Cryptographic Key Generation from Voice
(Extended Abstract)

Fabian Monrose

Michadl K. Reiter

Qi Li Susanne Wetzel

Bell Labs, Lucent Technologies, Murray Hill, New Jersey, USA

{fabian,reiter,qli,sgwetzel}@research.bell—labs.com

Abstract

We propose a technique to reliably generate a crypto-
graphic key from a user’s voice while speaking a password.
The key resists cryptanalysis even against an attacker who
captures all system information related to generating or
verifying the cryptographic key. Moreover, the technique
is sufficiently robust to enable the user to reliably regener-
ate the key by uttering her password again. We describe an
empirical evaluation of this technique using 250 utterances
recorded from 50 users.

1. Introduction

The inability of human users to remember strong cryp-
tographic keys has been a factor limiting the security of
systems for decades. History has proved that users can
remember only short passwords, and even then tend to
choose passwords that are easily guessed by dictionary at-
tacks (e.g., see [16, 10, 7, 22, 27]). This limitation could
be addressed in awide range of applications by generating
strong cryptographic keys from biometric data, possibly in
conjunctionwith the entry of apassword [24, 3, 9, 15]. This
approach is attractive since it imposes no additional mem-
orization on the user and yet can yield keys significantly
stronger than passwords. These keys could then be used
in awide variety of applications, including file encryption,
access to virtual private networks, and user authentication.
The primary difficulty in this approach lies in accommodat-
ing the variations inherent in measuring biometrics, or in
the biometrics themselves, while repeatedly generating the
same key. In general, this requires atechnique designed for
the particular biometric being used.

In this extended abstract, we describe the first scheme
(to our knowledge) for generating cryptographic keys from
a spoken password, i.e., for generating a cryptographic key
based on the voice characteristics of the user’s spoken pass-

word. We approach the problem starting from the scheme
of Monrosg, et al. [15], which was initially devel oped with
the goal of utilizing keystroke timings in the generation of
astrong cryptographic key from a password. Consideration
of aspoken password, however, introduces complexities not
found in the keystroke case. First, a password typed is un-
ambiguous, whereas a password spoken is not: automatic
speech recognition (ASR) remains an active research area
despite over 40 years of investigation. Second, modern key-
boards offer only a single dimension on which keystrokes
can be measured, namely time. In contrast, numerous char-
acterizations of voice features have been explored in speech
processing for ASR, speaker verification, and related fields.
It is not obvious how to best characterize voice for the task
of generating a cryptographic key, and indeed identifying
one effective characterization is a contribution of thiswork.
Despite these challenges, in this extended abstract we
adapt the approach of [15] to the task of generating a key
from a spoken password; we call this key aderived key. In
our construction we retain the initial goals of [15], namely
that the derived key remain difficult to break even against
an attacker that captures all stored information related to
generating or verifying it. This maximizes the number of
applications in which our techniques can be applied.

1.1. Why voice?

Numerous biometrics have been proposed for user au-
thentication (see www . biometrics.org), and conceiv-
ably many are candidates for generating cryptographic keys
using recently proposed techniques. We choose to study
voice for several reasons. Fird, it is a familiar way of
communicating, which makes it idea for many applica
tions. For example, voice activated phones, dictation de-
vices, and voice dialing are becoming increasingly promi-
nent in the marketplace, and such devices are natural candi-
datesfor applying thework described here. Second, work in
speaker verification has shown voice to be effective for dis-

In Proceedings of the 2001 |EEE Symposium on Security and Privacy, May 2001.

tinguishing between users (e.g., [11]). Third, when aperson
changes her password, she unavoidably changes the vocal-
ization of her password. Thus, unlike with static biometrics
(e.q., fingerprints, irises), it is conceivable that a user could
have arbitrarily many derived keys over her lifetime.

Voice does come with limitations, however. Probably the
most cogent is the risk that a user could be recorded while
speaking her password, thereby effectively leaking her key-
ing material. Most other biometrics are vulnerableto asim-
ilar risk just as voice is; a camera can photograph an iris
from across the room, and fingerprints left on surfaces can
be lifted hourslater.> Nevertheless, recognizing this limita-
tion, we emphasize that the primary protection our method
offersis against an attacker who does not have the oppor-
tunity to record the user speaking her password. This cat-
egorizes many attacks, such as when the attacker steals the
device utilizing our techniques from an empty hotel room,
or files encrypted under our derived keys over a network.

1.2. Criteria

The high level criteria we adopt for the generation of a
derived key incorporatesboth security and usability require-
ments. Our usability requirement is simply that the device,
upon receiving its user’s utterance of a password (this pass-
word can be different per user), successfully generate the
user’sderived key. Thiscriterion need not be absolute, since
the key generation process will be affected by the user’s
acoustic environment; e.g., clearly a blow horn sounding
in the background can destroy any possibility that the de-
vice might successfully generate the key. However, when
the user utters the password close to the device in an office
environment—i.e., in an environment yielding a reasonable
signal-to-noise ratio—the device should reliably regenerate
the user’s derived key without excessive delay.

Asindicated previously, our security goals anticipate the
physical capture of the key generating device asthe primary
attack with which we are concerned. Since we make no
assumptions regarding tamper-resistance of the device, we
assume that an attacker, upon capturing the device, has full
access to any data stored within the device. Despitethis, the
key should still resist cryptanalysis by the attacker. Thisre-
quirement renders prior literature on speaker verificationin-
adequate to achieve our goals: speaker verification technol-
ogy generally utilizes plaintext models of the user’s speech
that, in our setting, would leak information about the user’'s

1n user authentication applications, techniques exist to make the pre-
sentation of such “stolen” biometrics to biometric readers more difficult.
For example, fingerprint readers typically verify indications of blood flow
through the object in contact with the reader. For our goals, however, these
defenses are useless: once a biometric measurement is stolen and so the
keying material within that biometric is available to the attacker, the at-
tacker can derive the key and attack, e.g., encrypted files to which he has
access—completely bypassing the biometric reader.

vocal patterns (i.e., the user’s keying material). In contrast,
here we adopt the requirement that no plaintext informa
tion regarding the user’s prior utterances of her password
be recorded in the device. This makes the repeated genera-
tion of the derived key particularly challenging.

