
Engineering Formal Metatheory

Brian Aydemir
University of Pennsylvania
baydemir@cis.upenn.edu

Arthur Charguéraud
INRIA

arthur.chargueraud@inria.fr

Benjamin C. Pierce
University of Pennsylvania
bcpierce@cis.upenn.edu

Randy Pollack
University of Edinburgh
rpollack@inf.ed.ac.uk

Stephanie Weirich
University of Pennsylvania
sweirich@cis.upenn.edu

Abstract
Machine-checked proofs of properties of programming languages
have become a critical need, both for increased confidence in large
and complex designs and as a foundation for technologies such as
proof-carrying code. However, constructing these proofs remains a
black art, involving many choices in the formulation of definitions
and theorems that make a huge cumulative difference in the diffi-
culty of carrying out large formal developments. The representation
and manipulation of terms with variable binding is a key issue.

We propose a novel style for formalizing metatheory, combin-
ing locally nameless representation of terms and cofinite quantifi-
cation of free variable names in inductive definitions of relations on
terms (typing, reduction, . . .). The key technical insight is that our
use of cofinite quantification obviates the need for reasoning about
equivariance (the fact that free names can be renamed in deriva-
tions); in particular, the structural induction principles of relations
defined using cofinite quantification are strong enough for metathe-
oretic reasoning, and need not be explicitly strengthened. Strong
inversion principles follow (automatically, in Coq) from the induc-
tion principles. Although many of the underlying ingredients of our
technique have been used before, their combination here yields a
significant improvement over other methodologies using first-order
representations, leading to developments that are faithful to infor-
mal practice, yet require no external tool support and little infras-
tructure within the proof assistant.

We have carried out several large developments in this style us-
ing the Coq proof assistant and have made them publicly avail-
able. Our developments include type soundness for System F<:

and core ML (with references, exceptions, datatypes, recursion, and
patterns) and subject reduction for the Calculus of Constructions.
Not only do these developments demonstrate the comprehensive-
ness of our approach; they have also been optimized for clarity and
robustness, making them good templates for future extension.

Categories and Subject Descriptors F.4.1 [Mathematical Logic
and Formal Languages]: Mathematical Logic—Mechanical theo-

c©ACM, 2008. This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution. The definitive version will appear
in the proceedings of POPL 2008.

rem proving; D.3.1 [Programming Languages]: Formal Defini-
tions and Theory—Syntax

General Terms Design, Documentation, Languages, Theory, Ver-
ification

Keywords binding, Coq, locally nameless

1. Introduction
Recent years have seen burgeoning interest in the use of proof as-
sistants for formalizing definitions of programming languages and
checking proofs of their properties. However, despite several suc-
cessful tours de force (Appel 2001; Crary 2003; Klein and Nipkow
2006; Leroy 2006; Lee et al. 2007, etc.), the community remains
fragmented, with little synergy between groups and, for newcom-
ers wanting to join the game, a perplexing array of choices between
different logics, proof assistants, and representation techniques.

To stimulate progress on this problem, Aydemir et al. (2005)
proposed the POPLMARK challenge, a set of tasks designed to
stress many of the critical issues in formalizing programming
language metatheory. They laid out three criteria for evaluat-
ing proposed formalization techniques: infrastructure overhead—
formalization overheads, such as additional operations and their
associated proof obligations, should not be prohibitive for large
developments; transparency—formal definitions and theorems
should not depart radically from the usual informal conventions
familiar to a technical audience; and cost of entry—the infrastruc-
ture should be usable by someone who is not an expert in theorem
prover technology.

In this paper, we propose a new style for formalizing program-
ming language metatheory that performs well on all these criteria.
The style builds upon two key ingredients: locally nameless repre-
sentation of syntax involving binders and a cofinite style of quan-
tification for introducing free names in rules dealing with binders.

In locally nameless representation, bound variables are repre-
sented by de Bruijn indices while free variables are represented by
names. This mixed representation combines the benefits of both ap-
proaches, avoiding difficulties associated with alpha-conversion by
ensuring that each alpha-equivalence class of terms has a unique
representation, while supporting formal reasoning that closely fol-
lows informal practice.

The second ingredient is the use of a cofinite quantification of
free names introduced by rules dealing with binders, instead of the
standard “exists-fresh” quantification—these styles are illustrated
by the following variants of the typing rule for abstraction in the

simply-typed lambda calculus (λ→):
EXISTS-FRESH
x /∈ FV(t) E, x:S ` tx : T

E ` abs t : S → T

COFINITE
∀x /∈ L. E, x:S ` tx : T

E ` abs t : S → T

Here, tx is the body of abstraction (abs t) opened up with a free
variable named x. In the second rule, L is some finite set of
names that is chosen when we apply the rule. Just as EXISTS-
FRESH is applicable if there exists some x /∈ FV(t) such that
E, x:S ` tx : T , so COFINITE is applicable if there exists
some L such that ∀x /∈ L. E, x:S ` tx : T . The induction
hypothesis for rule EXISTS-FRESH holds for one particular name
x, which (notionally) comes from the derivation being eliminated
by the induction; if that x is not fresh enough, the only way to
proceed is to reason about equivariance of the typing judgement.
The cofinite rule, on the other hand, asserts from the start that for
E ` abs t : S → T to hold there must be infinitely many
xs with E, x:S ` tx : T ; surely one of them is fresh enough
since only finitely many names could have been used so far. In rare
cases, renaming is necessary for proofs, but it is straightforwardly
supported by the cofinite presentation; the required lemmas may
be easily derived from standard properties such as substitution
and weakening, which are themselves derivable using only the
cofinite definition. These renaming lemmas also provide the core
arguments for the equivalence between the exists-fresh and cofinite
presentations of the relations.

Neither of these ingredients is entirely new. The locally name-
less representation dates back to the introduction of de Bruijn in-
dices. Several strengthened induction principles that avoid manual
renaming have been proposed (Gordon 1994; McKinna and Pol-
lack 1993, 1999; Urban et al. 2007b). The idea of reasoning about
the freshness of names by considering all but those in some finite
set is at the heart of nominal logic (Pitts 2003) and also appears
in definitions of alpha-equivalence by Krivine (1990) and Ford and
Mason (2001). Our contribution lies in the precise way that we
combine and apply these ingredients. In particular, the cofinitely
quantified typing rule for abstraction (presented earlier), which re-
flects both key aspects of our design, does not appear in prior work.
The observation that we can use this formulation to derive renaming
lemmas with little infrastructure is a key point, of both theoretical
and practical interest.

To demonstrate the comprehensiveness of our approach we have
developed several significant examples in the Coq proof assis-
tant (Coq Development Team 2007): proofs of type soundness for
λ→, System F<: (the core of the POPLMARK challenge—parts 1A
and 2A), and ML extended with references, exceptions, datatypes,
recursion and patterns, as well as a proof of subject reduction for
the Calculus of Constructions (including a proof of the Church-
Rosser property). These developments require no external tool sup-
port and could be reproduced with another general purpose theo-
rem prover. Little infrastructure is required between the statement
of the system formalized and the core of the formal reasoning. Fur-
thermore, our formal reasoning faithfully follows informal practice,
preserving the skeletons of proofs and the kinds of arguments in-
volved, unpolluted by details about alpha-conversion or freshness.
We have carefully organized and commented these proof scripts
and made them freely available as starting points for comparison
and extension.1

The paper is organized as follows. Section 2 surveys possible
approaches to representing binding structures, locates the locally
nameless approach in this space, and sketches its history. Section 3
presents a complete specification of λ→ using locally nameless
representation and the standard exists-fresh presentation of the se-

1 http://arthur.chargueraud.org/research/2007/binders/.

mantics. Section 4, the technical meat of the paper, describes the
problem faced by the exists-fresh specification, shows how cofi-
nite quantification solves this problem, and discusses why our so-
lution is significantly better than other concrete approaches. Fi-
nally, Section 5 gives a practical overview of our larger formaliza-
tions. This section also quantitatively compares our developments
to each other and to other publicly available Coq solutions to the
POPLMARK challenge.

2. A Survey of Binding Representations
There are two main categories of approaches to representing and
reasoning about syntax with binding, depending on whether vari-
ables and binders are represented as concrete nodes in first-order
algebraic structures or whether these aspects are “lifted to the met-
alanguage” by representing the bodies of binding constructs as met-
alanguage functions. In each category there are many ingenious
variations, and we do not attempt to be exhaustive in this survey.
Outside the main categories, there is a plethora of hybrid represen-
tations, multi-level representations, . . . , which we do not consider.

2.1 Concrete Approaches
With concrete (or first-order) approaches, variables are typically
encoded using names or natural numbers. Capture-avoiding substi-
tution must then be defined explicitly as a function on terms, and
in the case where bound variables are named, alpha-equivalence
must also be defined explicitly. Concrete approaches can be subdi-
vided roughly in three categories: those using names to represent
variables, those using de Bruijn indices, and those distinguishing
bound and free variables (which may use either names or indices
for each kind of variable).

The most standard representation on paper uses names to rep-
resent variables, generally quotienting raw expressions by some
notion of alpha-equivalence. Although used since the first days of
the lambda calculus, this representation has not proved convenient
for formal developments. For example, naive substitution is not
structurally recursive in this setting but requires well-founded re-
cursion. Nevertheless, the Church-Rosser property in pure lambda
calculus has been proved using named representations by Home-
ier (2001) using HOL, Ford and Mason (2001) using PVS, and
Vestergaard and Brotherston (2003) using Isabelle/HOL (unusu-
ally, Vestergaard and Brotherston reason about unquotiented raw
terms). Other attempts to tame this representation include work by
Stoughton (1988), where simultaneous substitution is defined struc-
turally and puts terms into a canonical alpha-normal form, and by
Hendriks and van Oostrom (2003).

