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ABSTRACT

It is commonly accepted that speaking rate is an important
aspect characterizing expressive speech. The speaking rate
increases for emotions such as happiness and anger, and de-
creases for emotions such as sadness. In spite of these obser-
vations, most of the current speech emotion classifiers do not
explicitly use speaking rate features. This study explores two
interrelated questions to evaluate the role of speaking rate in
emotion recognition: Can we reliably estimate syllable rate
from emotional speech? Does syllable rate provide comple-
mentary emotional information over other acoustic features?
We consider two syllable rate estimation algorithms, as well
as reference values derived from forced alignment. We eval-
uate the performance of these syllable rate estimation meth-
ods in expressive speech (SEMAINE database). The analysis
reveals a drop in performance as the intensity of the emo-
tion increases. Next, we conduct emotion recognition experi-
ments to evaluate the contribution of syllable rate in recogniz-
ing emotions. The emotion classification experiments demon-
strate that features conveying accurate syllable rate estima-
tions complement features that are commonly used in current
emotion recognition system.

Index Terms— Speech rate, speech emotion recognition,
prosody and emotion

1. INTRODUCTION

Emotion plays an integral part of human communication, af-
fecting our rational and intelligent decisions, and the manner
in which we interact with others [1]. Therefore, modeling and
detecting expressive behaviors in speech has emerged as an
important research area to improve human-computer interac-
tion (HCI). A robust emotion recognition system can benefit
applications in the area of health informatics, education, and
entertainment [2]. A key problem in recognizing emotions
from speech is identifying emotionally discriminative acous-
tic features [3, 4]. This study focuses on the role of speech
rate in emotion recognition.

This work was funded by NSF (IIS-1217104 and IIS-1329659).

Speech rate conveys important information that can be
exploited in speech processing tasks. It has been used as
feature to characterize fluency in a language [5], and cog-
nitive load on the speaker [6]. Speaking rate affects how a
person is perceived (e.g., personality traits). For example,
people whose speaking rate is higher than normal are per-
ceived as more competent [7]. People speaking too slow or
too fast are perceived as less benevolent and truthful, showing
an inverted U-relationship with speech rate [8]. Speech rate
also affect the performance of automatic speech recognition
(ASR) systems, where speech rate variations degrade recog-
nition performance due to mismatches between train and test
conditions [9–11]. In emotion recognition, speech rate is usu-
ally described as an appealing discriminative feature [12,13].
Studies have consistently reported that speaking rate increases
for emotions such as happiness and anger, and decreases for
emotions such as sadness and boredom [4]. Some of the
commonly used duration features include the ratio between
voiced and unvoiced segments [14–17], zero crossing rate
[18]. While these features may be correlated with speech rate,
current emotion recognition systems usually do not include
any direct metric of speech rate.

Recent advances on speech processing have resulted on
toolkits to directly estimate syllable rate. This study consid-
ers the algorithms proposed by Wang and Narayanan [19] and
de Jong and Wempe [20]. An open question is whether these
algorithms can robustly estimate speech rate metrics for ex-
pressive speech. The features derived from emotional speech
differ from the acoustic properties of neutral, nonemotional
speech [21]. Given that syllable rate algorithms are trained
with neutral speech, it is not clear how robust these algorithms
are for expressive speech. This study addresses this question
by quantifying the performance of these syllable rate systems
for sentences with different values of valence (negative versus
positive) and activation (calm versus active). The evaluation
reveals a drop in performance as the activation and valence
values increase. Our second related question is whether these
metrics provide additional emotion information over the fea-
tures that are currently used in speech emotion recognition
systems. We address this question by conducting emotion
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recognition evaluations, where the classifiers are separately
trained with selected group of features (voice quality, spec-
tral, RASTA, MFCC, F0 and energy features). We quantify
the improvement or drop in accuracy observed when the syl-
lable rate features are included in addition to other feature
sets. When these features are accurately estimated, syllable
rate metrics provide complementary information, especially
for spectral features.