Of course, an attacker who captures the device can al-
ways cryptanalyze the key by a brute force attack, given
sufficient resources. As thiswork is only aninitial investi-
gation into the generation of keys from voice, here we em-
pirically demonstrate the generation of 46-bit keys from a
roughly two second spoken password. These 46-bit keys
can be easily lengthened to, e.g., 56-bit DES keys using
known salting techniques, with a moderate additional cost
in login delay [13]. Future work will focus on the genera-
tion of longer keys. However, the degree to which aderived
key resists a brute force attack depends primarily on the en-
tropy in user speech as captured by the ways we measureit.
Here we give evidence using empirical data that the mea-
sures we choose plausibly yield significant entropy in the
derived key, even among users speaking the same password.
However, since our empirical trials involve limited popula
tions of users, we cannot quantify the entropy of derived
keysfrom alarge population.

Our goal of extracting entropy from how a user speaks
a password, as opposed to only the choice of password it-
self, differentiates our work from perhaps the most natural
approach to deriving a cryptographic key from a spoken ut-
terance: i.e., apply ASR to recognize the password spoken,
and then simply use the password as a cryptographic key.
We have eliminated this approach from consideration for
several reasons, however. First and foremost, modern ASR
tools suitable for our goals can reliably recognize a vocab-
ulary of at most about 10* words under the best circum-
stances. This quantity can, of course, be easily searched
by an attacker. Moreover, requiring the user to create her
password by appending several words from the vocabulary
taxes the user’'s memory and yields marginal improvement
in entropy, as experience with PINs has demonstrated. In
contrast, our work strivesto draw entropy from how the user
speaks a password, which does not impose greater memo-
rization on the user. Second, modern ASR techniques tend
to require greater volatile storage from the device than the
techniques proposed here, which renders ASR less attrac-
tive for some of our target platforms.

1.3. Applications

The most immediate application for astrong key that can
be generated from a spoken password is for secure tele-
phony. In one scenario, the user would speak a password
to generate her derived key, which would serve as the seed
to a pseudorandom process to generate the private key of
her public key pair. This private key would be used to de-

crypt incoming voice (or more likely, a symmetric key un-
der which the incoming voice is encrypted). Thisis sim-
ilar to voice protections as offered by secure phones such
as the STU-I1I, though our techniques offer the advantage
that the user need not carry a physical token with key-
ing material to enable the device; rather, the keying ma-
terial is the user’s voice. Similarly, applications like PGP-
fone(web.mit .edu/network/pgpfone/)and Speak
Freely (www.speakfreely.org/) require entry of a
typed password to activate a stored key; thisisinconvenient
on a phone keypad and will typically be more susceptible to
adictionary attack if the deviceis captured.

In a variation of secure telephony, our techniques
enable the decryption of encrypted email in a phone.
Several text-to-speech systems exist today—see
morph.ldc.upenn.edu/ltts/ for a liss—and a
central application of these is to enable users to check their
email over the phone (e.g., [23]). Our technique would
enable the “reading” of encrypted email over the phone:
again, the derived key could be used to generate the user’'s
private key, which would be used to decrypt an email. The
email could then be rendered to the user by atext-to-speech
tool. As in secure telephony, the generation of her private
key, and the decryption and rendering of her email, would
be performed completely within the telephone. In this
way, the plaintext of the email would never be exposed
outside the phone, and even an attacker who captured the
phone would be unable to decrypt messages intended for
the legitimate user.

In asimilar way, adictation device could save its stored
dictations encrypted under the derived key. In order to de-
crypt a dictation, a user would utter her password, thereby
enabling the creation of the derived key and decryption of
the dictation. Again, even an attacker who stole and disas-
sembled the di ctation device woul d be unable to decrypt the
dictations.

We notethat at thetime of thiswriting, the algorithmsin
this extended abstract stretch the computational limitations
of current cellular phones and dictation devices. However,
voice-enabled personal digital assistants (PDAS) with pow-
erful processors (e.g., 400-500 MHz Intel StrongArm 2)
will become available soon [21]. With such rapid advances
in user devices, the computation required by the algorithms
we propose will soon be within reach for PDAs and mobile
phones.

2. Background

In this section we review the techniquesin cryptographic
key generation from biometrics and in automatic speech
processing that are necessary to understand the balance of
this extended abstract.

2.1. Cryptographickey generation from biometrics

For the purposes of this extended abstract, known meth-
ods for generating cryptographic keys from biometric mea-
surements can be characterized as having two “stages’. In
thefirst stage, certain features ¢, ¢», . . . of raw input from
a biometric-measuring device are examined and used to
compute an m-bit string called afeature descriptor. Feature
descriptors should separate users in the sense that descrip-
tors produced by the same user are “sufficiently similar”
(i.e., smal intra-user variation), whereas ones produced by
different users are “sufficiently different” (i.e., large inter-
user variation). This separating property is then magnified
in the second stage, which develops a cryptographic key
from the feature descriptor and stored cryptographic datain
the device. If two descriptors are sufficiently similar, then
the same cryptographic key will be generated from them.
Whereas the second stage is largely independent of the bio-
metric being used, the first is not.

