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Abstract

In a spoken dialog system, determining which action a machi
should take in a given situation is a difficult probleetc&use
automatic speech recognition is unreliable and hereesttite

of the conversation can never be known with ceryaiuch

of the research in spoken dialog systems centres agatimg

this uncertainty and recent work has focussed on targely
disparate techniques: parallel dialog state hypoth&s=d use

of confidence scores, and automated planning. While in
isolation each of these approaches can improve action
selection, taken together they currently lack a uniftatdssical
framework that admits global optimization. In this paper w
cast a spoken dialog system as a partially observableoMar
decision process (POMDP). We show how this formufatio
unifies and extends existing techniques to form a single
principled framework. A number of illustrations are used
show qualitatively the potential benefits of POMDPs camga

to existing techniques, and empirical results from dialog
simulations are presented which demonstrate significant
guantitative gains. Finally, some of the key challenges t
advancing this method — in particular scalability — areflgrie
outlined.
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Introduction

Spoken dialog systems (SDS) help people accomplish aisasl spoken language. For
example, a person might use an SDS to buy a train tiskegtthe phone, to direct a robot
to clean a bedroom, or to control a music player im@omobile. Building SDSs is a
challenging engineering problem in large part because autos@gech recognition

(ASR) and understanding technology are error-prone. Murecifically, speech

recognition accuracy is relatively good for constrainpeesh limited to, for example,

digits, place-names, or short commands, but accutagyades rapidly as the domain
language becomes less constrained. Furthermore, as spakensystems become more
complex, not only do the demands on the speech recognitidnuaderstanding

components increase, but also user behaviour beconsepridictable. Thus, as task
complexity increases, overall there is a rapid inseean uncertainty, and principled
methods of dealing with this uncertainty are needed inrdalenake progress in this
research area.

1 M Are you a registered user ?

2 U NolI'mnot. No [NO I'M NOT NOJ

3 M What is your full name ?

4 U  User Name [ATHENS IN AKRON]

5 M  There is an Athens in Georgia and in Greece. Which déstindid you want ?

6 U  Neither [NEITHER]

7 M I'm sorry, | didn't catch that. There is an Athen&eorgia and in Greece. Which
destination did you want ?

8 U Georgia [GEORGIA]

9 M A flight from Athens... Where do you want to go ?

10 U  Start over [START OVER]

11 M Do you really want to start over ?

12 U Yes|[YES]

13 M  What city are you leaving from ?

14 U  Hamilton, Ontario [HILTON ONTARIO]

15 M

Table 1: Sample conversation with a spoken dialog systemfedted by misunderstandings in the
CMU Communicator spoken dialog system, taken from (Boh&iand Rudnicky, 2002).U indicates a
user turn and M indicates a machine turn. Inturn 4 the user says theiname (omitted for privacy
reasons) but they are misrecognized as saying “Athens A&kron”. This single error then leads to a

complete misalignment between the user and system.

As an lllustration of the effects of speech recogniterrors, consider the example
conversation shown in Table 1, taken from (Bohus and Rudnify2). The system
shown here allows the user to take control of the emation wherever reasonably
possible. In turn 3, the machine asks “What’'s your full ri#naed in turn 4, the user
replies with their name, but is misrecognized as sayine®s in Akron”. Since the
machine does not insist on knowing the user’s name, ersnthat the user is taking
control of the conversation and is asking about a fligHence, the system interprets
“Athens in Akron” as the starting point of a flight Bag dialog. This choice of



interpretation causes the whole conversation to gdrat¢k and it is not until turn 13,
nine turns later, that the conversation is progressinghagai

This interaction illustrates the motivation for theele main approaches that have been
developed in order to minimise the effects of errors am#rainty in a spoken dialog
system.

First, systems can attempt to identify errors localtyng aconfidence scorewhen a
recognition hypothesis has a low confidence score, ibeagnored to reduce the risk of
entering bad information into the dialog state. Ia #xample above, if “Athens in
Akron” were associated with a poor confidence score, itheould have been identified
as an error and the system might have recovered sooner.

Second, accepting that misrecognitions will occur, theisequences can be difficult for
human designers to anticipate. Thus systems can peafttomated planningp explore
the effects of misrecognitions and determine which sequeraetions are most useful
the long run. Consider turn 5 in the example above: the hand-craftddgdimanager
chose to disambiguate “Athens”, but automated planning rhigNe revealed that it was
better in the long term to first confirm that the usmally did say “Athens”, even though
in the short term this might waste a turn.

Finally, accepting that some bad information will beeeed into the dialog state
maintained by the system, it seems unwise to maijiairone hypothesis for the current
dialog state. A more robust approach would mainpairallel state hypothesest each
time-step. In turn 4 in the example above, the systeaid have maintained a second
hypothesis for the current state — for example, in wthehuser said their name but was
not understood. The system could have later exploiteditiformation when a non-
understanding happened in turn 7.

These three methods of coping with speech recogniti@mses local use of confidence
scores, automated planning, and parallel dialog hypothessmn-ead to improved
performance, and confidence scores in particular are noominely used in deployed
systems. However, these existing methods typicaltyi$ on just a small part of the
system and rely on the use afl hoc parameter setting (for example, hand-tuned
parameter thresholds) and pre-programmed heuristics. t B&®ously, when these
techniques are combined in modern systems, there is aofaak overall statistical
framework which can support global optimization and on-dideptation.

In this paper, we will argue that a partially observablarkdv decision process
(POMDF) provides such a framework. We will explain how a FMcan be
developed to encompass a complete dialog system, R@MDP serves as a basis for
optimization, and how a POMDP can integrate uncestaimtthe form of statistical
distributions with heuristics in the form of manuadigecified rules. To illustrate the
power of the POMDP formalism, we will show how eadhhe three approaches above
represents a special case of the more general POMDQel.md=urther, we provide
evidence of the potential benefits of POMDPs through éxestal results obtained
from simulated dialogs. Finally, we address scalgbdihd argue that whilst the

2 usually read as “Pom D P”



computational issues are certainly demanding, tractabléemngmtations of POMDP-
based dialog systems are feasible.

The paper is organized as follows. Section 1 beginseetagwing POMDPs and then
shows how the state space of a POMDP can be factoresptesent a spoken dialog
system in a way which explicitly represents the maources of uncertainty. Next
section 2 shows how each of the three techniques medtiabove — parallel dialog
hypotheses, local confidence scoring, and automated plannirg ratrally subsumed
by the POMDP architecture. Section 3 discusses thanéalyes of POMDPs using a
combination of illustrative dialogs and experimental danan, including simulations

with user models estimated from real dialog data. llinaection 3.4 concludes by
highlighting the key challenge of scalability and suggésts methods for advancing
POMDP-based spoken dialog systems.

1. Casting a spoken dialog system as a POMDP

In this section we will cast a spoken dialog system O8DP. We start by briefly
reviewing POMDPs. Then, we analyze the typical archite of a spoken dialog system
and identify the major sources of uncertainty. Finallg show how to represent a
spoken dialog system as a POMDP. In this discussionseeunse is made of influence
diagrams and Bayesian inference — readers unfamiliar thétbe topics are referred to
texts such as (Jensen, 2001).

1.1. Review of POMDPs
Formally, a POMDRP is defined as a tup, A T,R,0,Z,4,bg} whereSis a set of states

describing the agent’s worlds is a set of actions that an agent may takegefines a
transition probabilityP(s'|s,a); R defines the expected (immediate, real-valued) reward

r(s,a); Ois a set of observations the agent can receive ab®wadHd;andZ defines an
observation probabilityP(0' | s,a); A is a geometric discount fact@< A <1; and b,

is an initial belief statdy,(s). A POMDP can be depicted as an influence diagramm as i
Figure 1.

The POMDP operates as follows. At each time-stepwbrld is in some unobserved

states[JS. Sinces is not known exactly, a distribution over states &@ntained called
a “belief state,’d, with initial belief stateb,. We write b(s) to indicate the probability of

being in a particular state Based o, the machine selects an actiarl A, receives a
rewardr(s,a ), and transitions to (unobserved) statewhere s’ depends only ors and

a. The machine then receives an observatidi O which is dependent og' and a.
At each time-step, the belief state distributiiois updated as follows:

b'(s) = p(s'|0’,a,b)
_p(o'|s.ab)p(s’|a,b)
p(o’|a,b)




p(0'[,)Y P(s' [a,b,9) p(s| a,b)
) D

p(o' [, )Y P(s' |3, 9b(s)
) D)

(1)

Timestep n . Timestep n+1

Figure 1: Influence diagram representation of a POMDP.Circles represent random variables;
squares represent decision nodes; and diamonds represeitility nodes. Shaded circles indicate
unobserved random variables, and un-shaded circles repsent observed variables. Solid directed
arcs indicate causal effect and dashed directed arcs indie that adistribution is used (and not the
actual unobserved value). The subscrigRL indicates that actions are chosen using “Reinforcement

learning,” i.e., with the objective of maximizing thecumulative long-term reward.

The numerator consists of the observation funcfiomansition matrix, and current
belief statdb. The denominator is independentsf and can be regarded as a
normalization constark hence:

b'(s) =kp(0'| s, @)Y p(s'|a,s)o(s). (2)

We refer to maintaining the value bfat each time-step as “belief monitoring.” The
valueb has the useful property that it is a complete surprafthe dialog history. More
formally, for a given initial belief staté, and history{a,,0,,a,,0,,...}, b provides a

propersufficient statisticb is Markovian with respect tb, and{a,,0,,a,,0, ,...} Thus,

in effect, the update expressed in equation (2pissidering all possible (hidden) state
transition histories when computing a new beliafestand planning algorithms need only
consider when choosing actions.



As mentioned above, at each time-step, the agentvescegwardr,. The cumulative,
infinite-horizon, discounted reward is called tbéurn:

0=> AT, (3)
t=0

where A is the geometric discount factod,< A <1. The goal of the machine is to
choose actions in such a way as to maximize the expegtiern E[G)] — i.e., to construct
aplan called apolicy which indicates which actions to take at each tuim general, a
policy nn can be viewed as a mappifigm belief state to actiom(b) 0 A, and an

optimal policy 77 (b) 0 A is one which maximize&[©).

