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Abstract. We study Graver test sets for families of linear multi-stage sto-
chastic integer programs with varying number of scenarios. We show that
these test sets can be decomposed into finitely many “building blocks”, in-
dependent of the number of scenarios, and we give an effective procedure to
compute them. The paper includes an introduction to Nash-Williams’ theory
of better-quasi-orderings, which is used to show termination of our algorithm.
We also apply this theory to finiteness results for Hilbert functions.
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Introduction

A wide range of practical optimization problems can be modeled as (mixed-integer)
linear programs. While some methods for solving problems like these assume all
data to be known in advance, others deal with uncertainty. Such uncertainty is
often inherent to the problem, e.g., demands, prices, or network structure. To be
able to treat optimization problems of this type, one requires stochastic information
about the uncertain components. With this knowledge, the problem can then be
formulated as a stochastic linear program: for example, one that minimizes expected

costs, or one that minimizes the risk that the costs exceed a given threshold. (Other
popular methods to deal with problems involving uncertainty also exist, for example
robust optimization; see [2] and the references therein.)

A typical situation is the following: In the first step, one has to make a decision
x without knowing the outcome of a random event that lies in the future. For ex-
ample, one needs to decide where to open new production facilities without exactly
knowing the demand in each geographical area. In a second stage, after observ-
ing the uncertain data (here: demands), one can make a second (recourse/repair)
decision y. For example, one may relocate facilities, decide on production or trans-
portation plans, etc. The goal is now to maximize revenues or profits from these
facilities. These quantities can be calculated from the immediate costs c⊺x for
opening a new location (first stage decision) plus the expected costs and revenues
Q(x) from relocating and running the facilities (second stage decision). This is a
typical instance of an expectation problem, which can be modeled as

min
{

c⊺x+ Q(x) : Ax = b, x ∈ Nm
}

,

where A ∈ Zl×m, b ∈ Zl, c ∈ Rm, and

Q(x) = EP min
{

d(ω)⊺y : Wy = h(ω) − Tx, y ∈ Nn
}

where T ∈ Zl×m, W ∈ Zl×n, and d, h are random variables on some probability
space (Ω,F , P ) taking values in Rn and Zl, respectively. Note that in the formu-
lation of the problem we assume that the outcome of the random event ω does not
depend on the first-stage decision x that has been made.

The computation of Q(x) involves the symbolic computation of an integral, which
is often hard (even for relatively few variables). In practice, when no integrality
constraints are imposed on y, the computation can sometimes be simplified by ex-
ploiting continuity and convexity of Q(x). However, if y is required to be integer,
Q(x) is only semi-continuous, and usually not convex. Hence, to make compu-
tations possible, the probability distribution for ω is usually approximated by N
scenarios ω1, . . . , ωN with respective probabilities π1, . . . , πN . In this way, the inte-
gral involved in the computation of Q(x) becomes a sum, and we obtain an integer
program having a separate set of y-variables corresponding to each scenario:

(0.1) min

{

c⊺x+

N
∑

i=1

πi · (d
⊺yi) : Ax = a, Wyi = hi − Tx, x ∈ Nm, yi ∈ Nn

}

.
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The coefficient matrix of this problem has a nice block structure:










A
T W
...

. . .

T W











This two-stage setup (making a decision, observing the outcome of the random
event, and then making a recourse decision) can be iterated, leading to the notion
of a multi-stage stochastic integer program. (See [30] for a recent survey of this
topic.) In these programs, information is revealed only at certain points in time,
and decisions have to be made without knowing the outcome of future random
events. Again we assume that each random event neither depends on the outcome
of previous random events nor on the decisions made in the previous stages. The
integer programs which we obtain by discretizing the probability distributions of the
random variables involved quickly become very big and hard to solve in practice.
However, as in the two-stage example above, the non-anticipativity assumption
leads to highly structured problem matrices.

In [12], Hemmecke and Schultz exploited this structure to construct a novel
algorithm for the solution of two-stage stochastic integer programs, which is based
on successive augmentation of a given feasible solution. The main goal of this paper
is to extend the ideas presented in [9, 12] from two-stage to multi-stage programs.
Instead of decomposing the problem itself, as essentially all other decomposition
approaches to two- and multi-stage stochastic integer programming do, we will
decompose an object that is closely related to the given problem matrix: its Graver

test set (or Graver basis). The structure of the problem matrix also imposes a lot
of structure on the elements in the Graver basis: for a given family of (k + 1)-
stage stochastic integer programs (k ∈ N) we can define a certain (a priori infinite)
set Hk,∞ of “building blocks,” from which all elements in the Graver basis of the
coefficient matrix can be reconstructed, independent of the number N of scenarios.
(We refer to Section 8 for the precise definition.) We will prove that this set of
building blocks, in fact, is always finite. We also show how to compute Hk,∞ (even
if only theoretically), and how it can be employed to solve any given particular
instance of the given family of (k + 1)-stage stochastic integer programs.

It is perhaps remarkable that our proof of the finiteness of Hk,∞ rests on some
non-trivial properties of the set Nn of n-tuples of natural numbers. Some of those
have appeared before, under various guises, in computational algebra. The most
prominent one, known as “Dickson’s Lemma,” can formulated like this:

For every infinite sequence Xν(1)

, Xν(2)

, . . . of monomials in the

polynomial ring Q[X ] = Q[X1, . . . , Xn], where Xν = Xν1
1 · · ·Xνn

n

for ν = (ν1, . . . , νn) ∈ Nn, there exist indices i < j such that Xν(i)

divides Xν(j)

.

This simple combinatorial fact alone is at the heart of many finiteness phenomena
in commutative algebra, since it readily implies Hilbert’s Basis Theorem: every
ideal of the polynomial ring K[X ] = K[X1, . . . , Xn], where K is a field, is finitely
generated. Dickson’s Lemma yields that every monomial ideal of K[X ] (that is,
an ideal generated by monomials) is finitely generated (see, e.g., Proposition 3.1
below), and Gordan’s famous proof of the Hilbert Basis Theorem extends this to
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all ideals of K[X ]. Now Dickson’s Lemma in turn is a consequence of a somewhat
more powerful (and less obvious) finiteness statement:

There is no infinite sequence I(1), I(2), . . . of monomial ideals in

the polynomial ring Q[X ] such that I(i) 6⊇ I(j) for all i < j.

This principle can be easily shown using known techniques in the subject of “well-
quasi-orderings”. Maclagan [18] rediscovered this fact (by primary decomposition
of monomial ideals) and demonstrated how it can be used to give short proofs of
several other finiteness statements like the existence of universal Gröbner bases
and the finiteness of the number of atomic fibers of a matrix with non-negative
integer entries. (Other applications can be found in [8, 11, 19].) The connections
to well-quasi-orderings have been made explicit and further explored by the first
author and Pong in [1]. See also [31] for an instance where the theory of well-
quasi-orderings can be employed to give a quick proof of an interesting finiteness
statement in algebraic statistics.

In this paper we exploit an infinite hierarchy of finiteness principles, of which the
statements above only represent the two bottom levels. For a precise formulation
we refer to Theorem 5.9 below. Here, let us just state an attractive consequence of
the next statement in the hierarchy:

Theorem. Let S be a collection of monomial ideals in the polynomial ring Q[X ],
and let M1,M2, . . . be an infinite sequence of collections of monomial ideals from

S, where each Mi is closed under inclusion (if I ∈ Mi and J ∈ S is a monomial

ideal such that J ⊆ I, then J ∈ Mi). Then Mi ⊆ Mj for some indices i 6= j.

(The statement remains true if “closed under inclusion” is replaced by “closed
under reverse inclusion.”)

We construct this hierarchy using Nash-Williams’ beautiful theory of “better-
quasi-ordered sets”. This theory, although of a fundamentally combinatorial nature,
is probably less well-known in the field of algorithmic algebra than among logicians,
who explored its connections to descriptive set theory and computability theory [32],
and, more recently, investigated its logical strength [3, 21]. It is for this reason that
we include an introduction to this subject in Part 1 of the paper (Sections 1–5),
with the hope that it will become useful as a general guide for proving finiteness
statements and for establishing termination of algebraic algorithms. We finish
Part 1 by applying Nash-Williams’ theory to prove a few finiteness properties for
Hilbert functions (in Section 6), some of which are known (Corollary 6.4), and some
of which might be new (Proposition 6.5).

In Part 2 of the paper we then apply the theorems of Part 1 to establish finiteness
and computability in the decomposition approach to solve multi-stage stochastic
integer programs mentioned above. We begin by giving a brief introduction to
Graver test sets for integer linear programs. For a more thorough treatment see,
e.g., [10]. After introducing Hk,∞ in Section 8, we show that this set is always finite,
and give an algorithm to compute a set of vectors containing it (in Section 9). The
set Hk,∞ holds an enormous amount of information. We finish the paper by showing
how knowledge of (an object related to) Hk,∞ allows one to solve any given instance
of our family of (k + 1)-stage stochastic integer programs, for any given number of
scenarios.
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Part 1. Noetherian Orderings and Monomial Ideals

1. Preliminaries

We first introduce some notations about sets of natural numbers which are con-
stantly used throughout Part 1. We then discuss an infinitary version of Ramsey’s
Theorem due to Galvin and Prikry, which, together with the notion of a “barrier”
(introduced below) is at the base of Nash-Williams’ theory.

Sets and sequences of natural numbers. Throughout this paper, m and n
range over the set N = {0, 1, 2, . . .} of natural numbers. For a set X , we denote
the power set of X (the set of all subsets of X) by P(X). Given X ⊆ N and n, we
denote by [X ]n the set of all subsets of X consisting of exactly n elements. We let

[X ]<ω :=
⋃

n∈N

[X ]n,

the set of all finite subsets of X . By [X ]ω we denote the set of all infinite subsets
of X . (So P(X) = [X ]<ω ∪ [X ]ω.)

For every subset of N, there is a unique sequence enumerating it in strictly
increasing order. We will identify subsets of N and strictly increasing sequences of
natural numbers in this way. (The empty set ∅ corresponds to the empty sequence.)
For example, for X ∈ [N]ω and a ∈ N, this identification allows us to define X>a ∈
[N]ω by

X>a := {x ∈ X : x > a}.

In the rest of this section, s, t, u range over [N]<ω, and U, V,W,X over [N]ω. We
denote by l(s) the cardinality of s. So if s is identified with the corresponding
strictly increasing sequence, then l(s) is its length. For every 0 6 i < l(s) we write
si for the (i+ 1)-st element of s; therefore, we can write s as s = (s0, . . . , sl(s)−1),
with s0 < s1 < · · · < sl(s)−1. We write s � t if s is an initial segment of t, that
is, l(s) 6 l(t) and si = ti for all 0 6 i < l(s). We put s ≺ t if s is a proper initial
segment of t, i.e., s � t and s 6= t. These relations extend in a natural way also to
the case where t is replaced by an infinite subset of N. Clearly s � t implies s ⊆ t.

If l(s) = n > 1, then s \ {min s} is the sequence (s1, . . . , sn−1) obtained from
s = (s0, s1, . . . , sn−1) by leaving out its first element s0. Similarly if l(s) > 1, then
t \ {max t} is the sequence obtained from t by leaving out its last element. For
non-empty s, t we set

s ⊳ t :⇐⇒ s \ {min s} � t \ {max t}.

Note that the relation ≺ on [N]<ω is irreflexive (s 6≺ s for all s ∈ [N]<ω) and
transitive (if s ≺ t and t ≺ u, then s ≺ u), whereas the relation ⊳ on the set [N]<ω

is neither irreflexive nor transitive.

The Ellentuck topology. We write s < U if max s < minU . Here and below,
max ∅ := −∞ < a for all a ∈ N. If s < U , we put

[s, U ] :=
{

X ∈ [s ∪ U ]ω : s ≺ X
}

.

We endow [N]ω with the Ellentuck topology, whose basic open sets are the sets of
the form [s, U ] for s < U as above. (This topology was first introduced in [5].) For
X ∈ [N]ω , we consider each [X ]ω as a subspace of [N]ω, equipped with the induced
topology.
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A theorem of Galvin and Prikry. If N = P ∪Q is a partition of N, then one
of P or Q is infinite, by the familiar (Dirichlet) pigeon-hole principle. Ramsey’s
Theorem [29] is an extension of this principle: if [N]n = P ∪ Q is a partition of
[N]n, then there is H ∈ [N]ω such that [H ]n ⊆ P or [H ]n ⊆ Q. Such a set H is
called a homogeneous set for the partition [N]n = P ∪Q. Later on, we will need
a far-reaching generalization of this theorem, concerning partitions [N]ω = P ∪ Q
of [N]ω. We have to place some restrictions on the nature of the partitioning sets
P and Q, since the natural analogue of Ramsey’s Theorem for partitions of [N]ω

fails for pathological partitions constructed using the Axiom of Choice. (See [15],
Section 19.)

Theorem 1.1. (Galvin-Prikry [6].) Let X ∈ [N]ω, and suppose [X ]ω = P ∪Q is a

partition of [X ]ω, where P is an open set (in the Ellentuck topology). Then there

exists H ∈ [X ]ω such that [H ]ω ⊆ P or [H ]ω ⊆ Q.

We refer to [15], Section 19 or [32] for a proof.