To overcome the clumsiness of explicit alpha-conversion or
quotienting, the first large formalizations of languages with binders
were based on de Bruijn indices (1972) rather than names. In
this approach, each alpha-equivalence class of lambda-terms has a
unique syntactic representation in which variables are encoded us-
ing natural numbers giving the depth of the variable relative to its
binder. Indices greater than the number of enclosing local binders
may indicate a position in some enclosing context such as a typing
context. There is abundant evidence of the effectiveness of this rep-
resentation, from proofs of the Church-Rosser property for lambda
calculus—for example, by Shankar (1988) using the Boyer-Moore
prover, by Huet (1994) in Coq, by Rasmussen (1995) in Isabelle/ZF,
and by Nipkow (2001) in Isabelle/HOL—to harder results such as
strong normalization for System F in LEGO (Altenkirch 1993) and
formalizing Coq in Coq (Barras and Werner 1997). In de Bruijn
representation, the treatment of bound variables incurs minor tech-
nical annoyances (lifting over binders, etc.), while the treatment of
free variables (e.g., variables bound by a typing context) requires
reasoning far from natural informal presentations. For example,
consider the statement of a lemma that says thinning the typing

context (weakening and permuting) preserves a judgement: indices
occurring in the judgement must be updated to match the permuta-
tion of their binding points in the context.

Nominal logic (Pitts 2003) provides another way to address the
problem of alpha-conversion inherent in the named representation.
Urban (2007) and Urban et al. (2007a,b) have adapted these ideas
to standard higher-order logic, and are developing a nominal pack-
age in Isabelle/HOL that provides facilities for formal reasoning
with binders over names. The package helps by automating lan-
guage definitions that equate alpha-equivalent terms, by provid-
ing lemmas about renaming and freshness of names, by deriving
strengthened induction principles that provide name freshness facts
for relations over these languages, and by supporting recursion over
these languages. Some syntactic restrictions must be observed to
use this package. See Section 4.6 for further discussion of the nom-
inal package.

Besides these “homogeneous” concrete approaches—where
there is a single notion of “variable,” either a name or a de Bruijn
index—there is a third category of concrete representations that
uses two distinct syntactic classes, called variables (for locally
bound variables) and parameters (for free, or globally bound vari-
ables). The idea that variables and parameters should be distin-
guished goes back at least to Gentzen (1969) and Prawitz (1965).
Several combinations can be considered, using names, indices, or
levels to represent bound and free variables; of these, two have
been used in the literature.

The first is the locally named representation, which uses dis-
tinct species of names to represent variables and parameters respec-
tively. McKinna and Pollack introduced this technique to formal-
ize Pure Type Systems (PTS) (1993; 1999), following a suggestion
by Coquand (1991). This representation avoids the difficulties of
reasoning about capture-avoiding substitutions: since variables and
parameters are syntactically distinguished, no parameter can ever
be captured by a variable binder during substitution. McKinna and
Pollack also introduced a technique for handling the requirement of
choosing fresh global variables that often occurs in reasoning about
binding (weakening lemmas are a prototypical example of the prob-
lem). By careful choice of definitions, they avoid the need to reason
about alpha-equivalence of bound variables throughout their large
formal body of PTS metatheory. With these techniques, reasoning
about lambda calculus and type theory is straightforward, if heavy.

Nonetheless, the use of names for bound variables is not a per-
fect fit to the intuitive notion of binding: eventually one needs to
reason about alpha-conversion. For example, parallel reduction has
the diamond property concretely in locally named representation,
but beta reduction has this property only up to alpha-conversion
(Pollack 1994b, Section 3.3.6). So Pollack (1994a) suggested that
the McKinna–Pollack approach to reasoning with two species of
variables also works well with a representation that uses names
for parameters and de Bruijn indices for bound variables. This lo-
cally nameless representation, in which alpha-equivalence classes
have canonical representation, was already mentioned in the con-
clusion of de Bruijn’s famous paper (1972). It had been used for
implementation in Huet’s Constructive Engine (1989), and later in
the implementations of the Coq, LEGO (Luo and Pollack 1992),
HOL 4 (Norrish and Slind 2007), Isabelle, and EPIGRAM (McBride
and McKinna 2004) proof assistants.

In the context of formal proofs, Gordon (1994) appears to be
the first to have used locally nameless representation. Rather than
reason directly with locally nameless terms, he builds a represen-
tation of named lambda terms on top of locally nameless terms
and demonstrates how the named terms may be used as a basis
for representing syntax. Using this technique, Gordon formalized
Abramsky’s lazy lambda calculus. Later work by Gordon and Mel-
ham (1996) also uses locally nameless terms as a model for an ab-

stract “axiomatic” representation of named terms. Pollack (2006)
has more recently emphasized the benefits of locally nameless rep-
resentation in the context of the POPLMARK challenge. Locally
nameless representation with (variants of) McKinna–Pollack style
reasoning has been used by several researchers (with several proof
tools) for solutions to the POPLMARK challenge, first by Leroy
(2007) and later by Chlipala (2006) and Ricciotti (2007).

2.2 Higher-Order Approaches
Higher-order representations use the function space of the meta-
logic to encode binding in an object language, allowing issues like
capture-avoidance and alpha-equivalence to be handled once and
for all by the meta-logic, rather than facing them anew for each
object language. There is a bewildering variety of higher-order
approaches, which we survey only superficially.

In higher-order abstract syntax (HOAS) (Harper et al. 1993;
Pfenning and Elliot 1988), the introduction form for lambda-
abstractions has type (term->term)->term, i.e., the lambda con-
structor packages a function of type (term->term), which should
be thought of as the function substituting its argument into the
body of the lambda. Not only are alpha-equivalent terms equal, but
substitution is handled by the meta-language.

HOAS was introduced by Church and developed by de Bruijn,
Martin-Löf, Plotkin, Pfenning, and their co-workers. The modern
form, using dependent types and hypothetical and schematic judge-
ments as well as HOAS term representation, appeared in the Edin-
burgh Logical Framework (LF) (Harper et al. 1993). By design,
LF is a weak type theory to be used as a metalanguage, not sup-
porting inductive definition or primitive recursion. It allows faithful
representation of object languages, where LF itself adds no math-
ematical strength to the object language representation. The use
of LF methodology for metatheory (as opposed to just representa-
tion) has been highly developed by Pfenning and his co-workers;
the implementation of this approach is the Twelf system (Pfenning
and Schürmann 1999), which is widely used and very successful
for formalizing the metatheory of a wide variety of programming
languages (Ashley-Rollman et al. 2005; Lee et al. 2007). The ap-
proach continues to be developed foundationally as well as in prac-
tice (Harper and Licata 2007).

A second main stream of work, weak higher-order encodings,
gives a type such as (name->term)->term to the lambda con-
structor of terms.2 This constructor packages a function of type
(name->term), which should be thought of as a function that takes
a name and returns the instance of the lambda’s body instantiated
with that name. Here, alpha-equivalent terms are equated, but sub-
stitution must be defined as a relation between terms. Despeyroux
et al. (1995) demonstrate an early use of this approach. The ap-
proach has been most developed by Honsell, Miculan, and their
co-workers as the Theory of Contexts (Honsell et al. 2002; Bucalo
et al. 2006).

2.3 Why Locally Nameless?
We have chosen to concentrate on concrete approaches to repre-
sent binding structure. Despite the attractiveness of higher-order
approaches and their demonstrated success in many large develop-
ments, they are, at present, not completely general-purpose. Twelf
is currently the only industrial-strength proof assistant for devel-

2 The technical advantage of the weak variant is that the type of terms can
be given as an inductive datatype. For strong HOAS, due to the negative oc-
currence of term in (term->term)->term, there is no inductive datatype
representing the set of terms. In the weak version, on the other hand, the
type name replaces the negative occurrence of term, so there is a datatype
of weak higher-order terms in, e.g., Coq and HOL. Nonetheless technical
problems arise unless name is a sufficiently abstract type (Honsell et al.
2002).

oping metatheory based on HOAS representations, and it is (in its
current incarnation) strictly limited in its proof-theoretic strength.
The Theory of Contexts is also interesting, but hasn’t yet been taken
up beyond its originators. These are the subject of active research
and may become more generally applicable in the future.

Among the concrete approaches, locally nameless representa-
tion offers the best combination of features. Because free variables
are represented using names, lemmas are stated and proofs struc-
tured just as they are with the standard representation using names,
making locally nameless developments intuitive. In particular, the
shifting operations that clutter both statements and proofs in a pure
de Bruijn setting are avoided. Because bound variables are repre-
sented using indices, each alpha-equivalence class of lambda terms
has a unique representation, thus avoiding the difficulties associated
with alpha-equivalence. Finally, because bound and free variables
are syntactically distinguished there is no issue of variable capture,
and substitution can be defined by simple structural recursion.

These observations motivate the choice of the locally nameless
representation. The next section presents this style in detail.

3. Locally Nameless Representation
In this section, we describe locally nameless representation, using
λ→ as a running example. All the material presented is formal, in
the sense that we have implemented it in Coq.3 We write ⇒ for
logical implication.

3.1 Definitions
The fundamental idea of the locally nameless approach is to dis-
tinguish bound from free variables, using de Bruijn indices for the
former and names for the latter. Figure 1 presents a locally name-
less specification of λ→. An occurrence of a bound variable is rep-
resented as (bvar i) where i is a natural number index denoting the
number of enclosing lambda abstractions that must be traversed be-
fore reaching the abstraction binding that variable. Abstractions do
not bind names; for example, (abs (bvar 0)) is the identity func-
tion.