An example of such a mechanism is described in [15].
This work develops a cryptographic key, called a hardened
password, from a text password and the keystroke dynam-
ics of the user while typing it. In the first stage, the fea
tures of interest are the duration of each keystroke and the
latency between each pair of keystrokes, yielding features
o1,...,¢15 (8 durations, 7 latencies) for an 8-character
password. These features are processed to obtain a fea
ture descriptor b € {0,1}™, m = 15, by comparing each
measured duration or latency to a fixed threshold: if the
measured time ¢; for the i-th feature is less than the thresh-
old, then the i-th bit b(¢) of the feature descriptor b is set to
b(i) =0, elseitissetto b(i) = 1.

In the second stage, elements {7°(i, b(i)) }1<i<m arere-
trieved fromam x 2 table T on disk. Initially, each entry of
this table contains a share of the hardened password as pro-
duced by a secret sharing scheme. When retrieved, these
shares are used to reconstruct the hardened password. As
the timing measurements encountered during successful lo-
gins are gathered over time (in a file encrypted under the
hardened password), patternsin them are distilled and used
to “harden” the table by perturbing entries that the legiti-
mate user does not typically use. More precisely, let the
mean and standard deviation of ¢; over the last h successful
logins (for some parameter h) be u; and o;, respectively.
Consider the partial feature descriptor B defined by:

0 if/l,i+k0'i<t
B(i)=< 1 ifu;—koy>t

1 otherwise

for some threshold ¢. That is, B(i) is 0 (resp., 1) if u;
is sufficiently less than (resp., greater than) ¢; otherwise,
B(i) is undefined. Then, the table T' is constructed so that
T'(i,j) contains a valid share of the hardened password if

and only if B(i) = j or B(i) = L. EntriesT(i,j) where
B(i) = 1—j arefilled with random elements. These entries
should have no effect on the correct user, since her typing
will typically select avalid share of the hardened password
from each row, and the login program can then reconstruct
the hardened password (correcting for a few errors if nec-
essary). Security is enhanced in this scheme by encrypting
thetable T under the text password. By its design, the table
T appears indistinguishable from a table that would result
from decrypting it with the wrong password. Thus, even if
an attacker captures the device, any attack against the ta-
ble (i.e., the hardened password) appears to require at least
the same resources as a dictionary attack against the text
password and possibly up to 2'% times as much, due to the
presence of random elements evenin the properly decrypted
table.

Other techniques fitting this “two stage” structure have
been proposed for generating cryptographic keys from bio-
metrics. Davida, et al. [3] describe a different second-stage
strategy using error-correcting codes and how it could be
conjoined with first-stage approaches for generating fea-
ture descriptors from iris scans [4, 26]. Juels and Watten-
burg [9] subsequently improved the second-stage approach
of Davida, et al. significantly. Soutar and Tomko [24]
describe a different approach for generating cryptographic
keys from fingerprints using optical computing techniques.

The focus in this extended abstract is on the generation
of appropriate feature descriptors from speech; i.e., we fo-
cus here on the first stage of the key generation process.
In principle, our techniques could be conjoined with any of
several second-stage techniques to generate cryptographic
keys. However, we evaluate our scheme primarily with the
table-based technique of [15] in mind.

2.2. Automatic speech processing

Automatic speech recognition (ASR) and speaker veri-
fication (SV) have been topics of active research since the
1950s. Hereweintroduce, in avery simplistic manner, only
what is necessary for understanding this extended abstract.
The reader interested in learning more is referred to any of
numerous surveys in the area (e.g., [1, 6, 17, 20]). A par-
ticularly accessible text is due to Rodman [19], from which
our presentation borrows liberally.

We begin with a brief introduction into how sound is
received and represented by a computer. A microphone
contains a diaphragm that vibrates in concert with any
sound whose frequencies are within its range of operation.
The microphone converts these vibrations into an electri-
cal signal. This signal is sampled periodically (8 KHz in
our experiments described in Section 4) by an analog-to-
digital converter, to produce a sequence of values Atime(1),
Atime(2), ..., Atime(k) representing amplitudes. This se-

guence represents amplitude as a function of time, and is
often referred to as a time domain representation of sound.
Speech can be approximated in the time domain as a Fourier
series, i.e., assumsand differences of sine and cosine waves
of varying periods, amplitudes, and phases. These sine and
cosine waves represent the various frequency components
of the signal. Plotting the average amplitude of each of
these component frequencies in a small window of time
gives the frequency domain representation Ag.eq, Or Spec-
trum, of the signal in that window. Transforming from the
time domain to the frequency domain and back are accom-
plished by the discrete Fourier transform (DFT) and inverse
discrete Fourier transform (IDFT), respectively; see [5] for
details.

A spectrum Ag.eq Of speech can be viewed as the product
of aquickly varying mapping A; and aslowly varying one
Ay, e, [Areq(f)| = [A1(f)] x |A2(f)]. A1 results from
vocal cord vibration; A, results from the movement of ar-
ticulators (the teeth, alveolar ridge, hard palate, and velum).
To see this effect in the time domain, the IDFT is applied to
10g(| Asreq(£)]) = log(|41 (£)]) +1og(|42(f)]). Thisyields
a “spectrum like” representation v (t), called a cepstrum,
in which the slowly varying part (the effect of articulators)
is represented by lower positions on the time axis and the
quickly varying part (vocal cord excitation) is represented
by higher positions. The separation in the cepstrum of the
effects of articulators from vocal cord excitation is useful
because the corresponding values can be used to model the
vocal tract of theuser. In particular, (1), ..,¥(12), caled
cepstral coefficients, have been shown to be useful for this
purpose. Specifically, in our experiments, cepstral analysis
is performed on overlapping 30 msec windows of an utter-
ance, each shifted by 10 msec from the previous, to yield
avector (1(1),...1(12)) for that 30 msec window. This
vector is called aframe, and an utterance is represented by
a sequence of frames, one per window.