Blocks and barriers. The definition of Nash-Williams ordering uses the language
of “blocks” and “barriers.” The reader may skip this subsection at first reading
and come back to it when it is really needed (in Section 5).

Definition 1.2. A subset B of [X ]<ω is called a block (with base X) if

(1) [X ]ω =
⋃

s∈B [s,X>max s], and
(2) s 6≺ t for all s, t ∈ B.

In other words, a subset B of [X ]<ω is a block with base X if and only if for
every strictly increasing infinite sequence (x0, x1, . . . ) of elements of X , there exists
a unique n such that (x0, x1, . . . , xn) ∈ B. It follows that every strictly increasing
sequence over X (finite or infinite) has at most one initial segment which lies in
B. (Since every element of [X ]<ω occurs as an initial segment of some element of
[X ]ω.) Moreover, note that for a block B, its base is given by X =

⋃

{b : b ∈ B}.

Examples.

(1) For any n > 0, [X ]n is a block with base X .
(2) Suppose B is a block with base X , and let C ⊆ B, Y ∈ [X ]ω. Then C is a

block with base Y if and only if C = B ∩ [Y ]<ω.

A subsetB of [X ]<ω is called a barrier if it satisfies condition (1) of Definition 1.2
and

(2′) s 6⊂ t for all s, t ∈ B.

Every barrier is a block, and the statements in the examples above remain true if
“block” is replaced by “barrier”. Theorem 1.1 has the following important conse-
quence:

Corollary 1.3. If B is a block with base X and B = B1 ∪B2, then there is a block

B′ ⊆ B such that B′ ⊆ B1 or B′ ⊆ B2.

Proof. We may assume that B1 and B2 are disjoint, so

P =
⋃

s∈B1

[s,X>max s], Q =
⋃

s∈B2

[s,X>maxs]

give a partition of [X ]ω into open sets P and Q. Hence by Theorem 1.1 there
exists H ∈ [X ]ω with [H ]ω ⊆ P or [H ]ω ⊆ Q, and it follows that B1 ∩ [H ]<ω or
B2 ∩ [H ]<ω, respectively, is a block. �
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Remark. Since any block contained in a barrier is itself a barrier, the corollary
remains true with “block” replaced by “barrier.”

The following construction turns out to be very useful:

Proposition 1.4. If B is a barrier with base X ∈ [N]ω, then so is

B(2) :=
{

b(1) ∪ b(2) : b(1), b(2) ∈ B, b(1) ⊳ b(2)
}

.

For every b ∈ B(2) there exist unique b(1), b(2) ∈ B such that b = b(1) ∪ b(2) and

b(1) ⊳ b(2).

In the proof, we need:

Lemma 1.5. For every Y ∈ [X ]ω and b(1) ∈ B with b(1) � Y there exists b(2) ∈ B
such that b(1) ⊳ b(2) and b(1) ∪ b(2) � Y .

Proof. The infinite sequence Y \ {minY } ∈ [X ]ω has an initial segment b(2) in B,
by condition (1) of Definition 1.2. By condition (2) in that definition, b(2) 6≺ b(1),
and therefore b(1) ⊳ b(2). �

Proof (of Proposition 1.4). Let Y ∈ [X ]ω, and let b(1) be an initial segment of
Y in B. By the lemma, there exists b(2) ∈ B with b(1) ⊳ b(2) and b(1) ∪
b(2) � Y . Thus B(2) satisfies condition (1) in the definition of a block. Now
let b(1), b(2), c(1), c(2) ∈ B, with b(1) ⊳ b(2), c(1) ⊳ c(2), and suppose that b ⊆ c,
where b = b(1)∪ b(2), c = c(1)∪ c(2). Then b(2) = b \ {min b} ⊆ c \ {min c} = c(2),
hence b(2) = c(2), by condition (2′) in the definition of a barrier. It follows that
b = c and c(1) = b(1). This shows that B(2) is a barrier, and also implies the last
statement. �

Corollary 1.6. Let B be a barrier with base X.

(1) If b, c ∈ B(2), then b ⊳ c if and only if b(2) = c(1).
(2) If C ⊆ B(2) is a barrier with base Y ⊆ X, then

C∗ :=
{

c(1), c(2) : c ∈ C
}

⊆ B

is a barrier with base Y ⊆ X. If c1, c2 ∈ C∗ satisfy c1 ⊳ c2, then there

exists a unique c ∈ C such that c1 = c(1) and c2 = c(2).

Proof. Part (1) follows from condition (2) in Definition 1.2 and the fact that b(2) =
b\ {min b} and c(1) � c\ {max c}. For part (2), suppose C ⊆ B(2) is a barrier with
base Y ⊆ X , so C = B(2) ∩ [Y ]<ω. Let b(1) ∈ B ∩ [Y ]<ω. By Lemma 1.5, there
exists b(2) ∈ B ∩ [Y ]<ω with b(1) ⊳ b(2). Hence b = b(1) ∪ b(2) is an element of
B(2)∩ [Y ]<ω = C, and thus b(1), b(2) ∈ C∗. This shows that C∗ = B ∩ [Y ]<ω, that
is, C∗ is a barrier. Finally, if c1 ⊳ c2 are elements of C∗, let c = c1 ∪ c2 ∈ B(2);
then c(1) = c1, c(2) = c2 as required. �

2. Orderings

We state some definitions and facts concerning (partially) ordered sets and maps
between them, and give some examples.
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Ordered sets. A quasi-ordering on a set S is a binary relation 6 on S which
is reflexive and transitive; in this case, we call (S,6) a quasi-ordered set. (If no
confusion is possible, we will omit 6 from the notation, and just call S a quasi-
ordered set.) If in addition the relation 6 is anti-symmetric, then 6 is called an
ordering on the set S, and (S,6) (or S) is called an ordered set. If moreover
x 6 y or y 6 x for all x, y ∈ S, then 6 is called a total ordering on S. In the
literature, what we call an ordering and an ordered set is often called a partial
ordering and a partially ordered set (or poset), respectively. We write as usual
x < y if x 6 y and y 66 x.

Maps between ordered sets. A function ϕ : S → T between quasi-ordered sets
(S,6S) and (T,6T ) is called increasing if

x 6S y ⇒ ϕ(x) 6T ϕ(y), for all x, y ∈ S,

and strictly increasing if

x <S y ⇒ ϕ(x) <T ϕ(y), for all x, y ∈ S.

Given a quasi-ordering 6 on a set S, there exists a unique ordering on the set
S/∼ := {a/∼ : a ∈ S} of equivalence classes of the equivalence relation

x ∼ y ⇐⇒ x 6 y and y 6 x

on S such that the surjective map a 7→ a/∼ : S → S/∼ is increasing. Hence there
is usually no loss in generality when working with orderings rather than quasi-
orderings. In the following, we shall therefore concentrate on ordered sets, and
mostly leave it to the reader to adapt the definitions and results to the quasi-
ordered case.

Quasi-embeddings, embeddings, and isomorphisms. A quasi-embedding

between ordered sets (S,6S) and (T,6T ) is a map ϕ : S → T such that

ϕ(x) 6T ϕ(y) ⇒ x 6S y, for all x, y ∈ S,

and if in addition ϕ is increasing, then ϕ is called an embedding. Any quasi-
embedding between ordered sets is injective, and any embedding is strictly increas-
ing. A surjective embedding S → T is an isomorphism of the ordered sets (S,6S)
and (T,6T ). We say that an ordering �S on S extends the ordering 6S if the
identity on S is an increasing map between (S,6S) and (S,�S), that is, if 6S ⊆ �S

(as subsets of S×S). We write (S,6S) ⊆ (T,6T ) if S ⊆ T and the natural inclusion
S → T is an embedding (i.e., 6S is the restriction of 6T to S).

Examples. Here are some methods for constructing new ordered sets from old ones.

(1) Any subset of an ordered set (S,6) can be naturally made into an ordered
set by restricting the ordering 6 to this subset.

(2) The disjoint union S ∐ T of ordered sets (S,6S) and (T,6T ) can be natu-
rally made into an ordered set via the relation 6S ∪ 6T .

(3) The cartesian product S × T of ordered sets (S,6S) and (T,6T ) can be
naturally made into an ordered set by the product ordering

(x, y) 6S×T (x′, y′) :⇐⇒ x 6S x
′ and y 6T y′.
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(4) Given a set S we denote by S⋄ the free commutative monoid generated
by S. An ordering 6 on S extends naturally to an ordering 6⋄ on S⋄ as
follows:

s1 · · · sm 6⋄ t1 · · · tn :⇐⇒







there exists an injective map
ϕ : {1, . . . ,m} → {1, . . . , n} such
that si 6S tϕ(i) for i = 1, . . . ,m.

The simple example of the set Nn of n-tuples of natural numbers, ordered by
the product ordering, will play an important role in further sections. (Another
key example will be given at the end of Section 5.) It is sometimes convenient to
identify the elements of Nn with monomials in a polynomial ring as follows: Let
X = {X1, . . . , Xn} be a set of distinct indeterminates, so X⋄ = {Xν : ν ∈ Nn}
where Xν := Xν1

1 · · ·Xνn
n for ν = (ν1, . . . , νn) ∈ Nn. Order X⋄ by divisibility:

Xν 6 Xµ :⇐⇒ µ = ν + λ for some λ ∈ Nn.

That is, in the context of example (4) above (for S = X), the ordering on X⋄

is 6⋄ where 6 is the trivial ordering on X . The map ν 7→ Xν : Nn → X⋄ is an
isomorphism of ordered sets. The elements of X⋄ can be seen as the monomials in
the polynomial ring R[X ] = R[X1, . . . , Xn] over an arbitrary commutative ring R.

Initial and final segments. An initial segment of an ordered set (S,6) is a
subset I ⊆ S such that

x 6 y and y ∈ I ⇒ x ∈ I, for all x, y ∈ S.

Dually, F ⊆ S is called a final segment if S\F is an initial segment. (In the
combinatorial literature, initial and final segments are sometimes called order ideals
and dual order ideals, respectively.) Given a subset X of S, we denote by

(X) :=
{

y ∈ S : ∃x ∈ X(x 6 y)
}

the final segment of S generated by X , and by

[X ] :=
{

y ∈ S : ∃x ∈ X(x > y)
}

the initial segment generated byX . The set I(S) of initial segments of S is naturally
ordered by inclusion: I 6 J ⇐⇒ I ⊆ J , for I, J ∈ I(S). Dually, we construe the
set F(S) of final segments of S as an ordered set, with the ordering given by reverse

inclusion: F 6 G ⇐⇒ F ⊇ G, for F,G ∈ F(S). The intersection and union of
an arbitrary family of initial (final) segments of S is also an initial (resp., final)
segment of S.

Example. The isomorphism ν 7→ Xν identifies Nn and the monoid of monomials
in the polynomial ring R[X ]. The ordered set

(

F(Nn),⊇
)

of final segments of Nn

may be identified with the set of monomial ideals of R[X ] (that is, ideals of R[X ]
which are generated by monomials), ordered by reverse inclusion.

Given a quasi-ordered set (S,6), we can define a quasi-ordering 6P(S) on the
power set P(S) of S as follows: for X,Y ∈ P(S),

(2.1) X 6P(S) Y ⇐⇒ for every y ∈ Y there exists x ∈ X such that x 6 y.

Note that F ⊇ G ⇐⇒ F 6P(S) G for all F,G ∈ F(S), and X 6P(S) 〈X〉 for every
X ⊆ S. This implies that the map

F 7→ F/∼ : F(S) → P(S)/∼



10 MATTHIAS ASCHENBRENNER AND RAYMOND HEMMECKE

is an isomorphism of ordered sets. Here ∼ is the equivalence relation on P(S)
associated to 6P(S) as in the beginning of this section.

Pullback of final segments. For any function ϕ : S → T between ordered sets
(S,6S) and (T,6T ), we get an induced increasing function

ϕ∗ : F 7→
(

ϕ−1(F )
)

, F(T ) → F(S)

between the ordered sets
(

F(T ),⊇
)

and
(

F(S),⊇
)

.

Example. Let (S,6S), (T,6T ), and (U,6U ) be ordered sets with (S,6S), (T,6T ) ⊆
(U,6U), so the natural inclusions iS : S → U and iT : T → U are increasing. Then

i∗S(F ) = F ∩ S, i∗T (F ) = F ∩ T for any F ∈ F(U).

Hence if in addition U = S ∪ T , then i∗S × i∗T gives an embedding F(U) → F(S) ×
F(T ).

The following rules will be used later:

Lemma 2.1. Let S and T be ordered sets, and ϕ : S → T .

(1) If ϕ is a quasi-embedding, then ϕ∗ is surjective.

(2) If ϕ is increasing and surjective, then ϕ∗ is a quasi-embedding.

Proof. Since part (2) is clear, we just prove (1). Suppose ϕ is a quasi-embedding,
and let G ∈ F(S). Let F be the final segment of T generated by ϕ(G). Then
clearly G ⊆ ϕ−1(F ). Conversely, if x ∈ S satisfies ϕ(x) ∈ F , then ϕ(x) > ϕ(g) for
some g ∈ G. Since ϕ is a quasi-embedding, we have x > g, so x ∈ G. This shows
ϕ∗(F ) = G. �

Antichains. For elements x, y of an ordered set S, we write x‖y if x 66 y and
y 66 x. An antichain of S is a subset A ⊆ S such that x‖y for all x 6= y in A. An
element x of S is called a minimal element of S if y 6 x ⇒ y = x for all y ∈ S.
The minimal elements of a subset X ⊆ S form an antichain, denoted by Xmin.

