
Partially Observable Markov Decision Processes  
for Spoken Dialog Systems 

 
 

Jason D. Williams1 Steve Young 
AT&T Labs – Research Cambridge University 

Engineering Department 

 
Abstract 

In a spoken dialog system, determining which action a machine 
should take in a given situation is a difficult problem because 
automatic speech recognition is unreliable and hence the state 
of the conversation can never be known with certainty.  Much 
of the research in spoken dialog systems centres on mitigating 
this uncertainty and recent work has focussed on three largely 
disparate techniques: parallel dialog state hypotheses, local use 
of confidence scores, and automated planning.  While in 
isolation each of these approaches can improve action 
selection, taken together they currently lack a unified statistical 
framework that admits global optimization.  In this paper we 
cast a spoken dialog system as a partially observable Markov 
decision process (POMDP).  We show how this formulation 
unifies and extends existing techniques to form a single 
principled framework.  A number of illustrations are used to 
show qualitatively the potential benefits of POMDPs compared 
to existing techniques, and empirical results from dialog 
simulations are presented which demonstrate significant 
quantitative gains.  Finally, some of the key challenges to 
advancing this method – in particular scalability – are briefly 
outlined.  
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Introduction 
Spoken dialog systems (SDS) help people accomplish a task using spoken language.  For 
example, a person might use an SDS to buy a train ticket over the phone, to direct a robot 
to clean a bedroom, or to control a music player in an automobile.  Building SDSs is a 
challenging engineering problem in large part because automatic speech recognition 
(ASR) and understanding technology are error-prone.  More specifically, speech 
recognition accuracy is relatively good for constrained speech limited to, for example, 
digits, place-names, or short commands, but accuracy degrades rapidly as the domain 
language becomes less constrained.  Furthermore, as spoken dialog systems become more 
complex, not only do the demands on the speech recognition and understanding 
components increase, but also user behaviour becomes less predictable.  Thus, as task 
complexity increases, overall there is a rapid increase in uncertainty, and principled 
methods of dealing with this uncertainty are needed in order to make progress in this 
research area. 

1 M Are you a registered user ? 

2 U No I'm not. No [NO I'M NOT NO] 

3 M What is your full name ? 

4 U User Name [ATHENS IN AKRON] 

5 M There is an Athens in Georgia and in Greece. Which destination did you want ? 

6 U Neither [NEITHER] 

7 M I'm sorry, I didn't catch that. There is an Athens in Georgia and in Greece. Which 
destination did you want ? 

8 U Georgia [GEORGIA] 

9 M A flight from Athens... Where do you want to go ? 

10 U Start over [START OVER] 

11 M Do you really want to start over ? 

12 U Yes [YES] 

13 M What city are you leaving from ? 

14 U Hamilton, Ontario [HILTON ONTARIO] 

15 M ...... 

Table 1: Sample conversation with a spoken dialog system affected by misunderstandings in the 
CMU Communicator spoken dialog system, taken from (Bohus and Rudnicky, 2002).  U indicates a 
user turn and M indicates a machine turn.  In turn 4 the user says their name (omitted for privacy 
reasons) but they are misrecognized as saying “Athens in Akron”.  This single error then leads to a 

complete misalignment between the user and system. 

As an illustration of the effects of speech recognition errors, consider the example 
conversation shown in Table 1, taken from (Bohus and Rudnicky, 2002).  The system 
shown here allows the user to take control of the conversation wherever reasonably 
possible.  In turn 3, the machine asks “What’s your full name?” and in turn 4, the user 
replies with their name, but is misrecognized as saying “Athens in Akron”.  Since the 
machine does not insist on knowing the user’s name, it infers that the user is taking 
control of the conversation and is asking about a flight.  Hence, the system interprets 
“Athens in Akron” as the starting point of a flight booking dialog.  This choice of 



interpretation causes the whole conversation to go off track and it is not until turn 13, 
nine turns later, that the conversation is progressing again.   

This interaction illustrates the motivation for the three main approaches that have been 
developed in order to minimise the effects of errors and uncertainty in a spoken dialog 
system.   

First, systems can attempt to identify errors locally using a confidence score: when a 
recognition hypothesis has a low confidence score, it can be ignored to reduce the risk of 
entering bad information into the dialog state.  In the example above, if “Athens in 
Akron” were associated with a poor confidence score, then it could have been identified 
as an error and the system might have recovered sooner. 

Second, accepting that misrecognitions will occur, their consequences can be difficult for 
human designers to anticipate.  Thus systems can perform automated planning to explore 
the effects of misrecognitions and determine which sequence of actions are most useful in 
the long run.  Consider turn 5 in the example above: the hand-crafted dialog manager 
chose to disambiguate “Athens”, but automated planning might have revealed that it was 
better in the long term to first confirm that the user really did say “Athens”, even though 
in the short term this might waste a turn. 

Finally, accepting that some bad information will be entered into the dialog state 
maintained by the system, it seems unwise to maintain just one hypothesis for the current 
dialog state.  A more robust approach would maintain parallel state hypotheses at each 
time-step.  In turn 4 in the example above, the system could have maintained a second 
hypothesis for the current state – for example, in which the user said their name but was 
not understood.  The system could have later exploited this information when a non-
understanding happened in turn 7.   

These three methods of coping with speech recognition errors – local use of confidence 
scores, automated planning, and parallel dialog hypotheses – can lead to improved 
performance, and confidence scores in particular are now routinely used in deployed 
systems.  However, these existing methods typically focus on just a small part of the 
system and rely on the use of ad hoc parameter setting (for example, hand-tuned 
parameter thresholds) and pre-programmed heuristics.  Most seriously, when these 
techniques are combined in modern systems, there is a lack of an overall statistical 
framework which can support global optimization and on-line adaptation. 

In this paper, we will argue that a partially observable Markov decision process 
(POMDP2) provides such a framework.  We will explain how a POMDP can be 
developed to encompass a complete dialog system, how a POMDP serves as a basis for 
optimization, and how a POMDP can integrate uncertainty in the form of statistical 
distributions with heuristics in the form of manually specified rules.  To illustrate the 
power of the POMDP formalism, we will show how each of the three approaches above 
represents a special case of the more general POMDP model.  Further, we provide 
evidence of the potential benefits of POMDPs through experimental results obtained 
from simulated dialogs.   Finally, we address scalability and argue that whilst the 

                                                
2 usually read as “Pom D P” 



computational issues are certainly demanding, tractable implementations of POMDP-
based dialog systems are feasible. 

The paper is organized as follows.  Section 1 begins by reviewing POMDPs and then 
shows how the state space of a POMDP can be factored to represent a spoken dialog 
system in a way which explicitly represents the major sources of uncertainty.  Next 
section 2 shows how each of the three techniques mentioned above – parallel dialog 
hypotheses, local confidence scoring, and automated planning – are naturally subsumed 
by the POMDP architecture.  Section 3 discusses the advantages of POMDPs using a 
combination of illustrative dialogs and experimental simulation, including simulations 
with user models estimated from real dialog data.  Finally, section 3.4 concludes by 
highlighting the key challenge of scalability and suggests two methods for advancing 
POMDP-based spoken dialog systems.  

1. Casting a spoken dialog system as a POMDP 
In this section we will cast a spoken dialog system as a POMDP.  We start by briefly 
reviewing POMDPs.  Then, we analyze the typical architecture of a spoken dialog system 
and identify the major sources of uncertainty.  Finally, we show how to represent a 
spoken dialog system as a POMDP.  In this discussion extensive use is made of influence 
diagrams and Bayesian inference – readers unfamiliar with these topics are referred to 
texts such as (Jensen, 2001). 

1.1. Review of POMDPs 
Formally, a POMDP is defined as a tuple },,,,,,,{ 0bZORTAS λ  where S is a set of states 

describing the agent’s world; A is a set of actions that an agent may take; T defines a 
transition probability ),|( assP ′ ; R defines the expected (immediate, real-valued) reward 

),( asr ; O is a set of observations the agent can receive about the world; and Z defines an 

observation probability, ),|( asoP ′′ ; λ  is a geometric discount factor 10 ≤≤ λ ; and 0b  

is an initial belief state )(0 sb .  A POMDP can be depicted as an influence diagram, as in 

Figure 1. 

The POMDP operates as follows.  At each time-step, the world is in some unobserved 
state Ss∈ .  Since s is not known exactly, a distribution over states is maintained called 
a “belief state,” b, with initial belief state 0b .  We write )(sb to indicate the probability of 

being in a particular state s.  Based on b, the machine selects an action Aa∈ , receives a 
reward ),( asr , and transitions to (unobserved) state s′ , where s′  depends only on s  and 
a .  The machine then receives an observation Oo ∈′  which is dependent on s′  and a .  
At each time-step, the belief state distribution b is updated as follows: 
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Figure 1: Influence diagram representation of a POMDP.  Circles represent random variables; 
squares represent decision nodes; and diamonds represent utility nodes.  Shaded circles indicate 

unobserved random variables, and un-shaded circles represent observed variables.  Solid directed 
arcs indicate causal effect and dashed directed arcs indicate that a distribution is used (and not the 

actual unobserved value).  The subscript RL indicates that actions are chosen using “Reinforcement 
learning,” i.e., with the objective of maximizing the cumulative long-term reward. 

The numerator consists of the observation function Z, transition matrix T, and current 
belief state b.  The denominator is independent of s′ , and can be regarded as a 
normalization constant k; hence: 

 ∑
∈

′′′⋅=′′
Ss

sbsaspasopksb )(),|(),|()( . (2) 

We refer to maintaining the value of b at each time-step as “belief monitoring.”  The 
value b has the useful property that it is a complete summary of the dialog history.  More 
formally, for a given initial belief state 0b  and history ,...},,,{ 2211 oaoa , b provides a 

proper sufficient statistic: b is Markovian with respect to 0b  and ,...},,,{ 2211 oaoa .  Thus, 

in effect, the update expressed in equation (2) is considering all possible (hidden) state 
transition histories when computing a new belief state, and planning algorithms need only 
consider b when choosing actions. 



As mentioned above, at each time-step, the agent receives reward tr .  The cumulative, 

infinite-horizon, discounted reward is called the return: 

 ∑∞
=

=Θ
0t

t
t rλ  (3) 

where λ  is the geometric discount factor, 10 ≤≤ λ .  The goal of the machine is to 
choose actions in such a way as to maximize the expected return [ ]ΘΕ  – i.e., to construct 
a plan called a policy which indicates which actions to take at each turn.3  In general, a 
policy π  can be viewed as a mapping from belief state to action Ab ∈)(π , and an 

optimal policy Ab ∈)(*π  is one which maximizes [ ]ΘΕ .   

In theory every belief point b could map to an arbitrary action )(bπ , and for this reason 

finding optimal policies for POMDPs is in general intractable.  In practice, )(* bπ  rarely 
maps to an arbitrary action and rather an optimal policy is a partitioning of belief space 
into a finite number of regions.  Even so, exact algorithms such as the Witness algorithm 
(Kaelbling et al., 1998) rarely scale to problems with more than about 10 actions, states, 
and observations.4   However, effective approximate solutions do exist.  A review of 
POMDP optimization techniques is beyond the scope of this work; however, it should be 
noted that a family of approximate optimization techniques called point-based value 
iteration has been demonstrated to provide tractable solutions for a variety of real-world 
problems.5  Standard (exact) value iteration computes a so-called value function V(b) 
which provides an estimate of the expected total reward that can be achieved from any 
point b in belief space given some policy π .  Value iteration is a recursive process which 
leads to an estimate of V*(b), the value function corresponding to the optimal policy *π .  
Exact value iteration involves searching the whole of belief space; however, point-based 
value iteration heuristically selects a small set of representative belief points, and then 
iteratively applies value updates to just those points, achieving a significant speed-up 
(Pineau et al., 2003; Spaan and Vlassis, 2005).    