In theory every belief poirth could map to an arbitrary actiomb , and for this reason

finding optimal policies for POMDPs is in genemafractable. In practicerr (b darely
maps to an arbitrary action and rather an optiné€y is apartitioning of belief space
into a finite number of regions. Even so, exagbathms such as the Witness algorithm
(Kaelbling et al., 1998) rarely scale to problemthwnore than about 10 actions, states,
and observatior’s. However, effective approximate solutions do exi#&\ review of
POMDP optimization techniques is beyond the scdgki® work; however, it should be
noted that a family of approximate optimizationhmeiques calledooint-based value
iteration has been demonstrated to provide tractable sosif@ma variety of real-world
problems> Standard (exact) value iteration computes a #eecaalue functionV(b)
which provides an estimate of the expected totahrd that can be achieved from any
pointb in belief space given some poligy. Value iteration is a recursive process which
leads to an estimate wf(b), the value function corresponding to the optinaiqy 72*.
Exact value iteration involves searching the whafleelief space; however, point-based
value iteration heuristically selects a small setepresentative belief points, and then
iteratively applies value updates to just thosengspiachieving a significant speed-up
(Pineau et al., 2003; Spaan and Vlassis, 2005).

In general, value iteration methods for POMDPs poeda collection ofi vectorsu, (s )
each of dimensionality S &nd an array of corresponding actigife . [Each vector
v, (s) indicates the (long-term) value of taking a pantc action S(n) J A in states.

By taking an expectation over belief space, we foaoh regions where actiorz(n s
optimal — i.e., a policy can be produced frones) andf(n) as:

m(b) = ﬂ[afgmaxz Uy (9) b(S)j (4)

n IS

% In this work, we will assume that a planner has a mofle system dynamics —i.&,, R,andZ are
known or can be estimated from training ddtaother words, we will focus on POMDPs which use
model-basedearning, as opposed éxperience-based learning.

* Technically the method scales with the complexity ofdpimal policy and not (necessarily) with the
number of states, actions, and observations, but otipeghe complexity of the optimal policy can not be
predicted, and the number of states, actions, andwatis®Ts is a useful heuristic.

> See (Murphy, 2000) for an overview of POMDP solution tempihes.



Thus value iteration provides both a partitioning of belgface into regions
corresponding to optimal actions as well as the ergewturn of taking that action.

b = (0.65, 0.35)
| |
| ¢ |

save delete
b=(1,0) b=(0,1)

Figure 2: Belief space in a POMDP with two statesaveand delete which correspond to hidden user
goals. At each time-step, the current belief state &spoint on this line segment. The ends of the line
segment represent certainty in the current state. Theelief point shown is the initial belief state.

To illustrate how this POMDP framework is used in a spakalog system, an example
will now be presented in some detail. This exampleceors a very simple voicemalil
application which although very limited, nevertheless destrates the key properties of
the POMDP approach. Later in the paper, we will comglievarious issues which arise
when scaling up the POMDP framework to handle more sagatistl applications.

In this example, users listen to voicemail messagdsatithe end of each message, they
have two choices saveor deletethe message. We refer to these as the user’s goals and
since the system does natpriori know which goal the user desires, they hidden
goals. For the duration of the interaction relatingaoh message, the user’s goal is fixed
and the POMDP-based dialog manager is trying to gueshwpbial the user has. Figure

2 shows a graphical depiction of belief space — sinces thex only two states, belief
space can be shown as a line segment. In this depithie ends of the segment (in
general called “corners”) represent certainty. Fangxe,b = (1,0) indicates certainty
thats = save.Intermediate points represent varying degrees of cgytain

The machine has only three available actions: it asiowhat the user wishes to do in
order to infer his or her current goal, or it @oSaveor doDeleteand move to the next
message. When the user responds to a question, itadatkas either the observation

save or delete® However, since speech recognition errors can corruptuties’s
response, these observations cannot be used to dedusetliseintent with certainty. |If
the user saysavethen an error may occur with probability 0.2, whereakefuser says
deletethen an error may occur with probability 0.3. Finalipce the user wantsave
more often thawlelete theinitial belief stateis set to indicate the prior (0.65, 0.35), and it
is reset to this value after eatbSaveor doDeleteaction via the transition function.

The machine receives a large positive reward (+5) forngettie user’s goal correct, a
very large negative reward (-20) for taking the actimbeletewhen the user wanted
save (since the user may have lost important informati@rd a smaller but still
significant negative reward (-10) for taking the act@dwSavewhen the user wanted
delete(since the user can always delete the message. latefhere is also a small
negative reward for taking thesk action (-1) since all else being equal the machine

® The bar aboveaveanddeleteindicates that these apeservations- i.e., noisy, possibly erroneous
indications of the user’s goal.



should try to make progress to its goal as quickly asiples The transition dynamics of
the system are shown in Tables 2, 3 aAd 4.

Sl
a S save delete
save 1 0
ask
delete 0 1
save 0.65 0.35
doSave
delete 0.65 0.35
save 0.65 0.35
doDelete
delete 0.65 0.35

Table 2: Transition function p(s'|s,a) for the example voicemail spoken dialog POMDP. Theate
sindicates the user’s goal as each new voicemail messagerisountered.

0]
a s' save delete
save 0.8 0.2
ask
delete 0.3 0.7
save 0.5 0.5
doSave
delete 0.5 0.5
save 0.5 0.5
doDelete
delete 0.5 0.5

Table 3: Observation function p(o’|s',a) for the example voicemail application. Note that the
observation o' only conveys useful information following anaskaction

s
a save delete
ask -1 -1
doSave +5 -10
doDelete -20 +5

Table 4: Reward function r(s,a) for the example voicemail application. The values ende the

dialog design criteria where it is assumed that deletingganted messages should carry a higher
penalty than saving unwanted messages, and where time wastiny repeatedly asking questions
should be discouraged.

For a POMDP problem of this size, it is possible to productexact solution and here
we have used the Witness algorithm (Kaelbling et al., 19B&jure 3 shows the optimal

" Readers may recognize this as a variation oTtber problem cast into the spoken dialog domain
(Cassandra et al., 1994).



policy. In the regions of belief space close to ¢heners (where certainty is high), the
policy choosesloSaveor doDelete in the middle of belief space (where certainty i8)lo
it chooses to gather information with tlsk action. Further, since the penalty for
wrongly choosingdoDeleteis worse than for wrongly choosirdpSave the doDelete
region is smaller i.e., it requires more certaingrntivhen the user’s goalsave.

doSave ask doDelete
| I's A \r A ~~ I_*_\ |
I ; ; I
save delete
b =(1,0) b=(0,1)

Figure 3: Optimal policy for the example voicemail spoke dialog system POMDP.



| (0.65, 0.35) |
I 5 5 I

save delete

1.0 a=ask 0.1
(1,0) o' = delete ©.1)
r=-1

| (0.347, 0.653) |
I 5 5 I

save a = ask delete
(1,0) o' = Save- (0,1)
r=-
| (0.586, 0.414) |
I I
save delete
a = ask
(110) o' = SaTe (0,1)
r=-
| (0.791, 0.209) |
I I
save a = guess-a delete
(1,0) o' = Save 0,1)
r=+10
| (0.65, 0.35) |
| @ : I
save delete
(1,0) (0,1)

Figure 4: Evolution of the belief state in the exampl&oicemail spoken dialog system POMDP. The
dashed lines show the partition policy, given in Figue 3. At each time-step, the poin is updated
using equation (2). Note that a recognition error is madaefter the first “ask” action.

Figure 4 shows an example conversation between the mdex machine executing the
optimal policy. At each time-step, the machine actind the observation are used to
update the belief state as in Eq. (2). Actions arectezledepending on the partition

which contains the current belief state. The firspomse is misrecognised deglete
moving the belief state towards tbeletecorner. However, since belief remains in the
central region where uncertainty is high, the mackimatinues to ask the user what to

do. After two successive (correctpve observations, the belief state moves into the



doSaveegion, the message is saved and the belief statativas back to the prior state.
The total reward for processing this message & +7.

The key idea illustrated by this example is that tladodi system can never be certain of
exactly what the user intends. This is true in humamdn dialogs, but it is particularly
true in human-machine dialogs where the existence odgretion errors greatly
exacerbates the uncertainty. The sequence of machioesadictated by the optimal
POMDP policy guarantees that when averaged over a langeer of dialogs, no other
policy would achieve a greater reward. Hence, providedttieathosen reward function
accurately reflects the dialog design criteria, theMB® framework provides a
principled approach to spoken dialog system design and ogtioms

Although the voicemail example illustrates the genapgiroach to representing a spoken
dialog system within the POMDP framework, it nevertselsidesteps a number of
important issues. In particular, models of how the 'sisgoal evolves, how the user

reacts, and how the speech recognition corrupts thesussions need to be represented.
In addition, some dialog history needs to be capturieal deal with this, the state space
must be factored to allow the user’s goal, the useténiion and relevant dialog history

to be separated.

1.2. A factored state-space representation for spok  en dialog
systems

The architecture of a spoken dialog system is showrigiw& 5 (Young, 2000). In this

depiction, the user has some internal s@tewhich corresponds to a goal that a user is

trying to accomplish. Also, from the user’s viewpoitte dialog history has stats,

which indicates, for example, what the user has saidasowhat the machine has
confirmed, etc. Based on the user’'s goal prior to each, tthe user takes some

communicative actioalso calledntention) A,. A, might correspond to a speech act,
dialog act, or a parse structure. The user rendgras an audio signaf, by speaking.

The speech recognition and language understandingiponent then takes the audio
signal Y, and produces two outputs: firsﬁu, which is a noisy estimate of the user’s

action A,; andC which represents a confidence score which provides an tiwdfiaaf the

reliability of the recognition resullzn 10 R andC are then passed to tHealog model,

which maintains an internal sta&, which tracks (from the machine’s perspective) the
state of the conversation.