Well-founded orderings. An ordered set S is well-founded if there is no infinite
strictly decreasing sequence x0 > x1 > · · · in S. For any element x of a subset X of
a well-founded ordered set S, there is at least one minimal element y ∈ Xmin with
y 6 x. It follows that any final segment F of S is generated by its antichain Fmin

of minimal elements; in fact, Fmin is the (unique) smallest generating set for F .

3. Noetherian Orderings

We say that an ordered set S is Noetherian if it is well-founded and every antichain
of S is finite. More generally, we say that a quasi-ordered set S is Noetherian if
the associated ordered set S/∼ is Noetherian. Since every antichain of a totally
ordered set consists of at most one element, a totally ordered set S is Noetherian
if and only if it is well-founded; in this case S is called well-ordered.

Remark. Noetherian orderings are usually called “well-quasi-orderings” in the lit-
erature (see, e.g., [17]). Following a proposal by Joris van der Hoeven [14] we use
the more concise term “Noetherian”.

An infinite sequence x0, x1, . . . in S is good if xi 6 xj for some i < j, and bad,

otherwise. Clearly, if {x0, x1, . . . } is an antichain, then x0, x1, . . . is a bad sequence.
The following characterization of Noetherian orderings is folklore (see, e.g., [22]).
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Proposition 3.1. Let S be an ordered set. The following are equivalent:

(1) S is Noetherian.

(2) Every infinite sequence x0, x1, . . . in S contains an increasing subsequence.

(3) Every infinite sequence x0, x1, . . . in S is good.

(4) Any subset X ⊆ S has only finitely many minimal elements, and for every

x ∈ X there is a minimal element y of X with x > y.
(5) Any final segment of S is finitely generated.

(6)
(

F(S),⊇
)

is well-founded (i.e., the ascending chain condition with respect

to inclusion holds for final segments of S).
(7)

(

I(S),⊆
)

is well-founded (i.e., the descending chain condition with respect

to inclusion holds for initial segments of S).

Proof. The implication (1) ⇒ (2) follows from applying Ramsey’s Theorem to the
partition [N]2 = P ∪Q ∪R, where

P =
{

{i, j} : xi‖xj

}

, Q =
{

{i, j} : i < j, xi > xj

}

,

and R = [N]2 \ (P ∪ Q). The implications (2) ⇒ (3) ⇒ (1) are trivial, and
(1) ⇒ (4) ⇒ (5) follows from the remarks at the end of the last section. If
F0 ⊆ F1 ⊆ · · · is an ascending chain of final segments of S, then F =

⋃

n Fn

is a final segment of S. If F is finitely generated, say by X ⊆ F , then X ⊆ Fn for
some n; thus Fn = Fn+1 = · · · . This shows (5) ⇒ (6); by passing to complements,
we obtain (6) ⇐⇒ (7). For (6) ⇒ (3), let x0, x1, . . . be a sequence in S. By (6),
the sequence (x0) ⊆ (x0, x1) ⊆ · · · of final segments of S becomes stationary: for
some n, we have xj ∈ (x0, . . . , xn) for all j > n. In particular, xi 6 xn+1 for some
i ∈ {0, . . . , n}. �

The proposition now immediately provides the following construction methods
for Noetherian orderings:

Examples. Suppose (S,6S) and (T,6T ) are ordered sets. Then:

(1) If there exists an increasing surjection S → T , and (S,6S) is Noetherian,
then (T,6T ) is Noetherian. In particular, if (S,6S) is Noetherian, then
any ordering on S which extends 6S is Noetherian.

(2) If there exists a quasi-embedding S → T , and (T,6T ) is Noetherian, then
(S,6S) is Noetherian. In particular, if (T,6T ) is Noetherian, then any
subset of T with the induced ordering is Noetherian.

(3) If (S,6S) and (T,6T ) are Noetherian and (U,6U ) is an ordered set such
that (S,6S), (T,6T ) ⊆ (U,6U ), then S ∪ T is Noetherian. In particular,
it follows that S ∐ T is Noetherian.

(4) If (S,6S) and (T,6T ) are Noetherian, then so is S × T . Inductively, it
follows that if the ordered set (S,6S) is Noetherian, then so is Sn equipped
with the product ordering, for every n > 0.

Applying Example (4) to S = N, we obtain:

Corollary 3.2. (Dickson’s Lemma.) For each n > 0, the ordered set Nn is Noe-

therian. �

4. Strongly Noetherian Orderings

Besides the results stated in the examples following Proposition 3.1, several other
preservation theorems for Noetherian orderings are known. For example, if (S,6)
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is a Noetherian ordered set, then so is (S⋄,6⋄) as defined in Section 2. (This was
first proved by Higman [13], with a simplified proof given by Nash-Williams [24].)
Similar theorems can be proved for other ordered sets built from S, for example the
collection of all finite trees whose nodes are labelled by elements of S, ordered by
the homeomorphic embedding ordering (Kruskal [16]). The common feature of all
these constructions is their finitary character. If one builds ordered sets by allowing
operations of an infinite nature, the situation changes drastically: for example, if
S is a Noetherian ordered set, then

(

F(S),⊇
)

is in general not Noetherian. An

example for this phenomenon was first given by Rado [28]: Let R := [N]2, ordered
by the rule

(i, j) 6R (k, l) ⇐⇒ either i = k and j 6 l, or j < k.

It is quickly verified (see, e.g., [18]) that (R,6R) is a Noetherian ordered set, but
(

F(R),⊇
)

is not Noetherian: the sequence F1, F2, . . . where Fj is the final segment

of R generated by all (i, j) ∈ N2 with i < j, is an infinite antichain in F(R). This
example is archetypical in the following sense:

Theorem 4.1. For a Noetherian ordered set (S,6S), the following are equivalent:

(1)
(

F(S),⊇
)

is not Noetherian.

(2)
(

I(S),⊆
)

is not Noetherian.

(3) There exists a function f : [N]2 → S with f(i, j) 66S f(j, k) for all i < j < k.
(4) There exists an embedding (R,6R) → (S,6S).
(5) There exists a quasi-embedding (R,6R) → (S,6S).

Proof. The implication (1) ⇒ (2) is trivial. Suppose I0, I1, . . . is a bad sequence in
(

I(S),⊆
)

. So for each i < j there exists a ∈ Ii with a 66 b for all b ∈ Ij . Hence it is
possible to choose, for each i < j, an element f(i, j) ∈ Ii such that for all i < j < k,
we have f(i, j) 66S f(j, k). This shows (2) ⇒ (3). For (3) ⇒ (4), let f : [N]2 → S,
f(i, j) = aij , be as in (3). Consider the partitions

[N]3 = P ∪Q, [N]4 = P ′ ∪Q′

given by

P =
{

{i, j, k} : i < j < k, aij 6 aik

}

, Q = [N]3 \ P

and

P ′ =
{

{i, j, k, l} : i < j < k < l, aij 6 akl

}

, Q′ = [N]4 \ P ′.

By applying Ramsey’s Theorem twice we obtain an infinite set H ⊆ N which is
homogeneous for both partitions. Since S is Noetherian, we must have [H ]3 ⊆ P ,
[H ]4 ⊆ P ′. It follows that

(i, j) 6R (k, l) ⇐⇒ aij 6S akl,

for all i < j, k < l in H . Therefore, {aij : i < j, i, j ∈ H} (with the ordering
induced from S) is isomorphic to (R,6R). The implication (4) ⇒ (5) is again
trivial, and (5) ⇒ (1) follows from Lemma 2.1, (1) and Example (1) following
Proposition 3.1. �

Let us call an ordered set (S,6S) strongly Noetherian if
(

F(S),⊇
)

is Noe-
therian. (So a forteriori, (S,6S) is Noetherian, by Proposition 3.1.) The following
facts follow easily from Lemma 2.1 and the examples after Proposition 3.1:

Examples. Suppose (S,6S) and (T,6T ) are ordered sets. Then:
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(1) If there exists an increasing surjection S → T and (S,6S) is strongly Noe-
therian, then (T,6T ) is strongly Noetherian. In particular, if (S,6S) is
strongly Noetherian, then any ordering on S which extends 6S is strongly
Noetherian.

(2) If there exists a quasi-embedding S → T and (T,6T ) is strongly Noe-
therian, then (S,6S) is strongly Noetherian. In particular, if (S,6S) is
strongly Noetherian, then any subset of S with the induced ordering is
strongly Noetherian.

(3) If (S,6S) and (T,6T ) are strongly Noetherian and (U,6U ) is an ordered
set with (S,6S), (T,6T ) ⊆ (U,6U ), then S ∪ T is strongly Noetherian. In
particular, it follows that if (S,6S) and (T,6T ) are strongly Noetherian,
then so is S ∐ T .

Strong Noetherianity is also preserved under cartesian products:

Proposition 4.2. If (S,6S) and (T,6T ) are strongly Noetherian ordered sets, then

S × T is strongly Noetherian.

(This fact was stated without proof in [18] and attributed there to Farley and
Schmidt. For another proof see [1].)

Proof. Let f : [N]2 → S×T . We denote by πS : S×T → S the projection (s, t) 7→ s
onto the first component, and we put fS := πS◦f . Similarly we define fT : [N]2 → T .
Since S is strongly Noetherian, there are i < j < k with fS(i, j) 6S fS(j, k), by
the previous theorem. Now consider the partition [N]3 = P ∪Q, where

P =
{

{i, j, k} : i < j < k, fS(i, j) 6S fS(j, k)
}

, Q = [N]3 \ P.

By Ramsey’s Theorem, we find an infinite homogeneous set H ⊆ N for this par-
tition. Since S is strongly Noetherian, we must have [H ]3 ⊆ P . Changing from
N to H , we thus may assume that fS(i, j) 6S fS(j, k) for all i < j < k. Since
T is strongly Noetherian, there are i < j < k with fT (i, j) 6T fT (j, k). Hence
f(i, j) 6 f(j, k). Thus S × T is strongly Noetherian. �

Corollary 4.3. (Maclagan, [18].) The ordered set Nn is strongly Noetherian, for

every n > 0. �

5. Nash-Williams Orderings

By the equivalence of (1) and (3) in Theorem 4.1, strong Noetherianity may be ex-
pressed using the terminology introduced in Section 1: An ordered set S is strongly

Noetherian if and only if for every function f : B → S, where B ⊆ [N]2 is a barrier,

there exist b1, b2 ∈ B with b1 ⊳ b2 and f(b1) 6 f(b2). The search for a combi-
natorial condition on an ordered set S which ensures that

(

F(S),⊇
)

is not only
Noetherian, but strongly Noetherian, therefore led Nash-Williams [25] to introduce
the following concept (under the name of “better well-quasi-ordering”). Below, we
shall call a function f : B → S, whose domain B ⊆ [N]<ω is a barrier, an S-array.

(So in particular, every sequence x0, x1, . . . of elements of S can be considered as
an S-array.) We say that an S-array f : B → S is good if there are b1, b2 ∈ B such
that b1 ⊳ b2 and f(b1) 6 f(b2), bad if it is not good, and perfect if f(b1) 6 f(b2)
for all b1 ⊳ b2 in B.

Definition 5.1. An ordered set S is Nash-Williams if every S-array is good. A
quasi-ordered set S is Nash-Williams if S/∼ is a Nash-Williams ordered set.
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Clearly if S is Nash-Williams, then S is strongly Noetherian. Moreover:

Lemma 5.2. If S is well-ordered, then S is Nash-Williams.

Proof. Suppose f : B → S is an S-array. Let b1 ∈ B be such that f(b1) = min f(B).
By Lemma 1.5 there exists b2 ∈ B such that b1 ⊳ b2, and we have f(b1) 6 f(b2). �

As we did for strong Noetherianity, we will now successively show that each of
the constructions exhibited in the examples following Proposition 3.1 preserves the
Nash-Williams property as well.

Lemma 5.3. Let (S,6S) and (T,6T ) be ordered sets.

(1) If there exists an increasing surjection S → T and S is Nash-Williams,

then T is Nash-Williams.

(2) If there exists a quasi-embedding S → T and T is Nash-Williams, then S
is Nash-Williams.

Proof. Let ϕ : S → T . For part (1), suppose ϕ is increasing and surjective, and let
f : B → T be a T -array. Choose any function ψ : T → S such that ϕ ◦ ψ = idT .
Then ψ ◦ f : B → S is an S-array. Since S is Nash-Williams, there exist b1, b2 ∈ B
with b1 ⊳ b2 and ψ(f(b1)) 6S ψ(f(b2)), hence f(b1) 6S f(b2). For part (2), assume
that ϕ is a quasi-embedding, and let g : B → S be an S-array. Then ϕ ◦ g : B → T
is a T -array. Since T is Nash-Williams, there exist b1, b2 ∈ B with b1 ⊳ b2 and
ϕ(g(b1)) 6T ϕ(g(b2)), hence g(b1) 6S g(b2), since ϕ is a quasi-embedding. �

In particular, if (S,6) is a Nash-Williams ordered set, then so is any subset of
S with the induced ordering, and any ordering on S which extends the ordering 6

on S.