In general, value iteration methods for POMDPs produce a collection of n vectors )(snυ  

each of dimensionality || S  and an array of corresponding actions )(nβ .  Each vector 

)(snυ  indicates the (long-term) value of taking a particular action An ∈)(β  in state s.  

By taking an expectation over belief space, we can find regions where action )(nβ  is 
optimal – i.e., a policy can be produced from )(snυ  and )(nβ  as: 

 = ∑
∈Ss

n
n

sbsb )()(maxarg)( υβπ  (4) 

                                                
3 In this work, we will assume that a planner has a model of the system dynamics – i.e., T, R, and Z  are 
known or can be estimated from training data.  In other words, we will focus on POMDPs which use 
model-based learning, as opposed to experience-based learning. 
4 Technically the method scales with the complexity of the optimal policy and not (necessarily) with the 
number of states, actions, and observations, but in practice the complexity of the optimal policy can not be 
predicted, and the number of states, actions, and observations is a useful heuristic. 
5 See (Murphy, 2000) for an overview of POMDP solution techniques.   



Thus value iteration provides both a partitioning of belief space into regions 
corresponding to optimal actions as well as the expected return of taking that action.  

save
b = (1,0)

delete
b = (0,1)

b = (0.65, 0.35)

 
Figure 2: Belief space in a POMDP with two states, save and delete, which correspond to hidden user 
goals.  At each time-step, the current belief state is a point on this line segment.  The ends of the line 

segment represent certainty in the current state.  The belief point shown is the initial belief state. 

To illustrate how this POMDP framework is used in a spoken dialog system, an example 
will now be presented in some detail.  This example concerns a very simple voicemail 
application which although very limited, nevertheless demonstrates the key properties of 
the POMDP approach.  Later in the paper, we will consider the various issues which arise 
when scaling up the POMDP framework to handle more sophisticated applications. 

In this example, users listen to voicemail messages and at the end of each message, they 
have two choices – save or delete the message.  We refer to these as the user’s goals and 
since the system does not a priori know which goal the user desires, they are hidden 
goals.  For the duration of the interaction relating to each message, the user’s goal is fixed 
and the POMDP-based dialog manager is trying to guess which goal the user has.  Figure 
2 shows a graphical depiction of belief space – since there are only two states, belief 
space can be shown as a line segment.  In this depiction, the ends of the segment (in 
general called “corners”) represent certainty.  For example, b = (1,0) indicates certainty 
that s = save.  Intermediate points represent varying degrees of certainty.   

The machine has only three available actions: it can ask what the user wishes to do in 
order to infer his or her current goal, or it can doSave or doDelete and move to the next 
message.  When the user responds to a question, it is decoded as either the observation 

save or delete.6  However, since speech recognition errors can corrupt the user’s 
response, these observations cannot be used to deduce the user’s intent with certainty.   If 
the user says save then an error may occur with probability 0.2, whereas if the user says 
delete then an error may occur with probability 0.3.   Finally, since the user wants save 
more often than delete, the initial belief state is set to indicate the prior (0.65, 0.35), and it 
is reset to this value after each doSave or doDelete action via the transition function.   

The machine receives a large positive reward (+5) for getting the user’s goal correct, a 
very large negative reward (-20) for taking the action doDelete when the user wanted 
save (since the user may have lost important information), and a smaller but still 
significant negative reward (-10) for taking the action doSave when the user wanted 
delete (since the user can always delete the message later).    There is also a small 
negative reward for taking the ask action (-1), since all else being equal the machine 

                                                
6 The bar above save and delete indicates that these are observations – i.e., noisy, possibly erroneous 
indications of the user’s goal. 



should try to make progress to its goal as quickly as possible.  The transition dynamics of 
the system are shown in Tables 2, 3 and 4.7 

 

  s' 

a s save delete 

save 1 0 
ask 

delete 0 1 

save 0.65 0.35 
doSave 

delete 0.65 0.35 

save 0.65 0.35 
doDelete 

delete 0.65 0.35 

Table 2: Transition function ),|( assp ′  for the example voicemail spoken dialog POMDP.  The state 
s indicates the user’s goal as each new voicemail message is encountered. 

  o' 

a s' save  delete  

save 0.8 0.2 
ask 

delete 0.3 0.7 

save 0.5 0.5 
doSave 

delete 0.5 0.5 

save 0.5 0.5 
doDelete 

delete 0.5 0.5 

Table 3: Observation function ),|( asop ′′  for the example voicemail application.  Note that the 

observation o′ only conveys useful information following an ask action 

 s 

a save delete 

ask -1 -1 

doSave +5 -10 

doDelete -20 +5 

Table 4: Reward function ),( asr  for the example voicemail application.  The values encode the 
dialog design criteria where it is assumed that deleting wanted messages should carry a higher 

penalty than saving unwanted messages, and where time wasting by repeatedly asking questions 
should be discouraged. 

For a POMDP problem of this size, it is possible to produce an exact solution and here 
we have used the Witness algorithm (Kaelbling et al., 1998).  Figure 3 shows the optimal 

                                                
7 Readers may recognize this as a variation of the Tiger problem cast into the spoken dialog domain 
(Cassandra et al., 1994). 



policy.  In the regions of belief space close to the corners (where certainty is high), the 
policy chooses doSave or doDelete; in the middle of belief space (where certainty is low) 
it chooses to gather information with the ask action.  Further, since the penalty for 
wrongly choosing doDelete is worse than for wrongly choosing doSave, the doDelete 
region is smaller i.e., it requires more certainty than when the user’s goal is save. 

 

save
b = (1,0)

delete
b = (0,1)

doSave ask doDelete

 
Figure 3: Optimal policy for the example voicemail spoken dialog system POMDP. 
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Figure 4: Evolution of the belief state in the example voicemail spoken dialog system POMDP.  The 
dashed lines show the partition policy, given in Figure 3.  At each time-step, the point b is updated 

using equation (2).  Note that a recognition error is made after the first “ask” action. 

 

Figure 4 shows an example conversation between the user and a machine executing the 
optimal policy.  At each time-step, the machine action and the observation are used to 
update the belief state as in Eq. (2).  Actions are selected depending on the partition 

which contains the current belief state.  The first response is misrecognised as delete, 
moving the belief state towards the delete corner.  However, since belief remains in the 
central region where uncertainty is high, the machine continues to ask the user what to 

do.  After two successive (correct) save observations, the belief state moves into the 



doSave region, the message is saved and the belief state transitions back to the prior state.  
The total reward for processing this message is +7.8 

The key idea illustrated by this example is that the dialog system can never be certain of 
exactly what the user intends.  This is true in human-human dialogs, but it is particularly 
true in human-machine dialogs where the existence of recognition errors greatly 
exacerbates the uncertainty.  The sequence of machine actions dictated by the optimal 
POMDP policy guarantees that when averaged over a large number of dialogs, no other 
policy would achieve a greater reward.  Hence, provided that the chosen reward function 
accurately reflects the dialog design criteria, the POMDP framework provides a 
principled approach to spoken dialog system design and optimisation. 

Although the voicemail example illustrates the general approach to representing a spoken 
dialog system within the POMDP framework, it nevertheless sidesteps a number of 
important issues.  In particular, models of how the user’s goal evolves, how the user 
reacts, and how the speech recognition corrupts the user’s actions need to be represented.  
In addition, some dialog history needs to be captured.  To deal with this, the state space 
must be factored to allow the user’s goal, the user’s intention and relevant dialog history 
to be separated. 

1.2. A factored state-space representation for spok en dialog 
systems 

The architecture of a spoken dialog system is shown in Figure 5 (Young, 2000).9  In this 
depiction, the user has some internal state uS  which corresponds to a goal that a user is 

trying to accomplish.  Also, from the user’s viewpoint, the dialog history has state dS  

which indicates, for example, what the user has said so far, what the machine has 
confirmed, etc.  Based on the user’s goal prior to each turn, the user takes some 
communicative action (also called intention) uA .  uA  might correspond to a speech act, 

dialog act, or a parse structure.  The user renders uA  as an audio signal uY  by speaking.  

The speech recognition and language understanding component then takes the audio 

signal uY  and produces two outputs: first, uA
~

, which is a noisy estimate of the user’s 

action uA ; and C which represents a confidence score which provides an indication of the 

reliability of the recognition result uA
~

. 10   uA
~

 and C are then passed to the dialog model, 

which maintains an internal state mS  which tracks (from the machine’s perspective) the 

state of the conversation.   

                                                
8 For simplicity we’ve ignored the geometric discount factor in this calculation, which would reduce this 
figure slightly. 
9 This figure makes several simplifications but conveys the concepts important to present purposes.  
Readers interested in the details of the recognition, understanding, generation, and text-to-speech 
components are referred to texts such as (Jurafsky and Martin, 2000) or survey articles such as (Glass 
1999). 
10 In practice estimation of uA

~
 is usually performed in 2 stages – first a string of words is produced, then 

these words are parsed to extract uA
~

.  This detail is not important for the purposes of this paper. 
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Figure 5: Typical architecture of a spoken dialog system 

mS  is then passed to the dialog manager, which decides what action mA  the machine 

should take.  mA  is converted to an audio response mY  by the language generation and 

text-to-speech component, and it is also passed back to the dialog model so that mS  may 

track both user and machine actions.  The user listens to mY , attempts to recover mA , and 

as a result might update their goal state uS  and their interpretation of the dialog history 

dS .  The cycle then repeats. 

One key reason why spoken dialog systems are challenging to build is that uA
~

 will 

contain recognition errors: i.e., it is frequently the case that uu AA ≠~
.  As a result, the 

user’s action uA , the user’s state uS , and the dialog history dS  are not directly 

observable and can never be known to the system with certainty.  However,  uA
~

 and C 

provide evidence from which uA , uS , and dS  can be inferred.   

We are now ready to cast a spoken dialog system as a POMDP.  First, the machine action 

mA  will be cast as the POMDP action A.  In a POMDP, the POMDP state S expresses the 

unobserved state of the world and the above analysis suggests that this unobserved state 
can naturally be factored into three distinct components: the user’s goal uS , the user’s 

action uA , and the dialog history dS . Hence, the factored POMDP state S is defined as: 

 ),,( duu sass =  (5) 

and the system state mS  becomes the belief state b over us , ua , and ds : 

 ),,()( duum sasbsbs ==  (6) 

The noisy recognition result uA
~

 and the confidence score C will then be cast as the SDS-

POMDP observation O: 

 ),~( cao u=  (7) 

We will henceforth refer to this factored form as the SDS-POMDP. 



