

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-2, May 2012

104



Abstract- In this paper, we have presented CRUD, a use-case

patterns that is proven useful for developing maintainable and

reusable use-case models. These patterns focus on designs and

techniques used in high-quality models, and not on how to model

specific usages. In CRUD we merge short, simple use cases such

as Creating, Reading, Updating, and Deleting pieces of

information into a single use case forming a conceptual unit.

krywords— Create data, delete data, information handling, merge

use cases, read data, short flow, short use case, simple operation,

update data.

I. INTRODUCTION

 The CRUD pattern consists of one use case, called CRUD

Information or Manage Information[1,7],

modeling all the different operations that can be performed on

a piece of information of a certain kind, such as creating,

reading, updating, and deleting it. This pattern should be used

when all flows contribute to the same business value and are

all short and simple. Quite often systems handle information

that, from the system's viewpoint, is very easily created in the

system. After a simple syntax or type check, and some trivial

calculation or business-rule check "Business Rules", the

information is simply stored in the system. No advanced

calculations, verifications, or information retrieval will have

to be performed. The description of the flow is only a few

sentences long, and there are probably not more than one or

two minor alternative paths in the flow. Reading, updating, or

deleting the information are equally simple operations. Each

of them can be described in a few sentences.

Such operations can be modeled as use cases and are to be

included in the use-case model[10]. If these use cases are not

included in the model, some stakeholder will probably miss

them; otherwise, the functionality should not have been

included in the system in the first place. This does not

necessarily mean that this kind of functionality should be

expressed as separate use cases. Instead, according to the

CRUD: Complete pattern, we group them together in

so-called CRUD use cases, including all four types of

operations on some kind of information creation, reading,

updating, and deletion of any such information.

Manuscript received April 14, 2012.

 Prashant*, Assit. Prof.(IT), GCE, Gurgaon, Haryana, India.

(prashantvats12345@gmail.com).

Sarika Gupta#, Assit. Prof.(IT), DCE, Gr. Noida, U.P., India.

(sarika.mittal0108@gmail.com)

This procedure has a few obvious advantages[2]. First, the

size of the model will be reduced, which will make it easier to

grasp because the number of use cases will be reduced.

Second, nobody will be interested in a system containing only

a subset of these use cases, for example, read and delete, but

not create and update. Grouping these flows together in a

single use case called something like CRUD X ensures that all

four are included in the model, and makes it clear to every

reader of the model that this is the use case where all this

functionality is captured. Third, the value of each of the

separate use cases is very small (if any) for the stakeholders; it

is the whole collection of them that gives a value to the

stakeholders. Together these use cases form one conceptual

unit.

Fig. 1. The four simple operations should not be modeled as separate

use cases. Instead, they should be merged into one use case

including all four operations as separate flows.

An instance of a CRUD use case will perform either a creation,

a reading, an updating, or a deletion, and after that it will

cease to exist. This instance will not continue to live and wait

for the next operation to be performed. That operation will be

performed by another instance of the same use case.

A CRUD use case may of course include other (basic) flows

than the four common ones, such as searching for an item, or

performing some simple calculation based on an item. It is

important not to merge advanced or complex operations into

one use case[3,5]. They should remain separate use cases

instead, because they will probably be developed, reviewed,

designed, and implemented separately. As a general rule,

when not sure whether to merge the different usages into one

use case or to keep them as separate use cases, they should no

Simplifying Use Case Models Using CRUD

Patterns

Prashant*, Sarika Gupta#

Simplifying Use Case Models Using CRUD Patterns

105

doubt be kept apart. This decision will not affect the

functionality of the system, only the model structure and

hence its maintenance.

II. AN EXAMPLE IMPLEMENTING A CRUD USECASE

This section provides an example of the CRUD: Complete

pattern[4,8]. It models the registration of a new task to be

performed sometime in the future, the modification of a

registered but not performed task, the cancellation of such a

task, and the presentation of tasks that either failed during

their execution or have not yet been performed Fig.1. As we

can see, the four different alternatives are quite simple and

short, and they are expressed as four basic flows, because

none of them can be said to be superior to the others.

Therefore, this is an application of the CRUD: Complete

pattern even if some of the four basic flows in this case are

different from the standard ones.

Fig. 2. The CRUD Task use case models the creation, modification,

presentation, and cancellation of a task.

Error handling and exceptional flows[6,7] are expressed as

alternative flows of the use case. The Item Look-Up and the

Future Task blueprints are also useful in this example.

Use Case: CRUD Task

Brief Description

The use case registers, modifies, or cancels the information

about a task to be performed as stated in information received

from the Task Definer.

