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Summary 

Correlation analysis assuming coexpression of the genes is a widely used method for gene 

expression analysis in molecular biology. Yet growing extent, quality and dimensionality 

of the molecular biological data permits emerging, more sophisticated approaches like 

Boolean implications. 

We present an approach which is a combination of the SOM (self organizing maps) 

machine learning method and Boolean implication analysis to identify relations between 

genes, metagenes and similarly behaving metagene groups (spots). Our method provides 

a way to assign Boolean states to genes/metagenes/spots and offers a functional view over 

significantly variant elements of gene expression data on these three different levels. 

While being able to cover relations between weakly correlated entities Boolean 

implication method also decomposes these relations into six implication classes. 

Our method allows one to validate or identify potential relationships between genes and 

functional modules of interest and to assess their switching behaviour. Furthermore the 

output of the method renders it possible to construct and study the network of genes. By 

providing logical implications as updating rules for the network it can also serve to aid 

modelling approaches. 

1 Introduction 

Biochemical and molecular biological approaches along with correlation analyses have 

revealed numerous molecular mechanisms and pairwise relations between elements of the 

cellular machinery. Analytical efforts so far have mostly concentrated on correlation analysis 

based on the assumption that co-expression of genes is directly related to concerted regulation 

[1]. However focusing solely on the correlation measures entails a restriction of the search 

space by linear relations. Fortunately improving quality, growing volume and extent of 

expression data allows for further examination via alternative concepts. The complexity and 

dimensionality of the expression data requires an in-depth and detailed analysis, while 

imposing the challenge to conceive the big picture. Boolean implication analysis stands out as 

a straightforward yet robust and promising method to capture linear and non-linear pairwise 

relations between the features. 

Boolean implication is a logical relation between two Boolean variables where a state of one 

variable implies a state of the other variable. Variables can refer to molecular-biological 

entities such as protein coding DNA regions, mRNA and proteins transcribed/translated from 

it. Distinct copy numbers, expression levels or cellular concentration ranges that correspond 

to certain biologically-relevant activities  can be described as their states. In our case study, 

genes constitute variables while their expression values constitute their states.  
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Here we utilize an approach previously proposed by Sahoo et al. [2], [3] which reliably 

extracts ‘if-then-relationships’ between the states of pairwise combinations of genes from 

expression data. Such Boolean implications strongly extend the options of pairwise gene 

activity combinatorics beyond simple correlation measures.  

While Sahoo et al. used gene expression data from thousands of microarrays to assess 

molecular interactions between pairs of genes and their conservation across species, we use a 

single expression microarray data set to reconstruct the underlying interaction network. On 

one hand it is hard to have several array studies available for certain experimental setups, e.g. 

certain cancer types, certain cell types and conditions. On the other hand it might be 

problematic to analyze expression data obtained from different platforms. In most cases it is 

thus necessary to stick with the data on-hand and to be able to reconstruct potential 

implications and the underlying network without additional experiments. 

In this paper we carry out Boolean implication analysis for a microarray study on 221 mature 

aggressive B-cell lymphomas that is publicly available [4]. This heterogeneous disease shows 

a high variability in both molecular biological and clinical parameters. Burkitt’s lymphoma 

(BL) is defined and listed in the World Health Organization (WHO) classification of 

lymphoid tumours as an ‘‘aggressive B-cell non-Hodgkin’s lymphoma’’ (aggressive B-NHL) 

that is characterized by a high degree of proliferation, malignancy and deregulation of the c-

MYC gene [5], [6]. The earliest cases that resembles BL tumour were recorded in 1910 in 

central sub-Saharan Africa [7]. This fact led to the term African lymphoma and consequently 

endemic BL. It took several years before MYC oncogene translocation and constitutive 

activation is detected in lesion of BL [8], [9]. 

BL is classically diagnosed by the presence of a monotonous infiltrate of medium-sized 

blastic lymphoid cells with a round nuclei, clumped chromatin and multiple nuclueoli, 

possessing a high proliferation and low apoptosis rate [10]. 

MYC, mutations of which constitutes one of the most significant characteristics of BL, is a 

sequence-specific DNA-binding transcription factor. What makes MYC critical is its acting 

mechanism especially in B cells: MYC acts as a transcriptional hub that is able to control 

~15% of all genes via multiple sub-hubs that are connected to it [11], [12]. An interesting 

feature of MYC is its nonlinear acting mechanism. By the activity of MYC genes that are 

already being expressed in the absence of MYC tend to get strongly boosted in the presence 

of MYC, while genes that have low expression in the absence MYC get only a small boost in 

the presence of MYC [13]. The processes that are controlled by this hub especially include 

cell-cycle control, cellular transformation, growth[14], proliferation and apoptosis[11], and 

tumorigenesis through miRNAs[15], [16]. The role of MYC in these key processes seals 

dramatic effects of its activation: increased cell growth, proliferation and genomic 

instability[17] and reduces immunogenicity of the tumour cells[18], [19]. In normal cells 

MYC also induces apoptosis and this provides a balance between proliferative activity and 

apoptotic activity. However in BL cases the apoptosis-inducing activity of MYC is reduced. 

Addition to MYC, many other chromosomal translocations, genetic and epigenetic alterations 

are identified in BL cases[9], [20]. Hummel and colleagues was able to introduce a ‘BL 

similarity index’, by using the expression levels of a set of genes and classify aggressive B-

NHL into  three classes that we used throughout this paper: molecular BL (mBL), 

intermediate cases, and non-molecular BL (non-mBL) [4].This collocation enables extraction 

of differentially interacting features corresponding to functional differences in the two cancer 

subtypes. 