2. RESOURCES

2.1. Syllable Rate Estimation

Studies have investigated automatic algorithms to estimate
syllable rate given the role of speech rate on human commu-
nication. Faltlhauser et al. [22] used Gaussian mixture mod-
els (GMM) to detect slow, medium and fast speech rate. The
likelihood scores of the three classes were used as input of a
neural net, which provided a continuous, online estimate of
speech rate. Zhang and Glass [23] applied sinusoid fitting on
energy peaks to predict possible regions where syllable nu-
clei can appear. Next, a simple slope based peak counting
algorithm was used to get the positions of the syllable nuclei.
Yuan and Liberman [24] used a broad phonetic class recog-
nizer for syllable detection and speech rate estimation.

Morgan et al. [25] presented a syllable rate estimator
called enrate, which considers the first spectral moment of the
broad-band energy envelope. The results from enrate were
correlated with the transcribed syllabic rate, but the devia-
tions were large. They later proposed mrate, which combines
the enrate approach with point-wise correlation between pairs
of compressed sub-band energy envelopes [26]. Wang and
Narayanan [19] extended this approach by considering only
prominent subbands. In addition to spectral correlation, they
added temporal correlation and other strategies to improve
robustness against neighboring syllable smearing and spuri-
ous syllable envelope peaks. De Jong and Wempe [20] wrote
a script for Praat [27] that detects syllables nuclei by peaks
in intensity. It counts the number of intensity peaks, with
drops in intensity of at least 2 dB immediately before and
after the peak. This approach is conducted on voiced speech,
determined by the F0 contour.

The present study uses the algorithms proposed by Wang
and Narayanan [19] and de Jong and Wempe [20] to automat-
ically estimate syllable rate. To the best of our knowledge,
this is the first study that evaluates the performance of speech
rate algorithms on emotional speech, and explores whether
speech rate contains complementary information to the com-
mon feature sets used in speech emotion recognition systems.

2.2. SEMAINE Database

The study relies on the SEMAINE database [28], which is an
audiovisual database with natural emotional displays. The
corpus includes sessions recorded from two individuals, an

operator and a user, interacting through teleprompter screens
from two different rooms. The emotions were elicited with
the sensitive artificial listener (SAL) framework, where the
operator assumes four personalities aiming to elicit positive
and negative emotional reactions from the user. The data was
recorded using five high resolution, high frame-rate cameras,
and four microphones. This study uses emotional data from
24 speakers (users) interacting with the operators. The tran-
scriptions of the dialogs are available. In total, we consider
2830 turns, discarding segments with duration less than 0.5s.

The sessions were emotionally annotated by 6-8 raters.
Instead of assigning global labels to the speaking turns,
evaluators provided time-continuous emotional traces using
the FEELTRACE toolkit [29]. As the evaluators watch the
recordings, they move the mouse cursor over a graphical user
interface (GUI), where the axes represent specific emotional
attributes. The interface records the position of the cursor,
providing a continuous profile, or trace, for that emotional di-
mension. Among other descriptors, the perceptual evaluation
considered the dimensions activation (calm versus active), va-
lence (negative versus positive), control (weak versus strong)
and expectation (predictable versus unexpected) [30]. This
study focuses on activation and valence, which are the most
commonly used emotional dimensions.

3. SYLLABLE RATE ESTIMATION ANALYSIS

We first study the accuracy of current speech rate estimation
algorithms when tested on emotional speech. These algo-
rithms are trained with emotionally neutral speech, so we ex-
pect a drop in performance due to the mismatch between train
and test conditions. In particular, we are interested in evaluat-
ing the performance of the syllable rate algorithms developed
by Wang and Narayanan [19] and de Jong and Wempe [20] for
sentences that are perceived with different values of valence
and activation.