Basic Flow

The use case has four different basic flows:

 Register Task

 Modify Existing Task

 Cancel Task

 View Tasks That Failed

REGISTER TASK

The use case starts when the Task Definer chooses to register

a new task. The use case presents a list of possible kinds of

tasks to the Task Definer, and asks what kind of task is to be

registered, what name it is to be assigned, and when it is to be

performed.

The Task Definer enters the required information. The use

case checks whether the specified time is in the future and

whether the name of the task is unique.

The use case registers a new task in the system and marks the

task as enabled.

The use case ends.

MODIFY EXISTING TASK

The use case starts when the Task Definer chooses to modify

an already registered task. The use case retrieves the names of

all the tasks not marked as active and presents them to the

Task Definer.

The Task Definer selects one of the tasks. The use case

retrieves the information about the task and presents it to the

Task Definer.

The Task Definer modifies any of the presented information

except the name of the task.

The Task Definer accepts the information. The use case

checks whether the specified time is in the future and, if so,

stores the modified information.

The use case ends.

CANCEL TASK

The use case starts when the Task Definer chooses to cancel a

task. The use case retrieves all the tasks not marked as active.

The Task Definer selects one of the tasks. The use case

retrieves the information about the task and presents it to the

Task Definer.

If the Task Definer confirms the cancellation, the use case

removes the task; otherwise, no modifications are made.

The use case ends.

VIEW TASKS THAT FAILED

The use case starts when the Task Definer chooses to view a

list of all the tasks that have failed. The use case collects all

the tasks with the status failed and presents their names to the

Task Definer.

The use case ends.

Alternative Flows

CANCEL OPERATION

The Task Definer may choose to cancel the operation at any

time during the use case, in which case any gathered

information is discarded, and the use case ends.

INCORRECT NAME OR TIME

If the name of the task is performed not unique or the time is

not in the future, the Task Definer is notified that the

information is incorrect and is requested to re-enter the

incorrect information.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-2, May 2012

106

The Task Definer re-enters the information. The flow resumes

where the check of the information is performed.

III. AN ANALYSIS MODEL OF A CRUD USECASE.

The analysis model[4,8,10] of a CRUD use case is based on

all the flows of the use case. It must include the realization of

all the basic flows as well as the realization of the alternative

flows.

However, because the flows are quite simple in this case, the

model usually contains one boundary class[9] for presentation

and modification of the information, one control class to

handle any checks, and one entity class or a few to store the

information. The flow starts in the System Form when the

Information User requests to create, read, update, or delete

the information. An instance of the Information Handler is

created, which opens an instance of the Information Form to

the Information User.

Fig. 3. An analysis model of a CRUD use case.

Depending on the chosen operation, the actor enters

information about a new piece of information, or the

Information Handler retrieves existing information and asks

the Information User via the Information Form to select one

item. The Information Form sends the new information or the

identity of the selected item, respectively, to the Information

Handler which performs the chosen operation. Finally, the

Information Form and the Information Handler are removed

and the use case ends.

IV. CONCLUSION

Here in this paper, we have studied and explained the CRUDE

a use-case patterns that is proven useful when developing

maintainable and reusable use-case models. These patterns

focus on designs and techniques used in high-quality models.

Further how we can prepare analysis model of a CRUD

Usecase has also been discussed.

REFERENCES

[1] Adolph, S., and P. Bramble . 2002. Patterns for effective use

cases.Addison-Wesley.

[2] Alexander, C., S. Ishikawa, and M. Silverstein . 1977. A pattern

language: towns, buildings, construction. Oxford University Press.

[3] Bass, L., P. Clements, and R. Kazman . 2003. Software architecture in

practice. Addison-Wesley.

[4] Bittner, K., and I. Spence . 2002. Use case modeling. Addison-Wesley.

[5] Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal .

1996. Pattern-oriented software architecture, volume 1: a system of

patterns. John Wiley and Sons.

[6] Jacobson, I. Concepts for modeling large real time systems. Ph.D. thesis,

Royal Institute of Technology, Stockholm, Sweden.

[7] Jacobson, I."Object-oriented development in an industrial environment."

Proceedings of OOPSLA'87. Sigplan Notices 22(12) :183191.

[8] Jacobson, I. 2003 (March). "Use cases yesterday, today, and tomorrow."

The Rational Edge.

[9] Jacobson, I., G. Booch, and J. Rumbaugh . 1999. The unified software

development process. Addison-Wesley.

[10] Jacobson, I., M. Christerson, P. Jonsson, and G. Övergaard . 1993.

Object-oriented software engineering: a use- case driven approach.

Addison-Wesley.

