
A FEDERATED REPOSITORY FOR PAAS COMPONENTS 
IN A MULTI-CLOUD ENVIRONMENT 

Rodrigo García-Carmona1, Félix Cuadrado2, Álvaro Navas1 and Juan Carlos Dueñas1 
1Departamento de Ingeniería de Sistemas Telemáticos, ETSI Telecomunicación, 

Universidad Politécnica de Madrid, Madrid, Spain 
2School of Electronic Engineering and Computer Science, Queen Mary University of London, London, U.K. 

rodrigo@dit.upm.es, felix.cuadrado@eecs.qmul.ac.uk, {anavas, jcduenas}@dit.upm.es 

Keywords: Platform as a Service, Service Repository, Dependency Resolution, Federation, OSGi. 

Abstract: Cloud computing has seen an impressive growth in recent years, with virtualization technologies being 
massively adopted to create IaaS (Infrastructure as a Service) public and private solutions. Today, the 
interest is shifting towards the PaaS (Platform as a Service) model, which allows developers to abstract from 
the execution platform and focus only on the functionality. There are several public PaaS offerings 
available, but currently no private PaaS solution is ready for production environments. To fill this gap a new 
solution must be developed. In this paper we present a key element for enabling this model: a cloud 
repository based on the OSGi component model. The repository stores, manages, provisions and resolves 
the dependencies of PaaS software components and services. This repository can federate with other 
repositories located in the same or different clouds, both private and public. This way, dependencies can be 
fulfilled collaboratively, and new business models can be implemented. 

1 INTRODUCTION 

Cloud computing has completely changed the 
perspectives of the execution infrastructure, enabling 
an unparalleled level of abstraction, as well as the 
ability to dynamically adapt the system capabilities 
in response to the perceived demand. This has been 
promoted by the massive adoption of virtualization 
technologies, with the leading cloud model being 
IaaS (Infrastructure as a Service).  

However, IaaS offers a low-level approach for 
cloud developers, which must still manage execution 
nodes (even if they are virtual), and be concerned 
with the operation and configuration of lower layers, 
such as operating systems and application servers. 

On the other hand, PaaS (Platform as a Service) 
solutions promise to allow developers to abstract 
from the IT infrastructure details and work at 
application level. Nonetheless, this model is still at 
its infancy stage, with multiple incompatible 
solutions being offered, most of them propietary. On 
top of that, in exchange for the provided abstraction, 
most of them lock applications into their propietary 
APIs.  

OSGi (OSGi Alliance, 2011) is a component 
model with ideal characteristics for the development 

of a private PaaS solution. However, while the 
specification is mature and has been used for several 
years in the enterprise application server market, 
some components and capabilities still need to be 
developed for its transition to the cloud. 

One of them is a component repository that  
works in a multi-cloud environment. This repository 
will manage the PaaS software components, store 
them and enable their correct provisioning through 
automatic dependency resolution, helped by its 
capability to federate with other repositories of the 
same kind.. 

This paper presents an initial implementation of 
this repository, detailing its distinctive 
characteristics. The structure of the article is as 
follows. Section 2 presents existing PaaS solutions 
and introduces OSGi as an alternative to them. 
Section 3 explains what characteristics a cloud 
repository needs and briefly shows the architecture 
of our contribution, while section 4 provides more 
detail over the dependency resolution and federation 
mechanism. Finally, section 5 closes this paper with 
a summary of our contributions, and a suggestions of 
several future lines of work that could be followed. 

���



 

2 ELASTIC SERVICE CLOUDS 

2.1 PaaS Solutions 

The US National Institute of Standards and 
Technology (NIST) defines PaaS as a cloud 
computer model where “the capability provided to 
the consumer is to deploy onto the cloud 
infrastructure consumer-created or acquired  
applications, created using programming languages,  
libraries,  services, and  tools  supported by  the 
provider” (Mell and Grance, 2011). In a PaaS a user 
can only control what the provider allows him to. 
Although this limitation could be considered a step 
back, in reality it enables the user to abstract from 
unnecessary details, creating an environment where 
rapid development is a given, as the users’ only 
concern is developing the application. 