In its raw form, this representation is not isomorphic to ordinary
named lambda terms because a bound variable may not resolve to
any binder. For example, (abs (bvar 2)) does not represent any
lambda-term. We therefore define a predicate, (term t), on pre-
terms (the syntactic objects defined by the grammar in Figure 1)
that selects the locally closed pre-terms—or just terms—in which
all indices resolve to binders.

The key operation on pre-terms is opening an abstraction by in-
stantiating a bound variable with a term. If (abs t) is an abstraction
and u another term, then the result of opening the abstraction with
u, written tu, is formed by replacing in the body t all bound vari-
ables that point to the outermost lambda with u. Figure 1 gives the
structurally recursive definition of the open function; the idea is to
explore the term, keeping track of the current number of binders
passed through.4 One use of the open operation is in the conclusion
of the beta reduction rule, RED-BETA, near the bottom of the figure.

The open operation is also frequently applied to a free variable;
we call this specialized version variable opening, which we write
with abuse of notation as (tx) instead of (tfvar x). Variable opening
is used when passing through a binder to turn the bound variable
into a free variable. In a named representation, we may have our
hands on an abstraction (abs x t) and wish to talk about its body
t. With the locally nameless representation, the abstraction would

3 The corresponding development is contained in files STLC Core *.v.
4 Experts will note that this definition of open works correctly only when
zero is the only unbound index. The definition can be generalized to allow
multiple binders to be opened simultaneously as explained in Section 5 in
the paragraph about our ML development.

Syntax:

S, T ≡ A | T1 → T2

t, u, w ≡ bvar i | fvar x | app t1 t2 | abs t
E, F,G ≡ ∅ | E, x:T

Open: tu ≡ {0→ u} t, with

{k → u} (bvar k) = u
{k → u} (bvar i) = bvar i when i 6= k
{k → u} (fvar x) = fvar x
{k → u} (app t1 t2) = app ({k → u} t1) ({k → u} t2)
{k → u} (abs t) = abs ({(k + 1)→ u} t)

Free variables:
FV(bvar i) = ∅
FV(fvar x) = {x}
FV(app t1 t2) = FV(t1) ∪ FV(t2)
FV(abs t) = FV(t)

Locally closed terms:

term (fvar x)
TERM-VAR

term t1 term t2

term (app t1 t2)
TERM-APP

x /∈ FV(t) term (tx)

term (abs t)
TERM-ABS

Well-formed environments (no duplicate names):

ok ∅
OK-NIL

ok E x 6∈ dom(E)

ok (E, x:T)
OK-CONS

Typing:
ok E (x:T) ∈ E
E ` fvar x : T

TYPING-VAR

E ` t1 : S → T E ` t2 : S

E ` app t1 t2 : T
TYPING-APP

x /∈ FV(t) E, x:T1 ` tx : T2

E ` abs t : T1 → T2
TYPING-ABS

Call-by-value evaluation:

term (abs t)

value (abs t)
VALUE-ABS

term (abs t) value u

app (abs t) u 7−→ tu
RED-BETA

t1 7−→ t′1 term t2

app t1 t2 7−→ app t′1 t2
RED-APP-1

value t1 t2 7−→ t′2

app t1 t2 7−→ app t1 t′2
RED-APP-2

Type soundness lemmas (preservation and progress):

E ` t : T ⇒ t 7−→ t′ ⇒ E ` t′ : T

∅ ` t : T ⇒ (value t ∨ ∃t′, t 7−→ t′)

Figure 1. Locally nameless presentation of λ→

be written (abs t); to talk about its body as a term (rather than a
pre-term with an unbound index), we open t with some fresh name
x. A typical example of variable opening appears in the typing rule
for abstractions, TYPING-ABS.

In variable opening, the chosen variable should not already
appear free inside the term. Otherwise, the operation would be a
form of variable capture: the name being given to the index, a
bound variable, would be the same as a free variable. Therefore,
the rule TYPING-ABS also includes the premise x /∈ FV(t),5 which
uses the free variable function to collect the set of free variables in
a pre-term. Like open, this function is defined by simple structural
recursion and need not worry about confusing free and bound
variables—all variable names in the term are free, since bound
variables are represented by indices.

To state the typing judgement of λ→, we need to formalize
typing environments. In Figure 1, environments are concretely
represented as association lists, for which we assume some stan-
dard operations. The concatenation of two environments is written
(E, F). The lookup of a variable in an environment is expressed by
the predicate (x:T) ∈ E, which holds when (x, T) is the rightmost
pair of E whose first component is x. Finally, a variable is fresh
for an environment, written x /∈ dom(E), when that variable does
not appear in the first component of any pair in E. In principle, the
association list representation allows multiple assumptions for the
same variable, but our typing rules ensure that environments partic-
ipating in derivable judgements are well formed (ok) in the sense
that a given variable is bound at most once in a given environment.

The final portion of Figure 1 completes the definition of λ→ by
stating the properties we wish to prove: the standard preservation
and progress lemmas. The figure, as a whole, forms our “trusted
base” of definitions: one must believe in the correctness of every-
thing stated in the figure in order to believe that a formal proof of
type soundness is really about one’s informal notion of λ→. We
discuss this issue in additional detail in Section 3.4.

3.2 Substitution
The definition of λ→ depends only on the open and FV operations.
In proofs, however, the operation of free variable substitution,
replacing free names with terms, is also needed. Written [x→ u] t,
it is defined by structural recursion in Figure 2. As in the definition
of open, there is no arbitrary choice of name for the bound variable
in the abstraction case, so we need not worry that this choice will
affect the result. Therefore, the behavior of substitution is natural
and easy to reason about.

The properties of the substitution function, shown in the bottom
portion of Figure 2, are fundamental when working with a locally
nameless representation. Lemma subst fresh states that substitu-
tion for an unused variable has no effect, and lemma subst open
states that substitution distributes over the opening operation. The
remaining two lemmas are immediate corollaries of the former
two. Lemma subst open var permutes a substitution with variable
opening, and lemma subst intro decomposes an open operation
into a variable opening operation and a substitution. Examples of
when these lemmas are used can be found in the proof of the substi-
tution lemma for λ→ (Section 4.1) and in the proof of a renaming
lemma (Section 4.2).

We occasionally need a related operation—intuitively, a recip-
rocal of variable opening—that abstracts the name x from the term
t, replacing it with a bound variable. We call this operation variable
closing and define it in Figure 3, again by structural recursion.

5 The rule TYPING-ABS could also explicitly include a premise to ensure
that x does not appear in the domain of the environment E. However, that
restriction is already implied by the second hypothesis.

Substitution of a term for a free name:
[z → u] (bvar i) = bvar i
[z → u] (fvar z) = u
[z → u] (fvar x) = fvar x when x 6= z
[z → u] (app t1 t2) = app ([z → u] t1) ([z → u] t2)
[z → u] (abs t) = abs ([z → u] t)

Properties of substitution:

subst fresh x /∈ FV(t) ⇒ [x→ u] t = t

subst open [x→ u] (tw) = ([x→ u] t)([x→u] w)

when term u
subst open var [x→ u] (ty) = ([x→ u] t)y

when x 6= y and term u
subst intro [x→ u] (tx) = tu

when x /∈ FV(t)

Figure 2. Substitution

Close: \xt ≡ {0← x} t, with

{k ← x} (bvar i) = bvar i
{k ← x} (fvar x) = bvar k
{k ← x} (fvar y) = fvar y when x 6= y
{k ← x} (app t1 t2) = app ({k ← x} t1) ({k ← x} t2)
{k ← x} (abs t) = abs ({(k + 1)← x} t)

Figure 3. Variable Closing

3.3 Working With Local Closure
We use an inductive definition of local closure, given in Figure 1. A
bound variable on its own is never locally closed: there is no case
for (bvar i). An abstraction is locally closed if the body of that
abstraction, once opened up with a fresh name, is locally closed.6

There are alternative ways to define local closure, but we favor
this style which is similar to the VClosed relation of McKinna
and Pollack (1993). As they point out, this definition provides a
structural induction principle for locally closed terms:

∀x. P (x)
∀ t1 t2. P (t1) ⇒ P (t2) ⇒ P (app t1 t2)
∀x t. x /∈ FV(t) ⇒ P (tx) ⇒ P (abs t)

∀t. term t ⇒ P (t)

This definition can be used in many different logics: intensional or
extensional, dependent types or simply typed HOL.7

Although the relations defining the semantics of λ→ in Figure 1
are formally defined over pre-terms, these relations actually include
only locally closed terms and the basic operations preserve local

6 The freshness assumption is not actually required for this judgement; we
include it to maintain the invariant that a term is never opened with a name
that occurs free in that term.
7 In extensional higher order logic the (non-empty) predicate term can be
made into a type of locally closed terms. In intensional dependent type
systems (including Coq), this construction isn’t available. However, in such
systems we can define the inductive family of pre-terms indexed by the set
of bvars occurring free (e.g. McBride and McKinna (2004); for discussion
of inductive families see Dybjer (1994)). Then the section of this family
indexed by the empty set of bvars is exactly the locally closed terms.
Improvements to our style may be possible along these lines, but for the
moment we stick with the representation given above, for its simplicity of
use and uniformity of presentation across different logics.

closure.
term (abs t) ∧ term u ⇒ term (tu)
term u ∧ term t ⇒ term ([x→ u] t)
E ` t : T ⇒ term t
t 7−→ t′ ⇒ term t ∧ term t′

We formulate the definitions in this way for two reasons. First, it is
required for the adequacy of our formalization: only locally closed
terms correspond to alpha-equivalence classes of ordinary named
terms. Second, some useful properties of the definitions are true
only for locally closed terms.8 The typing relation ensures local
closure of its subject without any local closure premises, but not
every relation of interest is this clean. For example, to ensure this
property of small-step evaluation, the definition includes several
local closure premises. In general, such premises are only required
at the leaves of the definition: e.g., we do not need a premise
(term t) if there is already a premise (value t), since the latter
implies the former.