Many explorations in ASR and SV involve compar-
ing the frames of an utterance to some acoustic model of
speech, itself derived from frames of spoken utterances. An
acoustic model can be constructed from the speech of few
users (typically one), in which case the model is speaker
dependent, or it may be speaker independent in that it in-
corporates speech from a large population. Orthogonally,
the model may be based on utterances of the same word(s)
against which the model will later be compared (a text de-
pendent model) or based on utterances of words unrelated to
those against which it will be compared (atext independent
model).

Our goals necessitate the use of a speaker independent,
text independent model; storing a speaker dependent or
text dependent model could conceivably leak keying infor-
mation to an attacker who captures the device that gen-
erates the derived key. Thus, in our experiments we em-

ploy alarge model derived from a speech database contain-
ing various utterances from many different users. Clearly
any model that is suitable for storage on a small device
must significantly compress this data, and the means by
which we do thisis vector quantization (VQ). VQ isagen-
era technique that, given a collection of vectors (in our
case, frames), identifies clusters of vectors and partitions
the acoustic space according to these clusters, i.e., with each
block of the partition containing one cluster. The vectorsin
each cluster are then used to generate a multivariate normal
distribution for that cluster, parameterized by the vector ¢ of
component-wise means (called a centroid) and the covari-
ance matrix ¥ for the vectors in the cluster.? The density
function for this distribution is

1 - .
ef(a:fc)TZ Hz—c)/2

Fex(®) = dot(D)

(2m)0/?

where § is the dimension of the vectors, which again is
0 = 12 in our setting. For notational simplicity, we ab-
breviate P, »:(x) by P(x | ¢), in particular omitting © since
it does not play an explicit role in the balance of this ex-
tended abstract. Moreover, we denote the set of centroids
by C. A collection of frames can be compressed in thisway
to any chosen number of such distributions and associated
centroids. In Section 4, we present results based on the use
of 20 centroids (i.e., |C| = 20).

3. Algorithms

Equipped with the background described in Section 2,
here we give an overview of the methodology we use to
derive a cryptographic key from a spoken password. The
processisillustrated in Figure 1. Our approach begins with
the steps described in Section 2.2 for capturing the speaker’s
utterance (1.a), dividing the voice samples of the utterance
into 30 msec windows overlapping by 10 msec each (1.b),
and deriving a frame of 12 cepstral coefficients from each
window (1.c). We further discard frames corresponding
to silence before, within, and after the utterance (e.g., us-
ing [12]). In our experience, thisstep iscritical to achieving
good results.

Thehighlevel goal after thisprocessingisto construct an
m-hit feature descriptor (1.h) from this sequence of frames.
As described in Section 2.1, the resulting feature descriptor
will be used to index into a table (1.i) to retrieve el ements
of that table. These elements can be used to reconstruct
the derived key (1.j) provided that the feature descriptor is
sufficiently close to feature descriptors generated in previ-
ous successful attempts. The remaining challenge is how

2More precisdly, 3 is derived from al frames in the model, not only
those in the cluster. This is standard practice in cases such as ours, in
which we do not have enough data to generate a reliable covariance matrix
per cluster.

to generate a feature descriptor (1.h) from framesin away
that will reliably reconstruct the derived key, possibly after
correcting a few bits in the feature descriptor.

Our proposalsfor constructing a feature descriptor from
the frame sequence begin by segmenting the sequence of
frames into contiguous subsequences, or segments. In-
tuitively, segmenting the sequence best divides the se-
guence into component sounds. To determine what consti-
tutes a“component sound”, the frame sequence is matched
against a speaker-independent, text-independent model of
speech (1.d), quantized into 20 different centroids and asso-
ciate multivariate normal distributions as described in Sec-
tion 2.2. Our segmentationis an iterative process (1.€), con-
verging to a near-optimal segmentation of the user’s utter-
ance (1.f). Wethen consider variousfeatures of theresulting
segmentation, and generate one feature descriptor bit from
each. The feature that we empirically evaluate in Section 4,
whichisdepictedin Figure 1, isthe relationship of the point
determined by averaging the framesin a segment to aplane
through the closest matching centroid. Inthe following sub-
sections, we describe the details of these steps.

3.1. Segmenting the frames

All of the approaches we discuss for generating a fea
ture descriptor begin with segmenting the utterance using
the acoustic model. More precisely, let f(1) ... f(n) bethe
seguence of frames from the utterance, and let R; ... R,
be digoint, nonempty ranges over the natural numbers
such that |J;_; R; = [1,n]. Ry...R, naturaly segment
f(1)...f(n) into s segments, where the i-th segment is
fG) ... f(4") if R; = [j,4']; for simplicity, we denote the
i-th segment by F'(R;). Intuitively, a ssgmentation is a par-
tition of the sequence of frames f(1)... f(n) into subse-
quences F'(R;) ... F(Rs) where each F'(R;) corresponds
to one “component sound” of the user’s utterance.

Segmentation is performed using the acoustic model de-
scribed in Section 2.2. For asegment F(R), let

L(F(R) | ¢) = [T P(f(@) | o).

i€ER

This is called the likelihood of the segment relative to the
centroid ¢. For asegment F'(R), the matching centroid for
that segment is

(R) = argmax{ L(F(R) | o)},)

i.e., thecentroid ¢ for which L(F'(R) | ¢) isthelargest. Our
goal, then, isto generate R . .. R, that maximizes

HL(F(R,-) | c(Ry)).)

[00000000

v ! 1
\ ﬂ W06 T
} e 8 /G
frequency 1o (5,
" Mr Il [\f N (d) Quantized
i vt \ \ WW L ‘ : ‘
H u‘ \(H v u] (b) Windowing (c) Derive cepstrum acoustic space
v v
(a) Capture utterance centroid
e e - <— Frames i ...n—=>
E i Segment / i
<_ L T T T --------I
(71 C|C5|CI1|C4 : '
H ! -
(f) Final segmentation <—Segments 1 ... m —> (e)
l Segment utterance
(7| |CG|C|| —
0bit < = 1bit Chosen centroids
|
Centroid
N—— |011ooo1110101|
Obite= = 1bit

(h) Eeature descriptor

valid share — @ Q@
@

random / é@
element © Qé

N\
;\%

d-dimensional plane Segment I YT, —_ Q@
> < <=9 0

(g)_Generate feature descriptor ,/\</ m %

(i) Recover key & decrypt file (i)_Table looku

Figure 1. Key generation from voice features

Intuitively, F'(Ry) ...
that it best maps the input utterance f(1)...
component centroids.