Most PaaS solutions are public clouds. These are 
clouds whose infrastructure is open for the general 
public. Google AppEngine (Zahariev, 2009), 
Microsoft Windows Azure (Hill et al., 2010) and 
Amazon’s Beanstalk (van Vliet, Paganelli, van Wel 
and Dowd, 2011) are the most well-known and used 
representatives of this kind of PaaS. Although public 
clouds are widely used, they present some 
drawbacks: the developer must adapt every 
application deployed onto them to their APIs and 
special requirements, and security and privacy data 
concerns can render those solutions unfeasible in 
some contexts.  

On the other hand, private clouds are restricted 
to the use of selected individuals, normally the same 
entity that hosts them. Even considering that recent 
reports (Natis, 2011) see private PaaS as the most 
interesting future development for clouds, almost 
every private PaaS cloud project is still in the early 
beta stage. Cloudfoundry (Wolff, 2011) is the most 
notorious project. It supports a big array of 
languages (like Java, Ruby and Scala) and 
frameworks (like Spring and Lift). However, it is 
still under development and the support for building 
private clouds is not complete. 

As of this moment, there are no solutions for 
private PaaS clouds mature enough for being used in 
production environments. 

2.2 OSGi as a PaaS Solution 

The OSGi Alliance (Kriens et al., 2011) has already 
stated why OSGi could be a good addition to the 
cloud technologies ecosystem. Its modularity and 
dynamic nature is perfectly suited to the ever 
changing cloud environments. And in particular, the 

PaaS paradigm and OSGi look like the perfect fit. A 
PaaS cloud built upon OSGi does not exist yet, but it 
has already been proposed, and it should offer the 
following advantages. 

The first advantage is the minor changes that 
OSGi requires for standard Java applications to work 
with it. In a PaaS solution the developer usually has 
to perform extensive modifications in order to make 
an application work in the new environment. 
However, a Java application deployed in an OSGi 
PaaS would require only slight changes. Any 
framework already supported by OSGi can be used. 
Moreover, the enforced modularity simplifies the 
extension of an application in the form of new 
services, since modules can be easily reused.  

Another advantage is that, in an OSGi PaaS, the 
developer would not have to worry about 
dependencies. He is expected to only define them, 
and a cloud repository will resolve and find them, 
provisioning them to the node in which the 
application is running transparently. Moreover, 
available nodes can be used by different 
applications, significantly lessening the stress on the 
underlying infrastructure. On top of that, while 
applying upgrades and roll-backs in a PaaS often 
requires reboots, an OSGi cloud can be updated on 
the fly.  

All in all, there are several reasons to use an 
OSGi-powered PaaS cloud, but as this solution is 
still a work in progress, there are challenges that 
must be overcome first. Many are directly derived 
from adapting OSGI to the cloud environment and 
are common to any platform that wants to act as a 
PaaS. Provisioning is one of these problems. 
Bundles are, in fact, the OSGi components, and they 
enable one of the main advantages of an OSGi 
environment; its powerful dependency management. 
Therefore, a cloud bundle repository is a central 
piece for this model, since it is in charge of resolving 
dependencies, finding needed components, 
provisioning them and, in short, enabling the 
deployment of any application into the cloud. 

3 CLOUD COMPONENT 
REPOSITORY 

3.1 Requirements 

After having explained how OSGi can serve as the 
basis of a PaaS cloud, we can now define what 
requirements a repository should suffice to manage 
provisioning in the cloud. 

First   of   all, the   repository   must   be  able  to 

&/26(5���������QG�,QWHUQDWLRQDO�&RQIHUHQFH�RQ�&ORXG�&RPSXWLQJ�DQG�6HUYLFHV�6FLHQFH

���



 

manage components, not just store them. Distributed 
services rely heavily on external dependencies, so 
dependency management is a core requirement. It is 
also important that the resolution incorporates 
multiple compatibility criteria, since an incorrect 
component closure could leave the system in an 
unstable state.  

As the main source of provisioning in the cloud, 
the repository must be always on, implementing 
high availability. Additionally, the repository has to 
support high scalability, as it must keep working 
even under great demand. With no repository 
working no new applications can be deployed. 

Finally, the last requirement is derived from the 
OSGi vision of a PaaS cloud. The cloud provider 
should be able to offer private repositories to their 
clients. Each of these repositories can be accessed 
only by certain users. They must hold any 
application provided by the specific user, or 
supposed to be accessible only to him. Additionally, 
these repositories should also be able to 
communicate to other repositories to make queries 
or resolve dependencies.  These other repositories 
provide openly available components (like open 
source software), which could be used by different 
users. Hence, the repository must be able to federate 
with other instances of itself, each one managing a 
different set of components. Additionally, the 
repository should be able to federate with other kind 
of repositories in other clouds. This could be a huge 
enabler due to the extended service catalogue. 
However, at this stage of development, it is still an 
optional requirement.  