Similarly, because our definitions guarantee local closure, we
usually do not need to add local closure hypotheses to the state-
ments of lemmas and theorems. For example, the “substitution pre-
serves typing” lemma

E, z:S, F ` t : T ⇒ E ` u : S ⇒
E, F ` [z → u] t : T

requires none because the typing relation ensures that t, u, and
[z → u] t are all locally closed. As a result, even though the use of
the nameless representation means that we must be careful about
local closure, the management of this predicate does not require a
significant departure from common informal practice.

3.4 Adequacy
Why should you believe this mechanized, formal representation of
λ→ is “correct,” i.e., expresses your understanding of the rigorous,
informal system? This is the question of adequacy of the represen-
tation, set out by Harper et al. (1993) in their context of HOAS.
(See also (Harper and Licata 2007) for a more recent take.) First,
note that it is an informal question, because it involves the relation-
ship between an informal thing and a formal thing. No matter how
much faith you put in Coq, no Coq proof will completely settle this
question.

Nonetheless, formal proofs are useful for this question in three
ways. First, you may prove that the formalization has the proper-
ties you expect from the informal system and does not have un-
expected properties. E.g., our Coq representation of λ→ is shown
to have Church–Rosser, weakening, subject reduction, etc., some
of which is discussed below. (You must also be convinced that our
formal statements of these properties are correct.) If you think our
rule TYPING-ABS requires a stronger side condition, prove your
expected rule is admissible in our system. Second, you may prove
some formal relationship with another formalization of the same in-
formal system that you, and other readers, believe to be adequate,
e.g., that our formalization is related to a pure de Bruijn representa-
tion in some way (but we haven’t done that). Finally, if intensional,
impredicative, constructive type theory is just too weird, you may
carry out the same representation and its development in some other
proof system. We have avoided using special properties of Coq or
its logic, and our style could be carried out in HOL, NuPrl, PVS,
etc.

Harper et al. (1993) ask that there be a compositional bijection
between the informal syntactic entities (terms, formulas, . . .) and
some collection of entities of the formal representation. (They also
note this may be taken to have different meanings: e.g., adequacy

8 These include both low-level technical properties such as subst open and
more interesting properties such as reflexivity of subtyping in System F<:.

for theorems versus adequacy for derivations.) In our setting, you
can carry this out (on paper, not in Coq) with a fairly simple
bijection.

4. Cofinite Quantification
Although the definitions in the previous section adequately repre-
sent λ→, they yield insufficiently strong induction principles: in
many situations we must rename the variable used to open an ab-
straction to complete a proof. The need to reason about renaming
motivates our use of “cofinite quantification” for inductively de-
fined relations.

In this section, we present a complete style of proof devel-
opment based on cofinite quantification. We first explain cofinite
quantification and give a new definition of λ→ using it. Defini-
tions in this style are sufficient, by themselves, to develop signif-
icant amounts of metatheory—e.g., to prove weakening and sub-
stitution results—since they naturally balance strong induction and
inversion principles with useful introduction forms. In a few situa-
tions, however, renaming lemmas are required to build derivations
using the cofinitely quantified rules. We show how these lemmas
can be derived directly from weakening and substitution. Finally,
to be confident that relations defined with cofinite quantification
are adequate encodings of λ→, we use renaming to show that they
are equivalent to their counterparts shown in Figure 1.

Having described our complete style of development, we then
observe that some significant streamlining is possible, notably in
cases where one believes in the adequacy of the cofinite presenta-
tion of a relation without requiring a formal proof of equivalence
with the “exists-fresh” variant. We conclude the section with com-
parisons to previous work, arguing that the added value of our ap-
proach is significant in each case.

4.1 Stronger Induction Principles
The definitions of the local closure and typing relations in Figure 1
use an “exists-fresh” style of quantification. When an abstraction is
opened in the premise of a rule (TERM-ABS and TYPING-ABS), the
name used in the premise is required to be fresh for the body of the
abstraction. Thus, to build a derivation using one of these rules, it
suffices to show that there exists a single sufficiently fresh name for
which the premise holds. The premises of rules written in this way
are easy to satisfy, making them ideal introduction forms.

However, such rules give rise to weak elimination forms (in-
version and induction principles). The fact that the premises of a
rule defined using exists-fresh quantification need only hold for one
particular name means that the corresponding induction hypothesis
also holds for one particular name. That name will only be as fresh
as the premise of the rule requires, which may not be enough.

For example, consider the proof of the weakening lemma for
the typing relation, which allows one to insert additional typing
assumptions anywhere into a typing environment:

typing weaken :
E, G ` t : T ⇒ ok (E, F, G) ⇒
E, F, G ` t : T

When proving this by induction on the given typing derivation, in
the case for TYPING-ABS we are given a derivation ending with

x /∈ FV(t1) E, G, x:T1 ` t1x : T2

E, G ` abs t1 : T1 → T2

and an induction hypothesis

ok (E, F, G, x:T1) ⇒ (E, F, G, x:T1 ` t1x : T2)

and we must derive

E, F, G ` abs t1 : T1 → T2

termc (fvar x)
C-TERM-VAR

termc t1 termc t2

termc (app t1 t2)
C-TERM-APP

∀x /∈ L. termc (tx)

termc (abs t)
C-TERM-ABS

ok E (x:T) ∈ E
E `c fvar x : T

C-TYPING-VAR

E `c t1 : S → T E `c t2 : S

E `c app t1 t2 : T
C-TYPING-APP

∀x /∈ L. (E, x:T1 `c t
x : T2)

E `c abs t : T1 → T2
C-TYPING-ABS

Figure 4. Local closure and typing using cofinite quantification

for an arbitrary F . By TYPING-ABS, it suffices to derive

E, F, G, y:T1 ` t1y : T2 ,

for some name y /∈ FV(t1). Intuitively, we want to use y = x,
since the induction hypothesis applies to x. However, the given
typing derivation shows that t1x is well typed in the environment
(E, G, x:T1), so we can only derive that x is fresh for (E, G). We
need to type t1x in the extended environment (E, F, G, x:T1), but
x is not guaranteed to be sufficiently fresh for that environment as
it could appear in F .

The particular name x appearing in the induction hypothesis is
(notionally) the name that occurs in that position of the particular
derivation of E, G ` t : T being eliminated in the proof. In an
informal proof, we avoid the problem by assuming this derivation
uses sufficiently fresh names. (Depending on our informal view,
this is usually justified by appeal to the Barendregt Variable Con-
vention (1984), which allows us to assume that the name of the
bound variable in the abstraction case is sufficiently fresh.)

Our solution is to strengthen the induction principle for the
typing relation by changing its definition to the one at the bottom of
Figure 4. This definition differs only in the rule for abstractions, C-
TYPING-ABS. This new rule intuitively states: “to show that (abs t)
is well typed it suffices to choose some finite set of names, L,
and show that tx is well-typed for every x not in L.” We say that
this definition of the typing relation uses “cofinite quantification”
since we must show that the premise of C-TYPING-ABS (“C” for
“cofinite”) holds for all but finitely many names. The set of names
L may be different for each use of the rule. To similarly strengthen
the structural induction principle for terms, we redefine term in the
cofinite style at the top of Figure 4, and replace all references to
term in the reduction relation with this one. Although this new
definition of λ→ differs from the one given in Figure 1, it is
equivalent, as we show in Section 4.3.

Using cofinite quantification in the rules provides a stronger
induction principle because, in the cases that open abstractions, the
induction hypotheses will hold for all names except those in some
finite set L, rather than just for a single name. On the other hand,
a rule defined using cofinite quantification is nearly as easy to use
for introduction as the exists-fresh version because L can include
the finitely many names that could potentially lead to clashes.

Consider again the proof of the weakening lemma—this time,
for the cofinite typing relation `c. In the case for C-TYPING-ABS,

we are given the assumption

∀x /∈ L′. (E, G, x:T1 `c t1
x : T2)

for some finite set of names L′, and an induction hypothesis

∀x /∈ L′. ok (E, F, G, x:T1) ⇒
E, F, G, x:T1 `c t1

x : T2 ,

and we must derive

E, F, G `c abs t1 : T1 → T2 .

By C-TYPING-ABS, it suffices to find an L for which we can show

∀x /∈ L. (E, F, G, x:T1 `c t1
x : T2) .

Choosing L = L′ ∪ dom(F) does the trick: any x /∈ L is also not
in L′, so the induction hypothesis directly gives us the result.

As an additional example of the usefulness of the stronger
induction hypothesis, we prove the standard “substitution preserves
typing” lemma for the cofinite typing relation:

typing subst :
E, z:S, F `c t : T ⇒ E `c u : S ⇒
E, F `c [z → u] t : T .

The proof of this lemma also demonstrates the ease of working with
substitution in a locally nameless setting. It proceeds by induction
on the given typing derivation for t. In the case for C-TYPING-ABS,
we have a derivation that ends in

∀x /∈ L′. (E, z:S, F, x:T1 `c t1
x : T2)

E, z:S, F `c abs t1 : T1 → T2

for some finite set of names L′, and an induction hypothesis

∀x /∈ L′. (E, F, x:T1 `c [z → u] (t1
x) : T2) ,

and we must derive

E, F `c [z → u] (abs t1) : T1 → T2 .

By the definition of substitution, we simplify the substitution to
abs ([z → u] t1). Then to apply C-TYPING-ABS, we must find an
L for which we can show

∀x /∈ L. (E, F, x:T1 `c ([z → u] t1)
x : T2) .

We use subst open var to write ([z → u] t1)
x as [z → u] (t1

x)
(to match the induction hypothesis). To do this rewriting, we need
x and z to be distinct. Since the induction hypothesis holds only for
x /∈ L′, we choose L = L′ ∪ {z}.

In this proof and in the proof of weakening, we carefully chose
L when applying C-TYPING-ABS to create a new typing derivation.
In practice, we use a tactic to instantiate L with the set of all names
appearing in the current proof context: intuitively, showing that a
judgement holds for fewer names is easier than showing that it
holds for more.

4.2 Renaming
There are a few situations in which we need to apply a derivation
rule with a cofinitely quantified premise but only know that this
premise holds for one particular fresh name. Alternatively, know-
ing that an abstraction type checks, we may wish to use inversion
to show that the body of an abstraction type checks with a particu-
lar name, but we do not know that that particular name is excluded
from the set L used with that invocation of C-TYPING-ABS. In such
situations, we need to explicitly invoke the fact that our judgments
are equivariant through a renaming lemma. We present now an ex-
ample of such a situation and explain how to prove the renaming
lemma by reusing the corresponding substitution lemma.

Suppose that we are trying to show that type checking is decid-
able.9 10

typing decidable :
term t ⇒ ok E ⇒ (E `c t : T) ∨ ¬(E `c t : T)

We prove this result by induction on term t. Consider the case for
abstractions (where t = abs t1) with an arbitrary environment E
and an arrow type (where T = T1 → T2). Here we are given
an induction hypothesis that states that type checking the body is
decidable (for some finite set L′).

∀x /∈ L′. ∀E′ T ′,
ok E′ ⇒ (E′ `c t1

x : T ′) ∨ ¬(E′ `c t1
x : T ′)

At this point we must determine whether the body type checks to
know whether the abstraction should type check. So we pick an
arbitrary fresh variable, x /∈ L′ ∪ FV(t1) ∪ dom(E), and consider
the two cases that arise from instantiating E′ with (E, x:T1) and
T ′ with T2.11 If the body does type check, we have a derivation of

E, x:T1 `c t1
x : T2 .

However, to show that the abstraction type checks, using rule C-
TYPING-ABS, we must show that there is some L such that

∀ y /∈ L. E, y:T1 `c t1
y : T2 .

Although x was arbitrary, we do not know whether the particular
variable that we chose influenced whether the body type checked.
Therefore, we complete the proof with the help of a renaming
lemma that asserts that typing judgments are stable under certain
renamings:12

typing rename :
x /∈ (dom(E) ∪ FV(t1))⇒ E, x:T1 `c t1

x : T2 ⇒
∀ y /∈ (dom(E) ∪ FV(t1)). E, y:T1 `c t1

y : T2

This renaming lemma allows us to go from a typing derivation
for a single variable x, to a typing derivation for a cofinite set of
variables. Using this lemma and choosing L′ = dom(E)∪ FV(t1)
lets us complete the decidability proof.

The renaming lemma is simply a consequence of properties
(substitution and weakening) that we have already proven about
the cofinite typing judgement. Importantly, showing these proper-
ties does not require renaming. We can derive typing rename as
follows. If x = y, then there is nothing to do. Otherwise, we rewrite
the conclusion using subst intro as

E, y:T1 `c [x→ fvar y] (t1
x) : T2 .

By the substitution lemma, typing subst, it suffices to show that

1. E, y:T1 `c fvar y : T1 and

2. E, y:T1, x:T1 `c t1
x : T2 .

9 Coq is a constructive logic, so a proof of this lemma is an algorithm that
produces either a typing derivation, or a proof that one isn’t possible.
10 The simplicity of the example requires a slight change to the formaliza-
tion of λ→, to annotate applications (app) with the argument type. This
change permits the proof to go through in the application case, but is other-
wise independent of binding.
11 The variable x must be fresh for L′ for the induction hypothesis to apply
and must be fresh for dom(E) so that ok (E, x:T1). We also include
FV(t1) to maintain the invariant that terms are only opened with fresh
variables.
12 While the freshness condition on y 6∈ dom(E) ensures that (E, y:T1)
is well-formed, the freshness condition x 6∈ dom(E) could be derived with
some work from the second hypothesis; nevertheless we we choose to stick
to a simpler and symmetric presentation.

To show (1), we use C-TYPING-VAR. To show (2), we use the weak-
ening lemma, by which it suffices to show that E, x:T1 `c tx :
T2. This result follows from the assumptions of typing rename.

In our experience, renaming lemmas are rarely needed. Aside
from typing decidable, the only situations in our developments
where they are required are in the proofs of confluence for beta
reduction in the lambda calculus and the Calculus of Constructions.
In these proofs, the conclusion of the theorem is an existential
statement: “there exists a common reduct. . . .” The cases which
require renaming involve rules with binding, where we have an
induction hypothesis of the form “for all x not in L′, there exists
t such that . . . ” which we need to use to prove a statement of the
form “there exists t such that for all y not in L,” The induction
hypothesis is strictly weaker than the statement we are trying to
prove. For each name x, it gives us an object t for which some
relation holds. We must use the renaming lemma for that relation
to show that the relation holds for all sufficiently fresh names y.

4.3 Equivalence of Exists-Fresh and Cofinite Definitions
At this point we have defined two sets of rules for λ→: one con-
sisting of the original exists-fresh definitions, which corresponds
directly to the “paper presentation,” and one that uses cofinite quan-
tification, which yields stronger induction principles. To be confi-
dent that the cofinite definitions are adequate, we verify (formally)
that they define the same relations as the exists-fresh variants.13

Note that these proofs of equivalence are straightforward conse-
quences of renaming lemmas.

Let us take the typing relation as an example. The theorem to
prove is the following:

E `c t : T ⇔ E ` t : T .

Both directions are straightforward inductions. The TYPING-ABS
case of the⇐ direction is the only interesting case, where we must
show (E `c abs t1 : T1 → T2) from the induction hypothesis
(E, x:T1 `c t1

x : T2) and an assumption (x /∈ FV(t1)). This
case follows by applying C-TYPING-ABS, instantiating L to be
(FV(t1) ∪ dom(E) ∪ {x}). We are left with the subgoal

∀y /∈ L. (E, y:T1 `c t1
y : T2)

and conclude using typing rename.

4.4 Streamlining Developments
In general, then, developing metatheory in the locally nameless
style involves the following steps.

1. State definitions using exists-fresh quantification.

2. Restate the definitions using cofinite quantification.

3. Prove basic lemmas, such as subst intro.

4. Prove substitution and weakening lemmas.

5. Prove renaming lemmas.

6. Prove the equivalence of the cofinite and exists-fresh presenta-
tions.

However, we can sometimes get by with even less. To begin with,
observe that the exists-fresh definitions are needed only in the first
and last steps above. The main reason for stating the exists-fresh
definitions is to check (informally) that the cofinite definitions ad-
equately encode the relations of interest. Thus, it is only necessary
to state the exists-fresh definitions for relations whose adequacy is
crucial—those relations that appear hereditarily in the statements
of theorems of interest. The style can be streamlined by omitting

13 The formal proofs can be found in file STLC Core Adequacy.v.

steps 1 and 6 for definitions of technical relations that are intro-
duced only to help with proofs, as long as the equivalence of the
existential and universal forms of definition is not actually needed
in proofs (see Section 4.2).

In fact, the style can be streamlined further, according to need
and personal taste. One may (after gaining some familiarity) feel
convinced that the cofinite definitions are adequate encodings of
one’s informal ideas, without the need of a formal proof of equiva-
lence with their “more obviously adequate” exists-fresh versions.14

In this case, steps 1 and 6 can be omitted. By doing this, one may
be risking adequacy of representation, but one is not risking con-
sistency: the soundness of cofinite-quantified relations checked by
Coq is no more in question than the soundness of Coq itself.

Finally, if we omit step 6, we can then prove renaming lemmas—
step 5—only as needed, rather than going to the trouble of stating
and proving them for all relations. Indeed, as we described in Sec-
tion 4.2, our experience has been that they are rarely needed.

In short, the core of our style is to define relations using cofinite
quantification and to reason about those particular definitions, i.e.,
steps 2 through 4. The remaining steps need not be carried out for
every relation.

4.5 Comparison
As we mentioned in Section 2, we are not the first to propose a
locally nameless representation for languages with binders. Nev-
ertheless, our style of formal reasoning using this representation
differs from previous work in important ways, requiring much less
infrastructure as a result. In this subsection, we give a comparison
to the styles used by Gordon (1994), McKinna and Pollack (1993;
1999), and Leroy (2007). To obtain a meaningful comparison, we
sometimes apply their styles to our definitions.

Gordon was the first to use a locally nameless representation
for formal reasoning about binders: he used them as a concrete
datatype upon which to erect a type of named terms up to alpha
equivalence. In contrast to our judgements (both the exists-fresh
and cofinite versions), his are stated using the close operation in-
stead of open. For example, Gordon’s local closure rule for abstrac-
tion (in our notation) is:

term t

term (abs (\xt))

Gordon observed that the rule induction principle arising from this
form is “too weak” (Gordon 1994, Section 4) in that renaming a
variable with a fresh name is sometimes required. He derives a
strengthened induction principle by well-founded induction on the
length of a term (as is standard). Then, to avoid further reasoning
about length, he uses this strengthened induction principle to derive
another strengthened induction principle that picks a name fresh for
some finite set. However, Gordon’s strengthened induction princi-
ple is not the same as that arising from our form of cofinite quan-
tification, since the induction hypothesis only applies to a single
variable in the abstraction case. In this respect, Gordon’s strength-
ened principle is more similar to that of Urban et al. (2007b) than to
ours. We get a stronger induction principle and stronger inversion
principles automatically from the cofinite quantified forms.

McKinna and Pollack (1993, 1999) proposed a style of develop-
ment for working with locally named terms. The most significant
difference from our style is that it obtains strengthened induction
principles by stating universal definitions of inductive relations,

14 It is worth emphasizing that the exists-fresh versions are more obvi-
ously adequate, in a technical sense: they can be formalized in a very weak
theory—Primitive Recursive Arithmetic—while cofinite presentations in-
volve rules with “infinitely many hypotheses” that cannot be formalized in
any conservative extension of PRA.

which quantify bound variables over as many names as possible.
For example, they would state the typing rule for abstractions as
follows:

∀x /∈ dom(E). (E, x:S `a tx : T)

E `a abs t : S → T
A-TYPING-ABS

This form of quantification is natural, as there is no arbitrary choice
of fresh name in rule A-TYPING-ABS, hence there is at most one
derivation of a judgement E `a t : T , and the associated in-
duction principle is as strong as possible. The problem with rela-
tion `a is that rule A-TYPING-ABS is too weak as an introduction
rule, since it requires its premise to hold for every sufficiently fresh
name, where cofinite quantification (rule C-TYPING-ABS) allows a
finite number of problematic names to be excluded. In McKinna-
Pollack style one must prove the equivalence between ` and `a

(at significant cost in infrastructure) before metatheoretic results—
step 4 in our style—can be developed, since ` is too weak in elim-
ination and `a is too weak in introduction for either to prove both
weakening and substitution lemmas for themselves. Thus our strat-
egy for proving equivalence between definitions, which piggybacks
on standard metatheoretic results, fails in the McKinna-Pollack
style.

Leroy’s locally nameless solution to the POPLMARK Challenge
uses McKinna and Pollack’s ideas. He takes universal definitions as
the official ones, obtaining strong induction principles “for free”,
and does not explicitly define the exist-fresh definitions at all.
However, to make his proofs go through he needs to show that
exists-fresh forms are admissible for the universal forms. E.g.,
Leroy proves the following lemma for his universally quantified
typing relation:

t abs’ :
x /∈ FV(t) ⇒ E, x:T1 `a tx : T2 ⇒
E `a abs t : T1 → T2.

Such lemmas, which are essentially equivalent to showing that `
and `a define the same relation, must be stated and proved for every
rule with binding in the development. The proof of such lemmas
requires a significant amount of infrastructure related to renaming,
so Leroy’s style is a minor streamlining of the McKinna-Pollack
style.

4.6 Nominal Isabelle and Local Representation
The nominal Isabelle package (Urban 2007; Urban et al. 2007a,b)
supports representation in Isabelle/HOL of languages with bind-
ing (as an extended notion of datatype) using a single species of
name for both bound and free variables. Using the HOL type defi-
nition facility, the package arranges that HOL equality of terms in
these represented languages is up-to alpha equivalence, while users
need not define alpha equivalence or see any quotient structure. The
package supports multiple classes of names (e.g., type variables
and term variables) in mutually inductive datatypes (e.g., terms and
dependent types) and multiple relations on them (e.g., typing and
reduction). Using the Isabelle typeclass facility, the package au-
tomatically provides definitions of name freshness and name per-
mutation (renaming) polymorphic over these multiple aspects of a
formalization. Importantly, given some syntactic restrictions on the
represented languages, the package automatically derives equivari-
ance lemmas and strengthened induction principles for formalized
languages. The nominal package involves no axiomatic extension
to Isabelle/HOL, hence is as safe as Isabelle/HOL itself. This nom-
inal representation is a serious alternative to our style for users
who want to do formal metatheory. However it is based on a great
deal of bespoke infrastructure only available in Isabelle/HOL, there
are some syntactic restrictions, and certain aspects of formalization
(such as rule inversion and recursive definition over terms) are not

well supported (at time of writing) because of the need to respect
alpha equivalence.

A locally nameless formalization (as we propose) or a locally
named formalization (à la McKinna-Pollack) can be formalized
in many logics and proof tools, depending only on basic notions
like datatypes and inductively defined relations.15 In particular,
the local representation can be seen as a nominal representation
that doesn’t happen to use any nominal binding; in this case the
nominal relation of freshness of names for language structures
(terms, types, contexts, . . .) is the same as the local representation’s
notion of non-occurrence. This leads to an interesting possibility:
local representations can be defined and reasoned about using the
nominal Isabelle package, getting the definitions of freshness and
renaming and the proofs of equivariance for free from the package.
Interestingly, the nominal package can also automatically infer a
strengthened induction principle for inductive relations over local
representations (with some syntactic restrictions); see (Urban and
Pollack 2007) for more details.

A detailed comparison between nominal representation and lo-
cally nameless representation is beyond the scope of this paper, but,
as we are focusing on strengthened induction principles, we can
remark that the locally nameless strengthened induction principle
(e.g., from rule C-TYPING-ABS or rule A-TYPING-ABS) is stronger
than the strengthened induction principle automatically derived by
the nominal Isabelle package. For a full explanation of the nom-
inal strengthened induction, see Urban et al. (2007b); here it is
enough to observe that, when using such an induction principle,
one specifies not only the derivation being eliminated (“induction
on . . . ”), but also an arbitrary finitely supported structure to be used
as a freshness context. Whenever a chosen name appears in an in-
duction hypothesis (e.g., the name that is bound in an abstraction
typing rule), that name is known to be fresh for the specified fresh-
ness context. This solves many problems, as in the example above
of weakening for the typing judgement. However, you must spec-
ify the freshness context when invoking induction. In contrast, the
locally nameless strengthened induction principles, with their uni-
versally quantified fresh names, allow fresh instantiation of these
names later, at the point where you have seen the particular cases
that must be proved. Since particular cases may involve existential
quantifiers, you may not know what the necessary freshness context
is until after seeing a case and eliminating an existential quantifier.
In such rare examples, the automatically derived nominal strength-
ened induction principle is not adequate (a detailed hand proof is
necessary) while the locally nameless strengthened induction prin-
ciple works perfectly.

5. Practical Formal Metatheory
We close with a concrete discussion of our Coq realization of work-
ing with cofinite quantification. We present the major developments
we have carried out—System F<:, the Calculus of Constructions,
and extensions of ML—to demonstrate that our techniques scale to
larger languages and are expressive enough for wide use. We dis-
cuss issues specific to each development (e.g., dealing with multi-
binders) as well as properties common to all of them (e.g., the con-
ciseness and robustness on change of our scripts). Finally, we give
an overview of the structure of our developments for readers who
may wish to use them as a basis for their own formalizations.

15 Some specialized tactics, as in the accompanying Coq code http://
arthur.chargueraud.org/research/2007/binders/, are useful, but
not essential. In any case these tactics are very much simpler than the
nominal Isabelle package.

5.1 System F<:

The heart of the POPLMARK Challenge is a proof of type sound-
ness of System F<:. This task was designed as a stress test for
formalized metatheory. Our solution closely follows the structure
proposed in the appendix of the challenge’s description.

To get a sense of how our solution compares to other solutions,
we measured the number of lemmas and steps of reasoning in-
volved in several developments;16 the results are summarized in
Figure 5. Our study is restricted to Coq developments since there
are no meaningful metrics across different proof assistants. In this
comparison, a step of reasoning is defined as the invocation of one
tactic, excluding trivial ones: intros (introduces hypotheses into
the context), auto (performs automated proof search), and simple
variations of these two. We also exclude from the counts material
from libraries that are reusable across metatheory developments.
We isolate part 1A of the challenge (technical properties of the
subtyping relation) from parts 1A+2A (preservation and progress)
because some submissions cover only part 1A.

Even when attention is restricted to Coq developments, the com-
parison is necessarily rough, since the developments were carried
out by different people with different preferences in the amount of
automation they used, etc. Nevertheless, a few interesting points
emerge. The first line of the table shows that our style compares
well against Vouillon’s development, which uses pure de Bruijn
indices—a representation commonly thought to be quite effective.
The solutions that do not use a standard de Bruijn or locally name-
less representation (Stump and Hirschowitz & Maggesi) require
significantly more steps. The last line shows that our style re-
quires significantly less infrastructure than Leroy’s solution, a lo-
cally nameless solution faithful to McKinna and Pollack’s way of
dealing with the quantification of names. Chlipala’s is a variation
on an earlier version of Leroy’s development and is the only one
that is shorter than ours, mainly because Chlipala’s proof script re-
lies heavily on development-specific tactics.

Although clever automation and development-specific tactics
can make scripts extremely small (Nipkow [2001] gives an impres-
sively automated proof of confluence, for example), they can also
make them slow (hard to work with) and brittle (hard to reuse).
Brittleness emerges when automation fails after some changes to
earlier definitions or lemmas: it can be hard to know exactly what
has been broken and how to fix it. Of course, the other extreme of
no automation at all is also unmanageable, especially for metathe-
ory proofs, which involve many related arguments. Moreover, too
little automation can also make scripts brittle: even a tiny change
in definitions or statements of lemmas will require update. Aiming
for maximal robustness, our convention is to rely as much as pos-
sible on automation for low-level details (e.g., proving that a term
is locally closed) while giving all the “important” arguments (the
ones that would appear in a rigorous paper proof) manually.

5.2 Calculus of Constructions (CoC)
This formalization contains three main components. The first is a
proof of confluence for parallel beta-reduction. Its use of the vari-
able closing operation requires slightly more advanced reasoning
about binders. We have also used this development to evaluate our
scripts for robustness: we first completed a proof of confluence for
the pure lambda calculus and then migrated it to CoC, preserving
the same flow of arguments and just adding the extra cases and up-
dating the names of some hypotheses.

The second part consists of a set of inversion results for the
typing and the conversion judgments, which are quite technical
in themselves but do not involve much difficulty with respect to

16 All are publicly available from http://alliance.seas.upenn.edu/

~plclub/cgi-bin/poplmark/.

Author (chronological order) Representation used Lemmas 1A Proof steps 1A Lemmas 1A+2A Proof steps 1A+2A
Vouillon de Bruijn 30 402 72 1175
Leroy locally nameless 49 495 128 1364
Stump levels/names 56 938 - -
Hirschowitz & Maggesi de Bruijn (nested datatype) 49 1574 - -
Chlipala locally nameless 23 75 - -
Our development locally nameless 22 101 65 576

Figure 5. Comparison of Coq submissions to the POPLMARK Challenge

Number of Infrastructure Core Infrastructure Core
Language Results formalized trusted definitions lemmas lemmas proof steps proof steps
λ→ Preservation and progress 13 13 4 49 45
System F<: Preservation and progress 20 48 17 335 241
ML core only Preservation and progress 23 37 8 181 98
ML with features Preservation and progress 42 55 18 367 396
Lambda calculus Church-Rosser 11 21 25 112 160
CoC Church-Rosser, preservation 17 36 55 214 475

Figure 6. Complexity of our developments

binders. This part is representative of the effort required for the
CoC formalization: we felt that the largest share of the work was
to understand and be able to state clearly the arguments involved.
The fact that the proofs were machine-checked appeared to be only
a way to force oneself to understand all the details of the proofs
formalized, not as an extra burden to be dealt with.

The third and last part is the core of the preservation proof,
which shares a significant amount of structure with the correspond-
ing proof for System F<: (only the steps of reasoning are more
complex to follow). Compared to the System F<: development, the
fact that terms and types are represented in a uniform way in CoC
and that proofs are more complex reduces the binding infrastructure
from about 60% of the total development down to 35% percent.

Compared to Barras’s formalization of CoC in Coq (1997) using
a pure de Bruijn representation, our style saves us from numerous
issues associated with shifting indices—particularly bothersome
when working with CoC’s dependent types—and so, unlike Barras,
we did not need clever engineering of the statements of lemmas to
make them fit the representation used.

5.3 Extensions of ML
We also investigated how to extend the basic λ→ development with
features such as datatypes, fixpoints, references, exceptions, pattern
matching, and ML-style polymorphic types. Then, building on the
individual successes of each of these extensions, we set up the for-
malization of a language containing all of these features together.
This experiment demonstrates that our style can be applied to full-
featured programming languages, not just tiny lambda-calculi.

Pleasingly, most of the arguments that would be omitted as
“trivial” on paper and which do not involve binders are solved by
the auto tactic. In particular, the infrastructure lemmas do not need
any change when we add features like pairs or references. The key
proofs—preservation and progress—contain respectively in 60 and
80 lines, which seems reasonable for a system with 24 typing rules.

A key idea involved in this development is a treatment of multi-
binders, used to encode ML type schemes, patterns, and recur-
sion. The basic operation on a multi-binder is to open it with a
list of terms. A bound variable pointing to the jth variable bound
by the ith binder above the current position is represented as
(trm bvar i j). Free variables are still represented as one single
name and substitution lemmas are still stated in terms of an atomic

substitution from one name to one term. Then, to prove subject re-
duction, for example, the substitution lemma is applied iteratively
in the cases involving multi-binders.

5.4 Organization of Our Developments
Each of our developments is divided into three main parts: trusted
definitions, infrastructure, and core lemmas.

The trusted definitions part contains the description of the lan-
guage formalized—the syntax of the language, its semantics, and
its type system, if any—and the statements of the main theorems
which are to be proven about the language. This part is the only
material that needs to be trusted, in the following sense: if one is
convinced about the adequacy of these definitions and trusts that
Coq correctly type-checks all proofs in the development, then one
can have confidence that the system has been formally certified.

The infrastructure part sets up the machinery required for the
core lemmas and consists of several components:

1. Language-specific specializations of tactics for working with
cofinite quantification, e.g., to automatically choose a set L
when applying a rule that uses cofinite quantification.

2. Proofs about properties of substitution (Figure 2).

3. Proofs that local closure is preserved by various operations, e.g.,
substitution (Section 3.3).

4. Regularity lemmas which state that relations contain only lo-
cally closed terms (Section 3.3).

5. Hints to enable Coq’s automation to use regularity lemmas.

Note that the lemmas about substitution are similar from one lan-
guage to the next. When setting up a new development, those who
wish to get to “interesting” proofs quickly may state as axioms
properties of substitution and regularity lemmas, proving them only
after they believe that their main proofs will go through. In this
manner, one can “test-drive” a language definition without having
to revise infrastructure proofs as the definition is modified.

Finally, the core lemmas part contains the lemmas that would
normally be stated in an informal presentation. The statements
closely match their informal counterparts, and the proofs contain
few uninteresting details—facts about local closure and freshness
side conditions are almost always handled automatically.

We conclude this section with a breakdown of our developments
by the number of definitions and lemmas in each part, as well as the
number of proof steps required to prove the lemmas; the results are
summarized in Figure 6. The number of trusted definitions gives
an idea of the size of the language formalized. The number of core
lemmas gives an idea of the theoretical complexity of the develop-
ment; recall that these lemmas correspond closely with results that
would be proven informally. The amount of infrastructure, in terms
of both lemmas and steps, is proportional to the number of binding
constructs and relations in the language. A comparison between
figures from the last two columns suggests that the amount of in-
frastructure work is reasonable compared to the core proof work—
especially since infrastructure proofs follow a standard pattern and
are easily set up. More precisely, the ratio “infrastructure over core
proofs” increases with the number of binding constructs involved
but decreases with the inherent complexity of the development.

6. Conclusion
We have argued for a novel style for formalizing programming-
language metatheory, based on a combination of locally nameless
representation with a cofinite idiom for quantifying free names in
inductive definitions.

This design satisfies the evaluation criteria of POPLMARK.
First, our presentation is transparent: the proofs closely follow their
informal equivalents. Second the overheads of the approach are
low: we do not need manual proofs of freshness side-conditions nor
reasoning about alpha-equivalence, and only on rare occasions do
we need to justify well-formedness of objects (e.g. local closure)
or explicitly rename variables. When we do, the required proofs
of renaming lemmas follow with virtually no infrastructure. At the
same time, there is no need for external tools, and the style works in
any general purpose theorem prover (although we found Coq to be
well-suited to the task). In our scripts, definitions and results about
variables, freshness, and environments are factored into a reusable
library. Finally, experience with a number of large developments
suggests that the approach is “complete” in the informal sense that
any language definition and accompanying reasoning techniques
that would be accepted as informally correct can be carried out in
this style. Our formalizations provide a good starting point for new
work—reports from early adopters confirm that modifying them is
much easier than starting a new development from scratch.

In the future, we would like to integrate our approach with the
Ott tool (Sewell et al. 2007), which automatically generates Coq
(and LATEX) definitions from compact, high-level language descrip-
tions. A more ambitious next step is to study the possibility of auto-
matically generating the required infrastructure proofs, which fol-
low a fairly simple pattern. Finally, we would like to explore cer-
tified programming of tools such as type checkers and compilers
that must deal with binders. In the long term, we hope that our
techniques will help with the verification of both specifications and
implementations of programming languages.

Acknowledgments Many thanks to the members of the Penn
PLClub for extensive feedback and discussion, and to Michael
Norrish and Christian Urban for important technical insights and
to the POPL reviewers, Bob Harper, Peter Sewell, and Karl Crary
for helping improve the final version. This work was supported
by NSF grant 545886, CRI: Machine Assistance for Program-
ming Language Research. Pollack thanks the International Centre
for Mathematical Sciences (Edinburgh) Workshop on Abstraction,
Substitution and Naming and the EU Framework 6 Coordination
Action 510996, TYPES.

References
Thorsten Altenkirch. A formalization of the strong normalization proof for

System F in LEGO. In Bezem and Groote (1993), pages 13–28.

Andrew W. Appel. Foundational proof-carrying code. In IEEE Symposium
on Logic in Computer Science (LICS), Boston, Massachusetts, pages
247–258, June 2001.

Michael Ashley-Rollman, Karl Crary, and Robert Harper. Submission to
the POPLMARK challenge. Available from http://www.cis.upenn.
edu/~plclub/mmm/, 2005.

Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster,
Benjamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey Wash-
burn, Stephanie Weirich, and Steve Zdancewic. Mechanized metathe-
ory for the masses: The POPLMARK challenge. In Joe Hurd and Tom
Melham, editors, Theorem Proving in Higher Order Logics: 18th Inter-
national Conference, TPHOLs 2005, volume 3603 of Lecture Notes in
Computer Science, pages 50–65. Springer, 2005.

