it follows from Lemma 1.



The first method utilizes Corollary 3.6 from (Mouchart and Rolin,
1984) formulated for o-algebras. Note that this property implies well-
known inference rule intersection (Pearl, 1988) known to be valid for
strictly positive measures. But also in general case it gives some
weaker conclusion (not expressible in terms of the classical concept
of CI) which combined with other Cl-statements may imply the re-
quired consequent. That is the principle of the proof of the following
collection of perfect probabilistically sound inference rules.

(B.1) [(4, BIC), (A, B|D), {B,C|A), (C,DI0)] — (A. BI0)
(B.2) [(A, B|C), (A,C|D), (B,C|A), (B, D|B)] — (A, B|0)
(B.3) [(4, BIC), (A,C|D), (C, D|A), (B, D|0)] — (4, BI0)
(B4) [(4, BIC), (A,C|D), (4,D|C), (B, DI#)] — (A, B0)
(B.5) [(4, BID). (4,C|B), (B, DIC), (4, DIB)] - (A, B|C)
(B.6) [(4, BID). (4,C|B), (B, DIC), (B, D|A)] — (A, B|C)
(B.T) [(4, BID). (4,C|B), (B, DIC), (B.C|D)] — (4, B|C)
(B.8) [(4, BID). (4,C|B), (B, DIC), (C,DIB)] - (A, B|C)
(B.9) [(A, B|D), (A,C|B), (B, D|AC), (A, D|B)] — (A, B|C' D)
(B.10) [(A, B|D), (A, C|B), (B, D|AC), (B, D|A)] — (A, B|C'D)

The second method is the principle of uniqueness of a factorizable dis-
tribution saying that mutually absolute continous probability mea-
sures having the same marginals on sets from a system S and factor-
izable with respect to S coincide. Using this principle probabilistic
validity of the following perfect inference rules can be shown.

(C.1) [(4. BIC), (4, B|D), (4,C|D). (C, DIAB)] — (4, B|CD)

(C.2) [{A.C|D), (4, B|D), (B,C|A), (4, D|BC)] — (4, BICD)

(C:3) [(4. BID), (4,C|B), (4,C|D), (B.D|C)] — (4, BIC)

The third method cousists of calculation with heedful cancelation and
employing of ‘nonstandard’ equivalent definitions of CI. In fact, each

of the following perfect inference rules has a specific proof. Note, that
(D.1) has appeared also in (Spohn, 1994).

(D.1) [(A, B|CY, (4, B|D), (A, B|0), (C,D|AB)] — (A, B|CD)

(D.2) [(4, BIC), (4, B|D), (C, D|A), (C, D|#)] — (4, BI0)

(D.3) [(4, BIC), (4,C|D), (B, DIC). (B.DI#)] — (4, BI0)
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(D4) [(4.BI|C), (4,C|D), (B, D|A), (B.DI#)] — (4.B0)

6. PRESENT STATE

Thus, we can summarize. In the sequel we give the list of all so far
known nonmaximal irreducible CI-models. Of course, it suffices to
mention only one representative for each class of permutable equiva-
lence. Moreover, more economic way of description of semigraphoids
is based on the following concept.

DEFINITION 10 (elementary triplet)

An elementary triplet is every triplet ({a}, 'y € T(N) where
K CN,a,be N\ K, a+#b. The class of elementary triplets over N
will be denoted by E(N).

It was shown in (Matiis, 1992):

LemMma 3
Every semigraphoid I C T(N) is determined uniquely by its intersec-
tion with the set of elementary triplets E(N). It can be reconstructed
from I N E(N) by means of the following property:
(A,B|C)el & VaeA beB CCKc(AUB)\{a,b}

{a}, {b}|K) e IN E(N).

Thus, every Cl-model can be represented as a subset of E(N) which
has 24 elements in our case N = {1,2,3,4}.

In the following list we omit braces — every component of an ele-
mentary triplet is expressed by the juxtaposition of its elements or
by the symbol of the empty set.