The algorithm we employ for optimally segmenting the
utterance employs an iterative approach similar to that of
“segmental VQ” agorithms (e.g., see[18, p. 382]). Theal-
gorithm initializes ranges R; ... R, to partition [1,n] into
roughly equal-length ranges. The algorithm then repest-
edly refines these ranges until subsequent refinementsyield
small improvement (less than some parameter A) in the seg-
mentation they induce (i.e., in (2)). More precisdly, the al-
gorithm executes as follows:

F(R;) isan optimal segmentation in
f(n) into s

i. (Initidlization) Assign score < 0. Fori = 1,...,s
assign R, (|4=22), 2.

ii. Fori = 1,...,s: determine ¢(R;) as the matching
centroid for F'(R;) using (1).

iii. Compute new nonempty, disoint ranges R, ... R,
Ui, R} = [1,n], that maximize

score’ = H L(F

This step can be performed efficiently using the Viterbi
algorithm [25, 8].

F(R;) | ¢(Ri)).

iv. AssignR; < R;fori=1...s.|fscore’ —score > A,
then assign score < score’ and go to step (ii).

The segmentation F'(R;) .. . F'(Rs) when thisalgorithm
completes is the result, which is input to the algorithms
in Section 3.2. In practice, the above algorithm typically
terminates within 3 iterations for reasonable values of A.
We also use heuristics within this algorithm to improve the
resulting segmentation. For example, when this algorithm
converges, if one of the resulting segments F'(R;) contains
only a single frame, then that frame is discarded from the
frame sequence (since it presumably resulted from noise in
the user’s acoustic environment) and the optimal segmenta-
tion is recal culated from scratch.

3.2. Mapping segmentsto features

Having derived asegmentation with s segments, our goal
now is to define features of this segmentation that are typ-
ically the same when the same user speaks the same utter-
ance. From these features, an m-bit feature descriptor is
then derived. The approaches introduced here isolate one
featurein each segment and generate one descriptor bit from
each feature, i.e.,, s = m, though in genera this is not
necessary; e.g., multiple bits could be derived from each
segment so that m > s. Note that in principle, this algo-
rithm must not exploit plaintext information derived from

the user’s previous utterances. Otherwise, this information
might also be exploited by an attacker who captures the de-
vice performing this computation.

There are several features that one might (and we did)
try to generate a feature descriptor b from the segmentation
F(Ry)...F(R;). Thefirst approach was possibly the most
straightforward:

I. Centroid parity. In this approach, the i-th feature ¢;
isthe “parity” of centroid ¢(R;). Specificaly, half the
centroids in the acoustic space are chosen at random
and assigned a" parity” of 0; the other half are assigned
aparity of 1. Then, b(i) isthe parity of ¢(R;).

The second and third features we mention in this extended
abstract compare the segment average to the matching cen-
troid for the segment. For a segment F'(R;), the segment
average is the vector u(R;) of component-wise means of
the framesin F(R;).

I1. Distance from centroid. The i-th feature ¢; is the like-
lihood L(u(R;) | ¢(R;)). To map these features to a
feature descriptor, we fix athreshold ¢ and define

it L(u(R:) | (R

. 0 ,)) <t
b(i) = { 1 otherwise

I11. Position relative to a plane through the centroid. Given
afixed vector a, the i-th featureis ¢; = a - (u(R;) —
¢(R;)). That is, normalize u(R;) to a coordinate sys-
tem with ¢(R;) at theorigin (i.e.,, u(R;) — ¢(R;)), and
then let ¢; be the linear combination of componentsin
u(R;) — ¢(R;) as specified by «. To map these fea-
tures to a feature descriptor, we simply test whether
each feature is positive or negative.

. 0 ifa- R,‘ —CRi 0
1= {2 Bl =00

The value b(i) represents the “position” of u(R;) rel-
ative to the plane o - z = 0 trandated to a coordinate
space whose origin is ¢(R;): b(i) = 0 can be inter-
preted as i.(R;) falling on one side of this plane, while
b(i) = 1 indicates that it falls on the other (or on the
planeitself).

In this extended abstract, we report results only for Al-
gorithm I11. We choose to report results for this algorithm
for two reasons. First, we have found that it is competitive
with the other approaches in terms of the results it yields.
Second, since it has the most degrees of freedom in its de-
sign (the 12 elements of «), it is the most challenging of
these three approachesto analyze to draw conclusions as to
its efficacy.

4. Evaluation

In this section we describe our empirical evaluation of
Algorithm 1l described in Section 3.2. In Sections 4.1
and 4.2, we define the measures we use to evaluate our pro-
posal. We describe our experimental methodology in Sec-
tion 4.3, and our resultsin Section 4.4.

4.1. Guessing entropy

In order to evaluate the security of these proposals, we
first revisit the scheme of Monrose, et al. [15] to see in
more detail how feature descriptors are used. As described
in Section 2.1, the scheme maintainsan m x 2 table T' such
that T'(i, j) isavalid share of the hardened password (in our
case, thederived key), if and only if B(i) = j or B(i) = L.
An attacker who captures’I” can reconstruct the derived key
if he can find a feature descriptor b that is consistent with
B,i.e,sothatif B(i) # L thenb(i) = B(i). The attacker
can then reconstruct the derived key from shares T'(i, b(7)),
1<i<m.