Henk P. Barendregt. The Lambda Calculus. North Holland, revised edition,
1984.

Bruno Barras and Benjamin Werner. Coq in coq. Available from http:
//pauillac.inria.fr/~barras/coq_work-eng.html, 1997.

M. Bezem and J. F. Groote, editors. Typed Lambda Calculi and Applica-
tions: International Conference on Typed Lambda Calculi and Appli-
cations, TLCA ’93, volume 664 of Lecture Notes in Computer Science,
1993. Springer.

Anna Bucalo, Furio Honsell, Marino Miculan, Ivan Scagnetto, and Martin
Hoffman. Consistency of the theory of contexts. J. Funct. Program, 16
(3), 2006.

Adam Chlipala. Submission to the POPLMARK challenge, part
1a. Available from http://www.cs.berkeley.edu/~adamc/
poplmark/, 2006.

The Coq Development Team. The Coq proof assistant reference manual,
version 8.1. Available from http://coq.inria.fr/, 2007.

Thierry Coquand. An algorithm for testing conversion in type theory. In
Gérard Huet and Gordon Plotkin, editors, Logical Frameworks, pages
255–279. Cambridge University Press, 1991.

Karl Crary. Toward a foundational typed assembly language. In POPL
’03: Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 198–212. ACM Press,
2003.

N. G. de Bruijn. Lambda calculus notation with nameless dummies, a
tool for automatic formula manipulation, with application to the Church-
Rosser theorem. Indagationes Mathematicae, 34(5):381–392, 1972.

Joëlle Despeyroux, Amy Felty, and André Hirschowitz. Higher-order ab-
stract syntax in Coq. In Typed Lambda Calculi and Applications, Second
International Conference on Typed Lambda Calculi and Applications,
TLCA ’95, volume 902 of Lecture Notes in Computer Science, pages
124–138. Springer, 1995. Also available as INRIA Research Report
2556.

Peter Dybjer. Inductive families. Formal Aspects of Computing, 6:1–26,
1994.

Jonathan M. Ford and Ian A. Mason. Operational techniques in PVS —
A preliminary evaluation. Electronic Notes in Theoretical Computer
Science, 42, 2001.

Gerhard Gentzen. The Collected Papers of Gerhard Gentzen. North-
Holland, 1969. Edited by Mandred Szabo.

Andrew D. Gordon. A mechanisation of name-carrying syntax up to alpha-
conversion. In J. J. Joyce and C.-J. H. Seger, editors, Higher-order Logic
Theorem Proving And Its Applications, Proceedings, 1993, volume 780
of Lecture Notes in Computer Science, pages 414–426. Springer, 1994.

Andrew D. Gordon and Tom Melham. Five axioms of alpha-conversion.
In J. von Wright, J. Grundy, and J. Harrison, editors, Theorem Proving
in Higher Order Logics: 9th International Conference, TPHOLs ’96,
volume 1125 of Lecture Notes in Computer Science, pages 173–190.
Springer, 1996.

Robert Harper and Daniel R. Licata. Mechanizing metatheory in a logical
framework. Journal of Functional Programming, 17(4–5):613–673,
2007.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. Journal of the ACM, 40(1):143–184, 1993.

Dimitri Hendriks and Vincent van Oostrom. Adbmal. In F. Baader, editor,
Automated Deduction – CADE-19, volume 2741 of Lecture Notes in
Artificial Intelligence, pages 136–150. Springer–Verlag, 2003.

Peter Homeier. A proof of the Church-Rosser theorem for the lambda
calculus in higher order logic. In Richard J. Boulton and Paul B.
Jackson, editors, TPHOLs 2001: Supplemental Proceedings, pages 207–
222. Division of Informatics, University of Edinburgh, September 2001.
Available as Informatics Research Report EDI-INF-RR-0046.

Furio Honsell, Marino Miculan, and Ivan Scagnetto. The theory of contexts
for first order and higher order abstract syntax. Electronic Notes in
Theoretical Computer Science, 62, 2002.

Gérard Huet. The constructive engine. In Raghavan Narasimhan, editor,
A Perspective in Theoretical Computer Science: Commerative Volume
for Gift Siromoney. World Scientific Publishing, 1989. Also available as
INRIA Technical Report 110.

Gérard Huet. Residual theory in λ-calculus: A formal development. Journal
of Functional Programming, 4(3):371–394, July 1994. Also available as
INRIA Research Report 2009 (August 1993).

Gerwin Klein and Tobias Nipkow. A machine-checked model for a Java-
like language, virtual machine, and compiler. ACM Transactions on
Programming Languages and Systems, 28(4):619–695, 2006.

J. L. Krivine. Lambda-Calculus, Types and Models. Ellis Horwood, 1990.

Daniel K. Lee, Karl Crary, and Robert Harper. Towards a mechanized
metatheory of Standard ML. In POPL ’07: Proceedings of the 34th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 173–184. ACM Press, 2007.

Xavier Leroy. Formal certification of a compiler back-end, or: programming
a compiler with a proof assistant. In Proc. of the 33rd Symposium on
Principles of Programming Languages, pages 42–54. ACM Press, 2006.

Xavier Leroy. A locally nameless solution to the POPLmark challenge.
Research report 6098, INRIA, January 2007.

Zhaohui Luo and Robert Pollack. The LEGO proof development system:
A user’s manual. Technical Report ECS-LFCS-92-211, University of
Edinburgh, May 1992.

Conor McBride and James McKinna. Functional pearl: I am not a number—
I am a free variable. In Haskell ’04: Proceedings of the 2004 ACM
SIGPLAN Workshop on Haskell, pages 1–9. ACM Press, 2004.

James McKinna and Robert Pollack. Pure Type Systems formalized. In
Bezem and Groote (1993), pages 289–305.

James McKinna and Robert Pollack. Some lambda calculus and type theory
formalized. Journal of Automated Reasoning, 23(3–4):373–409, 1999.

Tobias Nipkow. More Church-Rosser proofs (in Isabelle/HOL). Journal of
Automated Reasoning, 26(1):51–66, January 2001.

Michael Norrish and Konrad Slind. HOL 4. Available from http://hol.
sourceforge.net/, 2007.

Frank Pfenning and Conal Elliot. Higher-order abstract syntax. In PLDI
’88: Proceedings of the ACM SIGPLAN 1988 Conference on Pro-

gramming Language Design and Implementation, pages 199–208. ACM
Press, 1988.

Frank Pfenning and Carsten Schürmann. System description: Twelf — A
meta-logical framework for deductive systems. In Harald Ganzinger,
editor, Automated Deduction, CADE 16: 16th International Conference
on Automated Deduction, volume 1632 of Lecture Notes in Artificial
Intelligence, pages 202–206. Springer, 1999.

Andrew M. Pitts. Nominal logic, a first order theory of names and binding.
Information and Computation, 186:165–193, 2003.

Randy Pollack. Reasoning about languages with binding: Can we do
it yet?, February 2006. Presentation, slides available from http://
homepages.inf.ed.ac.uk/rpollack/.

Robert Pollack. Closure under alpha-conversion. In H. Barendregt and
T. Nipkow, editors, TYPES’93: Workshop on Types for Proofs and Pro-
grams, Nijmegen, May 1993, Selected Papers, volume 806 of Lecture
Notes in Computer Science, pages 313–332. Springer, 1994a.

Robert Pollack. The Theory of LEGO: A Proof Checker for the Extended
Calculus of Constructions. PhD thesis, Univ. of Edinburgh, 1994b.

Dag Prawitz. Natural Deduction: Proof Theoretical Study. Almquist and
Wiksell, Stockholm, 1965.

Ole Rasmussen. The Church-Rosser theorem in Isabelle: A proof porting
experiment. Technical Report 364, University of Cambridge, Computer
Laboratory, March 1995.

Wilmer Ricciotti. Submission to the POPLMARK challenge, part 1a. Avail-
able from http://ricciott.web.cs.unibo.it/, 2007.

Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine,
Thomas Ridge, Susmit Sarkar, and Rok Strniša. Ott: Effective tool sup-
port for the working semanticist. In ICFP ’07: Proceedings of the 2007
ACM SIGPLAN International Conference on Functional Programming,
pages 1–12. ACM, 2007.

Natarajan Shankar. A mechanical proof of the Church-Rosser theorem.
Journal of the Association for Computing Machinery, 35(3):475–522,
1988.

Allen Stoughton. Substitution revisited. Theoretical Computer Science, 59
(3):317–325, 1988.

Christian Urban. Nominal techniques in Isabelle/HOL. Journal of Auto-
matic Reasoning, 2007. To appear; available from http://www4.in.
tum.de/~urbanc/publications.html.

Christian Urban and Randy Pollack. Locally nameless representation
in Nominal Isabelle. Talk at Workshop on Mechanizing Metatheory.
Available from www4.in.tum.de/~urbanc/Publications/ln.pdf,
2007.

Christian Urban, Stefan Berghofer, and Julien Narboux. Nominal datatype
package for Isabelle/HOL. Available from http://isabelle.in.
tum.de/nominal/, 2007a.

Christian Urban, Stefan Berghofer, and Michael Norrish. Barendregt’s
variable convention in rule inductions. In Proceedings of the 21th
Conference on Automated Deduction (CADE 2007), volume 4603 of
Lecture Notes in Computer Science, pages 35–50. Springer, 2007b.

René Vestergaard and James Brotherston. A formalised first-order conflu-
ence proof for the λ-calculus using one-sorted variable names. Informa-
tion and Computation, 183(2):212–244, 2003.