Computation of pairwise relationships for all possible gene combinations is computationally 

expensive and time consuming. Thus it is the limiting factor for exhaustive analysis of 

experiments using high-throughput technologies such as microarrays and RNA-sequencing. 
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Here expression values of several tens of thousands of genes are measured in parallel. 

Therefore we take advantage of a preceding analysis using self-organizing maps (SOMs) 

[21]–[24], which were successfully applied in different cancer study evaluations [25]–[29]. 

SOMs transform the original ‘single gene related’ data into meta-data of reduced 

dimensionality. Then mutually independent expression modules can be detected in the SOM-

transformed data space. Importantly the two steps of dimension reduction, which reduce the 

number of relevant features by about four orders of magnitude using the concept of cluster-

prototypes in terms of metagenes and so-called spot-modules, respectively, do not entail a loss 

of primary information. No features are explicitly excluded from analysis and are therefore 

accessible at any time during SOM analysis [21].  

We utilize pairwise relations on both single gene as well as meta-gene level to deduce the 

logical linkage of the expression modules obtained from SOM analysis of the lymphoma data. 

The implications are then validated using results of previous descriptions of the underlying 

molecular mechanisms of the disease [4], [30], [31]. Finally the module level network of 

Boolean implications is mapped into the SOM space and compared to the module 

combinatorics observed. 

2 Methods 

 Data 2.1

We employ a microarray study on mature aggressive B-cell lymphomas available under GEO 

accession number GSE4475 [4]. The study used biopsy specimens from 220 patients 

measured on Affymetrix HG-U133A microarrays (one patient was measured on two 

microarrays). These arrays measure the expression level of 22,283 gene-related probesets in 

parallel. For quality control, the samples contain at least 70 percent tumor cells. Hummel et 

al. then defined a transcriptional signature to distinguish molecular Burkitt’s lymphoma 

(mBL) and non–molecular Burkitt’s lymphoma (non-mBL) [4]. Out of the 220 lymphomas, 

44 carry the mBL and 128 the non-mBL signature while 48 cases could not be assigned 

unambiguously to one of the two groups. They form an intermediate group, representing the 

transition between mBL and non-mBL cases [4], [26]. 

 Preprocessing 2.2

First, raw probe intensity values of each of the 221 arrays are calibrated and summarized into 

one expression value 𝐸𝑖,𝑗 per probe set using the hook method [32], [33]. The indices assign 

the gene number 𝑖 = 1 … 𝑁 in sample number 𝑗 = 1 … 𝑀 referring to the different patients. 

Then the expression values were translated into logarithmic scale: 𝑒𝑖,𝑗 = log10 𝐸𝑖,𝑗. Finally, 

the expression values of all arrays were quantile-normalized such that they follow one 

common distribution [34]. 

Following the convention we use the data as numerical matrix of dimension 𝑁 × 𝑀. 

Throughout this paper a row of the matrix, 𝑒𝑖,𝑗 with 𝑖 = 𝑐𝑜𝑛𝑠𝑡, will be termed ‘expression 

profile’ of the respective gene 𝑖. The columns, 𝑒𝑖,𝑗 with 𝑗 = 𝑐𝑜𝑛𝑠𝑡 on the other hand will be 

termed ‘states’ referring to sample 𝑗 under consideration. 

 Boolean relationships on gene level 2.3

To detect Boolean relations between two genes their expression profiles have to be transferred 

into binary data space. There exist different approaches to dichotomize the profiles into the 

states of ‘low’ and ‘high’ expression, respectively. Beside using a global threshold to divide 
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the expression range into the two levels, the ‘StepMiner’ algorithm uses time course data to 

calculate an adaptive threshold for each gene individually [35]. However, the lymphoma data 

set contains independent samples without temporal order. Therefore we implemented an 

alternative straightforward and robust approach to dichotomize the expression level of each 

gene: 

We first remove invariant genes from the data since they hamper a reliable detection of 

Boolean implications. Therefore we reject genes whose interquartile expression ranges do not 

exceed the threshold of 0.5 in log10 −expression space. Only genes with a sufficient degree of 

differential expression are then used for subsequent Boolean implication analysis. The 

samples in each expression profile 𝑖 were then ranked with monotonically increasing 

expression values such that the profile meets the condition 𝑒𝑖,𝑗 ≤ 𝑒𝑖,𝑗+1 for all 𝑗 = 1 … (𝑀 −

1) (see Figure-1a). Then the threshold for dichotomization of gene 𝑖 is estimated using 

 𝑡𝑖 =
∑ 𝑤𝑖,𝑗 ∙ 𝑒𝑖,𝑗

𝑀−1
𝑗=1

∑ 𝑤𝑖,𝑗
𝑀−1
𝑗=1

  (0.1) 

Here , , 1 ,i j i j i jw e e   is a weighting factor proportional to the increment between subsequent 

expression values. Hence, we estimate the threshold as the slope-weighted average of 

expression values. This threshold divides the profile into ‘low’ and ‘high’ expression values 

with 𝑒𝑖,𝑗 < 𝑡𝑖 and 𝑒𝑖,𝑗 > 𝑡𝑖, respectively. To ensure robustness a ‘noise zone’ of [𝑡𝑖 − 𝛿𝑖 ,  𝑡𝑖 +

𝛿𝑖] where 𝛿𝑖 = 0.1𝑡𝑖 is declared around the threshold (Figure-1a). Values located in this 

interval are assumed as ‘intermediate’ ones and are not further considered in subsequent 

analysis.  