To compute the transition function and observation function,  a few intuitive assumptions 
will be made.  First, substituting (5) into the transition function and decomposing, we 
obtain: 

 ),,,|,,(),|( muduudu aassasspassp ′′′=′  (8) 

 ),,,,,|(),,,,|(),,,|(),|( muduuudmuduuumuduu aasssaspaasssapaassspassp ′′′′′′=′ . (9) 

We then assume conditional independence as follows.  The first term in (9), which we 
call the user goal model, indicates how the user’s goal changes (or does not change) at 
each time-step.  We assume that the user’s goal at each time-step depends only on the 
previous goal and the machine’s action: 

 ),|(),,,|( muumuduu asspaasssp ′=′  (10) 

The second term, which we call the user action model, indicates what actions the user is 
likely to take at each time step.  We assume the user’s action depends on their (current) 
goal and the preceding machine action: 

 ),|(),,,,|( muumuduuu asapaasssap ′′=′′ . (11) 

The third term, which we call the dialog history model, captures relevant historical 
information about the dialog.  We assume this component has access to the most recent 
value of all variables: 

 ),,,|(),,,,,|( mduudmuduuud assaspaasssasp ′′′=′′′ . (12) 

Substituting (10), (11) and (12) into (9) then gives the SDS-POMDP transition function: 

 ),,,|(),|(),|(),|( mduudmuumuu assaspasapasspassp ′′′′′′=′ . (13) 

From (5) and (7), the observation function of the SDS-POMDP becomes: 

 ),,,|,~(),|( muduu aasscapasop ′′′′′=′′ . (14) 

The observation function accounts for the corruption introduced by the speech 
recognition and language understanding process, so we assume that the observation 
depends only on the action taken by the user:11 

 )|,~(),,,|,~( uumuduu acapaasscap ′′′=′′′′′ . (15) 

The two equations (13) and (15) represent a statistical model of a spoken dialog system.  
The transition function allows future behaviour to be predicted and the observation 
function provides the means for inferring the hidden system state from observations.  The 
models themselves have to be estimated of course.  The user goal model and the user 
action model (the first two components of Eq. (13)) will typically be estimated from a 
corpus of annotated interactions.  For example, conditional distributions over user dialog 
acts can be estimated given a machine dialog act and a user goal.  To appropriately cover 
all of the conditions, the corpus would need to include variability in the strategy 

                                                
11 This implicitly assumes that the same recognition grammar is always used.  For systems where the 
grammar is switched at each turn, the dependence on am should be retained. 



employed by the machine – for example, using a Wizard-of-Oz framework with a 
simulated ASR channel (Stuttle et al., 2004).   

The dialog history model can either be estimated from data, handcrafted, or replaced by a 
deterministic function representing information state update rules as in for example 
(Larsson and Traum, 2000).  Thus the SDS-POMDP system dynamics enable both 
probabilities estimated from corpora and hand-crafted heuristics to be incorporated.  This 
is a very important aspect of the SDS-POMDP framework in that it allows deterministic 
programming to be incorporated in a natural way.   

The observation function can be estimated from a corpus or derived analytically using a 
phonetic confusion matrix, language model, etc. (Deng et al., 2003; Stuttle et al., 2004).    
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Figure 6: Influence diagram representation of the SDS-POMDP model.  The dashed box indicates the 

composite state s which is comprised of three components, su, sd, and au  (see text for a complete 
definition of variables).  The dashed line from the dashed box to am indicates that the action am is a 

function of the belief state sm = b(su, au, sd). 

The reward function is not specified explicitly since it depends on the design objectives 
of the target system.  The reward function is well-suited to encoding a variety of 
objectives.  Expressing simple, single optimization metrics is straightforward – for 
example, the chances of successful closure could be maximized by setting a positive 
reward for successful closure, and a zero reward for information gathering actions.  
Alternatively, the number of turns to completion could be minimized by setting a uniform 
negative reward for all information gathering actions, and a zero reward for closure 
actions.    

Of course in a spoken dialog system, multiple competing criteria are important, and often 
a system should strive to maximize the chances of successful closure while also 
minimizing the number of turns required to do so.  To combine multiple optimization 
criteria into one metric, weightings between the criteria are needed, and in a POMDP 
these weightings are naturally expressed in the reward function.  For example, the reward 
function can include components for successful and unsuccessful closure, abandonment, 



and per-turn penalties, and the ratios between these reward components specifies the 
relative cost of longer dialogs, user abandonment, unsuccessful closure, etc.  Moreover, 
the per-turn penalties can be used to encourage dialog “appropriateness”, for example by 
setting a higher per-turn penalty for confirming an item which has not been discussed yet.   

Finally, given the definitions above, the belief state can be updated at each time step by 
substituting equations (13) and (15) into (2), and simplifying: 
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The summations over ),,( duu sass =  predict a new distribution for s′  based on the 

previous values weighted by the previous belief.  For each assumed value of ua′ , the 

leading terms outside the summation scale the updated belief by the probability of the 
observation given ua′  and the probability that the user would utter ua′  given the user’s 

goal and the last machine output.  Fig. 6 shows the influence diagram depiction of the 
SDS-POMDP, which clearly shows these dependencies.  This figure will also be useful 
later for making comparisons between the SDS-POMDP representation and other 
approaches to dialog management.   

 Standard POMDP SDS-POMDP 

State set S  ),,( duu SAS  

Observation set O  ),
~

( CAu  

Action set A  mA  

Transition function ),|( assp ′  ),,|(),|(),|( mdudmuumuu asaspasapassp ′′′′′  

Observation function ),|( asop ′′  )|,~( uu acap ′′′  

Reward function ),( asr  ),,,( mduu asasr  

Belief state )(sb  ),,( duu sasb  

Table 5: Summary of SDS-POMDP components. 

For ease of reference, Table 5 summarises the expansion of terms in a standard POMDP 
to give the SDS-POMDP needed to characterise a spoken dialog system.   

2. POMDPs and existing architectures 
As described in the previous section, the SDS-POMDP model allows the dialog 
management problem to be cast in a statistical framework.  It is therefore particularly 
well-suited to coping with the uncertainty inherent in spoken dialog systems.  In this 
section, three existing techniques for handling uncertainty in an SDS will be reviewed: 
maintaining multiple dialog states, local use of confidence scores, and automated 
planning.  In each case, it will be shown that the SDS-POMDP model provides an 
equivalent solution but in a more principled way which admits global parameter 



optimisation from data.   Indeed, it will be shown that each of these existing approaches 
represents a simplification or special case of the SDS-POMDP model. 

2.1. POMDPs and parallel state hypotheses 
Traditional dialog management schemes maintain (exactly) one dialog state mm Ss ∈ , and 

when a recognition error is made, ms  may contain erroneous information.  Although 

designers have developed ad hoc techniques to avoid dialog breakdowns such as allowing 
a user to “undo” system mistakes, the desire for an inherently robust approach remains.  
A natural approach to coping with erroneous evidence is to maintain multiple hypotheses 
for the correct dialog state.  Similar to a beam search in a hidden Markov model, 
maintaining many possible dialog states allows a system to explore many paths through a 
dialog, always allowing for the possibility that each piece of evidence is an error.  In this 
section, we briefly review two techniques for maintaining multiple dialog hypotheses: 
greedy decision theoretic approaches and an M-Best list. 
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Figure 7: View of a spoken dialog system as a greedy decision theoretic process.  Action mA  is 

selected to maximize the expected immediately utility R, indicated by the subscript MEU (“Maximum 
Expected Utility”).  The dashed line indicates that mA  is a function of the distribution over mS , 

rather than its actual (unobserved) value. 

Greedy decision theoretic approaches construct an influence diagram as shown in Figure 
7.  The structure of the network is identical to a POMDP: the system state mS  is a belief 

state over hidden variables, such as us , ua , and ds .  The dashed line in the figure from 

mS  to mA  indicates that mA  is chosen based on the distribution over mS  rather than its 

actual (unobserved) value.  As with a POMDP, a reward (also called a utility) function is 
used to select actions – however, greedy decision theoretic approaches differ from a 
POMDP in how the reward is used to selection actions.  Unlike a POMDP, in which 
machine actions are chosen to maximize the cumulative long-term reward, greedy 
decision theoretic approaches choose the action which maximizes the immediate 



reward.12  In other words, the POMDP is performing planning, whereas the greedy 
decision theoretic approach is not.  As such, action selection is certainly tractable for real-
world dialog problems, and greedy decision theoretic approaches have been successfully 
demonstrated in real working dialog systems (Horvitz and Paek, 2000; Paek et al., 2000).   

However, whether the dialog manager explicitly performs planning or not, a successful 
dialog must make progress to some long-term goal.  In greedy decision theoretic 
approaches, a system will make long-term progress toward a goal only if the reward 
metric has been carefully crafted.  Unfortunately, crafting a reward measure which 
accomplishes this is a non-trivial problem and in practice encouraging a system to make 
progress to long-term goals inevitably requires some hand-crafting resulting in the need 
for ad hoc iterative tuning.   
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Figure 8: Influence diagram showing multiple state hypotheses.  ∗
mS  takes the value of the state mS  

with the highest probability mass at each time-step.  The superscript DET indicates that the variable 
∗
mS  is not random but is rather a deterministic function of its inputs. 

An alternative to the greedy decision theoretic approach is to still maintain multiple 
dialog hypotheses but select actions by considering only the top dialog hypothesis, using 
a handcrafted policy as in conventional heuristic SDS design practice.  This approach is 
referred to as the M-Best list approximation, and it is shown graphically in Figure 8.  In 
this figure, the superscript DET indicates that the node ∗mS  is not random but rather takes 

on a deterministic value for known inputs, and here ∗mS  is set to the state mS  with the 

most probability mass.  The M-best list approach has been used to build real dialog 
systems and shown to give performance gains relative to an equivalent single-state 
system (Higashinaka et al., 2003).13  

                                                
12 As such, a greedy decision theoretic method could also be classified as an “automatic action selection” 
method – the focus here is maintaining multiple dialog state hypotheses. 
13 This work makes two further approximations – first, for computational efficiency, a “beam” of 
approximately 30 states is maintained rather than all possible states.  Second, a “scoring” mechanism is 
used as an approximation to a proper probability score.   



The M-best approximation can be viewed as a POMDP in which action selection is hand-
crafted, and based only on the most likely dialog state.  When cast in these terms, it is 
clear that an M-best approximation makes use of only a fraction of the available state 
information since considering only the top hypothesis may ignore important information 
in the alternative hypotheses such as whether the next-best is very similar or very 
different to the best hypothesis.  Hence, even setting aside the use of ad hoc hand-crafted 
policies, the M-best list approach is clearly sub-optimal.  In contrast, since the SDS-
POMDP constructs a policy which covers belief space, it naturally considers all 
alternative hypotheses. 

2.2. POMDPs and local use of confidence scores  
Most speech recognition engines annotate their output word hypotheses W

~
 with 

confidence scores )|
~

( uYWp  and modern systems can compute this measure quite 

accurately (Evermann and Woodland, 2000; Kemp and Schaff, 1997; Moreno et al., 
2001).  Subsequent processing in the speech understanding components will often 
augment this low level acoustic confidence using extra features such as parse scores, 
prosodic features, dialog state, etc (Bohus et al., 2001; Gabsdil and Lemon, 2004; 
Hirschberg et al. 2001; Krahmer et al., 1999, 2001; Litman et al., 2001; Pao et al., 1998).  
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Figure 9: Influence diagram showing how a confidence score is typically incorporated into a spoken 
dialog system.  Node C is a random variable representing confidence score.  cA  may take on values 

such as {hi, low}, {explicit-confirm, implicit-confirm, reject}, etc. 

For the purposes of a dialog system, the essential point of a confidence score is that it 
provides an overall indication of the reliability of the hypothesized user dialog act ua~ .  

Traditional systems typically incorporate confidence scores by specifying a confidence 
threshold threshc  which implements an accept/reject decision for an ua~ : if threshcc >  then 

ua~  is deemed reliable and accepted; otherwise it is deemed unreliable and discarded.  In 

practice any value of threshc  will still result in classification errors, so threshc  can be viewed 



as implementing a trade-off between the cost of a false-negative (rejecting an accurate 

ua~ ) and the cost of a false-positive (accepting an erroneous ua~ ). 