(20 triplets, submaximal, 6 perm. equiv. representatives)

(1 3(0), (2.310), (1.4(0). (2,40), (3.410), (1,3[2). (2,3[1). (1.4]2),
(2,4]1), (1,3]4), (1.413), (3,4]1), (2,3]4), (2,43), (3,4]2). (1.3]24),
(2,3]14). (1,4]23), (2,4/13), (3, 412).

- (18 triplets, submaximal, 4 perm. equiv. representatives)
(1,4(0), (2,4]0), (3,4]0), (1,2|3), (1,3]2), (2,3[1), (1,4[2), (2, 4|1),
(1,413), (3,411), (2.4]3), (3,412}, (1,2134), (1,3]24), (2,3[14), (1,4[23),
(2,4]13), (3,4|12).




H

(18 triplets, submaximal, 1 perm equiv. representative)

T.203), (1,3]2), (2.3[1). (1,214), (1,412), (2,4]1), (1,3}4), {1, 4]3).
(3,4]1), (2.314), (2.4]3). (3,4]2), {1.2134), (1,3]24), (2,3[14). (1,4]23),
(2,4]13), (3,4[12).

18 triplets, submaximal, 1 perm. equiv. representative)

TT,210), (1,3(0), (2,3(0). (1,4]0), (2,4/8), (3,4/6), (1,2]3). (1,3]2),
(2,3(1), (1,2]4), (1,412), (2,4]1), {1.3]4), (1,4]3), (3,4]1). (2,3]4),
(2,4|3

18 triplets, submaximal, 41)erm equiv. representatives)
300), (1,3(0), (2.3(0). (1,4]0), (2,4/0), (3,4]0), (1,2]4). (1.4]2),
1), (1.314), (1.4]3). (3.4]1), (2,34, (2.4]3), (3.4]2). (3. 4]12),
13), (1,4]23).

(
),
),
). (3,4]2).
(
)
)

/\/\/\
[\.}[\.}l—‘
B b

(14 triplets, submaximal, 6 perm. equiv. representatives)

), (2,3(0), (L410), (2,400), (3,410}, (1,3]2), (2,3]1), (1,4]2),
), (1,2034), (1,3]24), (2,3]14), (1,4123), (2,4]13).
)

PR

0
1

—~ e~
N =

)

-

7.| (12 triplets, submaximal, 1 perm. equiv. representative)
(L, 310), (2.300), (1,410), (2,4/0), (3,4/6), (1,2/34), (1,
0, (1,4123), (2,413), (3,4]12).

).

B

,V\
[\.'))—‘
QRS
=)

(12 triplets, submaximal, 4 perm. equiv. representatives)
0), (1,30), (2,3]0), (1,40), (2,4]0), (3,410), (1,23). (1.3]2),
1), (2,3]14), (1,3]24), (1,2|34).

/\/\
o=
L

5

H

.| (12 triplets, submaximal, 4 perm. equiv. representatives)
0), (2,410), (3,410), (2,3]1), (2,4[1), (3,4[1), (1,2[34), (1,3[24),
14). (1,4]23), (2,413), (3.4]12).

(5 triplets, not subma‘(imal 6 perm. equiv. representatives)

34), (1.2]3). (1,214), (3,4]1), (3.4]2).

?

,\,\
[ SR )
w

9

e

—
[
V]

(4 triplets, not subma‘(imal 6 perm. equiv. representatives)

34), (1,213), (1,2[4), (3,410).

(4 triplets, not submaximal, 24 perm. equiv. representatives)

34), (1,2]4), (2,3|1), (3, 4/2).

7]

—
—
V]

—
[
V]

]

(4 triplets, not submaximal, 24 perm. equiv. representatives)

34), (1,2[4), (2,3[1), (3,4[0).
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—
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The corresponding constructions of probability measures follow. The
sets X; (¢ = 1,...,4) are taken either {0} or {0,1} or {0,1,2} or
even {0,1,2,3} — what option is concretly chosen is clear from the
context. The measures are defined on their support only; the order
of variables in quadruplets is 1,2,3.4.