Let {B,}.ca bepartia feature descriptors for the users
in some population A, and let {7, },c4 be resulting tables
for these users. The security of this schemeis characterized
by guessing entropy [14, 2]. Intuitively, consider a game
in which an attacker is given a table T}, for an unknown
account ¢ drawn uniformly at random from A. Guess-
ing entropy captures the expected number of (total) fea
ture descriptors that the attacker guesses until he finds a
feature descriptor b such that {7T°(i, b(i)) }1<i<m SUCCESS-
fully reconstructs the key for the account (i.e., such that
{T'(4,b(i)) }1<i<m consists only of valid shares).® To make
the game as advantageous for the attacker as possible, the
attacker is presumed to have perfect knowledge of the set
{B.}aca- Note that the best possible guessing entropy is
thus min{2™, (|A| + 1)/2}, but may be considerably less
if, say, asingle feature descriptor b is consistent with B, for
many accounts a.

To precisely capture the attacker’s knowledge, we define
acover to be afunction C from A to total feature descrip-
tors such that C(a) is consistent with B,. Let Img(C) =
{b|Ja€ A:C(a) =b},andwc(d) = |{a € A|C(a) =
b}|/|A|. If we denote Img(C) = {b1,...,b,} such that

3As discussed in [15], guessing entropy is a more accurate measure of
the security of this scheme than Shannon entropy, due to the fact that each
B, may have undefined values. For example, suppose that |A| = m,
that each B, has exactly one defined value, and that B, (i) # L implies
B,/ (i) = L forany @’ # a. Then, the Shannon entropy of a randomly
chosen account a’s feature descriptor would seem to be at least log m, due
to the uncertainty in the position ¢ such that B, (i) # L. Nevertheless, an
attacker need only attempt to reconstruct using at most two different (total)
feature descriptors, e.g., b such that (i) = 0 foreach 1 < i < m, and b
such that b(¢) = 1 for each 1 < ¢ < m. Thus, the guessing entropy is at
most 1.5.

we(by) > we(by) > ... > we(be), then the guessing en-
tropy of the cover C is

[Tmg(C)]|

> (i we(bi)) (3)

i=1

E; =

Then, assuming “ perfect knowledge” for the attacker means
that we compute the guessing entropy using a cover that
minimizes (3).

4.2. False negativerate

The other measure that we use to evaluate our schemeis
the false negative rate. The false negative rate is the per-
centage of failures among attempts by the legitimate user to
generate her derived key, averaged over the usersin a pop-
ulation A. For a given account, consider the total feature
descriptor b derived from the legitimate user’s utterance of
her (correct) password. Thelogin programwill first attempt
to reconstruct her derived key using {7°(¢, b()) } 1 <i<m., but
if that is unsuccessful, it may also try other feature descrip-
tors b’ that are “close” to b. More precisdly, the dterna-
tive feature descriptors b’ attempted by the login program
are those derived by various error correcting strategies. So
far, the best strategies we have identified involve first elim-
inating a single bit from b and “ shifting” the remaining bits
forward, and then correcting for alimited number d of ad-
ditional bit errors in the shifted feature descriptor. For ex-
ample, if m = 5 and b = 01101 is the feature descriptor
induced by the user’s utterance, then some aternative fea-
ture descriptorsthat thelogin program attemptsare obtained
by eliminating b(2) to yield 0_L.101; shifting the remaining
bits forward to yield 0101.L; and then generating feature
descriptors of Hamming distance at most d from 01010 or
01011. In general, the login program thus searches 2m ()
feature descriptors before returning a negative result to the
user. The value of d that can be accommodated is dictated
primarily by the computation time the login program is al-
lowed to spend before returning a negative answer to the
user. Thus, this is dependent on both the application and
the cost of performing reconstructions from the table 7" on
that device.

The method of generating alternative feature descriptors
b’ described above is motivated by the intuition that a sound
in the user’s acoustic environment could cause theintroduc-
tion of a segment of frames dominated by that sound. By
eliminating the corresponding bit and shifting the remain-
ing bits forward, we recover a feature descriptor that is not
skewed by that sound. Even with this correction, however,
false negatives can result from sources such as poor micro-
phone quality, the user’s distance to the microphone, incon-
sistency in pronunciation, or other background noise.

A noteworthy omission from our evaluation is the com-
putation of a false positive rate. Interpreted in our setting,

this rate would be the percentage of utterances (possibly of
the correct password) by users other than the correct user
that nevertheless yield a proper reconstruction of the user’s
derived key. Like guessing entropy, a false positive rate
measures the degree to which our techniques differentiate
users. However, guessing entropy more directly character-
izes the difficulty faced by the attacker with which we are
concerned, i.e., who has direct accessto the deviceon which
thetable T, is stored but who has not heard or recorded the
user’s utterance of her password. We thus believe it pro-
vides amore meaningful (albeit pessimistic) measure of the
security of our scheme.

4.3. Experimental methodology

The methodology adopted for our experiment was as
follows. We employed a preexisting dataset consisting of
recordings of five utterances of the phone number “1 800
882 3606" by different users of varying nationalities and
both sexes. The recording device recorded each user’s ut-
terances over a phone call, where each user called from a
different telephone device (and of course over a different
phone connection). These recordings are thus of poorer
quality, and of more varying qualities, than we might ex-
pect if users were to speak directly to the recording device;
this data should thus paint a pessimistic picture for our tech-
nigues. Nevertheless, as this work is only an initial explo-
ration into the generation of cryptographic keys from voice
features, this dataset was adequate to obtain initial evidence
supporting the viability of the technique.