Figure 9 shows how a spoken dialog system with a confidence score can be expressed in 
an influence diagram.  cA  is a decision node that indicates the “confidence bucket” or 

action relative to the confidence score – for example, {hi, low} or {accept, reject}.  cA  is 

typically trained using a corpus of examples and supervised learning, indicated by  the 
subscript SL on the node cA .14  This “confidence bucket” is then incorporated into the 

dialog state using hand-crafted update rules – i.e., )
~

,,,( ucmmm AAASfS ′′=′ .  As above, the 

superscript DET on the node mS  indicates that mS  takes on a deterministic value – i.e., 

for a known set of inputs, it yields exactly one output.  Based on the updated dialog state 

mS , the policy determines which action to take.  The dialog manager is implemented with 

hand-crafted rules, indicated by the subscript HC on the mA  decision node. 

Figure 9 also highlights key differences between a traditional system with a confidence 

score and the SDS-POMDP model.  In both models, uA
~

 and C are regarded as observed 

random variables.  However, in traditional approaches, a hard and coarse decision is 

made about the validity of uA
~

 via the decision cA .  The decision implemented in cA  is 

non-trivial since there is no principled way of setting the confidence threshold threshc .  In 

practice a developer will look at expected accept/reject figures and use intuition.  A 
slightly more structured approach would attempt to assign costs to various outcomes 
(e.g., cost of a false-accept, cost of a false reject, etc.) and choose a threshold 
accordingly.  However, these costs are specified in immediate terms, whereas in practice 
the decisions have long-term effects (e.g., subsequent corrections) which are difficult to 
quantify, and which vary depending on context.  Indeed, when long-term costs are 
properly considered, there is evidence that values for optimal confidence thresholds are 
not at all intuitive: one recent study found that for many interactions, the optimal 
confidence threshold was zero – i.e., any recognition hypothesis, no matter how poorly 
scored, should be accepted (Bohus and Rudnicky, 2005b). 

By contrast, the SDS-POMDP is a generative model in which confidence score is 
modelled as a continuous observed random variables.  Note how in Figure 9, the 
confidence score is viewed as a functional input, whereas in the POMDP (Figure 6), it is 
viewed as an observed output from a distribution.  In this way, the SDS-POMDP never 
makes hard accept/reject decisions about evidence it receives, but rather uses the 
confidence score to perform inference over all possible user actions uA .  Further, the 

explicit machine dialog state mS  used in traditional approaches is challenged to maintain 

a meaningful confidence score history since typically if a value of uA
~

 is rejected, that 

information is discarded.15  By contrast, the SDS-POMDP aggregates all information 
                                                
14 cA  could also be handcrafted – the key point that confidence score is quantized. 
15 A small body of work has attempted to identify “good dialogs” by looking at features over multiple turns, 
but the classification scheme – good dialog vs. bad dialog – is even coarser than accept/reject decisions 
(Litman and Pan, 2000), (Langkilde et al., 1999). D.    



over time including conflicting evidence via a belief state, properly accounting for the 
reliability of each observation in cumulative terms.  Finally, whereas accept/reject 
decisions in a traditional system are taken based on local notions (often human intuitions) 
of utility, in the SDS-POMDP actions are selected based on expected long-term reward – 
note how Figure 6 explicitly includes a reward component, absent from Figure 9. 

In summary, local use of confidence scores in traditional hand-crafted SDSs does add 
useful information, but acting on this information in a way which serves long-term goals 
is non-trivial.  A traditional SDS with a confidence score can be viewed as an SDS-
POMDP with a number of simplifications: one dialog state is maintained rather than 
many; accept/reject decisions are used in place of parallel dialog hypotheses; and actions 
are selected based on a hand-crafted strategy rather than selected to maximize a long-
term reward metric.   

2.3. POMDPs and automated action selection 
Choosing which action ma  a spoken dialog system should take in a given situation is a 

difficult task since it is not always obvious what the long-term effect of each action will 
be.  Hand-crafting dialog strategies can lead to unforeseen dialog situations, requiring 
expensive iterative testing to build good systems.  Such problems have prompted 
researchers to investigate techniques for choosing actions automatically and in this 
section, the two main approaches to automatic action selection will be considered: 
supervised learning, and Markov decision processes. 

As illustrated graphically in Figure 10, supervised learning attempts to estimate a direct 
mapping from machine state mS  to action mA  given a corpus of training examples.  It 

can be thought of as a simplification of the SDS-POMDP model in which a single state is 
maintained, and in which actions are learnt from a corpus.  Setting aside the limitations of 
maintaining just one dialog state and the lack of explicit forward planning, using 
supervised learning to create a dialog policy is problematic since collecting a suitable 
training corpus is very difficult for three reasons.   

Firstly, using human-human conversation data is not appropriate because it does not 
contain the same distribution of understanding errors, and because human-human turn-
taking is much richer than human-machine dialog.  As a result, human-machine dialog 
exhibits very different traits than human-human dialog (Doran et al., 2001; Moore and 
Browning, 1992).  Secondly, while it would be possible to use a corpus collected from an 
existing spoken dialog system, supervised learning would simply learn to approximate 
the policy used by that spoken dialog system and an overall performance improvement 
would therefore be unlikely.  Thirdly, a corpus could be collected for the purpose, for 
example, by running Wizard-of-Oz style dialogs in which the wizard is required to select 
from a list of possible actions at each step (Bohus and Rudnicky, 2005a; Lane et al., 
2004) or encouraged to pursue more free-form interactions (Skantze, 2003; Williams and 
Young, 2004).  However, in general such collections are very costly, and tend to be 
orders of magnitude too small to support robust estimation of generalized action 
selection. 
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Figure 10: Supervised learning for action selection.  The node mA  has been trained using supervised 

learning on a corpus of dialogs (indicated with the SL subscript).  The DET superscript on mS  
indicates that this node is deterministic.   

Fully-observable Markov decision processes (usually just called Markov decision 
processes, or MDPs) take a very different approach to automated action selection.  As 
their name implies, a Markov decision process is a simplification of a POMDP in which 
the state is fully observable.  This simplification is shown graphically in Figure 11.  In an 

MDP, uA
~

 is again regarded as a random observed variable and mS′  is a deterministic 

function of mS , mA , uA′~
, and cA′ .  Since at a given state ms  a host of possible 

observations ua~  are possible, planning is performed using a transition function – i.e. 

),|'( mmm assP .  Like POMDPs, MDPs choose actions to maximize a long-term 

cumulative sum of rewards: i.e., they perform planning.  Unlike POMDPs, the current 
state in an MDP is known, so a policy is expressed directly as a function of state s: 

.)( As ∈π   This representation is discrete (a mapping from discrete states to discrete 
actions), and as a result, MDPs are usually regarded as a more tractable formalism than 
POMDPs.  Indeed, MDPs enjoy a rich literature of well-understood optimization 
techniques and have been applied to numerous real-world problems (Sutton and Barto, 
1998).   

By allowing designers to specify rewards for desired and undesired outcomes (e.g., 
successfully completing a task, a caller hanging up, etc) without specifying explicitly 
how to achieve each required goal, much of the tedious “handcrafting” of dialog design is 
avoided.  Moreover, unlike the supervised learning approach to action selection, MDPs 
make principled decisions about the long-term effects of actions, and the value of this 
approach has been demonstrated in a number of research systems.   For example, in the 
ATIS Air Travel domain, Levin et al. constructed a system to optimize the costs of 
querying the user to restrict (or broaden) their flight search, the costs of presenting too 
many (or too few) flight options, and the costs of accessing a database (Levin and 
Pieraccini, 1997; Levin et al., 1998, 2000).  In addition, researchers have sought to find 



optimal initiative, information presentation, and confirmation styles in real dialog 
systems (Singh et al., 2002; Walker et al., 1998).  MDP-based spoken dialog systems 
have also given rise to a host of work in user modelling and novel training/optimization 
techniques (Denecke et al., 2004; Goddeau and Pineau, 2000; Henderson et al., 2005; 
Pietquin 2004; Pietquin and Renals, 2002; Scheffler and Young, 2002). 
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Figure 11: Depiction of an MDP used for dialog management.  The action mA  is chosen to maximize 
the sum of rewards R over time.   

A key weakness of MDPs is that they assume that the current state of the world is known 
exactly and this assumption is completely unfounded in the presence of recognition 
errors.  The impact of this becomes clear when the MDP transition function is 
calculated:16 

 ∑
′

′′′=′
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To compute the transition function properly, an estimate of ),|~( mmu asaP  is required, but 

in reality uA
~

 depends critically (via uA ) on uS .  Dialog designers try to ensure that mS  

closely models uS , but as errors are introduced and the two models diverge, the effects of 

the dependence of uA
~

 on a hidden variable increasingly violate the Markov assumption 

expressed in ),|( mmm assP ′ , compromising the ability of the MDP to produce good 

policies.  While there exist sophisticated learning techniques (such as eligibility traces) 
which attempt to partially overcome the fact that the user’s state is not fully observable 
(Scheffler and Young, 2002), in simple terms, as speech recognition errors become more 
prevalent, theory predicts that POMDPs will perform better than MDPs by an increasing 

                                                
16 In this calculation, ca′  has been omitted for clarity. 



margin.  As will be shown below, the results of simulation studies support this theoretical 
prediction. 

In summary, from a theoretical standpoint, maintaining multiple dialog hypotheses, 
confidence scoring, and automated planning can all be viewed as special cases or 
simplifications of a POMDP.  Of course, contemporary spoken dialogue systems may 
employ more than one of these techniques, but a POMDP is unique in providing a unified 
statistical framework that supports global optimization.  For example, an MDP may 
include a confidence bucket in its state space, but there is no straightforward way to 
search for optimal confidence threshold settings (i.e., those which maximize expected 
return), save a brute-force search.  Further, some combinations of these techniques have 
only been demonstrated with a POMDP – for example, as far as the authors are aware, 
the only systems in the literature which both maintain multiple hypotheses for the dialog 
state and perform forward planning are POMDPs. 

In the next section, we illustrate the benefits of these theoretical advantages concretely 
through example dialogs and experimental simulations. 

3. Empirical support for the SDS-POMDP framework  
Section 1 has shown how POMDPs can be viewed as a principled theoretical approach to 
dialog management under uncertainty and section 2 has demonstrated that existing 
approaches to handling uncertainty are subsumed and generalised by the SDS-POMDP 
framework.  In this section, the practical advantages of utilising the SDS-POMDP 
framework are demonstrated through example interactions and simulation experiments.  

3.1. Benefits of parallel state hypotheses 
A central claim of this paper is that because POMDPs maintain parallel dialog state 
hypotheses, they are able to cope better with speech recognition errors.  In this section, 
we will first discuss how multiple dialog hypotheses add robustness to speech recognition 
errors.  In doing so, we will also explain how the SDS-POMDP model takes proper 
account of a user model.  

To begin illustrating this claim, consider a spoken dialog system with no confidence 
scoring and which makes speech recognition errors with a fixed error rate.  For this 
example, which is in the pizza ordering domain, it is assumed that all cooperative user 
actions are equally likely: i.e., there is no effect of a user model.  An example 
conversation with such a system is shown in Figure 12.  In this figure, the first column 
shows interactions between the user and the machine.  Text in brackets shows the 

recognized text (i.e., uA
~

).  The middle column shows a portion of a POMDP 

representation of the user’s goal.  The last column shows how a traditional dialog model 
might track this same portion of the dialog state with a frame-based representation  

This conversation illustrates how multiple dialog hypotheses are more robust to errors by 
properly accounting for conflicting evidence.  In this example, the frame-based 
representation must choose whether to change its value for the size field or ignore new 
evidence; by contrast, the POMDP easily accounts for conflicting evidence by shifting 
belief mass.  Intuitively, a POMDP naturally implements a “best two out of three” 
strategy. 