Boolean relations are then identified for each pair of genes, say 𝐴 and 𝐵, as proposed by 

Sahoo et al. [2]: (i) A scatterplot is generated showing the expression values of gene 𝐴 versus 

that of gene 𝐵 in 𝑥-and 𝑦-coordinates, respectively (see Figure-1a). (ii) The thresholds 𝑡𝐴 and 

𝑡𝐵 and the according noise zones distribute the genes over four quadrants which correspond to 

all the combinations of the expression levels of 𝐴 and 𝐵: 𝐴𝑙𝑜𝑤 & 𝐵ℎ𝑖𝑔ℎ, 𝐴𝑙𝑜𝑤 & 𝐵𝑙𝑜𝑤, 

𝐴ℎ𝑖𝑔ℎ & 𝐵𝑙𝑜𝑤 and 𝐴ℎ𝑖𝑔ℎ & 𝐵ℎ𝑖𝑔ℎ in counter-clockwise order. (iii) The population of each of 

the quadrants with genes is estimated to identify ‘sparse’ quadrants with a significantly lower 

density of data points compared with the other quadrants. The number of expression values is 

counted for each quadrant, omitting those in the noise zone. The sparseness statistic is then 

computed as the ratio between the number of observed expression data per quadrant and the 

number of data expected by chance which depends on the population of the neighboring 

quadrant’s and the total number of expression values. (iv) Finally the error of this estimation 

is calculated as a maximum likelihood estimate implying the observed count and those of the 

adjacent quadrants. (v) A quadrant is finally declared as sparse if the statistic exceeds and the 

error rate undercuts designated thresholds. 

It is noteworthy that in some cases the expression profile of a gene is dominated by a very few 

extreme values, i.e. the expression values are not reasonably distributed over the expression 

range. We identify such outliers using an interquartile range (IQR)-based criterion [36] and 

discard the respective values from the scatterplots and the corresponding sparseness 

estimation. More precisely, expression values of gene 𝑖 are designated as outliers if they meet 

the condition 𝑒𝑖,𝑗  > 𝑞𝑖,75 + 3𝐼𝑄𝑅𝑖 or 𝑒𝑖,𝑗 < 𝑞𝑖,25 − 3𝐼𝑄𝑅𝑖, respectively. Here 𝑞𝑖,25 and 𝑞𝑖,75 

denote the first and third quartiles of gene 𝑖’s expression values and 𝐼𝑄𝑅𝑖 = 𝑞𝑖,75 − 𝑞𝑖,25. 

The sparsely populated quadrant(s) defines the relationship between the two involved genes 

(compare Figure-1b). For instance a sparse bottom left (low-low) quadrant reflects the 
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situation that low values of gene 𝐴 are mostly associated with high values of gene 𝐵. In other 

words, a given low expression value of gene 𝐴 restricts the possible values of gene 𝐵 to high 

ones. On the other hand if 𝐴 is high then 𝐵 can be either low or high without restriction. This 

defines the forward rule: ‘If 𝐴 is low, then 𝐵 must be high’, or as synonym ‘𝐴𝑙𝑜𝑤 implies 

𝐵ℎ𝑖𝑔ℎ’ (‘𝐴𝑙𝑜𝑤 ⇒ 𝐵ℎ𝑖𝑔ℎ’) or in short notation ‘𝐿𝐻’. Note that the latter ‘𝐿𝐻’-designation 

applies also to ‘𝐵𝑙𝑜𝑤 ⇒ 𝐴ℎ𝑖𝑔ℎ’ because a sparse low-low quadrant generates a symmetric 

pattern with respect to genes 𝐴 and 𝐵 given that there is no temporal order in the data. These 

Boolean implications can be interpreted as “if-then-rules” for pairs of genes. Thereby they are 

asymmetric relationships, as 𝐴𝑙𝑜𝑤 ⇒ 𝐵ℎ𝑖𝑔ℎ holds but 𝐵ℎ𝑖𝑔ℎ ⇒ 𝐴𝑙𝑜𝑤 does not. This inverse 

‘𝐻𝐿’ implication applies if the high-high quadrant is sparse (see Figure-1b). A combination of 

‘𝐿𝐻’ and ‘𝐻𝐿’ is given if both the low-low and high-high quadrants are sparse. This situation 

defines the ‘Boolean opposite’ (‘𝑂𝑃𝑃’) relation fulfilling the implications ‘𝐴𝑙𝑜𝑤 ⇒ 𝐵ℎ𝑖𝑔ℎ’ 

𝐴𝑁𝐷 ‘𝐴ℎ𝑖𝑔ℎ ⇒ 𝐵𝑙𝑜𝑤’ (Figure-1b, upper part). The 𝐿𝐻, 𝐻𝐿 and 𝑂𝑃𝑃 relations can be 

considered as ‘opposite-type relations’ because low expression of one gene associates with 

high expression of another gene and vice versa. The second class of ‘equivalence-type’ 

relations is defined by ‘Boolean equivalence’ (‘𝐸𝑄𝑉’), 𝐿𝐿 and 𝐻𝐻 implications as illustrated 

in Figure-1b, lower part. In these cases high/low expression of one gene is associated with 

high/low expression of another gene. 

Importantly, expression values can be virtually equally distributed over all four quadrants 

providing no sparse region, e.g. if the signals are relatively invariant and if their noise level 

exceeds the systematic changes of the signal values. In such cases the respective pair of genes 

lacks a Boolean implication. 

Boolean implication analysis enables identification of molecular interaction processes [37]. 

Consider a toy example where genes 𝐴 and gene 𝐵 are strong transcription factors of gene 𝐶, 

then one of these transcription factors would be enough to activate transcription of gene C . 