Lemma 5.4. Suppose that (S,6S), (T,6T ) and (U,6U ) are ordered sets such that

(S,6S), (T,6S) ⊆ (U,6U ). If S and T are Nash-Williams, then S ∪ T is also

Nash-Williams.

Proof. Let f : B → S ∪ T be a bad S ∪ T -array. Let BS := f−1(S) and BT :=
f−1(T ). Then there exists a barrier B′ ⊆ B such that B′ ⊆ BS or B′ ⊆ BT ,
by Corollary 1.3. So either f |B′ is a bad S-array, or f |B′ is a bad T -array, a
contradiction. �

By the previous lemma, every finite ordered set is Nash-Williams, and if (S,6S)
and (T,6T ) are Nash-Williams, then S ∐ T is Nash-Williams.

The following fact distinguishes Nash-Williams orderings among (strongly) Noe-
therian orderings.

Proposition 5.5. Suppose that the ordered set S is Nash-Williams. Then the

ordered sets
(

F(S),⊇
)

and
(

I(S),⊆
)

are Nash-Williams.

Proof. Let f : B → I(S) be a bad I(S)-array. The set B(2) defined in Proposi-
tion 1.4 is a barrier. We construct a bad S-array g : B(2) → S as follows: For every
b ∈ B(2), we have f(b(1)) 6⊆ f(b(2)); so we can choose g(b) ∈ f(b(1)) \ f(b(2)).
Now suppose c ∈ B(2) with b ⊳ c. Then c(1) = b(2) (by Corollary 1.6, (1)), hence
g(b) 66 g(c). Therefore, g is bad. This shows that I(S) is Nash-Williams. Suppose
h : C → F(S) is an F(S)-array. We then consider the I(S)-array h′ : C → I(S)
defined by h′(c) = S \ h(c), for all c ∈ C. Since I(S) is Nash-Williams, we find
c1 ⊳ c2 in C with h′(c1) ⊆ h′(c2), and hence h(c1) ⊇ h(c2). Thus h is good, and
F(S) is Nash-Williams. �
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For the definition of the quasi-ordering 6P(S) in the statement of the next corol-
lary, see (2.1).

Corollary 5.6. If S is a Nash-Williams quasi-ordered set, then the quasi-ordered

set
(

P(S),6P(S)

)

is Nash-Williams.

Proof. The canonical increasing surjection ϕ : S → S/∼ induces an isomorphism

ϕ∗ : F(S/∼) → F(S)

of ordered sets. By Proposition 5.5, F(S/∼), and hence F(S), is Nash-Williams.
Since P(S)/∼ ∼= F(S), it follows that P(S) is Nash-Williams. �

Next, we want to show that the cartesian product of any two Nash-Williams or-
dered sets is again Nash-Williams. The proof is similar to the one of Proposition 4.2
and uses the following lemma. Here, an S-subarray of an S-array f : B → S is an
S-array g : C → S where C ⊆ B, g = f |C.

Lemma 5.7. Let (S,6) be an ordered set. Every S-array contains either a bad

S-subarray or a perfect S-subarray.

Proof. Let f : B → S be an S-array. Consider the partition B(2) = P ∪ Q of the
barrier B(2) from Proposition 1.4, where

P =
{

b ∈ B(2) : f
(

b(1)
)

6 f
(

b(2)
)}

, Q = B(2) \ P.

By Corollary 1.3, there is a barrier C ⊆ B(2) such that C ⊆ P or C ⊆ Q. The
set C∗ defined in Corollary 1.6, (2) is a barrier, and f |C∗ is either perfect or bad,
depending on whether C ⊆ P or C ⊆ Q. �

Proposition 5.8. If (S,6S) and (T,6T ) are Nash-Williams ordered sets, then

S × T is Nash-Williams. ([25], Corollary 22A.)

Proof. Let f : B → S × T be an S × T -array; we want to show that f is good. By
the previous lemma, and since S is Nash-Williams, the S-array fS = πS ◦ f has a
perfect S-subarray B′ → S. Restricting f to the barrier B′, if necessary, we may
assume that fS : B → S is perfect. Since T is Nash-Williams, there exist b1, b2 ∈ B
with b1 ⊳ b2 and fT (b1) 6T fT (b2), whence f(b1) 6 f(b2). So f is good. �

It follows that Nn is Nash-Williams, for any n > 0. Defining inductively

F0(N
n) := Nn, Fk+1(N

n) := F
(

Fk(Nn)
)

for all k ∈ N,

we get, by Proposition 5.5:

Theorem 5.9. Each of the sets

F1(N
n) = F(Nn), F2(N

n) = F
(

F1(N
n)
)

, . . . ,

ordered by reverse inclusion, is Noetherian. �

Remark. Theorem 5.9 above implies that every subset of F(Nn) is strongly Noe-
therian, and hence yields the theorem in the introduction.



16 MATTHIAS ASCHENBRENNER AND RAYMOND HEMMECKE

A key example. Consider the ordering ⊑ on the set Zn of n-tuples of integers
defined as follows: if a = (a1, . . . , an) and b = (b1, . . . , bn) are elements of Zn, we
put a ⊑ b if ajbj > 0 and |aj | 6 |bj | for all j = 1, . . . , n. That is, a ⊑ b if and only if
a belongs to the same orthant of Rn as b, and each of its components is not greater
in absolute value than the corresponding component of b. Note that ⊑ extends the
product ordering on Nn ⊆ Zn. Moreover, we have 0 ⊑ a for all a ∈ Zn, and if
a ⊑ b, then −a ⊑ −b, for all a, b ∈ Zn. The ordered set (Zn,⊑) can be identified
in a natural way with the n-fold cartesian product of (Z,⊑) with itself. We have
(Z60,>) ⊆ (Z,⊑) and (Z>0,6) ⊆ (Z,⊑), where Z60 (Z>0) denotes the set of non-
positive integers (non-negative integers, respectively). This somewhat roundabout
way of describing (Zn,⊑), together with Lemma 5.4 and Proposition 5.8, shows:

Corollary 5.10. For each n > 0, the ordered set (Zn,⊑) is Nash-Williams (in
particular, Noetherian). �

As above, this corollary implies that each set

F(Zn,⊑), F
(

F(Zn,⊑)
)

, . . . ,

ordered by reverse inclusion, is Noetherian. Here is a slight reformulation of this fact
which will be used in Part 2. Let ⊑0 denote the ordering ⊑ on P0(Z

n) := Zn, and
inductively define Pk+1(Z

n) := P
(

Pk(Zn)
)

and a quasi-ordering ⊑k+1 of Pk+1(Z
n)

as follows: for X,Y ∈ Pk+1(Z
n) put

(5.1) X ⊑k+1 Y ⇐⇒ for each y ∈ Y there is some x ∈ X with x ⊑k y.

(That is, ⊑k+1 = 6P(Pk(Zn),⊑k) for all k, in the notation of (2.1).) By induction
on k, Corollary 5.6 implies:

Corollary 5.11. The quasi-ordered set
(

Pk(Zn),⊑k

)

is Noetherian, for each k ∈ N

and n > 0. �

6. Applications to Hilbert Functions

As an illustration, let us show how Nash-Williams’ theory as outlined above can
be employed to deduce some finiteness properties for Hilbert functions. We work
in a rather general setting. Let (S,6) be a non-empty ordered set and δ : S → A a
map, where A is any set. We think of δ as providing a grading of S by A, and we
call δ(s) ∈ A the degree of s ∈ S. We call a final segment F of S admissible if
for any degree a ∈ A, there are only finitely many x /∈ F with δ(x) = a. If the map
δ has finite fibers, then every final segment of S is admissible. (This is the case,
for example, if S is Noetherian and δ : S → A is a strictly increasing map into an
ordered set A, see Example (1) following Proposition 3.1.)

We extend the ordering of N to a total ordering of the set N∞ = N ∪ {∞} by
declaring n < ∞ for all n ∈ N. For a final segment F of S and a degree a ∈ A,
we let hF (a) be the number of elements of S of degree a which are not in F (an
element of N∞). We shall call hF : A → N∞ the Hilbert function of F ∈ F(S).
(So F is admissible precisely if hF (a) ∈ N for all a.)

Example. Suppose S = Nn, n > 0, and δ : S → N is given by δ(ν) = ν1 + · · · + νn

for all ν = (ν1, . . . , νn) ∈ Nn. Let K be a field, and identify monomial ideals in the
polynomial ring K[X ] = K[X1, . . . , Xn] with final segments of Nn as usual. Given
a monomial ideal I in K[X ], make R = K[X ]/I into a graded K-algebra, grading



FINITENESS THEOREMS IN STOCHASTIC INTEGER PROGRAMMING 17

by degree; then hI(a) = dimK Ra for each a ∈ N, where Ra is the degree a part of
R, so in this case hI as defined above is the usual Hilbert function of I.

Growth of Hilbert functions. First we show that the growth of Hilbert functions
is finitely determined in the following sense. We fix an ordered set S and a grading
δ of S by A as above.

Proposition 6.1. Suppose S is strongly Noetherian, that is, F(S) is Noetherian,

and let h : A→ N∞ be any function. There exist finite sets M>h, M 66h and M�h

of final segments of S such that for every final segment F of S, we have

hF (a) > h(a) for all a ⇐⇒ F ⊆ E for some E ∈ M>h,

hF (a) > h(a) for some a ⇐⇒ F ⊆ E for some E ∈ M 66h,

and

hF (a) > h(a) for all but finitely many a ⇐⇒ F ⊆ E for some E ∈ M�h.

Proof. For a ∈ A, consider the subsets

Fa :=
{

F ∈ F(S) : hF (a) > h(a)
}

, F ′
a :=

{

F ∈ F(S) : hF (a) > h(a)
}

of F(S). Since for all E,F ∈ F(S),

E ⊇ F ⇒ hE(a) 6 hF (a) for all a ∈ A,

Fa and F ′
a are final segments of the Noetherian ordered set

(

F(S),⊇
)

. Hence there
exist finite sets of generators M>h, M 66h and M�h for the final segments

⋂

a

Fa,
⋃

a

F ′
a,

⋃

D⊆A
finite

⋂

a/∈D

Fa

of F(S), respectively. These sets have the required properties. �

The previous proposition applies to S = Nn, by Corollary 4.3.

A proposition of Haiman and Sturmfels. Next we show how a combinatorial
statement due to Haiman and Sturmfels ([8], Proposition 3.2) can be obtained
using the techniques above. This statement is crucial in the construction of the
multigraded Hilbert scheme given in [8]. If S is strongly Noetherian, then, given
any function h : A → N∞, there are only finitely many admissible final segments
with Hilbert function h. Moreover:

Lemma 6.2. Suppose S is strongly Noetherian. Then, for any function h : A →
N∞, there exists a finite set D ⊆ A such that every F ∈ F(S) satisfies: if hF (a) 6

h(a) for all a ∈ D, then hF (a) 6 h(a) for all a ∈ A.

Proof. Let h : A→ N∞, and let M 66h = {F1, . . . , Fm} be as in Proposition 6.1. For
each i there exists ai ∈ A such that hFi

(ai) > h(ai). Let D = {a1, . . . , am}, a finite
set of degrees. Now suppose F ∈ F(S) satisfies hF |D 6 h|D. Then hF (a) 6 h(a)
for all a: Otherwise, F ⊆ Fi for some i, so hF (a) > hFi

(a) for all a ∈ A; but
hFi

(ai) > h(ai) > hF (ai): a contradiction. �

Remark. In an analogous way, one shows: there exists a finite set D ⊆ A such
that for every F ∈ F(S), if hF (a) < h(a) for all a ∈ D, then hF (a) < h(a) for all
a ∈ A. In particular, there exists a finite set Da ⊆ A such that for any F ∈ F(S),
if hF (a) <∞ for all a ∈ Da, then F is admissible.
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Note that the inequality hF (a) > h(a) is clearly not determined by finitely many
degrees a. (Consider S = N equipped with the grading δ(m) = m, and h(a) = 1
for all a.) However, we do have the following lemma. Given a subset D of A, we
say that a final segment F of S is generated in degrees D if F is generated by
F ∩ δ−1(D). Recall that for a subset X of S we denote by [X ] the initial segment
of S generated by X .

Lemma 6.3. Suppose that S is strongly Noetherian. For every function h : A→ N,

there exists a finite set D ⊆ A such that

(1) every final segment of S with Hilbert function h is generated in degrees D;

(2) for every final segment F of S generated in degrees D: if hF (a) = h(a) for

all a ∈ D, then hF (a) = h(a) for all a ∈ A.

Proof. Given a subset D of A, denote by FD the set of all final segments of S which
are generated in degrees D and whose Hilbert function agrees with h on D. Then
FD is an antichain in F(S), hence finite. If D′ ⊆ D, then [FD′ ] ⊇ [FD]: if F ∈ FD,
then the final segment F ′ generated by the elements of F with degrees in D′ is in
FD′ , and F ′ ⊆ F . By induction on i, we now construct an increasing sequence
D0, D1, . . . of finite subsets of A as follows: Let F = FA = {F : hF = h}, and let
D0 be a finite set of degrees such that every F ∈ F is generated in D0. Suppose
that we have already constructed Di. If FDi

= F , then we are done: D = Di

works. Otherwise, for every F ∈ FDi
\ F we find a ∈ A such that hF (a) 6= h(a).