M: How can I help you?
U: A small pepperoni pizza

[a small pepperoni pizza]
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M: Ok, what toppings?
U: A small pepperoni

[a small pepperoni]

M: And what type of crust?
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Figure 12: Example conversation with a spoken dialog system illustrating the benefit of maintaining 

multiple dialog state hypotheses.  This example is in the pizza ordering domain.  The left column 
shows the machine and user utterances, and the recognition results from the user’s utterance is 

shown in brackets.  The center column shows a portion of the POMDP belief state; b represents the 
belief over a component of the user’s goal (pizza size).  The right-hand column shows a typical frame-

based method which is also tracking this component of the user’s goal.  Note that a speech 
recognition error is made in the last turn – this causes the traditional method to absorb a piece of bad 
information, whereas the POMDP belief state is more robust.  In this example no account is taken of 
which user actions are more or less likely, or of confidence score – see below for illustrations of these 

elements. 

A POMDP is further improved with the addition of a user model which indicates how a 
user’s goal uS  changes over time, and what actions uA  the user is likely to take in a 

given situation.  For example, consider the dialog shown in Figure 13.  In this figure, a 

user model informs the likelihood of each recognition hypothesis uA
~

 given uS  and mA . 

In this example, the machine asks for the value of one slot, and receives a reply.  The 
system then asks for the value of a second slot, and receives a value for that slot and an 
inconsistent value for the first slot. 

In the traditional frame-based dialog manager, it is unclear how this evidence should be 
incorporated – should the new information replace the old information, or should it be 



ignored?  If the frame is extended to allow conflicts, how can they be resolved?  Finally, 
how can the fact that the new evidence is less likely than the initial evidence be 
incorporated?  By contrast, in the SDS-POMDP the belief state update is scaled by the 
likelihood predicted by the user model.  In other words, the POMDP takes minimal (but 
non-zero) account of very unlikely user actions it observes, and maximal account of very 
likely actions it observes.   

M: How can I help you?
U: A small pepperoni pizza

[a small pepperoni pizza]

Sml Med Lrg

b

M: And what type of crust?
U: Uh just normal

[large normal]
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…

}
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…
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Figure 13: Example conversation with a spoken dialog system illustrating the benefit of an embedded 

user model.  In the POMDP, for the first recognition, the observed user’s response is very likely 
according to the user model.  The result is a large shift in belief mass toward the Sml value.  In the 

second recognition, providing information about the size is predicted as being less likely; as a result, 
the observed response Lrg (which happens to be a speech recognition error) is given less weight, and 
the final POMDP belief state has more mass on Sml than Lrg.  By contrast, the traditional method 

must choose whether to update the state with Sml or Lrg.   

To test these intuitions experimentally, a test-bed dialog simulation experiment was 
created (Williams et al., 2005a).  The goal of the experiment was to quantify the benefits 
of multiple dialog hypotheses and the embedded user model, and explore the effects of 
different speech recognition errors rates.  This assessment is made by comparing the 
performance of a POMDP to an MDP which (as described in section 3.3) does not 
maintain multiple hypotheses.   

The test-bed simulation is in the travel domain.  A simulated user is trying to buy a ticket 
to travel from one city to another city.  The machine asks the user a series of questions, 
and then “submits” the ticket purchase request, ending the dialog.  The machine may also 
choose to “fail,” abandoning the dialog.  To make the system relatively straightforward to 
optimize, there are just three cities in the test-bed problem.  The machine has 16 actions 
available, including greet, ask-from/ask-to, confirm-to-x/confirm-from-x, submit-x-y, and  



fail.  The user’s goal specifies the user’s desired itinerary, and the dialog history sd 
indicates (from the user’s perspective) whether the from place and to place have not been 
specified, are unconfirmed, or are confirmed.  The user’s action and the speech 
recognition result are drawn from the set x, from-x, to-x, from-x-to-y, yes, no, and null, 
where in all cases x and y indicate cities.  These state components yield a total of 1945 
states.   

ma  us′  Description ua′  ),|( muu asap ′′  

User wasn’t paying attention null 0.100 

User says both places from-x-to-y 0.540 

User says just “from” place from-x 0.180 

User says just “to” place to-y 0.180 

greet 
from x 

to y 

All other user actions (all others) 0.000 

User wasn’t paying attention null 0.100 

User says just the name of the place x 0.585 

User says the name of the place 
preceded by “from”  from-x 0.225 

User says both places from-x-to-y 0.090 

ask-from 
from x 

to y 

All other user actions (all others) 0.000 

User wasn’t paying attention null 0.100 

User says just “yes” yes 0.765 

User says the item that was being 
confirmed 

y 0.101 

User says the item being confirmed, 
with the “to” preposition 

to-y 0.034 

confirm-
to-y 

from x 
to y 

(NB - the 
system has the 

right 
hypothesis) 

All other user actions (all others) 0.000 

Table 6: Extracts from the hand-crafted user model employed in simulation experiments.  

In the test-bed problem the user has a fixed goal for the duration of the dialog, and we 
define the user goal model accordingly.  We define the user action model to include a 
variable set of responses – for example, the user may respond to ask-to/ask-from with x, 
to-x/from-x, or from-x-to-y.  The probabilities in the user action model were chosen such 
that the user provides cooperative but varied responses, and sometimes does not respond 
at all.  The probabilities were handcrafted, selected based on experience performing 
usability testing with slot-filling dialog systems.  A portion of the user model parameters 
is given in Table 6. 

We define the observation function to encode the probability of making a speech 
recognition error to be errp , and define the observation function as: 

  ′≠′
−

′=′−
=′′

uu
u

err

uuerr

uu aaif
A

p
aaifp

aap ~
1

~1
)|~(  (18) 



Below we will vary errp  to explore the effects of speech recognition errors. 

The reward measure includes components for both task completion and dialog 
“appropriateness” and reflects the intuition that behaving inappropriately or even 
abandoning a hopeless conversation early are both less severe than submitting the user's 
goal wrong.  The reward assigns -3 for confirming a field before it has been referenced 
by the user;  -5 for taking the fail action; +10 or -10 for taking the submit-x-y action when 
the user’s goal is (x,y) or not, respectively; and -1 otherwise.  This reward function 
expresses how trade-offs should be made between the system’s competing objectives of 
speed and accuracy – for example, this reward function indicates that a dialog which 
requires 15 turns to arrive at the correct answer (and receives 510151 −=+⋅− ) obtains 
the same reward as one in which the system immediately abandons the interaction via the 
fail action (and receives 5− ).  Thus if the planner determines that successful completion 
would require more than 15 turns, it will instead choose to immediately abandon the 
conversation and not waste the user’s time.17 

POMDP optimization was performed with a variant of point-based value iteration called 
Perseus (Spaan and Vlassis, 2005).   

An MDP was constructed to assess performance of a model which does not track multiple 
dialog states, and which does not make use of an explicit user model.  The MDP was 
patterned on systems in the literature, for example (Pietquin, 2004)).  The MDP was 
trained and evaluated through interaction with a model of the environment, which was 
formed from the POMDP transition, observation, and reward functions.  This model of 
the environment takes an action from the MDP as input, and emits an observation and a 
reward to the MDP as output.   

List of MDP states 

u-u o-u c-u 

u-o o-o c-o 

u-c o-c c-c 

dialog-start dialog-end 

Table 7: The 11 MDP states used in the test-bed simulation.  In the items of the form x-y, the first 
item refers to the from slot, and the second item refers to the to slot.  u indicates unknown; o indicates 

observed but not confirmed; c indicates confirmed. 

The MDP state contains components for each field which reflect whether, from the 
standpoint of the machine, a value has not been observed, a value has been observed but 
not confirmed, or a value has been confirmed.  Two additional states – dialog-start and 
dialog-end – which were also in the POMDP state space, are included in the MDP state 
space for a total of 11 MDP states, shown in Table 7.  The MDP was optimized using 
Watkins Q-Learning (Watkins, 1989). 

Figure 14 shows the average return (i.e. total cumulative reward) for the POMDP and 
MDP solutions vs. the recognition error rate errp  ranging from 0.00 to 0.65.  The 

(negligible) error bars for the MDP show the 95% confidence interval for the estimate of 

                                                
17 For clarity, this illustration has assumed that the discount factorγ is equal to 1. 



the return assuming a normal distribution.18  The POMDP and MDP perform equivalently 
for 0=errp , and the return for both methods decreases consistently as errp  increases but 

the POMDP solution consistently achieves the larger return.  Thus, in the presence of 
perfect recognition accuracy, there is no advantage to maintaining multiple dialog states, 
however, when errors do occur, the POMDP solution is always better and furthermore the 
difference in performance increases as errp  increases.  This result confirms that the use of 

multiple dialog hypotheses and an embedded user model enable higher recognition error 
rates to be tolerated compared to the conventional single-state approach.  A detailed 
inspection of the dialog transcripts confirmed that the POMDP is better at interpreting 
inconsistent information, agreeing with the intuition shown in Figure 12.   
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Figure 14:  Expected or average return of the POMDP policy and the MDP baseline.  Error bars 

show the 95% confidence interval 

Although there is little related work in the literature, experiments by Roy et al also 
showed performance gains compared to a conventional MDP, using a simpler Augmented 
MDP in which planning is performed considering only the (discrete) best state, and the 
entropy of the belief state, (Roy et al., 2000).  

3.2. Benefits of the POMDP approach to confidence s coring  
A second central claim of this work is that POMDPs provide a principled approach to 
confidence scoring.   

To illustrate this claim, consider a spoken dialog system which makes use of a per-
utterance confidence score which ranges from 0 to 1.  Assume that all cooperative user 
actions are equally likely so that the effects of a user model can be disregarded.  In the 
traditional version of this system with three confidence buckets {reject, low, hi}, suppose 
that a good threshold between reject and low has been found to be 0.4, and a good 
threshold between low and hi has been found to be 0.8.  
                                                
18 The POMDP value is exact and hence error bars aren’t shown. 



An example conversation is shown in Figure 15 in which the machine asks a question and 
correctly recognizes the response.  In the traditional method, the confidence score of 0.85 
is in the high confidence bucket, hence the utterance is accepted with “hi” confidence and 
the dialog state is updated accordingly.  In the POMDP, the confidence score is 
incorporated into the magnitude of the belief state update. 

Now consider the conversation in Figure 16, in which each of the recognitions is again 
correct, but the confidence scores are lower.  In the traditional method, each confidence 
score falls into the “reject” confidence bucket, and nothing is incorporated into the dialog 
frame.  In the POMDP-based system, however, the magnitude of the confidence score is 
incorporated into the belief update as above, although this time since the score is lower, 
each update shifts less belief mass.   

M: What size do you want?
U: Small please

[small please] ~ 0.85

Sml Med Lrg

b

Sml Med Lrg

b

Sml Med

b

Lrg

order: {
size: <empty>
…

}

size: {
val: small
conf: hi

} 

Prior to start of dialog

System / User / ASR POMDP belief state Traditional method

 
Figure 15: Example conversation with a spoken dialog system illustrating a high-confidence 

recognition.  The POMDP incorporates the magnitude of the confidence score by scaling the belief 
state update correspondingly.  The traditional method quantizes the confidence score into a “bucket” 

such as {reject, low, hi}. 