Which means if 𝐴 has a high expression value 𝐶 will also be high. However if 𝐴 has a low 

value 𝐶 can have one of low or high values depending on the expression state of 𝐵. In this 

case 𝐴 and 𝐶 will expose the Boolean implication 𝐴ℎ𝑖𝑔ℎ ⇒ 𝐵ℎ𝑖𝑔ℎ. In yet another case where 𝐴 

and 𝐵 are relatively weak, additively acting transcription factors of 𝐶, high values of 𝐴 alone 

or high values of 𝐵 alone are not sufficient to induce high expression of 𝐶. However if 𝐶 has a 

high expression value we can infer that 𝐴 (𝑜𝑟 𝐵) also has a high value since in this case high 

expression value of 𝐴 (𝑜𝑟 𝐵) is necessary which in the end puts forward the relation 𝐶ℎ𝑖𝑔ℎ ⇒

𝐴ℎ𝑖𝑔ℎ(𝑜𝑟 𝐶ℎ𝑖𝑔ℎ ⇒ 𝐵ℎ𝑖𝑔ℎ). This conformity of Boolean implications to molecular interaction 

logic manifests a way of understanding biological data while it also offers a way to produce 

experimentally testable logical hypotheses for a set of genes of interest that constitute possible 

molecular interactions. However one must be aware of the fact that implications do not 

necessarily mean a molecular interaction as these relations can be a result of direct molecular 

interaction or a more complicated indirect relation in the overall network as well. 

 Metagenes and expression modules derived from SOM analysis 2.4

We implemented an analysis pipeline based on self-organizing maps (SOMs) and successfully 

applied it to a variety of different case studies referring to tissue systems [21], [38], certain 

cancer types [26] and stem cells [26]. The SOM analysis was further shown to be applicable 

also to different data types: Microarray mRNA and miRNA expression [27], [28], proteomic 

mass spectrometry [39], genomic SNP [26] and ChIP-seq [40] data. 
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Figure 1: Boolean implications, definition and detection from pairwise gene relations.The 

ordered expression profiles of a pair of genes are divided into ‘low’ and ‘high’ expression levels 

by corresponding thresholds t. A paired scatterplot then yields four quadrants constituted by 

combination of the two genes and the two expression levels (panel a). Sparse quadrants indicate, 

depending on the positions, opposite type or equivalence type relationships between two genes 

(panel b). The abbreviations of the relations LH(Low-High), HL(High-Low), HH(High-High), 

LL(Low-low), EQV(Equivalence) and OPP(Opposite) are used throughout this manuscript. 

 

The methods and algorithms of the SOM analysis were described in detail previously. In 

brief: The preprocessed data is gene-wise centered with respect to its mean expression value 

in all samples representing fold-change values in log10 −scale. A relative log-expression 

value of zero consequently indicates that a gene is expressed according to its mean expression 

value, while positive and negative values refer to over- and underexpression in the data set, 

respectively. These relative expression data are then used to train a self-organising map 

(SOM) [41]. It translates the high-dimensional input data given as 𝑁 × 𝑀 matrix into a 𝐾 × 𝑀 

metadata matrix (𝐾: number of so-called metagenes) of reduced dimensionality 𝐾 ≪ 𝑁 (𝑁= 

22,283 and 𝐾=2,500). The metagenes are arranged in a two-dimensional grid of resolution 
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50 × 50. During the SOM training algorithm, the metagene profiles are adapted, such that 

they resemble the real gene profiles. Thereby each metagene serves as a representative 

prototype of a ‘minicluster’ of real genes with similar expression profiles. The association of 

the genes to the metagenes is not fixed and becomes adjusted during the self-organizing 

process. It arranges the genes such that the degree of similarity between metagenes decreases 

with increasing distance in the map.  

The expression state of each sample is visualized by color-coding the two-dimensional grid of 

metagenes according to their expression values in the respective sample. In this way 

individual ‘SOM portraits’ of each sample are generated by applying an appropriate color 

gradient (red to blue reflects over- to underexpression). 

Owing to similarity of adjacent metagene profiles, the color patterns emerge as smooth 

textures which are characteristic for each sample and represent a fingerprint of its 

transcriptional activity. Individual expression patterns emerge as spots of similar colored tiles 

(see Figure-4a), which correspond to clusters of co-regulated genes. Note that the assignment 

of genes to metagenes and therefore to tiles of the underlying grid is identical in all sample 

portraits. So they can be directly compared to each other allowing immediate identification of 

unique or ubiquitous expression modes. Metagenes in the same spot are co-expressed in the 

samples studied. Metagenes in different, well-separated spots of a portrait are co-expressed in 

the particular sample but differently expressed in other samples. Importantly, utilization of 

metadata instead of the single gene data is advantageous regarding representativeness and 

noisiness in subsequent downstream analyses [21]. 

We define so-called spot modules representing clusters of neighboring over- (red) or under- 

(blue) expressed metagenes detected in at minimum one sample portrait. Such spots are 

determined by applying a simple 98/2-percentile criterion for over-/underexpression spots 

which selects the respective fraction of the metagenes showing largest/smallest expression in 

each sample. All spots detected were transferred into one master map for visualization of the 

global spot patterns of the sample series studied. Each spot represents an expression mode of 

a group of metagenes showing concerted expression. Thus, spot clusters provide a simple and 

intuitive approach for detection of expression modules. Note that it identifies gene clusters in 

an unsupervised fashion without necessity for prior definition of class prototypes or of a 

desired number of clusters. For the analyses described in this paper we restrict to 

overexpression spots because most underexpression spots overlay with them. 

The SOM pipeline is publicly available as R-package ‘oposSOM’ on CRAN repository. The 

download link can be found on our SOM project page: http://som.izbi.uni-leipzig.de. 