3.2 Component Repository 
Technologies 

At this moment there are several available 
component repository technologies. Every one of 
them has its own component model and capabilities. 
The most popular ones are detailed in this section. 
We have put a special focus in their support of OSGi 
bundles and their federation capabilities, since these 
are the basic elements needed to fulfil the desired 
requirements. 

Maven (O’Brien, 2008) is one of these solutions, 
a software project management and comprehension 
tool. Maven has become the de facto standard for 
managing Java projects, thanks mainly to the 
support and its extended use inside the Apache 
community. However, such a big scope comes with 
a price, as Maven cannot accurately express the 
special relationships between OSGi Bundles. 

Another  model  used  to  describe  bundles is the 

OBR (OSGi Bundle Repository) specification. This 
model was proposed as the draft OSGi RFC 112 
(Kriens and Hall, 2006). Although OBR is the 
official OSGi solution for the cloud, it is still in a 
draft stage. There is no OBR client specification and 
the federation between OBR servers is not well 
defined either, making OBR a poor solution for the 
cloud. 

In the 3.0 version of Eclipse, the Eclipse 
architecture was changed to use OSGi as the project 
core. This change pushed the Eclipse community to 
develop their own bundle repository, named P2 (Le 
Berre and Rapicault, 2009). The P2 repository is 
widely used, as version 3.4 of the Eclipse Platform 
employs it as the management mechanism for its 
components (which are, in fact, OSGi bundles). 
However, this solution has an important drawback: 
Its component model is concerned only with 
software direct dependencies, being oblivious to 
other constraints that could affect artefacts. Since 
one of the requirements was precisely this, P2 
cannot be used as the repository solution. On top of 
that, P2 needs the Eclipse Extension Registry, 
making it incompatible with other OSGi 
implementations. 

Finally, there is the OSAmI bundle repository 
(García-Carmona, Cuadrado, Dueñas and Navas, 
2011), which was design keeping in mind concerns 
similar to the ones exposed before. It offers a 
software model that captures all the relevant 
information, a dependency resolution system that is 
built upon it, and an architecture that can be 
extended to support multi-cloud federation. 

There are a lot of existing solutions for a bundle 
repository, but this survey shows that no actual 
repository technology completely fulfils the set of 
requirements imposed for the implementation of the 
cloud bundle repository. The one that can be more 
easily extended is the OSAmI bundle repository. 
Our cloud bundle repository is built upon its 
foundations. 

3.3 Repository Architecture 

In this section we present the architecture for the 
cloud bundle repository. For its creation we have 
taken as reference the previously presented OSAmI 
bundle repository, reengineering it in order to 
accommodate the requirements emerging from the 
PaaS cloud, as presented before. For a complete 
view of the repository architecture we recommend 
the previous reference and Figure 1, as we will only 
address the changes to the architecture in this 
section. 

$�)('(5$7('�5(326,725<�)25�3$$6�&20321(176�,1�$�08/7,�&/28'�(19,5210(17

���



 

 
Figure 1: Repository architecture. 

The shift from a traditional infrastructure to a 
private cloud environment does not affect the logical 
view of the architecture. Instead, it is more 
interesting to discuss the physical view [4+1] 
(Kruchten, 1995) of the repository architecture to 
detail the decisions taken on migrating the service to 
a private cloud platform. As there are currently no 
widely available implementations of a private Java 
PaaS cloud, we chose to deploy the repository on top 
of a private IaaS. We selected Eucalyptus (Nurmi et 
al., 2009), an Open Source IaaS technology, as the 
base cloud. Eucalyptus is a mature infrastructure 
platform that implements management interfaces 
compatible with the defacto standard in IaaS clouds 
(Amazon Web Services). This allows us to benefit 
from the already available third-party management 
products.  