8 For simplicity we’ve ignored the geometric discourttda in this calculation, which would reduce this
figure slightly.

® This figure makes several simplifications but convégsdoncepts important to present purposes.
Readers interested in the details of the recognitioenstanding, generation, and text-to-speech
components are referred to texts such as (Jurafskiartih, 2000) or survey articles such as (Glass
1999).

19 |n practice estimation 05\1 is usually performed in 2 stages — first a string of wasgsaduced, then
these words are parsed to extr§{;t This detail is not important for the purposes of thjzepa



YU Speech recognition & (A, C) Dialog | S
A\J language understanding model m
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An Ym Language generation & An Dialog

oo text-to-speech manager

Figure 5: Typical architecture of a spoken dialog system

Sy Is then passed to tlthalog managerwhich decides what actiod,, the machine
should take. A, is converted to an audio respongg by thelanguage generation and
text-to-speecleomponent, and it is also passed back to the dialog mode&sS,, may
track both user and machine actions. The user liste¥ig tattempts to recovef,,, and
as a result might update their goal st&eand their interpretation of the dialog history
S, . The cycle then repeats.

One key reason why spoken dialog systems are challengitogitd is that,zh will
contain recognition errors: i.e., it is frequently tase thatl‘h z A,. As a result, the
user's action A,, the user’'s stateS,, and the dialog historyS, are not directly
observable and can never be known to the system weithiaty. However, R andC
provideevidencdrom which A, S,, and S, can be inferred.

We are now ready to cast a spoken dialog systenP&@MDP. First, the machine action

Ay, will be cast as the POMDP actidn In a POMDP, the POMDP stas&xpresses the

unobserved state of the world and the above analysis sisg@pat this unobserved state
can naturally be factored into three distinct compaeifile user’s goa§,, the user’s

action A,, and the dialog histor$, . Hence, the factored POMDP st&tis defined as:

s=(s,,a,,S,) (5)
and the system statg, becomes the belief stav@vers,, a,, ands;:
S, =b(s) =b(s,,a,,s;) (6)

The noisy recognition resuf(\ and the confidence sco@will then be cast as the SDS-
POMDP observatiof:

0=(a,,c) (7)
We will henceforth refer to this factored form as 8i2S-POMDP.



To compute the transition function and observationtion¢c a few intuitive assumptions
will be made. First, substituting (5) into the transitiftnction and decomposing, we
obtain:

p(S’|S,a):p(S;,S;,a{J|Su,Sd,aU,am) (8)
p(s'|s,a) = p(s, |s,:S4,a,,a,) P(a, |S,,S,, Sy &, 8,) P(Sy | 8,558, S4,8,,ay) - (9)

We then assume conditional independence as follows. firBhgerm in (9), which we
call theuser goal modelindicates how the user’s goal changes (or does raotgef) at
each time-step. We assume that the user’s goal htteae-step depends only on the
previous goal and the machine’s action:

p(s s Sa0.a,) = P(S, 1s,ay) (10)

The second term, which we call thser action modelndicates what actions the user is
likely to take at each time step. We assume thesusetion depends on their (current)
goal and the preceding machine action:

p(a, s, S, S @ an) = P&, 1S,,a,) - (11)

The third term, which we call thdialog history model captures relevant historical
information about the dialog. We assume this compohas access to the most recent
value of all variables:

P(sa 184S Su» Sd»8ur8m) = P(Sa 184,800 Sd-8m) - (12)
Substituting (10), (11) and (12) into (9) then gives the FIWBADP transition function:
p(s'|s.@) = p(s, Is,.a,) P(a, | . a,) (s, &).8,.8;.2y,) - (13)

From (5) and (7), the observation function of the SIIBMPP becomes:
p(o'|s',a) = p(a;,C'| s, Sy 3y, am) - (14)

The observation function accounts for the corruptiotroduced by the speech
recognition and language understanding process, so we ashatnthe observation
depends only on the action taken by the User:

P(ay,C'18y, 84,8, am) = P(&;,C |ay) . (15)

The two equations (13) and (15) represent a statisticdehad a spoken dialog system.
The transition function allows future behaviour to beditted and the observation
function provides the means for inferring the hidden sysi@te from observations. The
models themselves have to be estimated of course.uddregoal model and the user
action model (the first two components of Eq. (13)) wipitally be estimated from a
corpus of annotated interactions. For example, conditidistributions over user dialog
acts can be estimated given a machine dialog act and gagderTo appropriately cover
all of the conditions, the corpus would need to includeatdity in the strategy

1 This implicitly assumes that the same recognition gramisialways used. For systems where the
grammar is switched at each turn, the dependeneg sirould be retained.



employed by the machine — for example, using a Wizard-off@mework with a
simulated ASR channel (Stuttle et al., 2004).

The dialog history model can either be estimated from, detndcrafted, or replaced by a
deterministic function representing information stagmlate rules as in for example
(Larsson and Traum, 2000). Thus the SDS-POMDP systemmilymaenable both
probabilities estimated from corpora and hand-crafted $tegito be incorporated. This
is a very important aspect of the SDS-POMDP framewoitkat it allows deterministic
programming to be incorporated in a natural way.

The observation function can be estimated from a cavpuakerived analytically using a
phonetic confusion matrix, language model, etc. (Deng),e2G03; Stuttle et al., 2004).

Timestep n . Timestep n+1

Figure 6: Influence diagram representation of the SDS-PMDP model. The dashed box indicates the
composite states which is comprised of three componentsy,, §, and a, (see text for a complete
definition of variables). The dashed line from the dd®ed box toa, indicates that the actionay, is a
function of the belief states,, = b(s, a,, %)

The reward function is not specified explicitly sintelépends on the design objectives
of the target system. The reward function is wellexlito encoding a variety of

objectives. Expressing simple, single optimization metis straightforward — for

example, the chances of successful closure could b&mad by setting a positive

reward for successful closure, and a zero reward fornr#ton gathering actions.

Alternatively, the number of turns to completion colddminimized by setting a uniform

negative reward for all information gathering actionsgd & zero reward for closure
actions.

Of course in a spoken dialog system, multiple competigria are important, and often

a system should strive to maximize the chances of ssfoteslosure while also
minimizing the number of turns required to do so. To combindiple optimization
criteria into one metricyeightingsbetween the criteria are needed, and in a POMDP
these weightings are naturally expressed in the rewadtidnn For example, the reward
function can include components for successful and unsfate®sure, abandonment,



and per-turn penalties, and the ratios between thesardecomponents specifies the
relative cost of longer dialogs, user abandonment, eesstul closure, etc. Moreover,
the per-turn penalties can be used to encourage dialog “appeopss”, for example by

setting a higher per-turn penalty for confirming an itemclvtiias not been discussed yet.

Finally, given the definitions above, the belief steé® be updated at each time step by
substituting equations (13) and (15) into (2), and simplifying:

b'(sy,sq.a0) = kip(ay,c'|ay) [p(ay | sy am)!
> P(su1sy.am) 2 P(sy |88, Sq.am) 2b(sy,Sq,a,)- (16)
s, sUS a,lA
The summations oves=(s,,a,,Sq predict a new distribution fos' based on the

previous values weighted by the previous belief. For eastnged value of, the

leading terms outside the summation scale the updatexf bglithe probability of the
observation giverg;, and the probability that the user would ut&r given the user’s

goal and the last machine output. Fig. 6 shows the irduellagram depiction of the
SDS-POMDP, which clearly shows these dependenciess fifjuire will also be useful
later for making comparisons between the SDS-POMDPeseptation and other
approaches to dialog management.

Standard POMDP SDS-POMDP

State set S (S AL Sy)
Observation set @] (;&u Q)
Action set A A
Transition function p(s'|sa) P(si I8 am) P(ay |'s,,a,) P(sy @y, 84, an)

Observation function p(o’|s’,a) p(a;.c'lay)

Reward function r(sa) r(s,,a,,Sq ay)
Belief state b(s) b(s,.a,,84)

Table 5: Summary of SDS-POMDP components.

For ease of reference, Table 5 summarises the exparigierms in a standard POMDP
to give the SDS-POMDP needed to characterise a spokeg gigtem.

2. POMDPs and existing architectures

As described in the previous section, the SDS-POMDP madeWws the dialog
management problem to be cast in a statistical framtewdtris therefore particularly
well-suited to coping with the uncertainty inherent inkspo dialog systems. In this
section, three existing techniques for handling uncertamgn SDS will be reviewed:
maintaining multiple dialog states, local use of confa#erscores, and automated
planning. In each case, it will be shown that the $HOBADP model provides an
equivalent solution but in a more principled way whichmad global parameter



optimisation from data. Indeed, it will be shown teath of these existing approaches
represents a simplification or special case of th&-FIOMDP model.

2.1. POMDPs and parallel state hypotheses
Traditional dialog management schemes maintain (examtly)Xdialog stats_ S, and
when a recognition error is mads, may contain erroneous information. Although

designers have developad hoctechniques to avoid dialog breakdowns such as allowing
a user to “undo” system mistakes, the desire for an intlgrebust approach remains.
A natural approach to coping with erroneous evidence risaiatain multiple hypotheses
for the correct dialog state. Similar tob@am searchin a hidden Markov model,
maintaining many possible dialog states allows a sysbeemplore many paths through a
dialog, always allowing for the possibility that eadhge of evidence is an error. In this
section, we briefly review two techniques for maintainmgltiple dialog hypotheses:
greedy decision theoretic approaches and an M-Best list.

MEU MEU

A4

Timestep n

A4

Timestep n+1

Figure 7: View of a spoken dialog system as a greedy degistheoretic process. ActionA is

selected to maximize the expected immediately utiliti, indicated by the subscriptMEU (“Maximum
Expected Utility”). The dashed line indicates thatA,, is a function of thedistribution over S_,

rather than its actual (unobserved) value.