Adjoining finitely many such a to Di we obtain a finite set Di+1 ⊇ Di of degrees
such that every F ∈ FDi

with hF |Di+1 = h|Di+1 is in F . By Proposition 3.1, this
construction has to terminate: since [FDi+1 ] ⊆ [FDi

] for all i, we get FDi+1 = FDi

for some i, hence FDi+1 = F . �

Restricting to the special case S = Nn, n > 0, we obtain [8], Proposition 3.2:

Corollary 6.4. Given any function h : A→ N, there exists a finite set D ⊆ A such

that

(1) every monomial ideal with Hilbert function h is generated by monomials of

degree belonging to D, and

(2) if I is a monomial ideal such that hI(a) = h(a) for all a ∈ D, then hI(a) =
h(a) for all a ∈ A. �

Noetherianity of the set of Hilbert functions. Let X = {X1, X2, . . . } be a
countably infinite set of indeterminates. For n > 1 we write X〈n〉 = {X1, . . . , Xn}⋄,
a subset of X⋄. We identify the set X〈n〉, ordered by divisibility 6, with the set
Nn, ordered by the product ordering, in the usual way (see Section 2). In our
last application, we will be concerned with the grading of X〈n〉 by A = N given
by δ(Xν) = ν1 + · · · + νn for ν = (ν1, . . . , νn) ∈ Nn. (This corresponds to the
usual grading of monomials in a polynomial ring.) For n > 1 let Hn be the set
of all functions h : N → N which arise as a Hilbert function h = hF for some
F ∈ F(X〈n〉,6), and put H :=

⋃

n>1 Hn. We consider H as an ordered set via the

product ordering: h 6 h′ if and only if h(a) 6 h′(a) for all a ∈ N. We then have:

Proposition 6.5. H is Nash-Williams.

This proposition generalizes Corollary 3.4 in [1]:

Corollary 6.6. Hn is Noetherian, for every n > 1. �
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The applications above (e.g., Proposition 6.1) just needed Maclagan’s finiteness
principle, i.e., Nn is strongly Noetherian. Proposition 6.5 is a consequence of a
deeper result of Nash-Williams’ theory, of which we only state the special case
needed here.

Theorem 6.7. (Nash-Williams, [26]) If (S,6) is a Nash-Williams ordered set, then

the ordered set (S⋄,6⋄) is Nash-Williams.

We totally order X by � so that X1 ≺ X2 ≺ · · · . By the previous theorem, the
ordered set

(

F(X⋄,�⋄),⊇
)

is Noetherian. We denote the restriction of the ordering

�⋄ on X⋄ to X〈n〉 also by �⋄. We have

F
(

X〈n〉,�⋄
)

⊆ F
(

X〈n〉,6
)

.

The monomial ideals F ∈ F
(

X〈n〉,�⋄
)

are commonly called strongly stable. It is
a well-known consequence of a theorem of Galligo (see, e.g., [4], Section 15.9) that
given a final segment F of

(

X〈n〉,6
)

there exists a strongly stable final segment of
(

X〈n〉,6
)

with the same Hilbert function hF . If F ∈ F
(

X〈n〉,6
)

and F ′ denotes

the final segment of (X〈n+1〉,6) generated by F , then hF 6 hF ′ , since hF ′(m) =
∑m

i=0 hF (i) for all m. We can now prove Proposition 6.5:

Proof (Proposition 6.5). Let f : B → H be an H-array, say f(b) = hFb
with Fb ∈

F
(

X〈nb〉,6
)

, nb > 1 for all b. We need to find b ⊳ c such that hFb
6 hFc

. After
passing to a subarray of f if necessary, we may assume that nb 6 nc for all b ⊳ c
in B. (By Lemma 5.7.) By the remarks above, we may further assume that each
Fb is strongly stable, that is, Fb ∈ F

(

X〈nb〉,�⋄
)

for all b. By Theorem 6.7, there

exist b ⊳ c such that (Fb) ⊇ (Fc) in F
(

X⋄,�⋄
)

, where (Fb) and (Fc) denote
the final segments of (X⋄,�⋄) generated by Fb and Fc, respectively. Now F ′

b :=

(Fb)∩X〈nc〉 is the final segment of (X〈nc〉,�⋄) generated by Fb. We have F ′
b ⊇ Fc,

in F
(

X〈nc〉,�⋄
)

, hence hFb
6 hF ′

b
6 hFc

as required. �

Part 2. Multi-stage Stochastic Integer Programming

7. Preliminaries: Test Sets

For a given matrix A ∈ Zl×d, where d, l ∈ N, d, l > 0, consider the family of
optimization problems

(IPb,c) min
{

c⊺z : Az = b, z ∈ Nd
}

as b ∈ Rl and c ∈ Rd vary. We call A the coefficient matrix of this family (or
of a particular instance of it). One way to solve such a problem for given c and
b is to start with a feasible solution z (i.e., a vector z ∈ Nd such that Az = b)
and to replace it by another feasible solution z − v with smaller objective value
c⊺(z − v) ∈ R, as long as we find such a vector v ∈ Zd that improves the current
feasible solution z. Such a vector v is called an improving vector for z. If the
problem instance (IPb,c) is solvable, this augmentation process has to stop (with
an optimal solution). Note that for given b and c and any feasible solution z of
(IPb,c), a vector v ∈ Zd is an improving vector for z if and only if the following
three conditions are satisfied:

(1) Av = 0,
(2) v 6 z (in the product ordering on Zd), and
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(3) c⊺v > 0.

The key step in this scheme is to find such an improving vector v. Test sets provide
such vectors: a subset of Zd is called a universal test set for the above problem
family if it contains, for any given choice of c ∈ Rd and b ∈ Rl, an improving vector
for any non-optimal feasible solution z to the given specific problem. Clearly, if
we have a finite universal test set, we can easily find an improving vector in the
augmentation procedure.

The notion of a universal test set was introduced by Graver [7] in 1975. He also
gave a simple construction of a finite universal test set. The Graver basis G(A)
associated to A consists of all ⊑-minimal non-zero integer solutions to Az = 0. Here
⊑ is the ordering of Zd defined in Section 2. (Note that 0 is the only ⊑-minimal
solution to Az = 0.) As we have seen above, G(A) is always finite by Corollary
5.10. Moreover, G(A) is symmetric: if v ∈ G(A) then also −v ∈ G(A). Graver
showed that G(A) is indeed a universal test set for the above problem family. This
leads to the following algorithm to compute, uniform in b and c, an optimal solution
to (IPb,c) from a feasible one:

Algorithm 7.1. (Augmentation algorithm)

Input: a feasible solution z to (IPb,c) and a finite set G ⊆ Zd containing G(A).

Output: an optimal solution to (IPb,c).

while there is some v ∈ G such that c⊺v > 0 and v 6 z do

z := z − v
return z

How does one find some feasible solution to (IPb,c) to begin with? Universal test
sets can also be employed to find an initial feasible solution by a construction similar
to Phase I in the simplex method for linear optimization.

Notations. For a ∈ Z we put

a+ := max{a, 0} ∈ N, a− := max{−a, 0} ∈ N,

and for z = (z1, . . . , zd) ∈ Zd, we put

z+ := (z+
1 , . . . , z

+
d ) ∈ Nd, z− := (z−1 , . . . , z

−
d ) ∈ Nd,

so z = z+ − z−. We also let c(z) denote the vector in Zd whose i-th component is
−1 if zi > 0 and 0 otherwise.

Slightly modifying Algorithm 7.1 yields the following algorithm (for whose ter-
mination and correctness see [9, 10]):

Algorithm 7.2. (Finding a feasible solution)

Input: a solution z ∈ Zd to (IPb,c) and a finite set G ⊆ Zd containing G(A).

Output: a feasible solution to (IPb,c), or “FAIL” if no such solution exists.

while there is some v ∈ G such that c(z)⊺v > 0 and v 6 z+ do

z := z − v
if z > 0 then return z else return “FAIL”

Graver proved finiteness of G(A); however, he did not give an algorithm to compute
G(A) from A. The following simple completion procedure, due to Pottier [27], solves
this problem. We write ker(A) := {z ∈ Zd : Az = 0} (a Z-submodule of Zd).
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Algorithm 7.3. (Completion procedure)

Input: a finite symmetric generating set for the Z-module ker(A).

Output: a finite subset G of Zd containing G(A).

G := F \ {0}
C := {f + g : f, g ∈ G}
while C 6= ∅ do

s := an element in C
C := C \ {s}
f := normalForm(s,G)
if f 6= 0 then

C := C ∪ {f + g : g ∈ G}
G := G ∪ {f}

return G.

Behind the function normalForm(s,G) there is the following algorithm, which upon
input of a finite set G = {g1, . . . , gn} of non-zero vectors in Zd, returns a vector f
with the property that s has a representation as a finite sum

(7.1) s = f +
∑

i

aigi with ai ∈ N, gi ∈ G, aigi ⊑ s and gi 6⊑ f for all i.

The vector f is called a normal form of s with respect to the set G. The algorithm
proceeds by successively reducing s by elements of G:

Algorithm 7.4. (Normal form algorithm)

Input: a vector s ∈ Zd, a finite set G of non-zero vectors in Zd.

Output: a normal form f of s with respect to G.

while there is some g ∈ G such that g ⊑ s do

s := s− g
return f := s

As ‖s − g‖1 < ‖s‖1 for 0 6= g ⊑ s in Zd, the algorithm always terminates. Here
‖s‖1 = |s1| + · · · + |sd| for s = (s1, . . . , sd) ∈ Zd.

In the subsequent sections we will generalize the main ingredients of this com-
pletion procedure. The objects in our algorithm, however, will turn out to be more
complicated structures than mere vectors. We finish this section with a useful fact
needed in the next section. Given matrices A and B with the same number of rows
we denote by (A|B) the matrix obtained by joining A and B horizontally (placing
B to the right of A).

Lemma 7.5. Let d, e, l > 0 be integers, A ∈ Zl×d, b ∈ Zl, y ∈ Zd. Then (y, 1) ∈
G(A|b) if and only if (y, 1) ∈ ker(A|b), and the only z ∈ Zd with (z, 1) ∈ ker(A|b)
and (z, 1) ⊑ (y, 1) is z = y.

Proof. The “only if” direction being clear, suppose (y, 1) ∈ ker(A|b) and (y, 1) /∈
G(A|b); we need to show that there is z ∈ Zd \ {y} with (z, 1) ∈ ker(A|b) and
(z, 1) ⊑ (y, 1). Now there are u ∈ Zd and a ∈ Z such that 0 6= (u, a) ∈ ker(A|b),
(u, a) ⊑ (y, 1), and (u, a) 6= (y, 1). If a = 1, then z := u does the job; otherwise
a = 0, and then z := y − u has the required properties. �
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8. Building Blocks

In this section we study multistage stochastic integer programs. We begin by de-
scribing the basic setup, and then use results from the previous sections (in par-
ticular Corollary 5.11) to show that the Graver basis elements of the coefficient
matrices of stochastic integer programs of this type can be constructed from only
finitely many “building blocks,” as the number N > 1 of scenarios varies.

Basic setup. In the following we fix integers k > 0 and l > 1. Let T0, T1, . . . , Tk

be a sequence of integer matrices with each Ts having l rows and ns columns, where
ns ∈ N, ns > 1 for s = 0, . . . , k. We set A0,N := (T0), and we recursively define

As,N :=











Ts,N As−1,N 0 · · · 0
Ts,N 0 As−1,N · · · 0

...
...

...
. . .

...
Ts,N 0 0 · · · As−1,N











for s = 1, . . . , k,

where As,N contains N copies of Ts,N , and Ts,N =

(

Ts

...
Ts

)

consists of Ns−1 many

copies of the matrix Ts.

Example. For k = 2 and N = 2 we have A0,2 = (T0), A1,2 =
(

T1 T0

T1 T0

)

and

A2,2 =

(

T2 T1 T0

T2 T1 T0

T2 T1 T0

T2 T1 T0

)

.

As discussed in the introduction, matrices having the form of Ak,N arise as the
coefficient matrices of (k + 1)-stage stochastic integer programs, like (0.1).

Remarks. Note that we assume here that the scenario tree of our stochastic opti-
mization problem splits into exactly N subtrees at every stage. This simplifying
condition can easily be achieved by introducing additional scenarios with vanishing
conditional probabilities. Also note that the coefficient matrix A1,N for a two-stage
stochastic integer program with N scenarios differs somewhat from the general form
of a coefficient matrix given in the introduction: in the description of a two-stage
stochastic program (0.1), we read the constraints Ax = a as Ax + 0yi = a, and in
doing so, we may rewrite the problem matrix as







T ′ W ′

...
. . .

T ′ W ′







with T ′ = ( A
T ) and W ′ = ( 0

W ). Thus, we can safely avoid stating the constraints
Ax = a explicitly. The same holds true in the multi-stage situation, as we can
apply a similar reformulation of the problem.