This second example illustrates two key benefits of POMDPs.  First, looking within one 
time-step, whereas the traditional method creates a finite set of confidence buckets, the 
POMDP in effect utilizes an infinite number of confidence buckets and as a result the 
POMDP belief state is a lossless representation of a single confidence score.  Second, 
looking across time-steps, whereas the traditional method is challenged to track 
aggregate evidence about confidence scores over time, a POMDP effectively maintains a 
cumulative confidence score over user goals.  For the traditional method to approximate a 
cumulative confidence score, a policy which acted on a historical record of confidence 
scores would need to be devised, and it is quite unclear how to do this. 

Moreover, the incorporation of confidence score information and user model information 
are complementary since they are separate product terms in the belief update equation 
(16).  The probability )|,~( uu acap ′′′  reflects the contribution of the confidence score and 

the probability ),|( muu asap ′′  reflects the contribution of the user model.  The belief term 

),,( udu assb  records the dialog history and provides the memory needed to accumulate 

evidence.  This is in contrast to traditional approaches which typically have a small 



number of confidence score “buckets” for each recognition event, and typically log only 
the most recently observed “bucket”.  POMDPs have in effect infinitely many confidence 
score buckets and they aggregate evidence properly over time as a well-formed 
distribution over dialog states (including user goals).  

To test these intuitions experimentally, the dialog management problem presented in 
Section 3.1 was extended to include a confidence score (Williams et al., 2005b).  In the 
POMDP, the confidence score c  is regarded as a continuous component of the 
observation, and in the MDP, the confidence score is quantized into “buckets” as is 
customarily done (Pietquin, 2004). 

S: What size do you want?
U: Small please

[small please] ~ 0.38

Sml Med Lrg

b

S: Sorry, what size?
U: i said small

[I said small] ~ 0.39

Sml Med

b

Lrg

Sml Med

b

Lrg

order: {
size: <empty>
…

}

order: {
size: <empty>
…

}

order: {
size: <empty>
…

}

Prior to start of dialog

System / User / ASR POMDP belief state Traditional method

 
Figure 16: Example conversation with a spoken dialog system illustrating two successive low-

confidence recognitions.  In this example, both recognitions are correct.  The POMDP incorporates 
the confidence score in the same way as shown in Figure 15, accumulating weak evidence.  For the 
traditional method, both confidence scores are below the threshold of 0.40, and thus they are both 

ignored.  In effect, the traditional method is ignoring possibly useful information.  

In the POMDP, the observation function )|,~( uu acap ′′′  is in practice impossible to 

estimate directly from data, so it is decomposed into two distributions – one for “correct” 
recognitions and another for “incorrect” recognitions.  In the test-bed problem we assume 
that all confusions are equally likely and occur with probability errp , yielding:  

  ′≠′
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where c' is defined on the interval [0,1], and )(cph ′  is an exponential probability density 

functions with slope determined by a parameter h.  When 0=h , )(cph ′  is a uniform 



density and conveys no information; as h approaches infinity, )(cph ′  provides complete 

and perfect information.  POMDP policy optimization was performed with a technique 
which admits continuous observations (Hoey and Poupart, 2005).   

The MDP baseline was similarly extended to include M confidence buckets, patterned on 
systems in the literature, such as (Pietquin, 2004).  Ideally the thresholds between 
confidence buckets would be selected so that they maximize average return; however, it 
is not obvious how to perform this selection – indeed, this is one of the weaknesses of the 
“confidence bucket” method.  Instead, a variety of techniques for setting confidence score 
threshold were explored, and it was found that dividing the probability mass of the 
confidence score c evenly between buckets produced the largest average returns.   

List of MDP-2 states 

u-u u-o(l) u-o(h) u-c(l,l) u-c(l,h) u-c(h,l) u-c(h,h) 

o(l)-u o(l)-o(l) o(l)-o(h) o(l)-c(l,l) o(l)-c(l,h) o(l)-c(h,l) o(l)-c(h,h) 

o(h)-u o(h)-o(l) o(h)-o(h) o(h)-c(l,l) o(h)-c(l,h) o(h)-c(h,l) o(h)-c(h,h) 

c(l,l)-u c(l,l)-o(l) c(l,l)-o(h) c(l,l)-c(l,l) c(l,l)-c(l,h) c(l,l)-c(h,l) c(l,l)-c(h,h) 

c(l,h)-u c(l,h)-o(l) c(l,h)-o(h) c(l,h)-c(l,l) c(l,h)-c(l,h) c(l,h)-c(h,l) c(l,h)-c(h,h) 

c(h,l)-u c(h,l)-o(l) c(h,l)-o(h) c(h,l)-c(l,l) c(h,l)-c(l,h) c(h,l)-c(h,l) c(h,l)-c(h,h) 

c(h,h)-u c(h,h)-o(l) c(h,h)-o(h) c(h,h)-c(l,l) c(h,h)-c(l,h) c(h,h)-c(h,l) c(h,h)-c(h,h) 

dialog-start dialog-end 

Table 8: The 51 states in the “MDP-2” simulation.  In the items of the form x-y, the first item refers 
to the from slot, and the second item refers to the to slot.  u indicates unknown; o indicates observed 

but not confirmed; c indicates confirmed.  o(l) means that the value was observed with low 
confidence; o(h) means that the value was observed with high confidence.  c(l,l) means that both the 
value itself and the confirmation were observed with low confidence; c(l,h) means that the value was 

observed with low confidence and the confirmation was observed with high confidence, etc. 

The MDP state was extended to include this confidence “bucket” information.  Because 
the confidence bucket for each field (including its value and its confirmation) is tracked 
in the MDP state, the size of the MDP state space grows with the number of confidence 
buckets.  For M=2, the resulting MDP called MDP-2 has 51 states; this is shown in Table 
8.19  Watkins Q-learning was again used for MDP optimization. 

Figure 17 shows the average returns for the POMDP and MDP-2 solutions vs. errp  
ranging from 0.00 to 0.65 for 1=h .  The error bars show the 95% confidence intervals 
for the return assuming a normal distribution.  Note that return decreases consistently as 

errp  increases for all solution methods, but the POMDP solutions attain larger returns 

than the MDP method at all values of errp .20   

We next explored the effects of varying the informativeness of the confidence score.  
Figure 18 shows the average returns for the POMDP method and the MDP-2 method vs. 

                                                
19 For reference, M=1 produces an MDP with 11 states, and M=3 produces an MDP with 171 states. 
20 The MDP-3 system was also created but we were unable to obtain better performance from it than we did 
from the MDP-2 system. 



h for errp  = 0.3.  The error bars show the 95% confidence interval for return assuming a 

normal distribution.  The POMDP method outperforms the baseline MDP method 
consistently for a range of confidence score measures.  This trend was also observed for a 
range of other values of errp  (Williams et al., 2005a).  Note that increasing h increases 

the average return for all methods. 
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Figure 17: Average return for the POMDP and MDP-2 methods for h = 1. 
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Figure 18: Average return vs. h (informativeness of confidence score) at perr = 0.30 for the POMDP 

and MDP-2 methods. 



3.3. Benefits of automated planning 
A third central claim of this work is that POMDPs provide a principled framework for 
automated planning.  In this section we support this claim with two discussions.  First, 
since there exists considerable expertise in hand-crafting spoken dialog systems, it is 
important to make comparisons with hand-crafted strategies.  We show how these 
comparisons can be made and demonstrate the relative gains of POMDPs.  Second, the 
benefits of planning (vs. not planning) for automatically generated dialog mangers are 
also addressed. 

To compare a POMDP policy with a hand-crafted policy, first the form of POMDP 
policies must be considered.  In the previous sections, we relied on the representation of a 
POMDP policy produced by value iteration – i.e., a value function, represented as a set of 
N vectors each of dimensionality || S .  A second way of representing a POMDP policy is 
as a “policy graph” which is a finite state controller consisting of N nodes and some 
number of directed arcs.  Each controller node is assigned a POMDP action, and )(ˆ nπ  
indicates the action associated with the nth node.  Each arc is labelled with a POMDP 
observation, such that all controller nodes have exactly one outward arc for each 
observation.  Nonl ∈),(  denotes the successor node for node n and observation o. 

A policy graph is a general and common way of representing handcrafted dialog 
management policies (Pieraccini and Huerta, 2005).  More complex handcrafted policies 
– for example, those created with rules – can usually be compiled into a (possibly very 
large) policy graph.  A policy graph does not make the expected return associated with 
each controller node explicit; however, as pointed out by (Hansen, 1998), the expected 
return associated with each controller node can be found by solving a system of linear 
equations in υ : 

 ∑∑
∈′ ∈

′′′+=
Ss Oo

onln snsopnsspnsrs )())(ˆ,|())(ˆ,|())(ˆ,()( ),(υππγπυ  (20) 

Solving this set of linear equations yields a set of vectors – one vector )(sυ  for each 

controller node, )(snυ .  In words, Eq. (20) sets the value of a node equal to the immediate 

reward of taking that node’s action ))(ˆ,( nsr π  plus the discounted expected future reward.   

To find the expected value )(bVn of starting the controller in node n and belief state b we 

compute: 

 ∑
∈

=
Ss

nn sbsbV )()()( υ  (21) 

Note that a human designer is free to define the controller however they wish: the 
controller may have any number of nodes, and its size is not linked to the size of the 
POMDP state space.   

To illustrate policy graph evaluation, three handcrafted policies called HC1, HC2, and 
HC3 were created for the spoken dialog problem presented above.  Each of these policies 
encode strategies typically used by designers of spoken dialog systems.  All of the 
handcrafted policies first take the action greet.  HC1 takes the ask-from and ask-to 
actions to fill the from and to fields, performing no confirmation.  If no response is 



detected, HC1 re-tries the same action.  If HC1 receives an observation which is 
inconsistent or nonsensical, it re-tries the same action.  Once HC1 fills both fields, it 
takes the corresponding submit-x-y action.  A flow diagram of the logic used in HC1 is 
shown in Figure 19.21  HC2 is identical to HC1 except that if the machine receives an 
observation which is inconsistent or nonsensical, it immediately takes the fail action.  
HC3 employs a similar strategy to HC1 but extends HC1 by confirming each field as it is 
collected.  If the user responds with “no”  to a confirmation, it re-asks the field.  If the 
user provides inconsistent information, it treats the new information as “correct” and 
confirms the new information.  Once it has successfully filled and confirmed both fields, 
it takes the corresponding submit-x-y action. 

Figure 20 shows the expected return for the handcrafted policies and the optimized 
POMDP solution vs. the recognition error rate errp .  The optimized POMDP solution 

outperforms all of the handcrafted policies for all values of errp .  On inspection, 

conceptually the POMDP policy differs from the handcrafted policies in that it tracks 
conflicting evidence rather than discarding it.  For example, whereas the POMDP policy 
can interpret the “best 2 of 3” observations for a given slot, the handcrafted policies can 
maintain only 1 hypothesis for each slot.  As expected, the additional representational 
power of the automated solution is of no benefit in the presence of perfect recognition – 
note that where 0=errp , HC1 and HC2 perform identically to the POMDP policy.  It is 

interesting to note that HC3, which confirms all inputs, performs least well for all values 
of errp .  For the reward function used in the test-bed system, requiring 2 consistent 

recognition results (the response to ask and the response to confirm) gives rise to longer 
dialogs which outweigh the benefit of the increase in accuracy.  

                                                
21 Only the logic of HC1 is shown for clarity: the full controller uses actual city name values instead of the 
variables X and Y, resulting in a controller with 15 nodes.  This type of expansion is typical of the 
“compilation” process mentioned above. 
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Figure 19: HC1 handcrafted policy represented as a finite state controller.  Node labels show the 
POMDP action to take for each node, and arcs show which POMDP observations cause which 
transitions.  Note that the nodes in the diagram are entirely indepenent of the POMDP states. 