For each user a € A for achosen population A of users,
two of her five utterances were designated as “training” ut-
terances: i.e., B, is computed from these two utterances. In
these experiments, m = 46, so that each B, was generated
to be 46-bitsin length. The remaining three utterances were
used as“testing” utterancesto compute afalse negativerate.
Specifically, each testing utterance by user a yielded atotal
feature descriptor b; b and a fixed number—as defined by
the parameter d—of feature descriptors b’ close to b as de-
scribed in Section 4.2 were examined to see if any are con-
sistent with B,. If al examined feature descriptors were
inconsistent with B,, then the utterance was counted as a
false negative.

Two further parametersrequire elaboration to specify our
experiments. First, for all approaches introduced in Sec-
tion 3.2 for generating bits of a feature descriptor from the
segmentation produced in Section 3.1, an important param-
eter is the value k& used to define B, for auser a. To recall
from Section 2.1:

By(i)y=<¢ 1 ifpu;—ko; >t

0 ifpi+ko<t
1 otherwise

where p; and o; are the mean and standard deviations of
¢; as measured in the most recent 4 (in our case, two) suc-
cessful logins, and where t is athreshold that we take to be
t = 0 for Algorithm 111. Moreover, due to our evaluation
here using features ¢; = « - (u(R;) — ¢(R;)) for some vec-
tor «, the value of « is also an important parameter to our
eva uation.

In order to demonstrate the potentia viability of our
technique, our evaluation of Section 4.4 strivesto show that
for apopulation A, there exist choices of o and & that yield
both good guessing entropy and reasonable false negative
rates. In order to show this, for a population A we searched
arange of valuesfor k, and for each k£ we computed both the
entropy and fal se negativerate for various«.. Dueto theinfi-
nite number of possible a vectors, we searched only a small
constant number of them (again, yielding a pessimistic pic-
ture): specifically, vectors o with components in the set
{-1,0,1}, and then only vectors with up to 4 nonzero co-
efficients. We then plotted entropy and false negative rates
asafunction of k. Each plotted point is the entropy or false
negative rate that resulted from the vector o« maximizing

v - pent() + (1 = v) - (100 — prreg(a)) (4)

where peq: (@) is the percent of maximum possible entropy
and preg () is the false negative percentage yielded by o
and k. Here, v isanumber between 0 and 1.

Intotal, utterances from 50 users were used in our exper-
iments. However, since the only way we know to compute
guessing entropy grows quickly in the number of users, we
did not have sufficient resources to perform our evaluation
for al 50 users at once. Rather, we divided these usersinto
digoint populations A of size 10, computed guessing en-
tropies and false negative rates for these populations, and
then averaged these measures across populations. That is,
every data point presented in Section 4.4 is adata point av-
eraged over these populations. A consequence of this ap-
proach isthe best possible guessing entropy we could report
would be 5.5, since |A| = 10 in all cases.

4.4. Experimental results

The results of the experiments described in Section 4.3
are shown in Figures 2 and 3. These figures show the per-
centage of maximum possible guessing entropy and false
negatives for the vector o that maximizes (4), for each k
when d = 4. The choice of d = 4 as the target for our ex-
periments was influenced by two competing factors. asd is
increased, the fal se negative rate generally declines, but the
computational overhead of the login program (and thus the
login delay experienced by the user) increases. The choice
d = 4 best balanced these competing factors for our data
set. However, given the limited scope of our tests (e.g., only
asmall fraction of possible a’swere searched) and the poor

50 speakers with sliding window of size 10

100 -
g
G 90 -
g >
>
8 g
3 <
s uw
) 70 -
=S

60 -

1.250 1375 1.500
k

1.625

M v=0.95
Ov=0.40
Ev=0.25

1.750 1.875

Figure 2. Guessing entropy percentages

quality of our data set (e.g., utterances were recorded over
a phone call), we conjecture that Figures 2 and 3 present
a pessimistic picture of our scheme and that d = 3 may
suffice in practice.

Figures 2 and 3 demonstrate expected trends, in par-
ticular that both the guessing entropy and false negative
rate generally decrease as k increases. Moreover, several
of the points in these figures give evidence that our ap-
proaches may yield good security and reliability in prac-
tice. For example, the experiments with v = 0.4 illus-
trate a point (k = 1.875) a which the entropy is roughly
85% of maximum and the false negative rate is approxi-
mately 6%. We remind the reader that guessing entropy is
itself a pessimistic measure, in that it presumes an attacker
with perfect knowledge of {B,}.c4. Thus, aguessing en-
tropy of 85% of maximum may be reasonable in conjunc-
tion with alow false alarm rate. Alternatively, these figures
also demonstrate that there are choices for a yielding maxi-
mum entropy with false negative rates still below 20% (e.g.,
a k = 1.625).

5. Futurework

As this work is afirst investigation into the repeatable
generation of cryptographic keys from vocal utterances, it
leaves many directions for future work. First and fore-
most, our immediate future work is targeting the genera-
tion of feature descriptors of length greater than m = 46
bits, since this is the effective length of the resulting de-
rived key to an attacker who captures the key-generating
device. Our goal is to reach a feature descriptor length
that eliminates any need to encrypt the table 7" (c.f., [15]),
since encrypting 7' using the text of the spoken utterance
will provide only marginal additional strength with greater

10

computational cost (see Section 1.2). Second, there is ob-
viously room for investigation of alternatives and improve-
ments to the algorithms described in Section 3, such as us-
ing likelihood more aggressively and, more generally, draw-
ing from the vast bodies of literature on speaker verification
and speaker recognition. Third, there is a need for more
thorough empirical analysis of our proposals (and any other
subsequent proposals). In particular, experiments that em-
ploy more appropriate data sets and larger numbers of users
and utterances are needed. In addition, experimentstargeted
at identifying the best parameter valuesto choosein practice
are very important. For example, such parameters include
which vector . produces the best results for Algorithm 111
across awide range of popul ations and passwords, or which
cepstral coefficients and features offer the best performance
for any particular algorithm.