Greedy decision theoretic approaches construct an inugiagram as shown in Figure
7. The structure of the network is identical to a POMDIE:system stat&, is a belief

state over hidden variables, suchs3s a,, ands;. The dashed line in the figure from
S, to A, indicates thatA_ is chosen based on tdestributionover S rather than its

actual (unobserved) value. As with a POMDP, a rewals® (called a utility) function is
used to select actions — however, greedy decision theagbimaches differ from a
POMDP inhow the reward is used to selection actions. Unlike a POMDRvhich
machine actions are chosen to maximize the cumuldtimg-term reward, greedy
decision theoretic approaches choose the action whiakinmzes theimmediate



reward*® In other words, the POMDP is performing planning, wheréee greedy
decision theoretic approach is not. As such, actie@tsenh is certainly tractable for real-
world dialog problems, and greedy decision theoretic appesahave been successfully
demonstrated in real working dialog systems (Horvitz an&,R2890; Paek et al., 2000).

However, whether the dialog manager explicitly perfanning or not, a successful
dialog must make progress to some long-term goal. In greedision theoretic
approaches, a system will make long-term progress towagdal only if the reward
metric has been carefully crafted. Unfortunately,ftorg a reward measure which
accomplishes this is a non-trivial problem and in pracioeouraging a system to make
progress to long-term goals inevitably requires some heaftlng resulting in the need
for ad hociterative tuning.
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Figure 8: Influence diagram showing multiple state hypothses. S takes the value of the stateS,_
with the highest probability mass at each time-step. TsuperscriptDET indicates that the variable
S. is not random but is rather adeterministicfunction of its inputs.

An alternative to the greedy decision theoretic apgraacto still maintain multiple
dialog hypotheses but select actions by considering oalppdialog hypothesis, using
a handcrafted policy as in conventional heuristic SDSgdepractice. This approach is
referred to as th#1-Best listapproximation, and it is shown graphically in Figure 8. In

this figure, the superscri@ET indicates that the nod8_ is not random but rather takes

on adeterministicvalue for known inputs, and hel®” is set to the stat&_ with the

most probability mass. Thel-best listapproach has been used to build real dialog
systems and shown to give performance gains relativentegaivalent single-state
system (Higashinaka et al., 2003).

12 As such, a greedy decision theoretic method couldbalstassified as an “automatic action selection”
method — the focus here is maintaining multiple dialotg $tgpotheses.

13 This work makes two further approximations — first, domputational efficiency, a “beam” of
approximately 30 states is maintained rather than all pesstfites. Second, a “scoring” mechanism is
used as an approximation to a proper probability score.



The M-best approximation can be viewed as a POMDP iohwdiition selection is hand-
crafted, and based only on the most likely dialog stAhen cast in these terms, it is
clear that an M-best approximation makes use of onha&idn of the available state
information since considering only the top hypothesis igagre important information
in the alternative hypotheses such as whether the mesktib very similar or very
different to the best hypothesis. Hence, even settidg #se use odd hochand-crafted
policies, theM-best listapproach is clearly sub-optimal. In contrast, sitite SDS-
POMDP constructs a policy which covers belief spatenaiturally considers all
alternative hypotheses.

2.2. POMDPs and local use of confidence scores

Most speech recognition engines annotate their output vhypothesesvv with
confidence scoresp(W|Y,) and modern systems can compute this measure quite

accurately (Evermann and Woodland, 2000; Kemp acitaf§ 1997; Moreno et al.,
2001). Subsequent processing in the speech uaddisy§ components will often
augment this low level acoustic confidence usingaekeatures such as parse scores,
prosodic features, dialog state, etc (Bohus et 28Q1; Gabsdil and Lemon, 2004;
Hirschberg et al. 2001; Krahmer et al., 1999, 2Q@man et al., 2001; Pao et al., 1998).
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Figure 9: Influence diagram showing how a confidence sceris typically incorporated into a spoken
dialog system. NodeC is a random variable representing confidence scoreA, may take on values
such asthi, low}, {explicit-confirm, implicit-confirm, reject} etc.
For the purposes of a dialog system, the essentiat of a confidence score is that it
provides an overall indication of the reliability the hypothesized user dialog &&j.

Traditional systems typically incorporate confiderscores by specifying @nfidence

threshold c,, ., Which implements aaccept/rejectlecision for ana,: if ¢ > c,, g, then

a, is deemed reliable and accepted; otherwise ieésreed unreliable and discarded. In
practice any value of, ., Will still result in classification errors, sg,.., can be viewed



as implementing a trade-off between the cost of sefakgative (rejecting an accurate
a,) and the cost of a false-positive (accepting an erronagus

Figure 9 shows how a spoken dialog system with a cord@lecore can be expressed in
an influence diagram. A, is a decision node that indicates the “confidence étliakr

action relative to the confidence score — for exan{pleJow} or {accept, reject} A, is

typically trained using a corpus of examples and supervesgthihg, indicated by the
subscriptSL on the nodeA_.** This “confidence bucket” is then incorporated into the

dialog state using hand-crafted update rules -$e5 f (S, A, AL, R). As above, the

superscripDET on the nodeS indicates thatS  takes on aleterministicvalue — i.e.,

for a known set of inputs, it yields exactly one outpuésdl on the updated dialog state
S,,, the policy determines which action to take. The dia@mnager is implemented with

hand-crafted rules, indicated by the subsd#iiton the A decision node.

Figure 9 also highlights key differences between a toawitisystem with a confidence
score and the SDS-POMDP model. In both mod&[sandc are regarded as observed
random variables. However, in traditional approachdsard and coarsedecision is
made about the validity oﬂ via the decisionA,. The decision implemented iA, is
non-trivial since there is no principled way of settihg tonfidence threshold, .. In

practice a developer will look at expected accept/rejgerds and use intuition. A
slightly more structured approach would attempt to ase@pts to various outcomes
(e.g., cost of a false-accept, cost of a false rejett.) and choose a threshold
accordingly. However, these costs are specified ingdiate terms, whereas in practice
the decisions have long-term effects (e.g., subsequemctions) which are difficult to
qguantify, and which vary depending on context. Indeed, wheg-tlenm costs are
properly considered, there is evidence that values fomaptonfidence thresholds are
not at all intuitive: one recent study found that fornsnanteractions, the optimal
confidence threshold wasero— i.e., any recognition hypothesis, no matter how poorly
scored, should be accepted (Bohus and Rudnicky, 2005b).

By contrast, the SDS-POMDP is a generative model Imchv confidence score is
modelled as a continuous observed random variables. Nwtein Figure 9, the
confidence score is viewed as a functional input, whanetiee POMDP (Figure 6), it is
viewed as an observed output from a distribution. isway, the SDS-POMDP never
makes hard accept/reject decisions about evidence itvescebut rather uses the
confidence score to perform inference over all possisker actionsA,. Further, the

explicit machine dialog stat§,,, used in traditional approaches is challenged to maintain

a meaningful confidence score history since typicallg ¥alue of& IS rejected, that
information is discardetf. By contrast, the SDS-POMDP aggregates all informatio

14 A, could also be handcrafted — the key point that confiderure $s quantized.

15 A small body of work has attempted to identify “good dialoby looking at features over multiple turns,
but the classification scheme — good dialog vs. bad dialsgven coarser than accept/reject decisions
(Litman and Pan, 2000), (Langkilde et al., 1999). D.



over timeincluding conflicting evidenceia a belief state, properly accounting for the
reliability of each observation in cumulative termdg:inally, whereas accept/reject

decisions in a traditional system are taken basedaah fmtions (often human intuitions)

of utility, in the SDS-POMDP actions are selected basedxpected long-term reward —
note how Figure 6 explicitly includes a reward componerse@tofrom Figure 9.

In summary, local use of confidence scores in trashfidand-crafted SDSs does add
useful information, but acting on this information in aywehich serves long-term goals
is non-trivial. A traditional SDS with a confidenceose can be viewed as an SDS-
POMDP with a number of simplifications: one dialogtsteés maintained rather than
many; accept/reject decisions are used in place of pladalog hypotheses; and actions
are selected based on a hand-crafted strategy ratmeséhected to maximize a long-
term reward metric.

2.3. POMDPs and automated action selection

Choosing which actiora,, a spoken dialog system should take in a given situagi@n i

difficult task since it is not always obvious what tbhed-term effect of each action will
be. Hand-crafting dialog strategies can lead to unforesidog dsituations, requiring
expensive iterative testing to build good systems. Such pnsbleave prompted
researchers to investigate techniques for choosingnac@atomatically and in this
section, the two main approaches to automatic actitect@n will be considered:
supervised learning, and Markov decision processes.

As illustrated graphically in Figure 10, supervised learning attemgpestimate a direct
mapping from machine statg,, to action A,, given a corpus of training examples. It

can be thought of as a simplification of the SDS-POM@RIel in which a single state is
maintained, and in which actions are learnt from a corfesting aside the limitations of
maintaining just one dialog state and the lack of ekpfmrward planning, using
supervised learning to create a dialog policy is problematae scollecting a suitable
training corpus is very difficult for three reasons.

Firstly, using human-human conversation data is not apptepbecause it does not
contain the same distribution of understanding errard, leecause human-human turn-
taking is much richer than human-machine dialog. As altrdsuman-machine dialog
exhibits very different traits than human-human dja{®oran et al., 2001; Moore and
Browning, 1992). Secondly, while it would be possible toaiserpus collected from an
existing spoken dialog system, supervised learning would sifepiy to approximate
the policy used by that spoken dialog system and an oyendbrmance improvement
would therefore be unlikely. Thirdly, a corpus could beemé#éd for the purpose, for
example, by running Wizard-of-Oz style dialogs in whieé tizard is required to select
from a list of possible actions at each step (Bohus Rudnicky, 2005a; Lane et al.,
2004) or encouraged to pursue more free-form interactionsit&@k&£003; Williams and
Young, 2004). However, in general such collections arg westly, and tend to be
orders of magnitude too small to support robust estimatibmemeralized action
selection.
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Figure 10: Supervised learning for action selectionThe node A, has been trained using supervised
learning on a corpus of dialogs (indicated with th&L subscript). TheDET superscript on S,
indicates that this node is deterministic.