Finally, we consider whether planning is beneficial to automatically generated dialog 
managers by comparing the performance of the POMDP to a greedy decision theoretic 
dialog manager (section 3.1) on the dialog problem described in section 4.1.  This greedy 
dialog manager always takes the action with the highest expected immediate reward – 
i.e., unlike a POMDP, it is not performing planning.  Both dialog managers were 
evaluated by simulating conversations and finding the average reward gained per dialog.  
Results are shown in Figure 21.  The POMDP outperforms the greedy method by a large 
margin for all error rates.  Intuitively, the POMDP is able to reason about the future and 
determine when gathering information will reap larger gains in the long term even if it 
incurs an immediate cost.  More specifically, in this example, the POMDP gathers more 
information than the greedy approach.  As a result, dialogs with the POMDP dialog 
manager are longer but the resulting increased cost is offset by correctly identifying the 
user’s goal more often.  In general, POMDPs are noted for their ability to make effective 
trade-offs between the (small) cost of gathering information, the (large) cost of  acting on 
incorrect information, and rewards for acting on correct information (Cassandra et al., 
1994). 
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Figure 20: Expected return vs. perr for optimized POMDP policy and 3 handcrafted policies. 
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Figure 21: Average concept error rate (pErr) vs. average return for the POMDP and greedy decision 

theoretic ("Greedy DT") dialog managers. 

3.4. Illustration with real dialog data 
All of the above simulations employed a hand-crafted model of the user.  To assess the 
impact of this, a final experiment was conducted using a dialog manager optimized with a 
user model estimated from real dialog data, and then evaluated on a second user model 
estimated from held-out data. 



In this experiment, we employed real dialog data from the SACTI-1 corpus (Williams 
and Young., 2004).  The SACTI-1 corpus contains 144 human-human dialogs in the 
travel/tourist information domain using a “simulated ASR channel”, which introduces 
errors similar to those made by a speech recognizer (Stuttle et al., 2004).  One of the 
subjects acts as a tourist seeking information (analogous to a user) and the other acts as 
an information service (analogous to a spoken dialog system).  The corpus contains a 
variety of word error rates, and the behaviors observed of the subjects in the corpus are 
broadly consistent with behaviors observed of a user and a computer using a real speech 
recognition system (Williams and Young, 2004).   

    Training Testing 

ma  us′  Description ua′  ),|( muu asap ′′  ),|( muu asap ′′  

User wasn’t paying attention null 0.013 0.025 

User says both places from-x-to-y 0.573 0.630 

User says just “from” place from-x 0.207 0.173 

User says just “to” place to-y 0.207 0.173 

greet 
from x 

to y 

All other user actions (all others) 0.000 0.000 

User wasn’t paying attention null 0.013 0.025 

User says just the name of 
the place 

x 0.444 0.419 

User says the name of the 
place preceded by “from”  

from-x 0.399 0.349 

User says both places from-x-to-y 0.144 0.207 

ask-from 
from x 

to y 

All other user actions (all others) 0.000 0.000 

User wasn’t paying attention null 0.013 0.025 

User says just “yes” yes 0.782 0.806 

User says the item that was 
being confirmed 

y 0.108 0.092 

User says the item being 
confirmed, with the “to” 

preposition 
to-y 0.097 0.077 

confirm-
to-y 

from x 
to y 

(NB - the 
system has 
the right 

hypothesis) 

All other user actions (all others) 0.000 0.000 

Table 9: Training and Testing user models estimated from disjoint data in the SACTI-1 corpus. 

Wizard/User turn pairs which broadly matched the types of action in the test-bed dialog 
problem were annotated.  The corpus was then segmented into a training sub-corpus and 
a testing sub-corpus, each composed of an equal number of dialogs, the same mix of 
word error rates, and disjoint subject sets.  One user model ),|( muu asap ′′  was then 

estimated from each sub-corpus, shown in Table 9.  Due to data sparsity in the SACTI-1 
corpus, the user actions yes and no were grouped into one class, so probabilities for these 
actions are equal (with appropriate conditioning for the sense of yes vs. no). 



To conduct the simulations, first policy optimization was performed on the test-bed 
dialog problem with the training user model using Perseus.  Then the testing user model 
was installed, and 10,000 dialog turns were run with the policy created from the training 
user model.  This process was repeated for values of perr from 0.00 to 0.65.Figure 22 
shows results for a range of values of perr.  The Y-axis shows average return per dialog.  
Error bars indicate the 95% confidence interval for the performance on the testing user 
model.  As speech recognition errors increase, the average reward decreases, consistent 
with the findings in the previous sections.  For all values of perr, the performance on the 
testing user model is very close to the performance on the training user model, and in 
some cases it is slightly higher.  This is possible because, in some situations, the testing 
user model provides slightly more information than the training user model, and this 
enables the policy to perform better on the testing user model at certain error rates.  For 
example, when asked the greet question or asked for the from or to places, the testing 
user model is more likely than the training model to reply with both the from and to 
places.  Overall, the results in Figure 22 demonstrate that the POMDP policy estimation 
is reasonably robust to variations in user behaviour, or stated alternatively, that errors in 
the estimation of the user model can be tolerated. 
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Figure 22: perr vs. average return per dialog for a dialog manager optimized on the training user 

model, and evaluated on the same model (Train-UM ) and the testing user model (Test-UM). 

3.5. Conclusions and future work 
Despite the advances made in recent years, the design of robust spoken dialog systems 
continues to be a major research challenge.  The key problem is that the uncertainty 
caused by speech recognition errors makes it extremely difficult to accurately track the 
state of the dialog.   Typically, these errors lead to false assumptions which in turn lead to 
spurious dialogs.  This paper has argued that by modelling a spoken dialog system as a 
partially observable Markov decision process (POMDP), significant improvements in 
robustness can be achieved.  Furthermore, it has been shown that the ideas underlying 
existing techniques to improving robustness – maintaining multiple state hypotheses, 



using local confidence scores to validate user input, and automating action selection and 
planning – are all just special cases of the POMDP formalism.  Thus, the POMDP 
approach provides a basis for both improving the performance of these existing 
techniques and unifying them into a single framework supporting global optimisation.  
The paper has explained how the various benefits of POMDPs can be exploited in the 
form of an SDS-POMDP, and presented empirical results from simulation experiments – 
including experiments trained on real dialog data and evaluated on held-out dialog data – 
as supporting evidence. 

Even so, despite the clear potential of POMDPs, several key challenges remain.  Most 
crucially, scaling the model to handle real-world problems remains a significant 
challenge: the complexity of a POMDP grows with the number of user goals, and 
optimization quickly becomes intractable.  The POMDPs described in this paper and in 
the literature (Roy et al., 2000; Zhang et al., 2001)  have been artificially small problems  
consisting of a limited set of user goals, yet real systems have thousands or millions of 
user goals for which optimization is intractable, even using the latest approximate 
optimization techniques.   

To illustrate why POMDPs scale poorly for dialog management, consider an SDS-
POMDP in the travel domain which attempts to gather the name of a single city from a 
user.  The machine is aware of 1000 cities, and since the POMDP maintains a distribution 
over all user goals, it must include one user goal for each of the 1000 cities.  Further, the 
POMDP includes (among other actions) distinct actions to “confirm” and “submit” each 
city.  Finally, the POMDP includes an observation for each city name.  Thus, in general, 
the number of states, actions, and observations all grow with the number of distinct user 
goals, and adding models for the user actions and dialog history further exacerbates this 
growth.   

Two strands of recent work have begun to address scalability.  First, the Summary 
POMDP method provides a way to scale up the SDS-POMDP model for the so-called 
slot-filling class of spoken dialog systems (Williams and Young, 2005).22  In a Summary 
POMDP, exact belief monitoring is performed, but planning is done in a compressed 
space called summary space.  For a given slot, summary space expresses the probability 
mass of the highest-ranking value but disregards the value itself.  Continuing the example 
above with 1000 cities, suppose that at a certain time-step, 8.0))(max( =usb  and 

londonsb u
su

=))((maxarg .  The summary POMDP performs planning by considering the 

vector ]2.0,8.0[)~( =usp , whereas a standard formulation considers a vector over all 1000 

cities.  As a result, the Summary POMDP method can scale to much larger problems.  
This is demonstrated by Figure 23 which shows the expected reward of the optimal 
policy computed using both the full POMDP model and the Summary model as the 
number M of slot values increases.  As can be seen the baseline model fails to find 

                                                
22 “Slot-filling” dialogs seek to elicit values for N variables – or “slots” – from a user.  This construction 
makes it possible to enumerate all possible user goals by constructing a vector of all possible values for 
each slot.  Slot-filling dialogs are generally regarded as a useful class of dialogs but they are limited in 
expressiveness and can’t account for more complex dialog behaviours like negotiation, complex 
information exchange, stack-like behaviour, etc.. 



acceptable solutions for M greater than 20 slots, whereas the performance of the 
Summary model is unaffected by M.  Subsequent work has extended this technique to 
scale to a large number of slots by performing planning myopically for each slot, and 
then combining each slot’s policy together using a simple heuristic (Williams and Young, 
2006).  The optimization techniques employed are described in detail in (Williams, 
2006). 
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Figure 23: M (number of distinct slot values) vs. average or expected return for a simplified 1-slot 
dialog problem.  The baseline is a direct solution of the fully-enumerated POMDP.  Note that at 
about 20 slot values, the direct optimization is no longer able to produce good policies, but the 

performance of the Summary POMDP is relatively constant.  Taken from (Williams and Young, 
2005). 

The Summary POMDP performs belief monitoring by enumerating all possible user 
goals, and while this enumeration is reasonable for comparatively simple dialog models 
such as slot-filling, it is not directly applicable to more complex applications such as 
those tackled by Information State Update systems which represent the dialog state by a 
large and complex hierarchical data structure (Larsson and Traum, 2000).  To deal with 
these very large state spaces, a second promising method is to divide the space of user 
goals into a hierarchy of equivalence classes or partitions.  Belief updating is then 
performed on partitions rather than states.  By successively splitting partitions, the system 
can use the incoming evidence to gradually focus-in on the underlying states of interest 
without having to needlessly consider large numbers of low probability states.  A specific 
implementation of this idea is the Hidden Information State dialog model which uses 
probabilistic context-free rules to describe the partition hierarchy.  In effect, these rules 
form an ontology of the application domain and they enable user goals to be expressed in 
a top-down manner which directly reflects the order in which sub-topics are typically 
visited in conversation (Young et al., 2006).  

In addition to scaling issues, several other interesting questions remain concerning the 
uses of POMDPs in dialog.  In particular, the choice of appropriate reward functions and 



their relationship to established metrics of user performance such as the PARADISE 
scheme remain to be resolved (Walker et al., 1997).  There is also the related question of 
how models of user behaviour should be created and evaluated.  Ultimately, the definitive 
test of a POMDP-based dialog system must be evaluation using real users, and the next 
step is clearly to build such systems and gather the necessary empirical data.  In the 
meantime, the SDS-POMDP is unique in providing a complete mathematical framework 
for designing and building spoken dialog systems.  This framework allows all of the key 
components to be trained from data and it supports global optimisation.  We believe that 
POMDPs have clear potential to advance the state-of-the-art in spoken dialog systems 
and as such merit serious further investigation.  

4. Acknowledgments 
The authors thank Pascal Poupart for many helpful discussions and comments.   

This work was supported in part by the European Union “Tools for Ambient Linguistic 
Knowledge (TALK)” project. 

5. References 
Bohus D, Carpenter P, Jin C, Wilson D, Zhang R, Rudnicky AI.  Is this conversation on track?  Proc 

Eurospeech, Aalborg, Denmark; 2001. 

Bohus D, Rudnicky AI.  Integrating multiple knowledge sources for utterance-level confidence annotation 
in the CMU communicator spoken dialog system.  Carnegie Mellon University, Technical Report 
CS190; 2002. 

Bohus D, Rudnicky AI.  Sorry, I didn't catch that! - An investigation of non-understanding errors and 
recovery strategies.  Proc SIGdial Workshop on Discourse and Dialogue, Lisbon; 2005a. 

Bohus D, Rudnicky AI.  A principled approach for rejection threshold optimization in spoken dialog 
systems.  Proc Eurospeech, Lisbon; 2005b. 

Cassandra AR, Kaelbling LP, Littman ML.  Acting optimally in partially observable stochastic domains.  
Proc Conf on Artificial Intelligence, (AAAI), Seattle; 1994. 

Denecke M, Dohsaka K, Nakano M.  Learning dialogue policies using state aggregation in reinforcement 
learning.  Proc Intl Conf on Speech and Language Processing (ICSLP), Jeju, Korea; 2004. 

Deng Y, Mahajan M, Acero A.  Estimating speech recognition error rate without acoustic test data.  Proc 
Eurospeech, Geneva; 2003. 

Doran C, Aberdeen J, Damianos L, Hirschman L.  Comparing several aspects of human-computer and 
human-human dialogues.  Proc SIGdial Workshop on Discourse and Dialogue, Aalborg, Denmark; 
2001. 

Evermann G, Woodland P.  Posterior probability decoding, confidence estimation and system combination.  
Proc Speech Transcription Workshop, Baltimore; 2000. 

Gabsdil M, Lemon O.  Combining acoustic and pragmatic features to predict recognition performance in 
spoken dialogue systems.  Proc Association for Computational Linguistics (ACL), Barcelona; 2004. 

Glass J.  Challenges for spoken dialogue systems.  Proc IEEE Workshop on Automatic Speech Recognition 
and Understanding (ASRU), Colorado, USA; 1999. 

Goddeau D, Pineau J.  Fast reinforcement learning of dialog strategies.  Proc IEEE Intl Conf. on Acoustics, 
Speech, and Signal Processing (ICASSP), Istanbul; 2000. 

Hansen EA.  Solving POMDPs by searching in policy space.  Proc Uncertainty in Artificial Intelligence 
(UAI), Madison, Wisconsin; 1998. 



Henderson J, Lemon O, Georgila K.  Hybrid reinforcement/supervised learning for dialogue policies from 
COMMUNICATOR data. Proc Workshop on Knowledge and Reasoning in Practical Dialogue 
Systems, Intl Joint Conf on Artificial Intelligence (IJCAI), Edinburgh, UK; 2005. 

Higashinaka H, Nakano M, Aikawa K.  Corpus-based discourse understanding in spoken dialogue systems.  
Proc Association for Computational Linguistics (ACL), Sapporo, Japan; 2003. 

Hirschberg J, Litman D, Swerts M.  Detecting misrecognitions and corrections in spoken dialogue systems 
from `aware' sites.  Proc Prosody in Speech Recognition and Understanding, New Jersey, USA; 2001. 

Hoey J, Poupart P.  Solving POMDPs with continuous or large observation spaces.  Proc Intl Joint Conf on 
Artificial Intelligence (IJCAI), Edinburgh, Scotland; 2005. 

Horvitz E, Paek T.  DeepListener: harnessing expected utility to guide clarification dialog in spoken 
language systems.  Proc Intl Conf on Spoken Language Processing (ICSLP), Beijing; 2000. 

Jensen, F.  Bayesian networks and decision graphs.  New York: Springer Verlag; 2001. 

Jurafsky D, Martin J.  Speech and language processing.  Englewood, NJ: Prentice-Hall; 2000. 

Kaelbling L, Littman ML, Cassandra AR. Planning and acting in partially observable stochastic domains.  
Artificial Intelligence; 1998: 101. 

Kemp T, Schaff T.  Estimating confidence using word lattices.  Proc Eurospeech, Rhodes, Greece; 1997, 
827–830. 

Krahmer E, Swerts M, Theune M, Weegels M.  Problem spotting in human-machine interaction.  Proc 
Eurospeech, Budapest; 1999: 1423-1426. 

Krahmer E, Swerts M, Theune M, Weegels M.  Error detection in spoken human-machine interaction.  Intl 
Journal of Speech Technology; 2001: 4 (1), 19-30. 

Lane IR, Ueno S, Kawahara T.  Cooperative dialogue planning with user and situation models via example-
based training.  Proc Workshop on Man-Machine Symbiotic Systems, Kyoto, Japan; 2004, 2837-2840. 

Langkilde I, Walker MA, Wright J, Gorin A, Litman D.  Automatic prediction of problematic human-
computer dialogues in "How May I Help You?"  Proc IEEE Workshop on Automatic Speech 
Recognition and Understanding Workshop (ASRU), Colorado, USA; 1999, 369-372. 

Larsson S, Traum D.  Information state and dialogue management in the TRINDI dialogue move engine 
toolkit. Natural Language Engineering; 2000: 5(3–4), 323–340. 

Levin E, Pieraccini R.  A stochastic model of computer-human interaction for leaning dialog strategies.  
Proc Eurospeech, Rhodes, Greece; 1997. 

Levin E, Pieraccini R, Eckert W.  Using Markov decision process for learning dialogue strategies.  Proc Intl 
Conf on Acoustics, Speech, and Signal Processing (ICASSP), Seattle; 1998, 201-204. 

Levin E, Pieraccini R, Eckert W.  A stochastic model of human-machine interaction for learning dialogue 
strategies.  IEEE Trans on Speech and Audio Processing; 2000: 8 (1), 11-23. 

Litman DJ, Hirschberg J, Swerts M.  Predicting user reactions to system error.  Proc Association for 
Computational Linguistics (ACL), Toulouse, France; 2001. 

Litman DJ, Pan S.  Predicting and adapting to poor speech recognition in a spoken dialogue system.  Proc 
Conf on Artificial Intelligence (AAAI), Austin, Texas, USA; 2000, 722-728. 

Moore R, Browning S.  Results of an exercise to collect "genuine" spoken enquiries using woz techniques.  
Proc Institute of Acoustics; 1992: 14 (6). 

Moreno PJ, Logan B, Raj B.  A boosting approach for confidence scoring.  Proc Eurospeech, Aalborg, 
Denmark; 2001. 

Murphy K.  A survey of POMDP solution techniques.  Technical Report, U. C. Berkeley; 2000. 



Paek T, Horvitz E, Ringger E.  Continuous listening for unconstrained spoken dialog.  Proc Intl Conf on 
Speech and Language Processing (ICSLP), Beijing; 2000. 

Pao C, Schmid P, Glass J.  Confidence scoring for speech understanding systems.  Proc Intl Conf on 
Speech and Language Processing (ICSLP), Sydney; 1998. 

Pieracinni R, Huerta J.  Where do we go from here?  Research and commercial spoken dialog systems.  
Invited talk, SigDial Workshop on Discourse and Dialogue, Lisbon; 2005. 

Pietquin O.  A framework for unsupervised learning of dialogue strategies, PhD Thesis, Faculty of 
Engineering, Mons (TCTS Lab), Belgium; 2004. 

Pietquin O, Renals S.  ASR modelling for automatic evaluation and optimisation of dialogue systems.  Proc 
IEEE Intl Conf on Acoustics, Speech and Signal Processing (ICASSP), Florida; 2002. 

Pineau J, Gordon G, Thrun S.  Point-based value iteration: an anytime algorithm for POMDPs.  Proc Intl 
Joint Conf on Artificial Intelligence (IJCAI), Acapulco, Mexico; 2003. 

Roy N, Pineau J, Thrun S.  Spoken dialog management for robots.  Proc Association for Computational 
Linguistics (ACL), Hong Kong; 2000. 

Scheffler K, Young SJ.  Automatic learning of dialogue strategy using dialogue simulation and 
reinforcement learning.  Proc Human Language Technologies (HLT), San Diego, USA; 2002. 

Singh S, Litman DJ, Kearns M, Walker MA.  Optimizing dialogue management with reinforcement 
leaning: experiments with the NJFun system.  Journal of Artificial Intelligence; 2002: 16, 105-133. 

Skantze G.  Exploring human error handling strategies: implications for spoken dialogue systems.  Proc 
Error Handling in Spoken Dialogue Systems, ISCA Tutorial and Research Workshop, Château d'Oex, 
Vaud, Switzerland; 2003. 

Spaan MTJ, Vlassis N.  Perseus: randomized point-based value iteration for POMDPs. Journal of Artificial 
Intelligence Research; 2005: 24, 195–220. 

Stuttle M, Williams JD, and Young, SJ.  A framework for wizard-of-Oz experiments with a simulated ASR 
channel.  Proc Intl Conf on Spoken Language Processing (ICSLP), Jeju, South Korea, 2004. 

Sutton RS, Barto AG.  Reinforcement Learning: An Introduction.  Cambridge, MA: MIT Press; 1998. 

Walker MA, Litman DJ, Kamm CA, Abell A.  PARADISE: A framework for evaluating spoken dialogue 
agents.  Proc Association for Computational Linguistics (ACL), Madrid, Spain; 1997. 

Walker MA, Fromer JC, Narayanan S.  Learning optimal dialogue strategies: a case study of a spoken 
dialogue agent for email.  Proc Association for Computational Linguistics and Intl Conf on 
Computational Linguistics (ACL/COLING), Montreal; 1998 

Watkins CJCH.  Learning from delayed rewards.  Ph.D. thesis, Cambridge University; 1989. 

Williams JD.  Partially Observable Markov Decision Processes for Spoken Dialogue Management.  Ph D 
thesis, Cambridge University; 2006. 

Williams JD, Poupart P, Young SJ.  Factored partially observable Markov decision processes for dialogue 
management.  Proc Workshop on Knowledge and Reasoning in Practical Dialog Systems, Intl Joint 
Conf on Artificial Intelligence (IJCAI), Edinburgh; 2005a. 

Williams JD, Poupart P, Young SJ.  Partially observable Markov decision processes with continuous 
observations for dialogue management.  Proc SigDial Workshop on Discourse and Dialogue, Lisbon; 
2005b. 

Williams JD, Young SJ.  Characterizing task-oriented dialog using a simulated ASR channel.  Proc Intl 
Conf on Speech and Language Processing (ICSLP), Jeju, South Korea; 2004. 

Williams JD, Young SJ.  Scaling up POMDPs for dialog management: the "Summary POMDP" method.  
Proc IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), San Juan, Puerto 
Rico; 2005. 



Williams JD, Young SJ.  Scaling POMDPs for dialog management with composite summary point-based 
value iteration (CSPBVI).  Proc AAAI Workshop on Statistical and Empirical Approaches to Spoken 
Dialog Systems, Boston;  2006. 

Young SJ, Williams JD, Schatzmann J, Stuttle M, Weilhammer K.  The hidden information state approach 
to dialogue management.  Cambridge University Engineering Department, Technical Report CUED/F-
INFENG/TR.544; 2006. 

Young SJ.  Probabilistic methods in spoken dialogue systems.  Philosophical Trans of the Royal Society 
(Series A); 2000: 358 (1769), 1389-1402. 

Zhang B, Cai Q, Mao J, Chang E, Guo B.  Spoken dialogue management as planning and acting under 
uncertainty.  Proc Eurospeech, Aarlborg, Denmark; 2001. 

 