For the logical components (following the OSGi 
and Spring DM (Rubio, 2009) specifications) we 
have defined a virtual appliance containing the JVM 
(Java Virtual Machine), the OSGi framework and all 
required libraries. The repository components can be 
directly deployed on top of this platform. The 
architecture design follows the stateless fundamental 
principle of SOA systems (Erl, 2005), greatly 
simplifying the scaling up of the repository through 
the launch of additional instances. Additionally, a 
load balancing virtual appliance (composed by a 
Linux-powered system) spreads the requests 
between the cloud repository instances. 

The shift to a cloud environment impacts 
persistent data storage the most. However, we have 
chosen to keep a MySQL database to store metadata 
as most cloud solutions support the use of relational 
databases and the expressivity of the SQL language 
is best suited to perform dependency matching 
queries. 

Finally, the physical storage of the deployable 
artefacts can take advantage of the scalability and 

reliability capabilities of cloud storage solutions. We 
have selected Walrus (An S3-compatible storage 
cloud, which is part of Eucalyptus), to physically 
store the files. 

4 DISTRIBUTED REPOSITORY 

The scenario we have shown in the previous section 
corresponds to the repository working inside a 
cloud. But that by itself does not fulfil the 
requirements specified before. Private clouds must 
be able to cooperate among themselves, and the 
PaaS federation level requires as a first step a 
repository federation network, with the 
representatives of each cloud cooperating with each 
other. 

 It is no longer feasible for a single entity to hold 
all the required information, all the components 
needed for a non-trivial application to work. Instead, 
repositories must be able to federate, relying on each 
other in order to compose an aggregated service 
space that can satisfy any requirement that appears 
in the local domain. Practicality is not the only 
reason behind this decision, as privacy is an 
important factor. Not every stakeholder should be 
able to access each other’s components. 

This section explains how the repository 
achieves this federation. First we explain how the 
resolution mechanism, and the model upon its built, 
work. Both of them are the foundations of the 
federation capabilities. Finally, we show how the 
repository federation mechanism itself works.  

4.1 Component Model and Dependency 
Resolution 

The dependency resolution activities performed by 
the repository are executed automatically when 
needed, without the human input or supervision. A 
developer only needs to state the dependencies of his 
components, and can rely in the repository for 
finding all the other services and components 
required. This is enabled by the use of the 
abstractions expressed in the software model 
instances. 

The central element of this model is the resource. 
Resources represent any manageable element that 
contributes to the overall functionality of the whole 
system. Typical resources include deployed web 
services, software libraries, stored tables in a 
database, or available TCP ports from the operating 
system. A resource is described by a name, a 
version, and a type. This structure implicitly defines 

R
ES

T 
In

te
rfa

ce

So
fw

ar
e 

M
od

el

D
ep

en
de

nc
y 

R
es

ol
.

D
ep

en
de

nc
y 

Fa
ce

ts

R
ep

os
ito

ry
 M

an
ag

er

Ph
ys

ic
al

 S
to

ra
ge

W
eb

 In
te

rfa
ce

&/26(5���������QG�,QWHUQDWLRQDO�&RQIHUHQFH�RQ�&ORXG�&RPSXWLQJ�DQG�6HUYLFHV�6FLHQFH

���



 

a taxonomy of managed elements. The resource is 
further described by a set of properties, formed by 
simple name/value pairs. 

The physical artefacts that are deployed into the 
system are modelled as deployment units, each a 
different model instance. A deployment unit is the 
equivalent of an OSGi bundle. Units provide 
functionality to the system (expressed by a set of 
exported resources), and also declare a set of 
requirements that must be addressed for the unit to 
work properly. The most typical type of requirement 
are dependencies, expressing the need for another 
software resource (identified by its name, type and a 
range of compatible versions) to be present in the 
platform in order for the unit to work correctly. 
Dependencies are the elements that enable the 
dependency resolution. 

Dependency resolution starts with an initial unit 
or resource being requested. This triggers a recursive 
search algorithm where the unit dependencies are 
explored, trying to find compatible units that provide 
the required resources. In turn, these new units have 
dependencies themselves. For them to be sorted, this 
process is repeated for every unit until a complete 
dependency graph has been formed. 

This is a summarised view of the process, as 
there are additional types of restrictions that can be 
expressed, both as part of the descriptor (e.g. 
hardware constraints with minimum requirements or 
incompatibilities, or general constraints such as 
license compatibility). 