Fully-observable Markov decision processes (usually juskeccaMarkov decision
processes, or MDPs) take a very different approach ttmmated action selection. As
their name implies, a Markov decision process is l#ication of a POMDP in which
the state is fully observable. This simplificatiershown graphically in Figure 11. In an

MDP, A, is again regarded as a random observed variableSgnds a deterministic

function of S, An. R and A.. Since at a given stats,, a host of possible
observationsa, are possible, planning is performed using a transitiontibme- i.e.
P(SmlSm,am). Like POMDPs, MDPs choose actions to maximize ag-kemm

cumulative sum of rewards: i.e., they perform plannitgnlike POMDPSs, the current
state in an MDP is known, so a policy is expressedctlyr as a function of state
7n(s)0A  This representation is discrete (a mapping frastrdte states to discrete

actions), and as a result, MDPs are usually regaadea more tractable formalism than
POMDPs. Indeed, MDPs enjoy a rich literature ofllAwaderstood optimization
techniques and have been applied to numerous édwroblems (Sutton and Barto,
1998).

By allowing designers to specify rewards for desisnd undesired outcomes (e.g.,
successfully completing a task, a caller hanging etp) without specifying explicitly

how to achieve each required goal, much of thetedthandcrafting” of dialog design is

avoided. Moreover, unlike the supervised learrapgroach to action selection, MDPs
make principled decisions about the long-term ¢$fexd actions, and the value of this
approach has been demonstrated in a number ofrcasggstems. For example, in the
ATIS Air Travel domain, Levin et al. constructedsgstem to optimize the costs of
guerying the user to restrict (or broaden) theghfl search, the costs of presenting too
many (or too few) flight options, and the costsaufcessing a database (Levin and
Pieraccini, 1997; Levin et al., 1998, 2000). ldiidn, researchers have sought to find



optimal initiative, information presentation, and confitima styles in real dialog
systems (Singh et al., 2002; Walker et al., 1998). MDP-bggellen dialog systems
have also given rise to a host of work in user modedind novel training/optimization
techniques (Denecke et al., 2004; Goddeau and Pineau, 2000; Heneleedqgr2005;

Pietquin 2004, Pietquin and Renals, 2002; Scheffler and Young, 2002).
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Figure 11: Depiction of an MDP used for dialog managementThe action A, is chosen to maximize
the sum of rewardsR over time.

A key weakness of MDPs is that they assume thatuhent state of the world is known
exactly and this assumption is completely unfounded inpilesence of recognition
errors. The impact of this becomes clear when the MBiasition function is

calculated®

P(Sy | Sp:8n) = 2 P(& | S, 8,) (S, | Sy, &) (17)
&

To compute the transition function properly, anreate of P(a, | s,,,a,, ) is required, but

in reality Zh depends critically (viaA,) on S,. Dialog designers try to ensure tt&t
closely modelsS,, but as errors are introduced and the two modedsgk, the effects of

the dependence o?\ on a hidden variable increasingly violate the Marlassumption
expressed inP(s| |s,,a, ,) compromising the ability of the MDP to produceodo

policies. While there exist sophisticated learniaghniques (such adigibility traceg

which attempt to partially overcome the fact thHa tiser’s state is not fully observable
(Scheffler and Young, 2002), in simple terms, asesp recognition errors become more
prevalent, theory predicts that POMDPs will perfdreiter than MDPs by an increasing

'®1n this calculation @, has been omitted for clarity.



margin. As will be shown below, the results of giation studies support this theoretical
prediction.

In summary, from a theoretical standpoint, maintainmngltiple dialog hypotheses,
confidence scoring, and automated planning can all be viewedpecial cases or
simplifications of a POMDP. Of course, contemporsppken dialogue systems may
employ more than one of these techniques, but a POMDfgsae in providing a unified
statistical framework that supports global optimizatioRor example, an MDP may
include a confidence bucket in its state space, but there sraightforward way to
search for optimal confidence threshold settings, (ilose which maximize expected
return), save a brute-force search. Further, somdications of these techniques have
only been demonstrated with a POMDP - for exampleaaad the authors are aware,
the only systems in the literature which both maintairitiple hypotheses for the dialog
state and perform forward planning are POMDPs.

In the next section, we illustrate the benefits lefse theoretical advantages concretely
through example dialogs and experimental simulations.

3. Empirical support for the SDS-POMDP framework

Section 1 has shown how POMDPs can be viewed as @ppeth theoretical approach to
dialog management under uncertainty and section 2 bamombtrated that existing
approaches to handling uncertainty are subsumed andatise¢ by the SDS-POMDP
framework. In this section, the practical advantageaitdising the SDS-POMDP
framework are demonstrated through example interactimhsienulation experiments.

3.1. Benefits of parallel state hypotheses

A central claim of this paper is that because POMDRstain parallel dialog state
hypotheses, they are able to cope better with speeolgnition errors. In this section,
we will first discuss how multiple dialog hypothesesl aobustness to speech recognition
errors. In doing so, we will also explain how the SBSMDP model takes proper
account of a user model.

To begin illustrating this claim, consider a spokenagjatystem with no confidence
scoring and which makes speech recognition errors willkea error rate. For this
example, which is in the pizza ordering domain, it isiaed that all cooperative user
actions are equally likely: i.e., there is no effect afuser model. An example
conversation with such a system is shown in Figure lbZhis figure, the first column
shows interactions between the user and the machinet ifdxackets shows the

recognized text (i.e.,&). The middle column shows a portion of a POMDP

representation of the user’s goal. The last colummwshww a traditional dialog model
might track this same portion of the dialog state &iffame-based representation

This conversation illustrates how multiple dialog hyps#seare more robust to errors by
properly accounting for conflicting evidence. In this ex@nphe frame-based
representation must choose whether to change its valubefgizefield or ignore new
evidence; by contrast, the POMDP easily accounts foflictimy evidence by shifting
belief mass. Intuitively, a POMDP naturally implerteera “best two out of three”
strategy.



System / User / ASR POMDP belief state Traditional method

A
order: {

Prior to start of dialog b size: <empty>
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Sml Med Lrg
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M: How can | help you? order: {
U: A small pepperoni pizza b size: small
[a small pepperoni pizza]
1 [ y

Sml Med Lrg

M: Ok, what toppings? order: {
U: A small pepperoni b size: small

[a small pepperoni]

1 i }
Sml Med Lrg

M: And what type of crust? order: {
U: Uh just normal b size: large [?]

[large normal]

Sml Med Lrg

Figure 12: Example conversation with a spoken dialog syt illustrating the benefit of maintaining
multiple dialog state hypotheses. This example is inétpizza ordering domain. The left column
shows the machine and user utterances, and the recogaitiresults from the user’s utterance is

shown in brackets. The center column shows a portioof the POMDP belief state b represents the

belief over a component of the user’s goal (pizza sjzeThe right-hand column shows a typical frame-
based method which is also tracking this component tfie user’s goal. Note that a speech
recognition error is made in the last turn — this cause the traditional method to absorb a piece of bad
information, whereas the POMDP belief state is moreabust. In this example no account is taken of
which user actions are more or less likely, or of edidence score — see below for illustrations of thes
elements.

A POMDRP is further improved with the addition of a usgydel which indicates how a
user's goalS, changes over time, and what actioAs the user is likely to take in a
given situation. For example, consider the dialogwshin Figure 13. In this figure, a
user model informs the likelihood of each recognition hy\;asitshgJ given S, and A,,.

In this example, the machine asks for the value of ¢ote and receives a reply. The
system then asks for the value of a second slot, amives a value for that sland an
inconsistenvalue for the first slot.

In the traditional frame-based dialog manager, it idaar how this evidence should be
incorporated — should the new information replace the otarnmdtion, or should it be



ignored? If the frame is extended to allow conflitisw can they be resolved? Finally,
how can the fact that the new evidence is less likbin the initial evidence be

incorporated? By contrast, in the SDS-POMDP the bstatie update is scaled by the
likelihood predicted by the user model. In other words,REOMDP takes minimal (but

non-zero) account of very unlikely user actions itestss, and maximal account of very
likely actions it observes.

System / User / ASR POMDP belief state Traditional method
A
order: {
Prior to start of dialog b size: <empty>

Sml Med Lrg

A

M: How can | help you? order: {
U: A small pepperoni pizza b size: small
[a small pepperoni pizza]

Si.mli Med Lrg

M: And what type of crust? order: {
U: Uh just normal b H size: large [?]

I I
[large normal] — |—| }

Si.mli Med Lrg

Figure 13: Example conversation with a spoken dialog sy=m illustrating the benefit of an embedded
user model. In the POMDP, for the first recognition the observed user’s response is very likely
according to the user model. The result is a large ghin belief mass toward theSmlvalue. In the
second recognition, providing information about the sie is predicted as being less likely; as a result,
the observed responserg (which happens to be a speech recognition error) isvgn less weight, and
the final POMDP belief state has more mass o8mlthan Lrg. By contrast, the traditional method
must choose whether to update the state witBml or Lrg.

To test these intuitions experimentally, a test-lbkmlog simulation experiment was
created (Williams et al., 2005a). The goal of the expemtrwas to quantify the benefits
of multiple dialog hypotheses and the embedded user modktkxplore the effects of
different speech recognition errors rates. This assg#sis made by comparing the
performance of a POMDP to an MDP which (as describedeatiosn 3.3) does not
maintain multiple hypotheses.