An additional focus of our own work is the implementa-
tion of the applications described in Section 1.3. Our cur-
rent target platform is a Psion netBook '™, a portable, sub-
notebook-format device with a 190 MHz StrongArm pro-
cessor. Use of the EPOC operating system makes this de-
vice compatible with next-generation cellular phones (e.g.,
the Ericsson R380 and communicator platforms, and more
generaly, forthcoming 3G phones), which are our even-
tual target for these techniques as they become available.
This implementation should also enable us to collect data
directly as to the usability of our techniques.

6. Conclusion

In this extended abstract we presented what are, to our
knowledge, the first algorithms for reliably generating a
cryptographic key from a user’s utterance of a password.
This key is constructed to resist cryptanalysis even against

30 -

20 -

10 -

% of False Negatives

1.250 1.375

1.500

50 speakers with sliding window of size 10

1.625

HWv=0.95
Ov=0.40
Ev=0.25

1.750 1.875

Figure 3. False negative percentages

an attacker who captures the key generating device. An em-
pirical evaluation suggests that for well-chosen parameters,
both the reliability of key generation and the key entropy
can be high. We further outlined several problems for fu-
ture work.

References

(1
(2

(3]

(4

(9]

(€]

(8]
(9

(10

B. S. Atal. Automatic recognition of speakers from their voices. Pro-
ceedings of the IEEE, 64:460-475, 1976.

C. Cachin. Entropy Measures and Unconditional Security in Cryp-
tography. ETH Series in Information Security and Cryptography,
Volume 1, Hartung-Gore Verlag Konstanz, 1997.

G. |. Davida, Y. Frankel, and B. J. Matt. On enabling secure appli-
cations through off-line biometric identification. In Proceedings of
the 1998 IEEE Symposium on Security and Privacy, pages 148-157,
May 1998.

J. Daugman. High confidence personal identification by rapid video
analysis of iris texture. In Proceedings of the 1992 IEEE Interna-
tional Carnahan Conference on Security Technology, pages 50-60,
1992.

J. R. Déller Jr., J. G. Proakis, and J. H. L. Hansen. Discrete-Time
Processing of Speech Signals. Macmillan Publishing Company, New
York, 1993.

G. R. Doddington. Speaker recognition—Identifying people by their
voices. Proceedings of the IEEE, 73(11):1651-1664, 1985.

D. Feldmeier and P. Karn. UNIX password security—Ten years
later. In Advances in Cryptology—CRYPTO ’89 Proceedings (Lec-
ture Notes in Computer Science 435), 1990.

G. D. Forney, Jr. The Viterbi algorithm. Proceedings of the IEEE,
61(3):268-278, March 1973.

A. Juels and M. Wattenberg. A fuzzy commitment scheme. In Pro-
ceedings of the 6t ACM Conference on Computer and Communica-
tion Security, pages 28-36, November 1999.

D. Klein. Failing the cracker: A survey of, and improvements to,
password security. In Proceedings of the 224 USENIX Security Work-
shop, August 1990.

11

[11]

[12]

[13]

[14]

[19]

[16]
[17]
(18]
[19]

[20]

[21]
[22]

[23]

[24]

Q. Li, B.-H. Juang, C.-H. Lee, Q. Zhou, and F. K. Soong. Recent
advancements in automatic speaker authentication. IEEE Robotics &
Automation, 6(1):24-34, March 1999.

Q. Li and A. Tsai. A matched filter approach to endpoint detection
for robust speaker verification. In Proceedings of IEEE Workshop on
Automatic Identification Advanced Technologies (AutolD’99), pages
35-38, October 1999.

U. Manber. A simple scheme to make passwords based on one-way
functions much harder to crack. Computers & Security, 15(2):171—
176, 1996.

J. L. Massey. Guessing and entropy. In Proceedings of the 1994 IEEE
International Symposium on Information Theory, page 204, 1994.

F. Monrose, M. K. Reiter, and S. Wetzel. Password hardening based
on keystroke dynamics. In Proceedings of the 6® ACM Conference
on Computer and Communications Security, pages 73-82, Novem-
ber 1999.

R. Morris and K. Thompson. Password security: A case history.
Communications of the ACM, 22(11):594-597, November 1979.

J. Naik. Speaker verification: A tutorial. IEEE Communications
Magazine, pages 42-48, January 1990.

L. Rabiner, B. Juang, and B. Juang. Fundamentals of Speech Recog-
nition. Prentice Hall, 1993.

R. D. Rodman. Computer Speech Technology. Artech House, Nor-
wood, MA, 1999.

A. E. Rosenberg and F. K. Soong. Recent research in automatic
speaker recognition. In Advances in Speech Signal Processing, pages
701-738, New York: Marcel Dekker, 1992.

E. Schwartz. PDAs learn to listen up. Inforworld.com, February 4,
2000.

E. Spafford. Observations on reusable password choices. In Proceed-
ings of the 34 USENIX Security Symposium, September 1992.

R. Sproat, J. Hu and H. Chen. EMU: an e-mail preprocessor for text-
to-speech. In Proceedings of the 1998 IEEE Workshop on Multimedia
Signal Processing, December 1998.

C. Soutar and G. J. Tomko. Secure private key generation using a
fingerprint. In Cardtech/Securetech Conference Proceedings, vol. 1,
pages 245-252, May 1996.

[29]

[26]

[27]

A. J. Viterbi. Error bounds for convolutional codes and an asymptot-
ically optimum decoding agorithm. IEEE Transactions on Informa-
tion Theory, 1T-13:260-269, April 1967.

G. O. Williams. Iris recognition technology. In Proceedings of the
1996 IEEE International Carnahan Conference on Security Technol-
ogy, pages 46-59, 1996.

T. Wu. A real-world analysis of Kerberos password security. In Pro-
ceedings of the 1999 Network and Distributed System Security Sym-
posium, February 1999.

12