 Boolean implications on metagene and expression module level 2.5

Detection of Boolean implications between pairs of gene clusters, such as metagenes or spot 

modules, is straightforward to reduce the total number of feature pairs to be assessed and thus 

to condense the resulting number of relevant relations in the system. It can be performed 

analogously as described for the genes above using expression profiles of metagenes or spot 

modules instead of those of single genes (see Figure-2, horizontal arrows). However the 

question arises if such information aggregation is preferable prior to or after Boolean 

implication analysis. In other words, we aim at evaluating on which data level information 

pooling provides the optimal relationships between the expression modules. Figure-2 

illustrates the three different options to derive spot module relations from the original single 

gene expression profiles: Firstly, the SOM method can be utilized to aggregate single genes to 

metagenes and further to detect spot clusters and the corresponding spot expression profiles. 

Those are directly used to detect spot level Boolean implications (red arrows in Figure-2). 

Secondly, the metagenes obtained from SOM are used for pairwise implication analysis and 
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subsequently aggregated to spot-wise relations (blue arrows inFigure-2, see below for details 

of the aggregation). And thirdly, the single gene profiles are used in Boolean implication 

analysis and their pairwise relations mapped and aggregated to spot relations (green arrows in 

Figure-2). 

 

 

Figure 2: Three levels of expression information used to extract Boolean implications. Single 

genes, metagenes and spot clusters (from top to bottom): Vertical transitions are accomplished 

by information aggregation via SOM and the decision tree (left and right parts, respectively), 

horizontal transition by Boolean implication analysis on the respective data level. There are 

three alternative options to derive spot relations from the original single gene data; by using gene 

expression profiles, by using metagene expression profiles and by using spot expression profiles 

directly (see green, blue and orange horizontal arrows, respectively). 

 

We aim at comparing spot relations obtained from the three competing options. Therefore, 

beside the direct implication detection using spot module profiles, we implemented an 
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algorithm to derive spot module relations from gene (or analogous from metagene) level 

implications: First, it computes implications for all possible pairs of genes from a particular 

couple of spots (Figure-3a). The numbers of each of the six different implication relations are 

then counted. Finally, module related relations are identified by means of a decision tree using 

these counts (Figure-3b). 

The decision tree first assigns the spot implication to equivalence- or opposite-type according 

to the majority of single gene implications types and then decides between the respective 

implications, e.g. 𝑂𝑃𝑃, 𝐻𝐿 or 𝐿𝐻, according to the dominating single gene implication. To 

avoid annotation of pairs of spots based on too little information, we reject those spots whose 

total number of individual gene implications is smaller than the geometric mean of the 

numbers of genes contained in the respective spots. We chose the geometric mean as it 

provides, compared to arithmetic mean, a lower threshold if one of the spots is markedly less 

populated than the other.  

The whole procedure is repeated for all pairwise spot module combinations. By utilizing this 

algorithm we are able to aggregate single gene implication information and to reliably assign 

appropriate Boolean implication relations to the spot modules. 

 

 

Figure 3: Decision tree to identify spot module implications from gene level implications. Boolean 

implications detected and counted for all pairs of genes from two spots are identified first (panel 

a). Then, the obtained numbers are employed in a decision tree to designate the respective 

relation between the two spots evaluated (panel b). Note that the part of the tree referring to 

equivalence-type relations is likewise the part of the opposite-type relations. 

3 Results and Discussion 

 Module selection using SOM 3.1

Expression data was downloaded and preprocessed as described in the methodical section. It 

contains 220 samples from mature aggressive B-cell lymphomas with about 22,000 genes 
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measured per sample. This data was then used to train a self-organising map (SOM, for details 

see [21], [38]). It translates the high-dimensional expression data into meta-data of reduced 

dimensionality. The SOM has a resolution of 50 × 50 = 2,500 metagenes arranged in a two-

dimensional quadratic grid. Each metagene serves as a representative of a cluster of real genes 

with similar expression profiles, whose number varies from metagene to metagene. 

The expression state of each sample can then be visualized in terms of a mosaic image by 

color-coding the grid of metagenes according to their expression values in the respective 

sample. Figure-4a shows examples of such SOM expression portraits assigned to each of the 

molecular cancer subtypes classified independently [4]. These portraits serve as 

transcriptional fingerprints of the respective samples. They show smooth patterns with red and 

blue regions referring to over- and underexpressed genes, respectively. Green colored regions 

represent genes expressed on intermediate levels. The portraits can be directly compared each 

with another because each gene occupies the same position in each of the mosaic portraits. 

Visual inspection of the portraits reveals relatively homogeneous patterns for the main 

subtypes mBL and non-mBL, but also very heterogeneous patterns in the intermediate group. 

These observations are addressed in a previous publication [42]. It is also revealed that the 

portraits expose a significant amount of variation in their patterns and partly resemble both 

mBL and non-mBL characteristics. Please note that we adopted the approved classification of 

Hummel et al.[4], who utilized a linear score for rigorous differentiation of mBL and non-

mBL cases. The lymphoma expression landscape however is continuous and hampers a 

reliable classification of border cases, such as the rightmost portrait of non-mBL in Figure 4a. 

Border cases are found to show patterns in their portraits which cannot be clearly attributed to 

either the mBL or non-mBL subtype or which can be attributed to both subtypes. We will 

address the diversity of lymphoma expression landscapes in another publication. Subtype-

specific portraits are calculated as the mean images averaged over the metagene values in all 

samples of the respective subtype (Figure-4b). The mBL and non-mBL subtypes reveal a 

relatively simple texture with essentially one over- and one underexpression spot in two 

opposite corners of the map. This ‘binary’ spot pattern indicates that genes overexpressed in 

mBL become underexpressed in non-mBL and vice versa. Gene set enrichment analysis 

shows that genes related to the GO-terms ‘cell-cycle’ and ‘DNA-repair’ accumulate in the 

mBL overexpression spot in the top right corner whereas genes related to ‘cell adhesion’ and 

‘inflammation/immune response’ dominate in the non-mBL overexpression spot in the 

opposite corner [42]. Note that also the individual sample portraits show relatively 

homogenous spot patterns with small deviation from the respective mean portrait. 

The genes located in these two corners refer to antagonistic expression modes. In the SOM 

portraits such modules emerge as spots of concertedly over- or underexpressed genes on 

segregated positions. These modules can be identified using a simple threshold criterion 

which selects metagenes with expression values beyond the 98 and 2 percentiles in each 

portrait, respectively [21]. Figure-4c shows the overexpression spot modules detected in the 

lymphoma SOM. The expression profiles of each module are calculated as mean expression 

values averaged over all metagene values of each spot in each of the samples. The profiles of 

the spots in the top-right and bottom-left corners again reveal the antagonistic character of the 

respective expression modules (Figure-4d). In contrast, spots in the bottom-right and top-left 

corners however are virtually unspecific with respect to the subtypes.  

In summary, disjunct modes of strongly over- or underexpressed genes emerge as spots in the 

SOM portraits. According to their particular expression profiles and assigned biological 

function, these modules reflect major expression changes in the data set in agreement with 

their classification into two main molecular subtypes. In the next step, module-related 

switching rules can then be derived from the data. 
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Figure 4: Results of the SOM analysis of the lymphoma data set. Expression portraits of selected 

samples are shown for each of the three subtypes (panel a). Red and blue colors indicate over- 

and underexpression in the samples, respectively, green color indicates intermediate levels of 

gene expression. Average subtype specific expression portraits reveal antagonistic expression 

modes of the mBL and non-mBL subtypes (panel b). Distinct spot-modules are identified (panel 

c), whose expression profiles change in a subtype-specific fashion (panel d). 

 

 Boolean implications between single genes 3.2

Boolean implication analysis is a suited approach for identifying relations between genes 

beyond simple correlation measures. To demonstrate the method we focus on selected 

mBL/non-mBL signature genes published by Hummel et al. [4] which localize in the 

antagonistic spot modules in the top-right and bottom-left corners of the SOM, respectively 

(see small maps in Figure-5a and b. Package KernSmooth is used for contour lines in figures).  

The ranked expression values of the genes CD44 and BACH2 upregulated in non-mBL and 

mBL samples are shown in Figure-5a and b, respectively. The threshold 𝑡 and the surrounding 

‘noise zone’ divide the data into low and high expression values (see the Methods section for 

details). These data are redrawn as pairwise scatterplot, distributing the expression values of 

BACH2 along the 𝑥- and those of CD44 along the 𝑦-coordinates (Figure-5c). Here, the 

thresholds divide the plot into four quadrants and subsequent population analysis determines 

their occupation level. The number and position of the sparsely populated quadrants then 
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defines the type of Boolean implication as described in the Methods section. For this example 

we identified a low-high-relation between BACH2 and CD44 ( 𝐵𝐴𝐶𝐻2𝑙𝑜𝑤 ⇒ 𝐶𝐷44ℎ𝑖𝑔ℎ, LH) 

since CD44 always shows high expression when BACH2 is low, and vice versa, BACH2 is 

always high when CD44 is low. 

PRDM10, another gene upregulated in mBL can be assigned to the opposite relation with 

respect to CD44 (Figure-5d). Note that CD44 is located in the mBL_up spot whereas 

PRDM10 and BACH2 are located in the antagonistic non-mBL_UP spot. Combinations of 

genes from these antagonistic spots are assigned to opposite-type Boolean implications, as 

expected. On the other hand, genes taken from the same spot are assigned to implications of 

the equivalence-type as illustrated in Figure-5e and f for genes selected from the non-

mBL_UP spot. The type of relations for the genes in certain spots can be predicted depending 

on the relative positioning of the spots in SOM map while exposed implications by these 

genes can differ: CD44 exposes equivalence-type relations with NFKIBA and MDFIC, 

however it switches according to the EQV- and LL-implications respectively. In correlation 

analysis two types of relations, namely positive correlation and negative correlation, resolve 

into six different type of relations in implication analysis. Two of these six types, equivalent 

and opposite implications, often have high correlation coefficients whereas other four types, 

high-high, low-low, high-low and low-high implications, can have relatively low correlations 

coefficients (Figure-7d). This property gives Boolean implication analysis the ability to 

capture a bigger space of genewise relations while resolving relations in six qualitative 

classes. 

 Boolean implications between metagenes and between spot modules 3.3

The algorithm to detect Boolean implications from pairs of gene expression profiles can be 

easily applied also to metagene or spot module expression profiles. Using the respective 

metadata instead of the single gene data reduces the number of all pairwise combinations of 

features by four to six orders of magnitude. 

Boolean implications on metagene level are detected using the same algorithm and thresholds 

as for gene level implications (Figure-6a-d, see Materials and Methods for details). Note that 

on the metagene level, a detected implication corresponds to the relation between two sets of 

genes that are represented by the respective metagene profiles. Analogously, implications 

between spots represent the relations between the mean expression profiles of two sets of 

metagenes (see Figure-6e and 6f).  

However using sole mean expression profiles of metagenes in spots is a crude way to extract 

implications between spots since each spot encloses a range from a handful of genes to 

thousands of genes. Therefore we implemented a decision tree for extracting spot level 

implications from gene/metagene level implications (Figure-3, see next section, see Materials 

and Methods for details). Nevertheless positive and negative relations are well conserved on 

both metagene and spot level even after the two steps of dimensional reduction. Metagenes 

enclose similarly behaving genes while spots enclose similarly behaving metagenes, i.e. 

expression profiles of genes are organized in discrete sets of similarly behaving interrelated 

groups. Thus these similarity sets bring forth specific types of Boolean implications amongst 

them that in turn constitute the underlying interaction network. 
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Figure 5: Boolean implication analysis for selected mBL- and non-mBL signature genes. The 

icons show that these genes are located within the regions of the spot-modules mBL-UP and non-

mBL-UP (see small maps within panel b and a, respectively and see Figure-4b and c). Ordered 

expression profiles of non-mBL-UP gene CD44 (panel a) and of the mBL-UP gene BACH2 (panel 

b). Pairwise scatterplots of genes from different (panels c and d) and from the same signature 

(panels e and f) can be assigned to Boolean implications of the opposite- and of the equivalence-

type, respectively. (R package KernSmooth version 2.23-7 is used for the contour lines in Figure-

5 and 6 [43]). 
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The ranked expression values of the metagenes ‘1 × 1’ and ‘50 × 50’ are shown in Figure-6a 

and b. It is clearly seen in Figure 6a that low values of metagene ‘1 × 1’ are enriched by 

mBL-type lymphoma (see red dots) while high values are enriched by non-mBL-type 

lymphoma (blue dots). On the contrary low values of the antagonistic metagene ‘50 × 50’ are 

enriched by non-mBL lymphoma while high values are enriched by mBL lymphoma (Figure 

6b). Not surprisingly these metagenes are located on the opposite corners of the SOM map 

and constitute an opposite type Boolean implication (see inserted maps in Figure-6a, b and c). 

Similarly metagenes that are in a close proximity in SOM map constitute equivalent type 

Boolean implications (demonstrated in Figure-6d). Importantly, we found that the behavior of 

the metagenenes is well preserved also within spot level analysis (Figure-6e and f). 

 Comparing data aggregation before and after implication analysis 3.4

Using exclusively the mean expression profiles of the metagenes or spots reduces the 

diversity of implications seen on the single gene level and thus it possibly represents a 

suboptimal way to extract metagene-metagene and spot-spot implications. We therefore 

implemented a decision tree algorithm which primarily uses information about implications 

from the next lower level, i.e. between the single genes for metagene-level implications and 

between the metagenes for spot-level implications (Figure-3, see next section and Materials 

and Methods for details). Effectively, the decision tree votes for the majority of implications 

observed at the respective lower level. 

Panel a and b of Figure-7 and Figure-8 show the derived spot module implications of the 

opposite and equivalence type derived from gene level and metagene level implication 

analysis, respectively. Opposite type relations are mainly found between more distant spots 

located in opposite corners of the map whereas equivalence type relations are found between 

neighboring and closely located spots owing to the the SOM training algorithm, which tends 

to cluster similar profiles together [21], [41]. This fact is reflected in the frequency 

distribution plot of the number of distances bridged by the six different implications (Figure-

7c and Figure-8c). It shows a clear bimodal shape separating opposite and equivalence type 

relations. Each of the main peaks includes implications between features from the same spot 

(𝐸𝑄𝑈-type) or from the main antagonistic spot pairs (𝑂𝑃𝑃-type) and is flanked by smaller 

peaks caused by implications referring to adjacent spots. 

The distributions of the Pearson correlation coefficients, computed from the respective spot 

module profiles also show this bimodal shape (Figure-7d and Figure-8d): Here, opposite and 

equivalence type relations characterized by negative and positive correlation coefficients, 

respectively. Note that the symmetric 𝑂𝑃𝑃 and 𝐸𝑄𝑉 relations possess larger absolute values 

compared with the asymmetric 𝐿𝐻, 𝐻𝐿, 𝐿𝐿 and 𝐻𝐻 relations. Hence, the explicit 

consideration of the asymmetric relations diversifies the co-expression options and, 

particularly, extends the range of correlation coefficients considered to lower values. 

When using metagene level Boolean implications to deduce the spot module relations, one 

finds a distinctly lower number of mutual connections compared with the single gene 

approach (compare Figure-8 with Figure-7, a and b, respectively). The correlation coefficients 

with regard to the metagene profiles shift to higher absolute values than observed for the gene 

profiles (compare Figure-7d and Figure-8d). This shift is caused by the increased contrast in 

the metadata correlations as shown previously [21]. 
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Figure 6: Boolean implication analysis on metagene and spot levels. Ordered expression profiles 

and scatterplots based on metagene profiles analogous to Figure-5 (panels a-d) and based on spot 

expression profiles (panels e and f). Positions of the metagenes and spots in the SOM map are 

shown in the icons in each of the panels. 
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Finally, Figure-9 shows the implications directly identified using pairs of spot module 

expression profiles. Obviously this option looses a great amount of information during the 

data aggregation from single gene profiles to module profiles, as only very few relations can 

be detected here. When comparing the total number of implications, one finds a strong 

decrease from 21 spot relations detected via gene level implications to 14 relations from 

metagene profiles to only 7 relations from spot module profiles (Figure-10a). Using low level 

gene data to detect implications and afterwards aggregate them to spot relations consequently 

conserves most information. In our particular case we only miss two (opposite-type) relations 

on the single gene level, which can be captured by using metagene level implications sole 

(Figure-10b). Please note that spot pairs are assigned to identical implications on all three 

levels with the exception of three cases (𝑂𝑃𝑃 ↔ 𝐻𝐿, 𝐸𝑄𝑉 ↔ 𝐿𝐿 and 𝐸𝑄𝑉 ↔ 𝐻𝐻). 

 

 

Figure 7: Spot module relations derived from single gene implications. Mapping of the opposite 

and equivalence type relations of the spot modules into the SOM space (panels a and b, 

respectively). Distribution plots of the distances bridged by the six implication types and of the 

according Pearson correlation coefficients of the spot module profiles (panels c and d, 

respectively). Note the greater spot distances and lower correlation coefficients of LH, HL, HL 

and HH implications relative to OPP and EQV implications. 
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Figure 8: Spot module relations derived from metagene implications. See description of Figure-7 

for further details. 