The test-bed simulation is in the travel domain. Awdated user is trying to buy a ticket
to travel from one city to another city. The machas&s the user a series of questions,
and then “submits” the ticket purchase request, endindistt@g. The machine may also
choose to “fail,” abandoning the dialog. To make theesyselatively straightforward to
optimize, there are just three cities in the testqpoblem. The machine has 16 actions
available, includinggreet, ask-from/ask-to, confirm-to-x/confirm-from-x, subnyt-and



fail. The user's goal specifies the user’s desired itineramg, the dialog historysy
indicates (from the user’s perspective) whetherftttwn place ando place have not been
specified, are unconfirmed, or are confirmed. The usert®ra@and the speech
recognition result are drawn from the setfrom-x, to-x, from-x-to-y, yes, nand null,
where in all caseg andy indicate cities. These state components yield a ¢§tab45
states.

a, s, Description a, p(a, |s.am)
User wasn'’t paying attention null 0.100
User says both places from-x-to-y 0.540
greet frtoomyx User says just “from” place from-x 0.180
User says just “to” place to-y 0.180
All other user actions (all others 0.000
User wasn'’t paying attention null 0.100
User says just the name of the place X 0.585
ask-from frtoomyx User ;?gﬁetgg dnt?;?‘?rg:nﬁhe place from-x 0.225
User says both places from-x-to-y 0.090
All other user actions (all others 0.000
User wasn'’t paying attention null 0.100
from x User says just “yes” yes 0.765
toy i i
confirm- (NB - the User says égﬁ;it?nrr;;hat was being y 0.101
o system nas th he item being confirmed
hyprggtﬂ'éSiS) Uservsvﬁ)ést:]e “t0” prepos%tion - toy 0.034
All other user actions (all others 0.000

Table 6: Extracts from the hand-crafted user model emplged in simulation experiments.

In the test-bed problem the user has a fixed goal foduhation of the dialog, and we
define theuser goal modeaccordingly. We define theser action modefo include a
variable set of responses — for example, the user espnd taask-to/ask-fronwith X,
to-x/from-x or from-x-to-y The probabilities in the user action model were ehasich
that the user provides cooperative but varied responsespargtimes does not respond
at all. The probabilities were handcrafted, selecte@das experience performing
usability testing with slot-filling dialog systems. A pion of the user model parameters
is given in Table 6.

We define the observation function to encode the prétyalif making a speech
recognition error to bg,,, , and define the observation function as:

1_ perr if 51: = a:,l

p(ﬁl: |a;) = perr if al: + a-[; (18)
A1



Below we will vary p,,, to explore the effects of speech recognition errors.

The reward measure includes components for both task dionpland dialog
“appropriateness” and reflects the intuition that behavimgppropriately or even
abandoning a hopeless conversation early are both lemsedban submitting the user's
goal wrong. The reward assigns -3 for confirming a fiedébre it has been referenced
by the user; -5 for taking tHail action; +10 or -10 for taking theibmit-x-yaction when
the user’'s goal igx,y) or not, respectively; and -1 otherwise. This reward foncti
expresses how trade-offs should be made between thens/stempeting objectives of
speed and accuracy — for example, this reward function tedidhat a dialog which
requires 15 turns to arrive at the correct answer (areives —1[15+10=-5) obtains
the same reward as one in which the system immedmbalydons the interaction via the
fail action (and receives5). Thus if the planner determines that successful cdiople
would require more than 15 turns, it will instead choasaértmediately abandon the
conversation and not waste the user’s tife.

POMDP optimization was performed with a variant of pdiased value iteration called
PerseugSpaan and Vlassis, 2005).

An MDP was constructed to assess performance of a madteh does not track multiple

dialog states, and which does not make use of an dxpser model. The MDP was
patterned on systems in the literature, for exampietd&in, 2004)). The MDP was

trained and evaluated through interaction with a modeéhefenvironment, which was

formed from the POMDP transition, observation, andarel functions. This model of

the environment takes an action from the MDP as inpuat,eanits an observation and a
reward to the MDP as output.

List of MDP states

u-u o-u c-u

u-o 0-0 c-0

u-c 0-C c-C

dialog-start dialog-end

Table 7: The 11 MDP states used in the test-bed simulan. In the items of the formx-y, the first
item refers to thefrom slot, and the second item refers to thto slot. u indicatesunknown; o indicates
observedut not confirmed; ¢ indicatesconfirmed.

The MDP state contains components for each field whidleat whether from the
standpoint of the machine,value has not been observed, a value has been ety
not confirmed, or a value has been confirmed. Two aohditistates -dialog-startand
dialog-end- which were also in the POMDP state space, are includdde MDP state
space for a total of 11 MDP states, shown in Table 7e NIDP was optimized using
Watkins Q-Learning (Watkins, 1989).

Figure 14 shows the average return (i.e. total cumulaéwerd) for the POMDP and
MDP solutions vs. the recognition error rafe, ranging from 0.00 to 0.65. The

(negligible) error bars for the MDP show the 95% comfadeinterval for the estimate of

" For clarity, this illustration has assumed that theatiat factory is equal to 1.



the return assuming a normal distributi§nThe POMDP and MDP perform equivalently
for p,, =0, and the return for both methods decreases consjstenfl,, increases but

err

the POMDP solution consistently achieves the largemrmet Thus, in the presence of
perfect recognition accuracy, there is no advantage iatain@ing multiple dialog states,
however, when errors do occur, the POMDP solutionnaysd better and furthermore the
difference in performance increases@g increases. This result confirms that the use of

multiple dialog hypotheses and an embedded user model dngbé& recognition error
rates to be tolerated compared to the conventionalessigte approach. A detailed
inspection of the dialog transcripts confirmed that P@MVIDP is better at interpreting
inconsistent information, agreeing with the intuitiomwh in Figure 12.
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Figure 14: Expected or average return of the POMDP paty and the MDP baseline. Error bars
show the 95% confidence interval

Although there is little related work in the literatuexperiments by Roy et al also
showed performance gains compared to a conventional M&y a simpleAugmented
MDP in which planning is performed considering only the (discrbest state, and the
entropy of the belief state, (Roy et al., 2000).

3.2. Benefits of the POMDP approach to confidence s  coring

A second central claim of this work is that POMDPs pieva principled approach to
confidence scoring.

To illustrate this claim, consider a spoken dialog syste#mth makes use of a per-
utterance confidence score which ranges from 0 to 1umesdhat all cooperative user
actions are equally likely so that the effects of a wsedel can be disregarded. In the
traditional version of this system with three confidehecickets feject, low, h}, suppose
that a good threshold betweegject and low has been found to be 0.4, and a good
threshold betweelow andhi has been found to be 0.8.

8 The POMDP value is exact and hence error bars askaitn.



An example conversation is shown in Figure 15 in whiehntfachine asks a question and
correctly recognizes the response. In the traditiorhod, the confidence score of 0.85
is in thehigh confidence bucket, hence the utterance is accepted witledhfidence and
the dialog state is updated accordingly. In the POMDI®, ¢onfidence score is
incorporated into the magnitude of the belief state update.

Now consider the conversation in Figure 16, in which eadhefecognitions is again
correct, but the confidence scores are lower. Irtrdditional method, each confidence
score falls into the “reject” confidence bucket, aoadhing is incorporated into the dialog
frame. In the POMDP-based system, however, the magmof the confidence score is
incorporated into the belief update as above, althoughithésgince the score is lower,
each update shifts less belief mass.

System / User / ASR POMDP belief state Traditional method
order: {
Prior to start of dialog b size: <empty>

|_| |_| .

Sml Med Lrg

M: What size do you want? size: {
U: Small please b val: small
[small please] ~ 0.85 conf: hi
Il | 1 }
Sml Med Lrg

Figure 15: Example conversation with a spoken dialog st illustrating a high-confidence

recognition. The POMDP incorporates the magnitude oftte confidence score by scaling the belief

state update correspondingly. The traditional method quatizes the confidence score into a “bucket”
such as{reject, low, hi}

This second example illustrates two key benefits of POMDRPirst, lookingwithin one
time-step, whereas the traditional method createsite et of confidence buckets, the
POMDRP in effect utilizes an infinite number of confidenbuckets and as a result the
POMDP belief state is a lossless representation ©hgle confidence score. Second,
looking across time-steps, whereas the traditional method is challengedrack
aggregate evidence about confidence scores over time, ®P@Hectively maintains a
cumulative confidence score over user goals. For#adtipnal method to approximate a
cumulative confidence score, a policy which acted dwstorical record of confidence
scores would need to be devised, and it is quite unclearchdwthis.

Moreover, the incorporation of confidence score inforomaand user model information
are complementary since they are separate product terthe belief update equation

(16). The probabilityp(a,,c’ |a, )reflects the contribution of the confidence scoré an
the probability p(a, | S,,a,, )reflects the contribution of the user model. Theelbéeérm
b(s,,s,.a,) records the dialog history and provides the memory needadctamulate
evidence. This is in contrast to traditional approackbih typically have a small



number of confidence score “buckets” for each recognéient, and typically log only
the most recently observed “bucket”. POMDPs havefeceinfinitely many confidence
score bucketsand they aggregate evidence properly over time as a well-fibrme
distribution over dialog states (including user goals).

To test these intuitions experimentally, the dialognagement problem presented in
Section 3.1 was extended to include a confidence scoréaWsl et al., 2005b). In the
POMDP, the confidence score is regarded as a continuous component of the
observation, and in the MDP, the confidence score istgeaninto “buckets” as is
customarily done (Pietquin, 2004).

System / User / ASR POMDP belief state Traditional method
A
order: {
Prior to start of dialog b size: <empty>

pEn |

Sml Med Lrg

S: What size do you want? order: {
U: Small please b size: <empty>
[small please] ~ 0.38 |_| |_| |_|
}

Sml Med Lrg

S: Sorry, what size? order: {

U: i said small size: <empty>
[l said small] ~0.39 I:l I:l
}

Sml Med Lrg

Figure 16: Example conversation with a spoken dialog sysm illustrating two successive low-
confidence recognitions. In this example, both recogions are correct. The POMDP incorporates
the confidence score in the same way as shown in Figut5, accumulating weak evidence. For the
traditional method, both confidence scores are belothe threshold of 0.40, and thus they are both

ignored. In effect, the traditional method is ignoringpossibly useful information.