As mentioned in Section 2.2, the SEMAINE corpus was
evaluated with time-continuous emotional traces using FEEL-
TRACE. We split the corpus into speaking turns. Next, we de-
rive global scores per turn for valence and activation using the
traces provided by multiple evaluators. The approach consists
in estimating the average value of the trace across different
evaluators over the duration of the turn. After estimating the
scores for valence and activation for each of the turn, we sort
the speaking turns according to their values. For each emo-
tional dimension, we separate the turns into four groups with
equal sizes by estimating the first, second and third quantile
over the scores. We will use these groups to evaluate the accu-
racy of syllable rate estimation for emotional turns perceived
with different values of valence and activation.

We use forced alignment to define reference values for
the syllable rate of the SEMAINE turns. We use these refer-
ence values to evaluate the performance of the speech rate
algorithms. First, we obtain the phonetic alignment using
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Fig. 1. Median values of MSE for the syllable rate estimation
algorithms evaluated with emotional speech. The study con-
siders the algorithms presented by Wang and Narayanan [19]
and de Jong and Wempe [20]. The figure shows MSE versus
(a) valence, and (b) activation scores.

SailAlign [31]. Next, we use the TSYLB toolkit [32] to break
down each word into syllables. We derive the syllable time
boundaries by creating a mapping between phoneme and syl-
lables. Finally, we count the number of syllables per second
(SPS) to get the reference syllable rate values. The process is
implemented with scripts. While the reference scores are not
free from errors, we manually inspected a subset of the sen-
tences observing reasonable syllable boundaries. We quantify
performance using the mean squared error (MSE) between
the reference values and the estimates from the algorithms:

MSE% =
kReference rate � Estimated ratek2

kReference ratek2 · 100% (1)

Figures 1 shows the median MSE values achieved by the
syllable rate estimation algorithms as function of valence and
activation scores. We observe a drop in performance for turns
perceived with lower valence and activation scores (e.g.,
sadness or boredom). For valence, Figure 1(a) shows that
both algorithms achieved the best performance for positively-
valenced sentences. For activation, Figure 1(b) shows that
the best performance is achieved for sentences with medium
level of arousal (neutral speech). For emotional speech,
the algorithm proposed by Wang and Narayanan [19] gives
better performance than the one proposed by de Jong and
Wempe [20].

Table 1. Low level descriptors from speech. The derivatives
of these LLDs are estimated and included for analysis [15].

Low level descriptors Nomenclature

En
er

gy

Sum of RASTA style Auditory Spectrum SumAudSpecRasta
Sum of Auditory Spectrum SumAudSpec
RMS Energy RMSenergy
Zero Crossing Rate ZCR

F0

Fundamental frequency F0
Probability of Voicing ProbVoicing

V.
Q

ua
. Jitter (Local) JitterL

Jitter (Delta) JitterD
Shimmer (Local) ShimmerL

R
A

ST
A Rasta-Style Filtered-

VRasta[1-26]
Auditory Spectral bands[1-26]

Sp
ec

tra
l

Spectral Flux SpectFlux
Spectral Entropy SpectEn
Spectral Variance SpectVar
Spectral Skewness SpectSkew
Spectral Kurtosis SpectKurt
Spectral Slope SpectSlope
Spectral Rolloff 0.25 SpectROff25
Spectral Rolloff 0.50 SpectROff50
Spectral Rolloff 0.75 SpectROff75
Spectral Rolloff 0.90 SpectROff90
Spectral Energy 25-650 Hz Spectfband 25-650
Spectral Energy 1k-4kHz Spectfband 1k-4kHz

M
FC

C

Mel-frequency cepstrum coefficients mfcc

4. EMOTION RECOGNITION EVALUATION

The second question that this study addresses is whether syl-
lable rate features provide complementary, discriminative in-
formation over other acoustic features commonly used in cur-
rent emotion recognition systems. We address this question
by conducting controlled speech emotion classification exper-
iments, aiming to quantify the improvement in performance
achieved by adding syllable rate features.