 

 Spot module relations using alternative correlation metrics 3.5

Spot module expression profiles can be also exploited in alternative approaches. Firstly we 

compare the relations obtained by Boolean implication analysis (Figure-11a) with those 

obtained by standard Pearson correlation. Therefore we compute all pairwise correlation 

coefficients of the spot profiles and discard those whose absolute value is below a certain 

threshold. The resulting spot relations are mapped into the SOM space and shown in Figure-

11b. As a second option, we calculate the weighted topological overlap (wTO) between spot 

profile pairs, which is a correlation based measure that additionally considers indirect 

relations between two profiles via third ones [44]. The respective spot maps are shown in 

Figure-11c for varying thresholds. As a first result one can see that the overall patterns and 

also the total number of relations detected mainly concurs when column-wise comparing 

Boolean implications with correlation and wTO relations. For example in the first column, 

implications derived from gene level analysis, correlation with |𝑟| > 0.5 and wTO with 
|𝜔| > 0.35 mainly imply the same spot modules from the lymphoma SOM, whereas the wTO 
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relations accumulate in the mBL- and non-mBL- dominated (the top right and bottom left, 

respectively) corners only. In general, opposite type relations and negative correlation or wTO 

coefficients correspond to diagonal spot pairs. Equivalence type relations and positive 

coefficients in contrast link closely located spots which are mostly found in the corners of the 

SOM. 

 

 

Figure 9: Spot module relations based on spot expression profiles. See description of Figure-7 for 

further details. 

 

With this regard, Boolean implications are an alternative approach to the established 

correlation based methods. They do not only resemble the outcome of Pearson correlation and 

wTO analysis as shown above but also implications preserve more information, as we can 

distinguish six individual types instead of positive and negative correlation relations only. 
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Figure 10: Venn diagrams of spot module relations. Spot module relations derived from single 

gene profile implication analysis (blue circles), from metagene profiles (purple circles) and spot 

module profiles (red circles), respectively. Total numbers for all relations are given (panel a) as 

well as numbers seperated for opposite and equivalence types, respectively (panel b). The 

number of implications markedly decreases if one uses higher levels of data integration for 

extracting implications. 

4 Conclusions 

It is possible to capture logical implications between genes by applying implication analysis 

over all variant gene pairs. Combination of Boolean implication analysis with SOM metadata 

entails the possibility to recover logical relations not only on gene level but also on metagene 

level (implications between sets of genes) and spot module level (implications between sets of 

metagenes) which eventually provides a more general and functional module oriented view 

over the data. 

We proposed an efficient way of combining Boolean implication logic with SOM machine 

learning algorithm. In many cases the number of genes does not render single gene analysis 

feasible. In a data set of 𝑛 genes there are (𝑛
2
) =

𝑛(𝑛−1)

2
 possible implications to consider. 

10,000 to more than 50,000 genes (and splice variants) measured on modern microarrays or 

by high-throughput sequencing result in a number of gene pairs to consider in the order of 

107 to 109. Since the number of genewise relations grows with 𝑛2 reducing the number of 

pairs assessed by identifying “strong” candidates to focus on is worthwhile if not inevitable. 

By incorporating SOM pipeline we consider only variant genes, i.e. genes that change their 

expression state from considerably low values to high values or vice versa. As stated in SOM 

analysis, such genes accumulate in the spot-like regions mostly located in the corners and 

along the edges of the map. Contrary, invariant genes do not change their expression values 

and are consequently undetectable in terms of correlation- or implication-analyses. 

Furthermore metagene and spot profiles presented by SOM provides an overview of the data 

on different levels while increasing efficiency by reducing the dimension of the data. The 

SOM analysis provides a suitable framework to filter uninteresting elements and to improve 

Boolean implication detection. 
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Figure 11: Spot module relations provided by different approaches. Boolean implications derived 

from gene-level relations with differing filter threshold; GM denotes the geometric mean number 

of genes in the respective spot pairs (panel a); spot profiles exceeding varying thresholds in 

Pearson correlation analysis (panel b) and weighted topological (wTO) analysis (panel c), 

respectively. 
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The output of Boolean implication analysis are logical relations of pairs that in turn provides a 

network of implications where genes/metagenes/spots constitute the nodes and edges stand for 

the relations between genes/metagenes/spots. Essentially resultant implication networks have 

a different structure than correlation networks because of their six different edge types. 

Besides, given a temporal ordering in the feature set of the data an implication network is a 

directed network i.e. an implication is not necessarily a two-way logical relation. 

5 Outlook 

Boolean implications can be interpreted as updating rules for the Boolean states of the 

network nodes and can provide a basis for modeling approaches. Particularly when the 

network in hand is well defined identified implications can be used to investigate the state 

space of the system. Also by using the biological functions associated to the genes in the 

network Boolean implication analysis can be used to adress biological questions regarding the 

functional outputs of network. In the case of Burkitt’s lymphoma there are well known key 

players like MYC, ID3 and TCF3. Furthermore the information regarding interactions of 

these key players and their corresponding global biological functions are identified by 

numerous experiments and available. By probing Boolean implications of the genes that take 

part in lymphoma in a given data set,  and investigating the attractors in the state space of the 

network in hand one not only can estimate the biological fate of the system but also identify 

processes to interfere with the network and manipulate it to desired fate. Thus our approach 

can be valuable both to researchers in the field of cancer biology, systems biology and to 

clinical applications. Such an analyse will be addressed in our forthcoming work. 
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