But sometimes this dependency resolution 
mechanism must be expanded to include other 
concerns. A dependency resolution process must be 
able to match a number of criteria not known at 
design-time. Therefore, the architecture of the 
repository was defined with the possibility of 
expanding this mechanism in mind. This is done 
through components called facets. Each of them 
provides specific reasoning for second-level 
concerns, such as special hardware requirements, 
environmental conditions or software license 
compatibility. 

4.2 Repository Federation 

The core of the repository inter-cloud federation lies 
in the idea of extending the dependency resolution 
and artefact finding capabilities of the repository to 
work with other instances running either in the same 
or other clouds. 

This can be seen in the following figure, which 
depicts a multi-cloud environment, with several 
private clouds and a public one. Each of them 
contains at least one cloud bundle repository. 

Every repository has a reference that points to at 
least another repository, in the same cloud or in 
another one. If this relationship is recursively 
extended, it can be seen that most repositories are 
connected to many others, even if a high number of 
jumps is required. Only the truly private repositories 
are isolated from the rest. This reference is not 
bidirectional. This means that the fact that one 
repository knows about other does not imply that the 
opposite is true. 

 
Figure 2: Repository multi-cloud federation. 

These relationships represent the capability of a 
repository to access the components of another, 
query for its metadata, and ask that repository to 
perform a dependency resolution. This way, if a 
repository does not contain the necessary 
components to fulfil the dependencies of a particular 
bundle, it could survey other repositories, searching 
for the missing elements. 

To materialize this scenario, the repository needs 
to be extended with the following elements: 
x A remote interface that could be accessed by 

another repository. 
x A client component that uses this interface to 

remotely access the repository and locally 
deploy components. 

x A dependency resolution algorithm that takes 
into account this federation. 

For the remote communications needs we have 
developed two modules: a client and a server. They 
communicate through a remote interface defined 
using REST, which contains the operations needed 
for the access, modification, creation and deletion of 
components, as well as an interface for querying the 
repository and performing a dependency resolution. 

The server is deployed as a bundle within the 
repository, while the client is used both by 
repositories and the nodes inside the PaaS. Inside the 
repository this client serves as a communication 
module that enables the federation. At the same 

$�)('(5$7('�5(326,725<�)25�3$$6�&20321(176�,1�$�08/7,�&/28'�(19,5210(17

���



 

time, at the PaaS nodes the client acts as the 
provisioning service, communicating with one of the 
local repositories when an order for the deployment 
of a new component is given. 

But these are only enablers. The functionality 
itself lies in the dependency resolution algorithm, 
which considers other federated repositories and the 
components managed by them. 

The following picture shows a sequence diagram 
representing a sample invocation of this algorithm. 
The actors are the provisioning component, its local 
repository (with facets), and two remote repositories 
deployed in an external cloud. One directly accessed 
by the local repository, and the other indirectly 
through it. 

On top of this algorithm, every repository 
manages all interactions with other repositories, 
including the access and download of components 
stored in federated repositories. The provisioning 
client will never know of the existence of 
repositories other than the one he is configured to 
ask. 

5 CONCLUSIONS AND FUTURE 
WORK 

OSGi   can   be turned into a successful private PaaS 
solution, but several developments and 

improvements need to be made before that. The 
work presented in this article concerns what we 
consider to be the fundamental one: the definition 
and implementation of a cloud bundle repository. 

Building upon the foundations provided by our 
previous work in the OSAmI project, we have 
created a component repository that can fulfil the 
requirements imposed by working on a multi-cloud 
environment. One of them, the federation with other 
repositories running in the same or different clouds, 
stands above the rest. We have described the 
components needed to fulfil this requirement and 
how we have implemented them, including a client 
application that is responsible for the provisioning 
inside the cloud. 
This multi-cloud federation enables an easier and 
more organized development and deployment of 
components. It also opens the possibility of new 
business models, in which some components are 
made available only after they have been purchased, 
and some of them are kept private to some 
customers. Moreover, this structure enables every 
stakeholder that desires to maintain their 
developments private to do that, while at the same 
time enabling an easy access for its developers and 
allowed users to additional applications. 

Concerning future developments, the work 
presented in this article could be expanded following 
two different routes. 

 
Figure 3: Dependency resolution. 

&/26(5���������QG�,QWHUQDWLRQDO�&RQIHUHQFH�RQ�&ORXG�&RPSXWLQJ�DQG�6HUYLFHV�6FLHQFH

���



On the one hand, having the cloud bundle 
repository already available, efforts can be directed 
to the development of the rest of components and 
modifications needed to truly turn OSGi into a 
complete and fully functioning PaaS solution. How 
to implement logging and monitoring and actual 
scalability support are just some of the important 
topics that could be explored. 