4.1. Acoustic Features

The externalization of emotion affects different speech char-
acteristics. Therefore, current speech emotion recognition
systems use large feature sets comprising various acoustic
cues (e.g., spectral, prosodic and voice quality features). A
popular approach consists in estimating low level descriptors
(LLDs) such as fundamental frequency, and Mel-frequency
cepstral coefficients (MFCCs). Next, statistics or functional
such as mean and variance are estimated for each speech seg-
ment. These global statistics, referred to as high level de-
scriptors (HLDs), are used as features of classifiers [33]. The
present study relies on this framework. In particular, we use
the feature set proposed for the Speaker State Challenge in
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Table 2. High level descriptors derived from LLDs. The last
four rows are statistics estimated only from the F0 [15].
Functionals suffix

Quartiles 1-3 qrtl 1-3
Inter-quartile ranges iqr1-2, iqr2-3, iqr1-3
Percentile (1%,99%) prctl1.0, prctl99.0
Arithmetic Mean, Standard deviation amean, std
Skewness, Kurtosis skew, kurt
Mean of peak distances meanPeakDist
Standard Deviation of peak distances peakDistStd
Mean of peaks peakMean
Arithmetic Mean of mean peaks peakMMDist
Linear Regression Slope and Quadratic error linregc1, linregerrQ
Quadratic Regression coef. and Quadratic error qregc1, qregc2, qregerrQ
Contour Centroid centroid
Duration when Signal below 25% range dltime25
Duration when Signal above 90% range ultime90
Duration when Signal risingfalling risetime , falltime
Gain of linear prediction (LP) lpgain
LP Coefficients lpc 0-4
Percentage of non-zero frames nnz
mean, max of segment length meanSegLen, maxSegLen
min, std. dev. of segment length minSegLen,StdsegLen
Input duration in seconds duration

Interspeech 2011 [15]. The set includes 59 LLDs listed on
Table 1. To understand better the contribution of speech rate
features, we group these LLDs into six classes following the
study of Busso and Rahman [34]: energy, F0 (fundamental
frequency), voice quality, RASTA, spectral and MFCC (see
Table 1). The first two groups correspond to suprasegmental
prosodic features. The last three groups correspond to spec-
tral features. Table 2 lists the HLDs estimated from these
LLDs, which include 33 base functionals and 6 F0 function-
als, forming a 4,368D sentence-level feature vector. The F0
functionals listed in the last four rows of Table 2 are the only
duration features. Notice that they only describe the duration
of voiced segments, not actual speech rate.

We follow a similar approach to derive features character-
izing speech rate (i.e., defining sentence level statistics from
LLDs). First, we create a speech rate profile for each speech
segment (i.e., a LLD). We create this profile by estimating the
syllable rate over 2s windows with 20 ms steps, producing
50 values per second (the algorithms to estimate syllable rate
require at least 2s of speech to provide reliable estimations).
We smooth the speech rate profiles using a median filter of
order 10. This profile is estimated over the entire dialog, be-
fore segmenting it into speech turns. Figure 2 shows exam-
ples of syllable rate profiles estimated with forced alignment
(i.e., reference values), and the two algorithms considered in
this study. We estimate the following turn-level statistics (i.e.,
HLDs) from the profile: mean, variance, standard deviation,
kurtosis, skewness, maximum, minimum, median, and upper
and lower quartiles. This approach generates a 10D feature
vector.
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Fig. 2. Speech rate profiles. The figures give the syllable per
second (SPS) values across time (for one recording).