For s = 0, . . . , k, the matrix As,N has Ns · l rows and

ds,N = ns +Nds−1,N = ns +Nns−1 +N2ds−2,N = · · · =

s
∑

i=0

Ns−ini
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columns. In particular, the full (k + 1)-stage problem matrix Ak,N has

dk,N =
k
∑

i=0

Nk−ini

columns, which corresponds to the number of variables of the corresponding sto-
chastic integer problem. In the following h and s range over the set {0, . . . , k}. We
also put

n(h) := n0 + · · · + nh (= dh,1).

Building blocks. Let N > 1 and [1, N ] := {1, 2, . . . , N}. For every s we fix an
enumeration of the set [1, N ]s of sequences of elements from [1, N ] of length s, say
in lexicographic order. By convention [1, N ]0 = {ε} where ε = ( ) denotes the
empty sequence. We partition the components of every vector z ∈ Zdh,N as follows:

(8.1) z = (z0, . . . , zh), where zs =
(

zα : α ∈ [1, N ]s
)

, zα ∈ Znh−s ,

with α ∈ [1, N ]s indexed according to the enumeration of [1, N ]s. For α ∈ [1, N ]s

we call zα a building block of height s of z.

Example. Suppose k = 2 and N = 2, and enumerate {1, 2}s lexicographically. Then
z ∈ Zd2,2 decomposes as z = (z0, z1, z2) where

z0 = (zε) ∈ Zn2 ,

z1 = (z(1), z(2)) ∈ Z2n1 ,

z2 = (z(1,1), z(1,2), z(2,1), z(2,2)) ∈ Z4n0 .

We have z ∈ ker(Ah,N ) if and only if for all α = (α1, . . . , αh) ∈ [1, N ]h

Thzα|0 + Th−1zα|1 + · · · + T0zα|h =

h
∑

i=0

Tizα|h−i = 0,

where α|i := (α1, . . . , αi) for i = 0, . . . , h, and we think of zα as a column vector.
(Here again Z0 = {ε}, so α|0 = ε for all α ∈ Zh.) This relation can also be written
as

Ah,1











zα|0

zα|1

...
zα|h











= 0.

Vector-trees. It is useful to visualize a vector z ∈ Zdh,N as a (directed, labeled,
unordered) tree of height h whose nodes are labeled by its building blocks zα, and
there is an edge from the node labeled by zα to the node labeled by zβ exactly if α
is an initial segment of β, that is, α = β|s for some s = 0, . . . , h. (See Figure 1.) We
call this tree the vector-tree T (z) associated to z. Such a vector-tree associated
to an element of Zdh,N is a full N -ary tree (i.e., every internal node has exactly N
children). In the following we will consider trees of a similar structure which may
split into possibly infinitely many sub-trees at each stage:

Definition 8.1. A vector-tree of height h is a (non-empty, countable, directed,
labeled) tree which is balanced of height h (i.e., every path from the root to a
leaf has the same length h) and whose nodes of height s are labeled by integer
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vectors in Znh−s , for s = 0, . . . , h. (Sometimes we also call the labels of a vector-
tree its building blocks.) We denote the label of the root of a vector-tree T by
root(T ) ∈ Znh .

z z z z z z

z

(3)z zz (2)(1)

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)zz z

ε

Figure 1: Representing multi-stage solutions as trees

We have an obvious notion of isomorphism of vector-trees (as an isomorphism
of directed graphs which preserves the labeling). In the following we identify iso-
morphic vector-trees; this permits us to speak of “the set of all vector-trees”. For
every full N -ary vector-tree T of height h there exists an element z of Zdh,N whose
associated vector-tree is T ; we have root

(

T (z)
)

= zε.

Definition 8.2. If S and T are vector-trees (of possibly different heights), we say
that S is a sub-vector-tree of T if

(1) S is a labeled subtree of T , that is, the underlying graph of S is a subgraph
of the underlying graph of T , and the labeling of the nodes of S agrees with
their corresponding labeling in T ;

(2) S is closed downwards in T , that is, if there is a path in T from the root
of S to a node a in T , then a is a node of S.

If S is a sub-vector-tree of T where S has height h− 1 and T has height h, then S
is called an immediate sub-vector-tree of T .

Example. In Figure 1, the labeled subtree consisting of the nodes labeled by z(1),
z(1,1), z(1,2), z(1,3) is a sub-vector-tree of the vector-tree associated to z, whereas
the labeled subtree consisting of the nodes labeled by zε, z(1), z(1,1), z(1,2) is not.

Paths in vector-trees. Every path in a vector-tree T of height h from its root
to one of it leaves is called a maximal path. Every maximal path in a vector tree
of height h has length h. If v0, v1, . . . , vh with vi ∈ Znh−i for i = 0, . . . , h are the
successive labels of the nodes on a path P in T , then we also say that P is labeled

by (v0, . . . , vh), and we call (v0, . . . , vh) ∈ Zn(h) the label of P . We write paths(T )
for the set of labels of maximal paths in T .
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Definition 8.3. We say that a vector-tree T of height h has value b ∈ Zl if for
every (v0, v1, . . . , vh) ∈ paths(T ) we have

Thv0 + Th−1v1 + · · · + T0vh = b.

(Here we think of each vi as a column vector in Znh−i .)

Note that if T is a vector-tree of height h > 0 and value b, then each immediate
sub-vector-tree of T has value b−Th root(T ). An element z of Zdh,N lies in ker(Ah,N )
if and only if T (z) has value 0.

Definition 8.4. Let T be a vector-tree of height h and N a positive integer. A
vector z ∈ Zdh,N with the property that paths

(

T (z)
)

⊆ paths(T ) is said to be

constructible from T . We denote by 〈T 〉N the set of vectors in Zdh,N which are
constructible from T .

Remarks. We have 〈T 〉1 = paths(T ). If T has value b, then for every z ∈ 〈T 〉N ,
the vector-tree T (z) has value b.

We say that a vector-tree T is tight if the labels of the children of internal nodes
of T are pairwise distinct. For example, the vector-tree

0

��	 @@R
0 2

is tight, whereas
0

��	 ?
@@R

0 0 2

is not. The following is easy to show:

Lemma 8.5. Let S be a non-empty subset of Zn(h) with zε = r for all z ∈ S.

There exists a unique tight vector-tree T (S) of height h (up to isomorphism) with

S = paths
(

T (S)
)

.

In particular, for every vector-tree S of height h there exists a unique tight vector-
tree T of the same height with paths(T ) = paths(S), namely T = T

(

paths(S)
)

.
Note also that in the context of the previous lemma, if S ⊆ ker(Ah,1), then T (S)
has value 0.

Reducibility of vector-trees. Next, we define a “reducibility relation” between
vector-trees of the same height. This relation bears a formal resemblance to Milner’s
“simulation quasi-ordering” for transition systems [23].

Definition 8.6. Let S and T be vector-trees of height h.

(1) For h = 0 we let S ⊑0 T if root(S) ⊑ root(T ) (in Zn0).
(2) For h > 0 we let S ⊑h T if root(S) ⊑ root(T ) (in Znh) and for every

immediate sub-vector-tree T ′ of T there is an immediate sub-vector-tree S′

of S such that S′ ⊑h−1 T ′.

There is an obvious algorithm to decide, given finite vector-trees S and T of
height h, whether S ⊑h T . Clearly ⊑h is a quasi-ordering on the set of vector-trees
of height h.
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Example. Consider the vector trees

S1 =

(0, 0)

��	 @@R
(0, 0) (1, 0)

? ?
(1, 0) (0, 0)

S2 =

(0, 0)

��	 @@R
(0, 0) (1, 0)

? ?
(1, 0) (1, 0)

and

T =

(0, 0)

��	 @@R
(1, 1) (0, 1)

?
(0, 0)

Then S1 ⊑2 T and S2 6⊑2 T .

In the proof of the next lemma we relate ⊑h with the quasi-ordering ⊑h on
Ph(Zn(h)) defined after Theorem 5.9; we freely use the notations introduced there.

Lemma 8.7. The quasi-ordering ⊑h on the set of vector-trees of height h is Noe-

therian.

Proof. First we put

P∗
0 (Zn) := Zn, P∗

h(Zn) := P
(

P∗
h−1(Z

n)
)

\ {∅} for h > 0.

So P∗
h(Zn) is a subset of Ph(Zn), for each h and n > 0. By induction on h = 0, . . . , k

we now define for all m,n ∈ N, m,n > 0, an operation

(v,X) 7→ v ∗h X : Zm × P∗
h(Zn) → P∗

h(Zm+n)

as follows. For h = 0 we have P∗
h(Zn) = Zn; we let v ∗0 w ∈ Zm+n be the

concatenation of v ∈ Zm and w ∈ Zn. For h > 0 we let

v ∗k X :=
{

v ∗h−1 X
′ : X ′ ∈ X

}

for all v ∈ Zm, X ∈ P∗
h(Zn).

Note that for v, w ∈ Zm and X,Y ∈ P∗
h(Zn) we have: if v ∗h X ⊑h w ∗h Y in

Ph

(

Zm+n
)

, then v ⊑ w and X ⊑h Y (in Ph(Zn)).
Next, we define a map ϕh which associates to every vector-tree S of height h an

element ϕh(S) of P∗
h(Zn(h)) as follows: For h = 0 put ϕ0(S) := root(S) ∈ Zn0 . For

h > 0 let

ϕh(S) :=
{

root(S) ∗h ϕh−1(S
′) : S′ sub-vector-tree of S of height h− 1

}

.

By induction on h it is easy to verify that ϕh is a quasi-embedding of the set of
vector-trees of height h, quasi-ordered by ⊑h as defined above, into P∗

h

(

Zn(h)
)

,

quasi-ordered by the restriction of the quasi-ordering ⊑h of Ph

(

Zn(h)
)

defined after
Theorem 5.9. The lemma now follows from Corollary 5.11. �

Corollary 8.8. There is no infinite sequence T1, T2, . . . of vector-trees of height h
with Ti 6⊑h Tj whenever i < j. �

Given vector-trees S and T of height h and an integer N > 1 we write S ⊑h,N T
if for every z ∈ 〈T 〉N there exists y ∈ 〈S〉N such that y ⊑ z (in Zdh,N ). We put
S ⊑h,∞ T if S ⊑h,N T for all N > 1.
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Lemma 8.9. If S ⊑h T , then S ⊑h,∞ T .

Proof. Suppose that S ⊑h T , and let N > 1. By induction on h = 0, . . . , k we
show that given z ∈ 〈T 〉N we can construct a vector y ∈ 〈S〉N such that y ⊑ z.
Suppose first that h = 0. Then z = root(T ), and root(S) ⊑ root(T ). Hence for y
we may take y = root(S). Now assume that h > 0, and let z1, . . . , zN ∈ Zdh−1,N

such that T (z1), . . . , T (zN) are the immediate sub-vector-trees of T (z). Then for
each i = 1, . . . , N there is an immediate sub-vector-tree Ti of T with zi ∈ 〈Ti〉N .
Since S ⊑h T we have root(S) ⊑ root(T ), and for every i there exists a sub-vector-
tree Si of S of height h − 1 with Si ⊑h−1 Ti. By induction hypothesis there exist
y1, . . . , yN ∈ 〈Si〉N such that yi ⊑ zi in Zdh−1,N . Then y ⊑ z for a suitable y ∈ Zdh,N

whose vector-tree T (y) has immediate sub-vector-trees T (y1), . . . , T (yN ) and root
labeled by root(S). �

Lemmas 8.7 and 8.9 imply:

Corollary 8.10. For every h, the quasi-ordering ⊑h,∞ on the set of vector-trees

of height h is Noetherian. �

Building blocks of Graver bases. Recall that G(Ak,N ) denotes the Graver basis
of the matrix Ak,N (a finite subset of Zdk,N ). We decompose each vector z ∈
G(Ak,N ) into its building blocks zα as described in (8.1) and put

Hs
k,N :=

{

zα : z ∈ G(Ak,N ), α ∈ [1, N ]s
}

⊆ Znk−s for s = 0, . . . , k.

We form the union Hs
k,∞ :=

⋃∞
N=1 H

s
k,N and define

Hk,∞ :=
k
⋃

s=0

Hs
k,∞ (disjoint union),

the set of building blocks of Graver bases of the matrices Ak,N obtained by varying
N over the set of positive integers. For k = 0 we have H0,∞ = G(T0) and thus,
H0,∞ is finite. Finiteness of H1,∞ was shown in [12]. In what follows, we prove:

Proposition 8.11. The set Hk,∞ is finite for every k.

Before we give the proof of this proposition, we first combine the elements of
Hk,∞ into (a priori possibly infinite) vector-trees: Given r ∈ H0

k,∞, we put T (r) :=

T
(

S(r)
)

where

S(r) :=
⋃

{

paths
(

T (z)
)

: z ∈ G(Ak,N ) for some N > 1, zε = r
}

⊆ Zn(k).

The vector-tree T (r) of height k has root r and value 0. For any r ∈ H0
k,∞ and

any N > 1 the set 〈T (r)〉N contains every vector z ∈ G(Ak,N ) with zε = r. In
particular G(Ak,N ) ∩ 〈T (r)〉N 6= ∅ for some N > 1. This yields:

Lemma 8.12. The vector-trees T (r), where r ranges over all non-zero elements of

H0
k,∞, form a ⊑k,∞-antichain.