(0,0,0,0) — 1/2 (0,0,0,0) — 1/2 (0,0,0,0) — 1/2
(1,1,0,0) — 1/2 (1,1,1,0) — 1/2 (1,1,1.1) — 1/2
(0,0,0,0) — 1/8 (0,0,0,0) — 1/4 (0,0,0,0) — 1/4
(0,0,1,1) — 1/8 (0,1,1,0) — 1/4 (0,0,1,1) — 1/4
(0,1,0,1) — 1/8 (1,0,1,0) — 1/4 (1,1,0,1) — 1/4
(0,1,1,0) — 1/8 (1,1,0,0) — 1/4 (1,1,1,0) — 1/4
(1,0,0,1) — 1/8
(1,0,1,0) > 1/8
(1,1,0,0) — 1/8
(1,1,1,1) — 1/8
(0,0,0,0) — 1/9 (0,0,0,0) — 1/8 (0,0,0,0) — 1/4
(0,1,1,1) — 1/9 (0,0,1,1) — 1/8 (1,0,1,1) — 1/4
(0,2,2,2) — 1/9 (0,1,0,2) — 1/8 (2,1,0,1) — 1/4
(1,0,1,2) > 1/9 (0,1,1,3) — 1/8 (3,1,1,0) — 1/4
(1,1,2,0) — 1/9 (1,0,0,3) — 1/8
(1,2,0,1) - 1/9 (1,0,1,2) — 1/8
(2,0,2,1) — 1/9 (1,1,0,1) — 1/8
(2,1,0,2) > 1/9 (1,1,1,0) — 1/8
(2,2,1,0) — 1/9
(0,0,0,0) — 1/6 (0,0,0,0) — 1/8 (1,0,0,0) — 1/8
(1,0,0,0) — 1/6 (1,0,0,0) - 1/8 (1,1,0,0) > 1/8
(0,0,0,1) — 1/6 (0,0,0,1) — 1/4 (1,0,1,0) — 1/8
(0,0,1,0) — 1/4 (0,0,1,0) — 1/4 (1,1,1,0) — 1/4
(0,0,1,1) — 1/8 (0,0,1,1) - 1/8 (1,1,0,1) > 1/8
(0,1,1,1) — 1/8 (0,1,1,1) - 1/8 (0,1,1,1) > 1/4
(0,0,0,0) — 1/8
(0,1,0,0) — 1/8
(0,1,1,0) — 1/4
(1,0,0,1) — 1/4
(0,0,1,1) — 1/4



However, so far we are not sure whether the previous list is complete.
Almost all other semigraphoids are excluded by inference rules men-
tioned in the preceding section, but still we are not sure about the
following three cases.

OrEN QUESTIONS

We would like to know whether the following dependency models are
CI-models or not:

a) (A, B|C), (A, D|B). (B.C|AD). (4. D|9)

b) (4, B|C), (A, D|B), (B,C|AD), {C,D|B)

C) <Av B|C> <A., D|B>= <B= C ‘4D>‘ <A* DW)>= <C* D|B>

Note that the only Cl-statement which could be the consequent of a
prospective probabilistically sound inference rule is (A, B|C'D).

We tried to answer especially the first question and found that the
inference rule

[{A. B|C). (4. D|B), (B.C|AD). (4. D|)] — (4, BICD)

is prob. sound in some special situation — when card HieDXi =2
and the measure is strictly positive.'?

As complete list of CI-models contains more than 18 000 items we de-
cided to create a database SGPOKUS of all semigraphoids among 4
variables where it is indicated which semigraphoids is already known
to be a Cl-model, which one is known not to be a CI-model and for
which is this question still open.

Notice This paper is intended only for the workshop WUPES’94 - it has
informal character, describing unfinished work. We do not plan to accept
the offer of organizators and submit it in this form as publication in a spe-
cial volume of a journal.
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