4.2. Experimental Settings

The main idea of this evaluation is to quantify the increase or
drop in performance achieved by adding the proposed speech
rate features to each of the six feature groups listed in Table 1:
energy, F0 (fundamental frequency), voice quality, RASTA,
spectral and MFCC. The tasks consist of binary classification
problems for valence and activation. For each of these dimen-
sions, we identify the median value assigned to all the speak-
ing turns. Sentences with values higher than their median are
assigned to one class, while the rest of the turns are assigned
to the second class (i.e., low versus high valence; low versus
high activation). This approach generates balanced classes,
so the performance at chance level is 50%. For consistency,
all the classifiers are trained with 50 features, as explained
below.
Baseline classifiers: We build six baseline classifiers, one for
each feature group. These classifiers are only trained with the
HLDs derived from the LLDs belonging to the correspond-
ing groups. We use a two-layer feature selection approach to
reduce the feature dimension for the classifiers. In the first
layer, we use correlation feature selection (CFS) to limit the
number of HLDs per group to 400 features. CFS selects new
features that are correlated with the class label, but that are
not highly correlated with previously selected features. This
approach is efficient and general, since it does not depend on
the performance of any classifier. In the second layer, we use
forward feature selection (FFS) to further reduce the feature
set to 50 features by maximizing the performance of the clas-
sifiers.
Classifiers with speech rate features: The baseline classifier
for each group is compared with the ones trained by adding
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speech rate features to the set. We implement the following
approach to limit the set to 50 features, per classifier. For
a given group, we create an initial feature set with the 10
speech rate features described in Section 4.1. Then, we use
FFS to increase the set to 50 features. The selected features
complement the emotional information provided by speech
rate features. For consistency, we only consider features that
were previously selected by CFS (first layer of feature selec-
tion). This approach forces the classifiers to use speech rate
features, but preserve the dimension of the feature set. Fol-
lowing this approach, we create three alternative classifiers
per feature group by using the speech rate features estimated
from forced alignment (i.e., reference), and the two syllable
rate algorithms considered in this study.

All the classifiers are implemented with support vector
machine (SVM) with linear kernel, using sequential minimal
optimization (SMO). We rely on the implementation provided
by WEKA. We use a three-fold cross-validation approach with
balanced, speaker-independent partitions, where two groups
are used for training and the remaining group for testing.

4.3. Classification Results

Figure 3 gives the accuracy of the binary classifiers trained for
valence and activations. We added an asterisk on top of the
bars to highlight cases where the improvement in accuracy
with respect to their baseline classifiers is statistically signif-
icant. For this purpose, we use the large sample proportion
hypothesis test, and we assert significance if p-value < 0.05.

When using syllable rate features, we observe higher im-
provements in accuracy for valence (Fig. 3(a)) than for ac-
tivation (Fig. 3(b)). The groups with spectral features (i.e.,
Spectral, RASTA and MFCC) are the ones with higher im-
provements. Speech rate features complement the emotion
information conveyed by spectral features. The accuracy does
not significantly increase for groups conveying prosodic fea-
tures (i.e., F0 and Energy). The F0 group includes statistics
about the duration of voiced segment which may be redun-
dant with the syllable rate features. In general, the best per-
formance is achieved when we use the reference syllable rate
derived from forced alignment. This result demonstrates that
it is important to develop syllable rate estimators that are ro-
bust against emotional speech.

5. CONCLUSIONS

The study evaluated the performance of two syllable rate esti-
mation algorithms in emotional speech. The analysis revealed
a drop in accuracy for sentences perceived with low level
of valence or activation. We carefully implemented emotion
classification evaluations to explore whether the information
provided by syllable rate features complements the informa-
tion provided by other acoustic features. The results demon-
strate that syllable rate features provide complementary infor-
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Fig. 3. Accuracy of binary emotion classifiers for valence and
activation by adding syllable rate features to different acoustic
feature groups.

mation, especially for spectral features. However, the benefit
of using speech rate features strongly depends on the qual-
ity of the estimations. This study suggests that advances on
robust speech rate estimations will benefit speech emotion
recognition systems.

The emotional content in the SEMAINE database in-
cludes subtle emotions. Given the recording settings, there
are very few turns with strong emotional reactions. In our fu-
ture work, we will replicate this analysis on other emotional
databases with more extreme, or prototypical emotions. We
will also consider other speech rate algorithms which may
achieve better accuracy on emotional speech.
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