Proof. For a contradiction suppose that T (r′) ⊑k,∞ T (r) for some non-zero r′ 6= r
in H0

k,∞. So for every N > 1 and every z ∈ 〈T (r)〉N there exists a vector y ∈

〈T (r′)〉N such that y ⊑ z. Note that yε = root
(

T (r′)
)

6= root
(

T (r)
)

= zε, hence
y, z 6= 0 and y 6= z. Therefore, none of the vectors constructible from T (r) is
an element of a Graver basis G(Ak,N ), for any N . This contradicts the remark
preceding the lemma. �
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By Corollary 8.10 and Lemma 8.12, the set H0
k,∞ is finite. We can now prove

Proposition 8.11:

Proof (Proposition 8.11). We show, by induction on k, that Hk,∞ is finite, for
every choice of matrices T0, . . . , Tk as in the beginning of this section. We already
know that H0,∞ = G(T0) is finite. Suppose k > 0. We have seen above that H0

k,∞

is finite. For r ∈ H0
k,∞, the labels of the nodes of T (r) are the building blocks of

Graver basis elements z ∈ Gk,N , N > 1, with zε = r. Hence it suffices to show that
for each r ∈ H0

k,∞, the vector-tree T (r) is finite.
Suppose first that r = 0. By induction hypothesis, Hk−1,∞ is finite. Hence it

is enough to show that all labels of non-root nodes of T (0) are in Hk−1,∞. Let
v be the label of a node of height s > 0 of T (0). We may assume v 6= 0. There
exists an integer N > 1, a vector z ∈ G(Ak,N ), and α = (α1, . . . , αs) ∈ [1, N ]s such
that zε = 0 and zα = v. Let z′ ∈ Zdk−1,N such that T (z′) is a sub-vector-tree of
T (z) and z′α′ = v, where α′ = (α2, . . . , αs) (i.e., T (z′) contains our node labeled
by v). Then z′ ∈ G(Ak−1,N ): we have z′ ∈ ker(Ak−1,N ), since z ∈ ker(Ak,N ) and
zε = 0; z′ 6= 0, since v 6= 0; and z′ is ⊑-minimal among the nonzero elements of
ker(Ak−1,N ), since any nonzero y′ ∈ ker(Ak−1,N ) with y′ ⊑ z′ and y′ 6= z′ gives rise
to a nonzero y ∈ ker(Ak,N ) with y ⊑ z and y 6= z (by replacing the sub-vector-tree
of T (z) corresponding to T (z′) by T (y′)), and this contradicts z ∈ G(Ak,N ). Thus
v ∈ Hs

k−1,∞ as desired.

Now suppose r 6= 0. Let T ′
k−1 be the l × (1 + nk−1)-matrix (Tkr|Tk−1) and put

T ′
s := Ts for s = 0, . . . , k−2. Define A′

s,N in the same way as As,N at the beginning

of this section, with the matrices T ′
s replacing Ts. Let H′

k−1,∞ be the set of building

blocks of Graver bases of A′
k−1,N , for N > 1. By induction hypothesis, H′

k−1,∞ is

finite, so it is enough to show that for every node of height s > 0 of T (r) with label
v, we have v ∈ H′

k−1,∞. Let N > 1, z ∈ G(Ak,N ), and α = (α1, . . . , αs) ∈ [1, N ]s

with zε = r and zα = v. Let z′ ∈ Zdk−1,N such that T (z′) is a sub-vector-tree of
T (z) with z′α′ = v, where α′ = (α2, . . . , αs). Then (1, z′) ∈ G(A′

k−1,N ): we have

(1, z′) ∈ ker(A′
k−1,N ) since z ∈ ker(Ak,N ) and zε = r; and (1, z′) is ⊑-minimal

among the elements of ker(A′
k−1,N ) of the form (1, z′′) where z′′ ∈ Zdk−1,N (shown

similarly to ⊑-minimality of z in ker(Ak,N ) \ {0} in the case r = 0 above); hence
(1, z′) ∈ G(A′

k−1,N ) by Lemma 7.5. Therefore the building blocks of z′ are in

H′
k−1,∞. In particular v ∈ H′

k−1,∞ as required. �

The proof of the proposition above suggests a procedure for constructing Hk,∞

for k = 0, 1, 2, . . . inductively. In the next section we describe such an algorithm.
We finish this section by a few remarks about the choice of the reducibility relation
⊑k. First note the following immediate consequence of the fact that paths(T ) =
〈T 〉1 for every vector-tree T :

Lemma 8.13. For vector-trees S, T of height h we have: if S ⊑h,∞ T , then for

every w ∈ paths(T ) there exists v ∈ paths(S) such that v ⊑ w (in Zn(h)).

The converses of the implications in Lemmas 8.9 and 8.13 are false in general,
as the following two simple examples show. In particular, this (at least partly)
explains why in the algorithm for computing Hk,∞ in the next section, we cannot
simply replace ⊑k by the quasi-ordering 6k on vector-trees of height k given by

(8.2) S 6k T :⇐⇒

{

for every w ∈ paths(T ) there is v ∈ paths(S)
such that v ⊑ w,
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whose Noetherianity is much easier to show than the Noetherianity of the quasi-
ordering ⊑k (cf. Corollary 4.3 in the case n = n(k)). In both examples k = 2 and
n0 = n1 = n2 = 2.

Example. The vector-trees

(0, 0) (0, 0)

��	 @@R ?
(0, 0) (0, 0) (0, 0)

? ? ��	 @@R
(0, 1) (1, 0) (0, 1) (1, 0)

S T

show that we may have S ⊑2,∞ T and S 6⊑2 T .

Example. Consider the vector-trees

(0, 0) (0, 0)

��	 @@R ?
(0, 0) (0, 1) (0, 1)

? ? ��	 @@R
(1, 0) (0, 1) (1, 0) (0, 1)

S T

We have S 6k T (as defined in (8.2)). Suppose that z ∈ Z14 has associated vector-
tree

(0, 0)

��	 @@R
(0, 1) (0, 1)

��	 @@R ��	 @@R
(1, 0) (0, 1) (1, 0) (0, 1)

Then z ∈ 〈T 〉2, but there is no y ∈ 〈S〉2 with y ⊑ z.

9. Computation of Building Blocks

Our algorithm for computing a finite set of vector containing Hk,∞ follows the
pattern of a completion procedure, similar to Buchberger’s algorithm for comput-
ing Gröbner bases of ideals in polynomial rings over fields. Instead of with (finite
sets of) polynomials, our procedure operates with finite vector-trees. Before we de-
scribe our algorithm, we need to specify some crucial ingredients for this completion
procedure, among them the input set and a notion of normal form.

Adding and subtracting vector trees. We begin by defining operations which
allow us to construct new vector-trees from old ones. For this we use the following
notations, for subsets V and W of Zm, m > 1:

−V := {−v : v ∈ V },

V +W := {v + w : v ∈ V, w ∈ W},

V −W := {v − w : v ∈ V, w ∈ W, w ⊑ v}.
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Note that in general V −W 6= V + (−W ). In the following S and T range over the
set of vector-trees of height k.

Definition 9.1. We put

−S := T
(

− paths(S)
)

, S + T := T
(

paths(S) + paths(T )
)

.

If T ⊑k S, then paths(S)−paths(T ) 6= ∅ by Lemmas 8.9 and 8.13, and in this case
we put

S − T := T
(

paths(S) − paths(T )
)

.

Remarks.

(1) We have paths(−S) = − paths(S) and paths(S+T ) = paths(S)+paths(T ).
If T ⊑k S then paths(S − T ) = paths(S) − paths(T ).

(2) If S has value a ∈ Zl and T has value b ∈ Zl, then −S has value −a, S +T
has value a+ b, and if in addition T ⊑k S, then S − T has value a− b.

(3) There are obvious algorithms to compute, given finite S and T , the vector-
trees −S, S + T , and S − T (provided T ⊑k S).

Normal forms. We say that S∗ is a normal form of S with respect to a set G
of vector-trees of height k if

(1) T 6⊑k S∗ for all T ∈ G with root(T ) 6= 0,
(2) there exists a sequence S0, . . . ,Sn of vector-trees of height k such that

S0 = S, Sn = S∗, and for every i = 0, . . . , n − 1 there exists Ti ∈ G with
Ti ⊑k Si and Si+1 = Si − Ti.

Note that for k = 0, if we identify each vector-tree of height 0 with the label of
its root, this notion corresponds to the notion of normal form for elements of Zn0

introduced in Section 7. The following algorithm computes a normal form:

Algorithm 9.2. (Normal form algorithm)

Input: a finite vector-tree S of height k and a finite set G of finite vector-trees
of height k.

Output: a normal form normalForm(S, G) of S with respect to G.

while there is some T ∈ G such that T ⊑k S and root(T ) 6= 0 do

S := S − T
return S

The algorithm above terminates: if T ⊑k S, then root(S−T ) = root(S)−root(T ) ⊑
root(S), and if in addition root(T ) 6= 0, then || root(S − T )||1 < || root(S)||1. Note
that if every vector-tree in G has value 0, and S has value a, then the output
normalForm(S, G) also has value a. Algorithm 9.2 will be employed as a sub-
program in our algorithm for computing the set Hk,∞. In the proof of the correct-
ness of the latter we will use the following crucial lemma and its corollary below.

Lemma 9.3. Let N > 1.

(1) If y ∈ 〈S〉N and z ∈ 〈T 〉N , then y + z ∈ 〈S + T 〉N .

(2) If T ⊑k S and y ∈ 〈S〉N , then there exists z ∈ 〈T 〉N such that z ⊑ y and

y − z ∈ 〈S − T 〉N .

Proof. For part (1), suppose that y ∈ 〈S〉N and z ∈ 〈T 〉N , that is, paths
(

T (y)
)

⊆

paths(S) and paths
(

T (z)
)

⊆ paths(T ). The label of every maximal path in the
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vector tree T (y + z) is the sum of the labels of the corresponding paths in T (y)
and T (z), respectively. Thus

paths
(

T (y + z)
)

⊆ paths
(

T (y)
)

+ paths
(

T (z)
)

⊆ paths(S) + paths(T ) = paths(S + T ),

hence y + z ∈ 〈S + T 〉N as claimed. We show (2) by induction on k. The case
k = 0 being easy, suppose that k > 0 and the claim holds with k − 1 in place
of k. Since T ⊑k S, we have root(T ) ⊑ root(S) = y0,ε. Consider y′ ∈ Zdk−1,N

whose vector-tree T (y′) is an immediate sub-vector-tree of T (y). Then there exists
an immediate sub-vector-tree S′ of S with y′ ∈ 〈S′〉N . Since T ⊑k S we find an
immediate sub-vector-tree T ′ of T with T ′ ⊑k−1 S′. By the inductive hypothesis
there exists z′ ∈ 〈T ′〉N such that z′ ⊑ y′ and y′ − z′ ∈ 〈S′ − T ′〉N . These remarks
suffice to construct a vector z ∈ Zdk,N with the required properties. �

For a set G of vector-trees of height k and an integer N > 1 we put

〈G〉N :=
⋃

T ∈G

〈T 〉N .

Part (2) of the last lemma (which strengthens Lemma 8.9) immediately implies:

Corollary 9.4. Let G be a set of vector-trees of height k, and let S∗ be a normal

form of S with respect to G. For all N > 1 and s ∈ 〈S〉N there exist f ∈ 〈S∗〉N
and g1, . . . , gn ∈ 〈G〉N such that

s = f +
∑

i

gi, gi ⊑ s for all i.

Choosing an input set. The following lemma justifies the choice of input set for
Algorithm 9.8 below.

Lemma 9.5. Suppose that k > 0, and let F be a set of generators for the Z-

submodule K := ker(Ak,1) of Zn(k) which contains a set of generators for the sub-

module

K0 := K ∩
(

{0} × Zn(k−1)
)

of K. Then for every N > 1, the set

FN :=
〈{

T (v) : v ∈ F
}〉

N

generates ker(Ak,N ).

Proof. We use the following notations. Let N > 1, α = (α1, . . . , αk) ∈ [1, N ]k. For
z ∈ Zdk,N we put

v(α, z) := (zα|0, . . . , zα|k) ∈ paths
(

T (z)
)

,

and for v = (v0, . . . , vk) ∈ Zn(k), we denote by z(α, v) the vector z ∈ Zdk,N which
satisfies, for s = 0, . . . , k and β ∈ [1, N ]s:

zβ :=

{

vs if β = α|s,

0 otherwise.

We also let z(v) be the unique element of Zdk,N whose vector-tree T = T
(

z(v)
)

satisfies paths(T ) = {v}. Clearly, for v ∈ Zn(k) and z ∈ Zdk,N :

(9.1) z ∈ ker(Ak,N ) ⇒ v(α, z) ∈ ker(Ak,1),
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and

v ∈ ker(Ak,1) ⇐⇒ z(α, v) ∈ ker(Ak,N ) ⇐⇒ z(v) ∈ ker(Ak,N ).

Let now z ∈ ker(Ak,N ), where k,N > 1. Fix an arbitrary α ∈ [1, N ]k and put
v = v(α, z); by (9.1) there are a1, . . . , am ∈ Z and v1, . . . , vm ∈ F such that

v = a1v1 + · · · + amvm.

Then z(vi) ∈ FN for each i, and

(9.2) z(v) = a1z(v1) + · · · + amz(vm).

Now if β ∈ [1, N ]k, then v(z, β) − v ∈ K0, hence for some aβ,1, . . . , aβ,mβ
∈ Z,

vβ,1, . . . , vβ,mβ
∈ F ∩K0, mβ ∈ N:

v(β, z) − v = aβ,1vβ,1 + · · · + aβ,mβ
vβ,mβ

and therefore

(9.3) z
(

β, v(β, z) − v
)

= aβ,1z(β, vβ,1) + · · · + aβ,mβ
z(β, vβ,mβ

)

with z(β, vβ,j) ∈ FN for each j. Combining

z = z(v) +
∑

β

z
(

β, v(z, β) − v
)

with (9.2) and (9.3) yields an expression of z as a Z-linear combination of vectors
in FN , as required. �

A generating set F satisfying the hypothesis of the lemma can be found algo-
rithmically by standard methods (e.g., Hermite normal form).

Computing Hk,∞. We now specify an algorithm which recursively (in k) computes
the set Hk,∞. The following completion procedure is at the heart of the k-th step
in the algorithm. We say that a set G of vector-trees of height k is root-complete

if for all S, T ∈ G the sum S +T has a normal form N with respect to G such that
root(N ) = 0.

Algorithm 9.6. (Completion procedure)

Input: a finite set G of finite vector-trees of height k.

Output: a finite set of finite vector-trees of height k which contains G and is
root-complete.

C := {S + T : S, T ∈ G}
while C 6= ∅ do

S := an element in C
C := C \ {S}
T := normalForm(S, G)
if root(T ) 6= 0 then

G := G ∪ {T ,−T }
C := C ∪ {S + T ,S + (−T ) : S ∈ G}

return G

We turn to termination and correctness of Algorithm 9.6:

Proposition 9.7. Algorithm 9.6 terminates and satisfies its specification.
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Proof. Let Gi be the value assigned to G and Si be the value assigned to S at
the beginning of the i-th pass of the while-loop in Algorithm 9.6, and set Ti :=
normalForm(Si, Gi). Suppose that root(Ti) 6= 0 for all i in an infinite subset I of
N \ {0}. Now T 6⊑k Ti for all T ∈ Gi with root(T ) 6= 0, and Ti ∈ Gj for all i < j.
In particular Ti 6⊑k Tj for all i < j in I. This contradicts Corollary 8.8. Hence
there is some n such that root(Ti) = 0 for all i > n. So if m is the size of the set
C before the n-th iteration of the while-loop, then Algorithm 9.6 terminates after
m more iterations. This shows termination of Algorithm 9.6. Correctness is easily
shown. �

We say that a set G of vector-trees of height k is symmetric if S ∈ G⇒ −S ∈ G
for all S. If G is symmetric, then for each N > 1, the subset 〈G〉N of Zdk,N is also
symmetric: z ∈ 〈G〉N ⇒ −z ∈ 〈G〉N for every z ∈ Zdk,N .

Remarks.

(1) If the input set G in Algorithm 9.6 is symmetric, then so is its output set.
If every vector-tree in G has value 0, then so does every vector-tree in the
output set.

(2) For k = 0 and input set G = a finite symmetric generating set for the
Z-module ker(T0), Algorithm 9.6 reduces to Algorithm 7.3 from Section 7
and computes a finite set of vectors containing G(T0).

Here now is:

Algorithm 9.8. (Algorithm to compute Hk,∞)

Input: an integer k > 0.

Output: a finite symmetric set Gk of finite vector-trees of height k such that
G(Ak,N ) ⊆ 〈Gk〉N for all N > 1.

for i = 0, . . . , k do

if i = 0 then

F0 := a finite symmetric generating set for ker(A0,1)
G :=

{

T (v) : v ∈ F0

}

else

Fi := a finite symmetric generating set for ker(Ai,1) satisfying
the hypothesis of Lemma 9.5 (for k = i)

T0 := T
({

(0, v) : v = 0 or v ∈ paths(S) for some S ∈ Gi−1

})

G := {T0} ∪
{

T (v) : v ∈ Fi

}

Gi := output of Algorithm 9.6 applied to G

Since termination of Algorithm 9.8 follows from Proposition 9.7, we only need
to establish its correctness:

Theorem 9.9. Let G0, . . . , Gk be the sets computed by Algorithm 9.8, for given

input k. Then each Gi is a finite symmetric set of finite vector-trees of height i with

G(Ai,N ) ⊆ 〈Gi〉N for all N > 1. (In particular, the set consisting of the building

blocks of vector-trees in Gk contains Hk,∞.)

In the proof we use the following immediate consequence of Lemma 9.3, (1) and
Corollary 9.4:
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Lemma 9.10. Let G be a root-complete set of vector-trees of height k. Then for

every N > 1 and y, z ∈ 〈G〉N there exist f ∈ Zdk,N and g1, . . . , gn ∈ 〈G〉N such that

fε = 0 and

y + z = f +
∑

j

gj, gj ⊑ y + z for all j.

For the proof of Theorem 9.9, fix integers k > 0 and N > 1. We show, by
induction on i = 0, . . . , k, that G(Ai,N ) ⊆ 〈Gi〉N . The case i = 0 is covered by
Remark (2) following the proof of Proposition 9.7. Suppose that i > 0. By the
inductive hypothesis, Gi−1 is a finite symmetric set of finite vector-trees of height
i − 1 with G(Ai−1,N ) ⊆ 〈Gi−1〉N . In particular, T0 has value 0 and −T0 = T0.
Moreover, by the next lemma, every f ∈ ker(Ai,N ) with fε = 0 has normal form
0 with respect to 〈T0〉N . In the proof we denote the concatenation of the finite
sequences α ∈ [1, N ]s and β ∈ [1, N ]t (s, t ∈ {0, . . . , k}) by αβ ∈ [1, N ]s+t.

Lemma 9.11. For every f ∈ ker(Ai,N ) with fε = 0 there are h1, . . . , hm ∈ 〈T0〉N
such that

f =
∑

j

hj , hj ⊑ f for all j.

Proof. Let fn ∈ Zdi−1,N , n = 1, . . . , N , be given by fn,α := f(n)α for α ∈ [1, N ]s,
s = 0, . . . , i−1. Since f ∈ ker(Ai,N ) and fε = 0, we have f1, . . . , fN ∈ ker(Ai−1,N ).
Hence for each n = 1, . . . , N there are M(n) ∈ N and gnm ∈ G(Ai−1,N ), where
m = 1, . . . ,M(n), such that

fn =
∑

m

gnm gnm ⊑ fn for all m.

Now let hnm be the vector in Zdi,N defined as follows: for α = (α1, . . . , αs) ∈ [1, N ]s,
s = 0, . . . , i, let

hnm,α =

{

gnm,α′ if s > 0 and α1 = n

0 otherwise,

where α′ = (α2, . . . , αs). Then hnm can be constructed from T0, since G(Ai−1,N ) ⊆
〈Gi−1〉N and 0 ∈ paths(T0), and f =

∑

n,m hnm with hnm ⊑ f for all n and m. �

Proof of Theorem 9.9. By Lemma 9.5 and the choice of Fi in Algorithm 9.8, 〈Gi〉N
is a symmetric generating set for ker(Ai,N ). Hence 〈Gi〉N can be used as an input
set for the computation of a Graver basis for the matrix Ai,N (Algorithm 7.3). By
Lemmas 9.10 and 9.11, the sum y+ z of two elements y and z of 〈Gi〉N has normal
form 0 with respect to 〈Gi〉N . Hence Algorithm 7.3 applied to Ai,N and 〈Gi〉N just
returns the input set 〈Gi〉N ; in particular G(Ai,N ) ⊆ 〈Gi〉N as desired. �

Remarks.

(1) Theorem 9.9 gives another proof of Proposition 8.11.
(2) For k = 1, the algorithm to compute Hk,∞ described above differs slightly

from the one given in [12]. This is because Algorithm 3.15 in [12] is slightly
defective: to see this, consider (in the notation introduced there) the pairs
s = g = (0, {0, 1}); then g ⊑ s and s ⊖ g = s, causing Algorithm 3.15 to
diverge on the inputs s and G = {g}.
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10. Finding an Optimal Solution

In this final section we outline how the set Gk produced by Algorithm 9.8 can be
employed to solve any particular instance

(IPN,b,c) min
{

c⊺z : Ak,Nz = b, z ∈ Ndk,N
}

of our family of (k + 1)-stage stochastic integer programs, given a choice of the
number N of scenarios, a right-hand side b ∈ Zek,N (where ek,N := Nk · l = number
of rows of the coefficient matrix Ak,N ), and a cost vector c ∈ Rdk,N . Throughout we
assume that a finite set Gk of finite vector-trees of height k such that G(Ak,N ) ⊆
〈Gk〉N for all N > 1 (as computed by Algorithm 9.8) is at our disposal.

We first concentrate on the problem of augmenting a feasible solution to an
optimal one. For this we use the recursive algorithm below. Analogous to our
practice in the case of integer vectors above, we write a vector v ∈ Rdk,N as v =
(v0, . . . , vk) where

vs =
(

vα : α ∈ [1, N ]s
)

for s = 0, . . . , k,

and for k > 0 and i = 1, . . . , N we put

v(i) :=
(

v(i) α : α ∈ [1, N ]s, s = 0, . . . , k − 1
)

∈ Rdk−1,N .

Conversely, if k > 0, given r ∈ Rnk and N vectors v1, . . . , vN ∈ Rdk−1,N , we
denote by v(r, v1, . . . , vN ) the vector v ∈ Rdk,N with vε = r and v(i) = vi for all
i = 1, . . . , N . With this notation, given T and N > 1, the set 〈T 〉N consists of all
vectors z ∈ Zdk,N of the form z = v

(

root(T ), v1, . . . , vN

)

, where vi ∈ 〈Ti〉N for an
immediate sub-vector-tree Ti of T , for each i = 1, . . . , N .

Algorithm 10.1. (Algorithm to find most expensive constructible vector)

Input: an integer N > 1, a finite set G of finite vector-trees of height k, a
cost vector c ∈ Rdk,N , and a vector z ∈ Zdk,N .

Output: a vector v = mostExpensive(N,G, c, z) with v ∈ 〈G〉N and v 6 z such
that c⊺v is maximal with these properties, or “FAIL” if no v ∈ 〈G〉N
with v 6 z exists.

G′ :=
{

T ∈ G : root(T ) 6 zε

}

if G′ = ∅ then return “FAIL”
while G′ 6= ∅ do

T := the element of G′ such that c⊺ε root(T ) is maximal
G′ := G′ \ {T }
if k = 0 then return root(T )
GT := the set of immediate sub-vector-trees of T
for i = 1 to N do

vi := mostExpensive(N,GT , c(i), z(i))

if v1, . . . , vN 6= “FAIL” then return v
(

root(T ), v1, . . . , vN

)

return “FAIL”

Termination and correctness of the procedure above are easily seen. By the discus-
sion in Section 7 this implies termination and correctness of the following algorithm:

Algorithm 10.2. (Augmentation algorithm)

Input: an integer N > 1, vectors b ∈ Zek,N , c ∈ Rdk,N , and a feasible solution
z ∈ Ndk,N to (IPN,b,c).

Output: an optimal solution optimalSolution(N, b, c, z) to (IPN,b,c).
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while v := mostExpensive(N,Gk, c, z) 6= “FAIL” and c⊺v > 0 do

z := z − v
return z

The next algorithm produces an initial feasible solution from a given solution (in
Zdk,N ) to the equation Ak,Nz = b. Termination and correctness of this procedure
follow from results in [10]; see also Algorithm 7.2 above.

Algorithm 10.3. (Finding a feasible solution)

Input: an integer N > 1, vectors b ∈ Zek,N , c ∈ Rdk,N , and a solution
z ∈ Zdk,N to (IPN,b,c).

Output: a feasible solution feasibleSolution(N, b, c, z) to (IPN,b,c), or “FAIL”
if no such solution exists.

while v := mostExpensive
(

N,Gk, c(z), z
+
)

6= “FAIL” and c(z)⊺v > 0 do

z := z − v
if z > 0 then return z else return “FAIL”

Finally, this leads to our algorithm for solving instances of (IPN,b,c) using Gk:

Algorithm 10.4. (Finding an optimal solution)

Input: an integer N > 1 and vectors b ∈ Zek,N , c ∈ Rdk,N .

Output: an optimal solution to (IPN,b,c), or “FAIL” if no feasible solution
exists.

if there is no z ∈ ZdN,k with Ak,Nz = b then

return “FAIL”
else

z := an element of ZdN,k satisfying Ak,Nz = b

f := feasibleSolution(N, b, c, z)

if f = “FAIL” then

return “FAIL”
else

return optimalSolution(N, b, c, f)

Remark. The complexity of Algorithm 9.8 is unclear. For a very crude complexity
result related to Maclagan’s principle see [1], Proposition 3.25. Some computational
experiments in the case k = 1 are reported in [12], Section 4. Note that (once Gk

is available) the running time of Algorithm 10.1 above is O(Nk).
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