In the POMDP, the observation functiop(a’,c'|a, i3 in practice impossible to
estimate directly from data, so it is decomposed wtndistributions — one for “correct”

recognitions and another for “incorrect” recognitiohs.the test-bed problem we assume
that all confusions are equally likely and occur with proldgbipg,, , yielding:

- ph (Cl) ql_ perr) If 51: = a:J
p(a,,c'|a,) = b, (L-¢') peril if & a (29)

Al

wherec' is defined on the interval [0,1], angl, (¢' i9 an exponential probability density
functions with slope determined by a paraméterwhen h=0, p,(c’) is a uniform



density and conveys no information;taapproaches infinity,p, (c' )provides complete

and perfect information. POMDP policy optimization wesformed with a technique
which admits continuous observations (Hoey and Poupars)200

The MDP baseline was similarly extended to inclleonfidence buckets, patterned on
systems in the literature, such as (Pietquin, 2004). Ndéad thresholds between
confidence buckets would be selected so that they maxaweege return; however, it
is not obvious how to perform this selection — indekd, is one of the weaknesses of the
“confidence bucket” method. Instead, a variety of techridaesetting confidence score
threshold were explored, and it was found that dividing phobability mass of the
confidence score evenly between buckets produced the largest averagesieturn

List of MDP-2 states

u-u u-o(l) u-o(h) u-c(l,1) u-c(l,h) u-c(h,l) u-c(h,h)

o(l)-u o(1)-o(l) o(l)-o(h) o(l)-c(l,l) o(l)-c(l,h) o(-c(h,l) o(l)-c(h,h)

o(h)-u o(h)-o(l) o(h)-o(h) o(h)-c(1,]) o(h)-c(l,h) o(h)-cth,  o(h)-c(h,h)

c(l,)-u c(l,h-o()) c(l,)-o(h) c(l,)-c(l,]) c(l,)yc(l,h) c(l,)-c(h,l) c(1,)-c(h,h)
c(l,h)-u c(1,h)-o(l) c(l,h)-o(h) c(l,hy-c(l,l) c(l,hE(,h) c,hy-chl)  c(,h)-c(h,h)
c(h,)-u c(h,)-o(l) c(h,1)-o(h) c(h,)-c(l,)) c(h,1)-cth) c(h,)-c(h,)) c(h,l)-c(h,h)
c(h,h)-u c(h,h)-o(l) c(h,h)-o(h) cthhy-c(l)  c(hh-e), chh-chl)  c(hh)-c(h,h)

dialog-start dialog-end

Table 8: The 51 states in the “MDP-2" simulation. In thdtems of the formx-y, the first item refers
to the from slot, and the second item refers to the slot. u indicatesunknown; o indicatesobserved
but not confirmed; cindicatesconfirmed. o(l)means that the value was observed witlow
confidence;o(h) means that the value was observed withigh confidence. c(l,I) means that both the
value itself and the confirmation were observed witthow confidence;c(l,h) means that the value was
observed with low confidence and the confirmation wasbserved with high confidence, etc.

The MDP state was extended to include this confidence “Butkermation. Because
the confidence bucket for each field (including its vadne its confirmation) is tracked
in the MDP state, the size of the MDP state space gywith the number of confidence

buckets. FoM=2, the resulting MDP callelDP-2 has 51 states; this is shown in Table
8.° Watkins Q-learning was again used for MDP optimization.

Figure 17 shows the average returns for the POMDP ND&-2 solutions vs. pe,

ranging from 0.00 to 0.65 fon=1. The error bars show the 95% confidence intervals
for the return assuming a normal distribution. Note thurn decreases consistently as
p.. increases for all solution methods, but the POMDP swistattain larger returns

than the MDP method at all values pf, .*°

We next explored the effects of varying the informatiesnef the confidence score.
Figure 18 shows the average returns for the POMDP metibthaMDP-2 method vs.

19 For referenceyl=1 produces an MDP with 11 states, and3 produces an MDP with 171 states.
20 TheMDP-3 system was also created but we were unable to dixtétier performance from it than we did
from the MDP-2 system.



hfor p, = 0.3. The error bars show the 95% confidence iatdor return assuming a

normal distribution. The POMDP method outperforms tieseline MDP method
consistently for a range of confidence score measures. trend was also observed for a

range of other values op,, (Williams et al., 2005a). Note that increasimgncreases
the average return for all methods.

Average return

C & O N O M a0 2 O © P v O &
Q‘Q Q‘Q Q"\/ Q"\/ Qq/ Qq/ Q(}" Q(}" Q‘b‘ Q‘b‘ Qb Qb Q‘:o Q‘:o

perr

Figure 17: Average return for the POMDP and MDP-2 methods forh = 1.
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Figure 18: Average return vs.h (informativeness of confidence score) g, = 0.30 for the POMDP
and MDP-2 methods.



3.3. Benefits of automated planning

A third central claim of this work is that POMDPs provaerincipled framework for
automated planning. In this section we support this clairh twib discussions. First,
since there exists considerable expertisénand-craftingspoken dialog systems, it is
important to make comparisons with hand-crafted strategi#ge show howthese
comparisons can be made and demonstrate the relativeodd@MDPs. Second, the
benefits of planning (vs. not planning) fautomatically generatedialog mangers are
also addressed.

To compare a POMDP policy with a hand-crafted polidsst fthe form of POMDP
policies must be considered. In the previous sectwasglied on the representation of a
POMDP policy produced by value iteration — i.e., a valuetfoncrepresented as a set of
N vectors each of dimensionalifys|. A second way of representing a POMDP policy is
as a “policy graph” which is a finite state conteolconsisting ofN nodes and some
number of directed arcs. Each controller nodesggned a POMDP action, amgdn )
indicates the action associated with tih node. Each arc is labelled with a POMDP
observation, such that all controller nodes havaceyx one outward arc for each
observation.l(n,0) 0N denotes the successor node for nodad observation.

A policy graph is a general and common way of repnéing handcrafted dialog

management policies (Pieraccini and Huerta, 2008)re complex handcrafted policies
— for example, those created with rules — can lsbal compiled into a (possibly very

large) policy graph. A policy graph does not méke expected return associated with
each controller node explicit; however, as poimed by (Hansen, 1998), the expected
return associated with each controller node cafobed by solving a system of linear

equations inv:

U(s) =r(s, ) + ¥ > p(s |s, ) p(o| S, A(N)), 0 (S)) (20)

sOSodJO

Solving this set of linear equations yields a devextors — one vectov(s jor each
controller nodep, (s ) In words, Eq. (20) sets the value of a node kgudie immediate
reward of taking that node’s actiaifs, /7(n)) plus the discounted expected future reward.

To find the expected valug, (b of starting the controller in nodeand belief staté we
compute:

Vo (b) =2 v, (s)b(s) (21)

Note that a human designer is free to define thetrotber however they wish: the
controller may have any number of nodes, and #s & not linked to the size of the
POMDP state space.

To illustrate policy graph evaluation, three haadted policies calledHC1, HC2, and
HC3 were created for the spoken dialog problem predeaibeve. Each of these policies
encode strategies typically used by designers okesp dialog systems. All of the
handcrafted policies first take the actigreet HC1 takes theask-from and ask-to
actions to fill thefrom and to fields, performing no confirmation. If no responise



detected,HC1 re-tries the same action. HCL1 receives an observation which is
inconsistent or nonsensical, it re-tries the samemctiOnceHC1 fills both fields, it
takes the correspondirsgibmit-x-yaction. A flow diagram of the logic used HC1 is
shown in Figure 18' HC2 is identical toHC1 except that if the machine receives an
observation which is inconsistent or nonsensicalminediately takes thé&ail action.
HC3employs a similar strategy téC1 but extend$1C1 by confirming each field as it is
collected. If the user responds witho® to a confirmation, it re-asks the field. If the
user provides inconsistent information, it treats the m#armation as “correct” and
confirms the new information. Once it has succebsfilled and confirmed both fields,

it takes the correspondirsgibmit-x-yaction.

Figure 20 shows the expected return for the handcraftedigsolnd the optimized
POMDP solution vs. the recognition error rapg,. The optimized POMDP solution
outperforms all of the handcrafted policies for allues of p,,. On inspection,
conceptually the POMDP policy differs from the handefpolicies in that it tracks
conflicting evidence rather than discarding it. Faaregle, whereas the POMDP policy
can interpret the “best 2 of 3" observations for a gistem, the handcrafted policies can
maintain only 1 hypothesis for each slot. As expectedatititional representational
power of the automated solution is of no benefit ingresence of perfect recognition —
note that wherep,, = OHC1 and HC2 perform identically to the POMDP polidy.is
interesting to note thaC3, which confirms all inputs, performs least well for alwes
of p,,. For the reward function used in the test-bed systemuiring 2 consistent
recognition results (the responseagkand the response twnfirm) gives rise to longer
dialogs which outweigh the benefit of the increasadouracy.

2L Only the logic of HC1 is shown for clarity: the febntroller uses actual city name values insteadeof th
variablesX andY, resulting in a controller with 15 nodes. This type of exfmmis typical of the
“compilation” process mentioned above.



from Xto Y

from X to Y, X#Y

from Xto Y

from X
from Xto Y,
X£Y

Figure 19: HC1 handcrafted policy represented as a finite state contiler. Node labels show the
POMDP action to take for each node, and arcs show whHid?OMDP observations cause which
transitions. Note that the nodes in the diagram arergirely indepenent of the POMDP states.

Finally, we consider whethgulanning is beneficial to automatically generated dialog
managers by comparing the performance of the POMDP teeatgrdecision theoretic
dialog manager (section 3.1) on the dialog problem descinbsettion 4.1. This greedy
dialog manager always takes the action with the higesécted immediate reward —
i.e., unlike a POMDP, it is not performing planning. Bothlatjamanagers were
evaluated by simulating conversations and finding the avesaggrd gained per dialog.
Results are shown in Figure 21. The POMDP outperformgrigedy method by a large
margin for all error rates. Intuitively, the POMDg$able to reason about the future and
determine when gathering information will reap largengan the long terneven ifit
incurs an immediate cost. More specifically, in thiaraple, the POMDP gathers more
information than the greedy approach. As a resullpgawith the POMDP dialog
manager are longer but the resulting increased cadtsist by correctly identifying the
user’s goal more often. In general, POMDPs are natethéir ability to make effective
trade-offs between the (small) cost of gathering mtation, the (large) cost of acting on
incorrect information, and rewards for acting on coriefirmation (Cassandra et al.,
1994).
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Figure 20: Expected return vs. g, for optimized POMDP policy and 3 handcrafted policies.
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Figure 21: Average concept error rate YErr) vs. average return for the POMDP and greedy decision
theoretic ("Greedy DT") dialog managers.

3.4. lllustration with real dialog data

All of the above simulations employed a hand-craftedl@hof the user. To assess the
impact of this, a final experiment was conducted usingaglimanager optimized with a
user model estimated from real dialog data, and then aealion a second user model
estimated from held-out data.



In this experiment, we employed real dialog data froe@m$ACTI-1 corpus (Williams
and Young., 2004). The SACTI-1 corpus contains 144 human-huaiméogs in the
travel/tourist information domain using a “simulated ASRannel”’, which introduces
errors similar to those made by a speech recognizettléSen al., 2004). One of the
subjects acts as a tourist seeking information (analogoasuser) and the other acts as
an information service (analogous to a spoken dialog mystelhe corpus contains a
variety of word error rates, and the behaviors obser¥ekdeosubjects in the corpus are
broadly consistent with behaviors observed of a uséraacomputer using a real speech
recognition system (Williams and Young, 2004).

Training Testing

a, S, Description a, p(a, Is,a,) | p@;1s,.a,)
User wasn'’t paying attentiop null 0.013 0.025
User says both places | from-x-to-y 0.573 0.630
greet frtoomyx User says just “from” placg  from-x 0.207 0.173
User says just “to” place to-y 0.207 0.173

All other user actions (all otherg 0.000 0.000
User wasn'’t paying attentiop null 0.013 0.025
User says just the name of X 0.444 0.419

the place
ask-from frtoomyx User says the nam? of ﬂ]e from-x 0.399 0.349
place preceded by “from
User says both places | from-x-to-y 0.144 0.207
All other user actions (all otherg 0.000 0.000
User wasn'’t paying attentiop null 0.013 0.025
from X User says just “yes” yes 0.782 0.806
confirm- (N;O_ythe Usert?;)ézt?:nifti?nr?gg A e y 0.108 0.092
to-y system has™ jser says the item being
the right confirmed, with the “to” to-y 0.097 0.077
hypothesis) preposition

All other user actions (all otherg 0.000 0.000

Table 9: Training and Testing user models estimated frondisjoint data in the SACTI-1 corpus.

Wizard/User turn pairs which broadly matched the types adraat the test-bed dialog
problem were annotated. The corpus was then segmetoegitiaining sub-corpus and
a testing sub-corpus, each composed of an equal number of dialogsathe mix of
word error rates, and disjoint subject sets. One osmtel p(a, |s,,a, ) was then
estimated from each sub-corpus, shown in Table 9. ®datt sparsity in the SACTI-1

corpus, the user actioggsandno were grouped into one class, so probabilities for these
actions are equal (with appropriate conditioning for theesefygesvs. no).



To conduct the simulations, first policy optimization svperformed on the test-bed
dialog problem with the training user model usiPgrseus. Then the testing user model
was installed, and 10,000 dialog turns were run with the potegted from the training
user model. This process was repeated for valugg,ofrom 0.00 to 0.65.Figure 22
shows results for a range of valuespgf. The Y-axis shows average return per dialog.
Error bars indicate the 95% confidence interval forghgormance on the testing user
model. As speech recognition errors increase, the avesaged decreases, consistent
with the findings in the previous sections. For allues ofpe, the performance on the
testing user model is very close to the performancéhertraining user model, and in
some cases it is slightly higher. This is possibleabse, in some situations, the testing
user model provides slightly more information than tlening user model, and this
enables the policy to perform better on the testing o&alel at certain error rates. For
example, when asked thpeetquestion or asked for thifeom or to places, the testing
user model is more likely than the training model to repigh both thefrom and to
places. Overall, the results in Figure 22 demonsthatethe POMDP policy estimation
is reasonably robust to variations in user behaviour, cedsdternatively, that errors in
the estimation of the user model can be tolerated.
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Figure 22: pe vS. average return per dialog for a dialog manager optimizedn the training user
model, and evaluated on the same modélrain-UM) and the testing user modelTest-UM).

3.5. Conclusions and future work

Despite the advances made in recent years, the desigibust spoken dialog systems
continues to be a major research challenge. The kaylgon is that the uncertainty
caused by speech recognition errors makes it extremelguttiffo accurately track the
state of the dialog. Typically, these errors leathtse assumptions which in turn lead to
spurious dialogs. This paper has argued that by modelling arspadeg system as a
partially observable Markov decision process (POMDP), &aamt improvements in
robustness can be achieved. Furthermore, it has besymghat the ideas underlying
existing techniques to improving robustness — maintaining reulspate hypotheses,



using local confidence scores to validate user input, at@h®ating action selection and
planning — are all just special cases of the POMDP fasmal Thus, the POMDP
approach provides a basis for both improving the performaricéhese existing
techniques and unifying them into a single framework suppodiobal optimisation.
The paper has explained how the various benefits of PR8ViEan be exploited in the
form of an SDS-POMDP, and presented empirical reflts simulation experiments —
including experiments trained on real dialog data and etesluzn held-out dialog data —
as supporting evidence.

Even so, despite the clear potential of POMDPs, se¥enakhallenges remain. Most
crucially, scaling the model to handle real-world problems remains a $ogmif
challenge: the complexity of a POMDP grows with thember of user goals, and
optimization quickly becomes intractable. The POMMDBscribed in this paper and in
the literature (Roy et al., 2000; Zhang et al., 2001) haea lartificially small problems
consisting of a limited set of user goals, yet reateays have thousands or millions of
user goals for which optimization is intractable, evemgisihe latest approximate
optimization techniques.

To illustrate why POMDPs scale poorly for dialog manag#meonsider an SDS-
POMDRP in the travel domain which attempts to gathemdmae of a single city from a
user. The machine is aware of 1000 cities, and sinceQMDIP maintains a distribution
over all user goals, it must include one user goaldchef the 1000 cities. Further, the
POMDP includes (among other actions) distinct action&onfirm” and “submit” each
city. Finally, the POMDP includes an observation factecity name. Thus, in general,
the number of states, actions, and observations all gitwtlwe number of distinct user
goals, and adding models for the user actions and dialagyhistrther exacerbates this
growth.

Two strands of recent work have begun to address saiabiFirst, the Summary
POMDP method provides a way to scale up the SDS-POMDP modéhéoso-called
slot-filling class of spoken dialog systems (Williams and Young, 280%).a Summary
POMDP, exact belief monitoring is performed, but planninglase in a compressed
space calledummary spaceFor a given slot, summary space expresses the pribpabil
mass of the highest-ranking value but disregards the itagle Continuing the example
above with 1000 cities, suppose that at a certain tinge-stex((s,)) = 0.8 and

argmax(b(s,)) =london. The summary POMDP performs planning by considering the
Sy

vector p(S,) = [08,0.2], whereas a standard formulation considers a vectoratived00

cities. As a result, the Summary POMDP method cafeso much larger problems.
This is demonstrated by Figure 23 which shows the expecteardesi the optimal
policy computed using both the full POMDP model and the r8ary model as the
numberM of slot values increases. As can be seen the basaebwkel fails to find

22 «got-filling” dialogs seek to elicit values fdd variables — or “slots” — from a user. This constrrcti
makes it possible to enumerate all possible user goasrsgructing a vector of all possible values for
each slot. Slot-filling dialogs are generally regarded aseful class of dialogs but they are limited in
expressiveness and can’t account for more complex diat@yioeirs like negotiation, complex
information exchange, stack-like behaviour, etc..



acceptable solutions foM greater than 20 slots, whereas the performance of the
Summary model is unaffected . Subsequent work has extended this technique to
scale to a large number of slots by performing planning nogdipifor each slot, and
then combining each slot’s policy together using a sirhpleistic (Williams and Young,
2006). The optimization techniqgues employed are described &l det(Williams,
2006).
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Figure 23: M (number of distinct slot values) vs. average or expedeaeturn for a simplified 1-slot

dialog problem. The baseline is a direct solution dhe fully-enumerated POMDP. Note that at

about 20 slot values, the direct optimization is no longeable to produce good policies, but the

performance of the Summary POMDRP is relatively constant Taken from (Williams and Young,
2005).

The Summary POMDP performs belief monitoring by enunmegaall possible user
goals, and while this enumeration is reasonable for caatipaly simple dialog models
such as slot-filling, it is not directly applicable to maocomplex applications such as
those tackled bynformation State Updatsystems which represent the dialog state by a
large and complex hierarchical data structure (LarssdriTazaum, 2000). To deal with
these very large state spaces, a second promising mesthodlivide the space of user
goals into a hierarchy of equivalence classepatitions Belief updating is then
performed on partitions rather than states. By suaadgsplitting partitions, the system
can use the incoming evidence to gradually focus-in orutiderlying states of interest
without having to needlessly consider large numbers oplmbability states. A specific
implementation of this idea is thHdidden Information Statelialog model which uses
probabilistic context-free rules to describe the gartihierarchy. In effect, these rules
form an ontology of the application domain and theybénaser goals to be expressed in
a top-down manner which directly reflects the order hiclv sub-topics are typically
visited in conversation (Young et al., 2006).

In addition to scaling issues, several other interegjingstions remain concerning the
uses of POMDPs in dialog. In particular, the choicapgropriate reward functions and



their relationship to established metrics of user perfaomasuch as the PARADISE
scheme remain to be resolved (Walker et al., 1997). eTikalso the related question of
how models of user behaviour should be created and esdlublitimately, the definitive
test of a POMDP-based dialog system must be evaluasiog veal users, and the next
step is clearly to build such systems and gather thessary empirical data. In the
meantime, the SDS-POMDP is unique in providing a compieténematical framework
for designing and building spoken dialog systems. This fnareallows all of the key
components to be trained from data and it supports gaiahisation. We believe that
POMDPs have clear potential to advance the state-edtthm spoken dialog systems
and as such merit serious further investigation.
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