On the other hand, the federation capabilities of 
the repository could be also extended. The basic 
model of the current implementation could be 
expanded with an intelligent distribution of 
components, with a cache and replication of the 
most required bundles into the local cloud or nearest 
repositories. This will need an advanced set of rules 
for the distribution of components between different 
repositories, keeping into account not only their 
physical capabilities, but also their licensing and 
distribution limits. 

Finally, a set of dependency resolution facets 
specially designed for cloud concerns, like intra-
cloud security, geographical location of the 
machines, QoS (Quality of Service) characteristics 
and billing can be integrated into the general 
architecture of the repository, greatly improving its 
performance in a federated PaaS environment. 

ACKNOWLEDGEMENTS 

The work presented in this article has been 
performed in the context of the European project 
ITEA-OSAMI, under grant by Spanish Ministerio de 
Industria, Turismo y Comercio in the PROFIT 
program. 

REFERENCES 

García-Carmona, R., Cuadrado, F., Dueñas, J. C., Navas, 
Á., 2011. A Model-based Repository for Open Source 
Service and Component Integration. In: Sixth 
International Conference on Software and Data 
Technologies (ICSOFT). 

Hill, Z., Li, J., Mao, M., Ruiz-Alvarez, A., Humphrey, M, 
2010. Early observations on the performance of 
Windows Azure. In Proceedings of the 19th ACM 
International Symposium on High Performance 
Distributed Computing (HPDC '10). ACM, New 
York, NY, USA, 367-376. 

Kriens, P., Hall, R. S., 2006. OSGi RFC-0112 Bundle 
Repository [pdf]. Available at: http://www.osgi.org/ 
download/rfc-0112_BundleRepository.pdf 

Kriens, P., Nicholson, R., Little, M., Bosschaert, D., 
Rellermeyer, J. S., 2011. RFP 133 Cloud Computing 

[pdf]. Available at: http://www.osgi.org/wiki/uploads/ 
Design/rfp-0133-Cloud_Computing.pdf 

 Kruchten, P., 1995, Architectural Blueprints — The 
“4+1” View Model of Software Architecture. IEEE 
Software, Vol. 12, Issue 6, pp. 42-50. 

Le Berre, D., Rapicault, P., 2009. Dependency 
management for the Eclipse ecosystem: Eclipse P2, 
metadata and resolution. In: Proceedings of the 1st 
International Workshop on Open Components 
Ecosystem. ACM. 

Mell, P., Grance, T., 2011. The NIST Definition of Cloud 
Computing [pdf]. National Institute of Standards and 
Technology. Available at: http://public.dhe.ibm.com/ 
common/ssi/ecm/en/wsd14071usen/WSD14071USEN
.PDF 

Natis, Y. V., 2011. Hype Cycle for Cloud Application 
Infrastructure Services (PaaS), 2011. Gartner. 

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., 
Soman, S., Youseff, L., Zagorodnov, D., 2009. The 
Eucalyptus Open-Source Cloud-Computing System. 
In: Cluster Computing and the Grid, 2009. CCGRID 
'09. 9th IEEE/ACM International Symposium, pp. 124-
131. 

O'Brien, T., Casey, J., Fox, B., Van Zyl, J., Moser, M., 
Redmond, E., Shatzer, L., 2008 Maven: The Complete 
Reference. O’Reilly 

OSGi Alliance, 2011. OSGi Service Platform, Core 
Specification, Release 4, Version 4.3, available at http: 
//www.osgi.org/Download/Release4V43 

Rubio, D., 2009. Pro Spring Dynamic Modules for 
OSGi™ Service Platforms. Apress. 

van Vliet, J., Paganelli, F., van Wel, S., Dowd, D., 2011. 
Elastic Beanstalk. O'Reilly Media. 

Wolff, E., 2011. Cloud Foundry: Cloud PaaS von 
VMware-Open Source für Public und Private Cloud. 
In: Java Magazine, 2011. 

Zahariev, A., 2009. Google App Engine. In: Seminar on 
Internetworking. 

$�)('(5$7('�5(326,725<�)25�3$$6�&20321(176�,1�$�08/7,�&/28'�(19,5210(17

���


