
Partially Observable Markov Decision Processes
for Spoken Dialog Systems

Jason D. Williams1 Steve Young
AT&T Labs – Research Cambridge University

Engineering Department

Abstract

In a spoken dialog system, determining which action a machine
should take in a given situation is a difficult problem because
automatic speech recognition is unreliable and hence the state
of the conversation can never be known with certainty. Much
of the research in spoken dialog systems centres on mitigating
this uncertainty and recent work has focussed on three largely
disparate techniques: parallel dialog state hypotheses, local use
of confidence scores, and automated planning. While in
isolation each of these approaches can improve action
selection, taken together they currently lack a unified statistical
framework that admits global optimization. In this paper we
cast a spoken dialog system as a partially observable Markov
decision process (POMDP). We show how this formulation
unifies and extends existing techniques to form a single
principled framework. A number of illustrations are used to
show qualitatively the potential benefits of POMDPs compared
to existing techniques, and empirical results from dialog
simulations are presented which demonstrate significant
quantitative gains. Finally, some of the key challenges to
advancing this method – in particular scalability – are briefly
outlined.

Keywords: Spoken dialog system, dialog management, planning under uncertainty, user
modelling, Markov decision processes, decision theory

Corresponding author: Jason D. Williams
Email: jdw@research.att.com
Phone: +1 973 360 8138
Fax: +1 973.360.8092
Mailing address: AT&T Labs – Research

180 Park Avenue
 Florham Park, NJ 07932
 USA

1 Work carried out while at Cambridge University Engineering Department.

Introduction
Spoken dialog systems (SDS) help people accomplish a task using spoken language. For
example, a person might use an SDS to buy a train ticket over the phone, to direct a robot
to clean a bedroom, or to control a music player in an automobile. Building SDSs is a
challenging engineering problem in large part because automatic speech recognition
(ASR) and understanding technology are error-prone. More specifically, speech
recognition accuracy is relatively good for constrained speech limited to, for example,
digits, place-names, or short commands, but accuracy degrades rapidly as the domain
language becomes less constrained. Furthermore, as spoken dialog systems become more
complex, not only do the demands on the speech recognition and understanding
components increase, but also user behaviour becomes less predictable. Thus, as task
complexity increases, overall there is a rapid increase in uncertainty, and principled
methods of dealing with this uncertainty are needed in order to make progress in this
research area.

1 M Are you a registered user ?

2 U No I'm not. No [NO I'M NOT NO]

3 M What is your full name ?

4 U User Name [ATHENS IN AKRON]

5 M There is an Athens in Georgia and in Greece. Which destination did you want ?

6 U Neither [NEITHER]

7 M I'm sorry, I didn't catch that. There is an Athens in Georgia and in Greece. Which
destination did you want ?

8 U Georgia [GEORGIA]

9 M A flight from Athens... Where do you want to go ?

10 U Start over [START OVER]

11 M Do you really want to start over ?

12 U Yes [YES]

13 M What city are you leaving from ?

14 U Hamilton, Ontario [HILTON ONTARIO]

15 M

Table 1: Sample conversation with a spoken dialog system affected by misunderstandings in the
CMU Communicator spoken dialog system, taken from (Bohus and Rudnicky, 2002). U indicates a
user turn and M indicates a machine turn. In turn 4 the user says their name (omitted for privacy
reasons) but they are misrecognized as saying “Athens in Akron”. This single error then leads to a

complete misalignment between the user and system.

As an illustration of the effects of speech recognition errors, consider the example
conversation shown in Table 1, taken from (Bohus and Rudnicky, 2002). The system
shown here allows the user to take control of the conversation wherever reasonably
possible. In turn 3, the machine asks “What’s your full name?” and in turn 4, the user
replies with their name, but is misrecognized as saying “Athens in Akron”. Since the
machine does not insist on knowing the user’s name, it infers that the user is taking
control of the conversation and is asking about a flight. Hence, the system interprets
“Athens in Akron” as the starting point of a flight booking dialog. This choice of

interpretation causes the whole conversation to go off track and it is not until turn 13,
nine turns later, that the conversation is progressing again.

This interaction illustrates the motivation for the three main approaches that have been
developed in order to minimise the effects of errors and uncertainty in a spoken dialog
system.

First, systems can attempt to identify errors locally using a confidence score: when a
recognition hypothesis has a low confidence score, it can be ignored to reduce the risk of
entering bad information into the dialog state. In the example above, if “Athens in
Akron” were associated with a poor confidence score, then it could have been identified
as an error and the system might have recovered sooner.

Second, accepting that misrecognitions will occur, their consequences can be difficult for
human designers to anticipate. Thus systems can perform automated planning to explore
the effects of misrecognitions and determine which sequence of actions are most useful in
the long run. Consider turn 5 in the example above: the hand-crafted dialog manager
chose to disambiguate “Athens”, but automated planning might have revealed that it was
better in the long term to first confirm that the user really did say “Athens”, even though
in the short term this might waste a turn.

Finally, accepting that some bad information will be entered into the dialog state
maintained by the system, it seems unwise to maintain just one hypothesis for the current
dialog state. A more robust approach would maintain parallel state hypotheses at each
time-step. In turn 4 in the example above, the system could have maintained a second
hypothesis for the current state – for example, in which the user said their name but was
not understood. The system could have later exploited this information when a non-
understanding happened in turn 7.

These three methods of coping with speech recognition errors – local use of confidence
scores, automated planning, and parallel dialog hypotheses – can lead to improved
performance, and confidence scores in particular are now routinely used in deployed
systems. However, these existing methods typically focus on just a small part of the
system and rely on the use of ad hoc parameter setting (for example, hand-tuned
parameter thresholds) and pre-programmed heuristics. Most seriously, when these
techniques are combined in modern systems, there is a lack of an overall statistical
framework which can support global optimization and on-line adaptation.

In this paper, we will argue that a partially observable Markov decision process
(POMDP2) provides such a framework. We will explain how a POMDP can be
developed to encompass a complete dialog system, how a POMDP serves as a basis for
optimization, and how a POMDP can integrate uncertainty in the form of statistical
distributions with heuristics in the form of manually specified rules. To illustrate the
power of the POMDP formalism, we will show how each of the three approaches above
represents a special case of the more general POMDP model. Further, we provide
evidence of the potential benefits of POMDPs through experimental results obtained
from simulated dialogs. Finally, we address scalability and argue that whilst the

2 usually read as “Pom D P”

computational issues are certainly demanding, tractable implementations of POMDP-
based dialog systems are feasible.

The paper is organized as follows. Section 1 begins by reviewing POMDPs and then
shows how the state space of a POMDP can be factored to represent a spoken dialog
system in a way which explicitly represents the major sources of uncertainty. Next
section 2 shows how each of the three techniques mentioned above – parallel dialog
hypotheses, local confidence scoring, and automated planning – are naturally subsumed
by the POMDP architecture. Section 3 discusses the advantages of POMDPs using a
combination of illustrative dialogs and experimental simulation, including simulations
with user models estimated from real dialog data. Finally, section 3.4 concludes by
highlighting the key challenge of scalability and suggests two methods for advancing
POMDP-based spoken dialog systems.

1. Casting a spoken dialog system as a POMDP
In this section we will cast a spoken dialog system as a POMDP. We start by briefly
reviewing POMDPs. Then, we analyze the typical architecture of a spoken dialog system
and identify the major sources of uncertainty. Finally, we show how to represent a
spoken dialog system as a POMDP. In this discussion extensive use is made of influence
diagrams and Bayesian inference – readers unfamiliar with these topics are referred to
texts such as (Jensen, 2001).

1.1. Review of POMDPs
Formally, a POMDP is defined as a tuple },,,,,,,{ 0bZORTAS λ where S is a set of states

describing the agent’s world; A is a set of actions that an agent may take; T defines a
transition probability),|(assP ′ ; R defines the expected (immediate, real-valued) reward

),(asr ; O is a set of observations the agent can receive about the world; and Z defines an

observation probability,),|(asoP ′′ ; λ is a geometric discount factor 10 ≤≤ λ ; and 0b

is an initial belief state)(0 sb . A POMDP can be depicted as an influence diagram, as in

Figure 1.

The POMDP operates as follows. At each time-step, the world is in some unobserved
state Ss∈ . Since s is not known exactly, a distribution over states is maintained called
a “belief state,” b, with initial belief state 0b . We write)(sb to indicate the probability of

being in a particular state s. Based on b, the machine selects an action Aa∈ , receives a
reward),(asr , and transitions to (unobserved) state s′ , where s′ depends only on s and
a . The machine then receives an observation Oo ∈′ which is dependent on s′ and a .
At each time-step, the belief state distribution b is updated as follows:

),,|()(baospsb ′′=′′

),|(

),|(),,|(

baop

baspbasop
′

′′′
=

),|(

),|(),,|(),|(

baop

baspsbaspasop
Ss

′

′′′
=

∑
∈

),|(

)(),|(),|(

baop

sbsaspasop
Ss

′

′′′
=

∑
∈ . (1)

S

Timestep n Timestep n+1

S

A A

RL RL

R R

O O

Figure 1: Influence diagram representation of a POMDP. Circles represent random variables;
squares represent decision nodes; and diamonds represent utility nodes. Shaded circles indicate

unobserved random variables, and un-shaded circles represent observed variables. Solid directed
arcs indicate causal effect and dashed directed arcs indicate that a distribution is used (and not the

actual unobserved value). The subscript RL indicates that actions are chosen using “Reinforcement
learning,” i.e., with the objective of maximizing the cumulative long-term reward.

The numerator consists of the observation function Z, transition matrix T, and current
belief state b. The denominator is independent of s′ , and can be regarded as a
normalization constant k; hence:

 ∑
∈

′′′⋅=′′
Ss

sbsaspasopksb)(),|(),|()(. (2)

We refer to maintaining the value of b at each time-step as “belief monitoring.” The
value b has the useful property that it is a complete summary of the dialog history. More
formally, for a given initial belief state 0b and history ,...},,,{ 2211 oaoa , b provides a

proper sufficient statistic: b is Markovian with respect to 0b and ,...},,,{ 2211 oaoa . Thus,

in effect, the update expressed in equation (2) is considering all possible (hidden) state
transition histories when computing a new belief state, and planning algorithms need only
consider b when choosing actions.

As mentioned above, at each time-step, the agent receives reward tr . The cumulative,

infinite-horizon, discounted reward is called the return:

 ∑∞
=

=Θ
0t

t
t rλ (3)

where λ is the geometric discount factor, 10 ≤≤ λ . The goal of the machine is to
choose actions in such a way as to maximize the expected return []ΘΕ – i.e., to construct
a plan called a policy which indicates which actions to take at each turn.3 In general, a
policy π can be viewed as a mapping from belief state to action Ab ∈)(π , and an

optimal policy Ab ∈)(*π is one which maximizes []ΘΕ .

In theory every belief point b could map to an arbitrary action)(bπ , and for this reason

finding optimal policies for POMDPs is in general intractable. In practice,)(* bπ rarely
maps to an arbitrary action and rather an optimal policy is a partitioning of belief space
into a finite number of regions. Even so, exact algorithms such as the Witness algorithm
(Kaelbling et al., 1998) rarely scale to problems with more than about 10 actions, states,
and observations.4 However, effective approximate solutions do exist. A review of
POMDP optimization techniques is beyond the scope of this work; however, it should be
noted that a family of approximate optimization techniques called point-based value
iteration has been demonstrated to provide tractable solutions for a variety of real-world
problems.5 Standard (exact) value iteration computes a so-called value function V(b)
which provides an estimate of the expected total reward that can be achieved from any
point b in belief space given some policy π . Value iteration is a recursive process which
leads to an estimate of V*(b), the value function corresponding to the optimal policy *π .
Exact value iteration involves searching the whole of belief space; however, point-based
value iteration heuristically selects a small set of representative belief points, and then
iteratively applies value updates to just those points, achieving a significant speed-up
(Pineau et al., 2003; Spaan and Vlassis, 2005).

In general, value iteration methods for POMDPs produce a collection of n vectors)(snυ

each of dimensionality || S and an array of corresponding actions)(nβ . Each vector

)(snυ indicates the (long-term) value of taking a particular action An ∈)(β in state s.

By taking an expectation over belief space, we can find regions where action)(nβ is
optimal – i.e., a policy can be produced from)(snυ and)(nβ as:

 = ∑
∈Ss

n
n

sbsb)()(maxarg)(υβπ (4)

3 In this work, we will assume that a planner has a model of the system dynamics – i.e., T, R, and Z are
known or can be estimated from training data. In other words, we will focus on POMDPs which use
model-based learning, as opposed to experience-based learning.
4 Technically the method scales with the complexity of the optimal policy and not (necessarily) with the
number of states, actions, and observations, but in practice the complexity of the optimal policy can not be
predicted, and the number of states, actions, and observations is a useful heuristic.
5 See (Murphy, 2000) for an overview of POMDP solution techniques.

Thus value iteration provides both a partitioning of belief space into regions
corresponding to optimal actions as well as the expected return of taking that action.

save
b = (1,0)

delete
b = (0,1)

b = (0.65, 0.35)

Figure 2: Belief space in a POMDP with two states, save and delete, which correspond to hidden user
goals. At each time-step, the current belief state is a point on this line segment. The ends of the line

segment represent certainty in the current state. The belief point shown is the initial belief state.

To illustrate how this POMDP framework is used in a spoken dialog system, an example
will now be presented in some detail. This example concerns a very simple voicemail
application which although very limited, nevertheless demonstrates the key properties of
the POMDP approach. Later in the paper, we will consider the various issues which arise
when scaling up the POMDP framework to handle more sophisticated applications.

In this example, users listen to voicemail messages and at the end of each message, they
have two choices – save or delete the message. We refer to these as the user’s goals and
since the system does not a priori know which goal the user desires, they are hidden
goals. For the duration of the interaction relating to each message, the user’s goal is fixed
and the POMDP-based dialog manager is trying to guess which goal the user has. Figure
2 shows a graphical depiction of belief space – since there are only two states, belief
space can be shown as a line segment. In this depiction, the ends of the segment (in
general called “corners”) represent certainty. For example, b = (1,0) indicates certainty
that s = save. Intermediate points represent varying degrees of certainty.

The machine has only three available actions: it can ask what the user wishes to do in
order to infer his or her current goal, or it can doSave or doDelete and move to the next
message. When the user responds to a question, it is decoded as either the observation

save or delete.6 However, since speech recognition errors can corrupt the user’s
response, these observations cannot be used to deduce the user’s intent with certainty. If
the user says save then an error may occur with probability 0.2, whereas if the user says
delete then an error may occur with probability 0.3. Finally, since the user wants save
more often than delete, the initial belief state is set to indicate the prior (0.65, 0.35), and it
is reset to this value after each doSave or doDelete action via the transition function.

The machine receives a large positive reward (+5) for getting the user’s goal correct, a
very large negative reward (-20) for taking the action doDelete when the user wanted
save (since the user may have lost important information), and a smaller but still
significant negative reward (-10) for taking the action doSave when the user wanted
delete (since the user can always delete the message later). There is also a small
negative reward for taking the ask action (-1), since all else being equal the machine

6 The bar above save and delete indicates that these are observations – i.e., noisy, possibly erroneous
indications of the user’s goal.

should try to make progress to its goal as quickly as possible. The transition dynamics of
the system are shown in Tables 2, 3 and 4.7

 s'

a s save delete

save 1 0
ask

delete 0 1

save 0.65 0.35
doSave

delete 0.65 0.35

save 0.65 0.35
doDelete

delete 0.65 0.35

Table 2: Transition function),|(assp ′ for the example voicemail spoken dialog POMDP. The state
s indicates the user’s goal as each new voicemail message is encountered.

 o'

a s' save delete

save 0.8 0.2
ask

delete 0.3 0.7

save 0.5 0.5
doSave

delete 0.5 0.5

save 0.5 0.5
doDelete

delete 0.5 0.5

Table 3: Observation function),|(asop ′′ for the example voicemail application. Note that the

observation o′ only conveys useful information following an ask action

 s

a save delete

ask -1 -1

doSave +5 -10

doDelete -20 +5

Table 4: Reward function),(asr for the example voicemail application. The values encode the
dialog design criteria where it is assumed that deleting wanted messages should carry a higher

penalty than saving unwanted messages, and where time wasting by repeatedly asking questions
should be discouraged.

For a POMDP problem of this size, it is possible to produce an exact solution and here
we have used the Witness algorithm (Kaelbling et al., 1998). Figure 3 shows the optimal

7 Readers may recognize this as a variation of the Tiger problem cast into the spoken dialog domain
(Cassandra et al., 1994).

policy. In the regions of belief space close to the corners (where certainty is high), the
policy chooses doSave or doDelete; in the middle of belief space (where certainty is low)
it chooses to gather information with the ask action. Further, since the penalty for
wrongly choosing doDelete is worse than for wrongly choosing doSave, the doDelete
region is smaller i.e., it requires more certainty than when the user’s goal is save.

save
b = (1,0)

delete
b = (0,1)

doSave ask doDelete

Figure 3: Optimal policy for the example voicemail spoken dialog system POMDP.

save
(1,0)

delete
(0,1)

(0.65, 0.35)

save
(1,0)

delete
(0,1)

(0.347, 0.653)

save
(1,0)

delete
(0,1)

(0.586, 0.414)

save
(1,0)

delete
(0,1)

(0.791, 0.209)

save
(1,0)

delete
(0,1)

(0.65, 0.35)

a = ask
o' = delete
r = -1

a = ask
o' = save
r = -1

a = ask
o' = save
r = -1

a = guess-a
o' = save
r = +10

Figure 4: Evolution of the belief state in the example voicemail spoken dialog system POMDP. The
dashed lines show the partition policy, given in Figure 3. At each time-step, the point b is updated

using equation (2). Note that a recognition error is made after the first “ask” action.

Figure 4 shows an example conversation between the user and a machine executing the
optimal policy. At each time-step, the machine action and the observation are used to
update the belief state as in Eq. (2). Actions are selected depending on the partition

which contains the current belief state. The first response is misrecognised as delete,
moving the belief state towards the delete corner. However, since belief remains in the
central region where uncertainty is high, the machine continues to ask the user what to

do. After two successive (correct) save observations, the belief state moves into the

doSave region, the message is saved and the belief state transitions back to the prior state.
The total reward for processing this message is +7.8

The key idea illustrated by this example is that the dialog system can never be certain of
exactly what the user intends. This is true in human-human dialogs, but it is particularly
true in human-machine dialogs where the existence of recognition errors greatly
exacerbates the uncertainty. The sequence of machine actions dictated by the optimal
POMDP policy guarantees that when averaged over a large number of dialogs, no other
policy would achieve a greater reward. Hence, provided that the chosen reward function
accurately reflects the dialog design criteria, the POMDP framework provides a
principled approach to spoken dialog system design and optimisation.

Although the voicemail example illustrates the general approach to representing a spoken
dialog system within the POMDP framework, it nevertheless sidesteps a number of
important issues. In particular, models of how the user’s goal evolves, how the user
reacts, and how the speech recognition corrupts the user’s actions need to be represented.
In addition, some dialog history needs to be captured. To deal with this, the state space
must be factored to allow the user’s goal, the user’s intention and relevant dialog history
to be separated.

1.2. A factored state-space representation for spok en dialog
systems

The architecture of a spoken dialog system is shown in Figure 5 (Young, 2000).9 In this
depiction, the user has some internal state uS which corresponds to a goal that a user is

trying to accomplish. Also, from the user’s viewpoint, the dialog history has state dS

which indicates, for example, what the user has said so far, what the machine has
confirmed, etc. Based on the user’s goal prior to each turn, the user takes some
communicative action (also called intention) uA . uA might correspond to a speech act,

dialog act, or a parse structure. The user renders uA as an audio signal uY by speaking.

The speech recognition and language understanding component then takes the audio

signal uY and produces two outputs: first, uA
~

, which is a noisy estimate of the user’s

action uA ; and C which represents a confidence score which provides an indication of the

reliability of the recognition result uA
~

. 10 uA
~

 and C are then passed to the dialog model,

which maintains an internal state mS which tracks (from the machine’s perspective) the

state of the conversation.

8 For simplicity we’ve ignored the geometric discount factor in this calculation, which would reduce this
figure slightly.
9 This figure makes several simplifications but conveys the concepts important to present purposes.
Readers interested in the details of the recognition, understanding, generation, and text-to-speech
components are referred to texts such as (Jurafsky and Martin, 2000) or survey articles such as (Glass
1999).
10 In practice estimation of uA

~
 is usually performed in 2 stages – first a string of words is produced, then

these words are parsed to extract uA
~

. This detail is not important for the purposes of this paper.

Speech recognition &
language understanding

Language generation &
text-to-speech

Dialog
manager

Dialog
model

),(du SS

mS

mY

uY),
~

(CAu

mA

uA

mA
~

mSUser

Figure 5: Typical architecture of a spoken dialog system

mS is then passed to the dialog manager, which decides what action mA the machine

should take. mA is converted to an audio response mY by the language generation and

text-to-speech component, and it is also passed back to the dialog model so that mS may

track both user and machine actions. The user listens to mY , attempts to recover mA , and

as a result might update their goal state uS and their interpretation of the dialog history

dS . The cycle then repeats.

One key reason why spoken dialog systems are challenging to build is that uA
~

 will

contain recognition errors: i.e., it is frequently the case that uu AA ≠~
. As a result, the

user’s action uA , the user’s state uS , and the dialog history dS are not directly

observable and can never be known to the system with certainty. However, uA
~

 and C

provide evidence from which uA , uS , and dS can be inferred.

We are now ready to cast a spoken dialog system as a POMDP. First, the machine action

mA will be cast as the POMDP action A. In a POMDP, the POMDP state S expresses the

unobserved state of the world and the above analysis suggests that this unobserved state
can naturally be factored into three distinct components: the user’s goal uS , the user’s

action uA , and the dialog history dS . Hence, the factored POMDP state S is defined as:

),,(duu sass = (5)

and the system state mS becomes the belief state b over us , ua , and ds :

),,()(duum sasbsbs == (6)

The noisy recognition result uA
~

 and the confidence score C will then be cast as the SDS-

POMDP observation O:

),~(cao u= (7)

We will henceforth refer to this factored form as the SDS-POMDP.

To compute the transition function and observation function, a few intuitive assumptions
will be made. First, substituting (5) into the transition function and decomposing, we
obtain:

),,,|,,(),|(muduudu aassasspassp ′′′=′ (8)

),,,,,|(),,,,|(),,,|(),|(muduuudmuduuumuduu aasssaspaasssapaassspassp ′′′′′′=′ . (9)

We then assume conditional independence as follows. The first term in (9), which we
call the user goal model, indicates how the user’s goal changes (or does not change) at
each time-step. We assume that the user’s goal at each time-step depends only on the
previous goal and the machine’s action:

),|(),,,|(muumuduu asspaasssp ′=′ (10)

The second term, which we call the user action model, indicates what actions the user is
likely to take at each time step. We assume the user’s action depends on their (current)
goal and the preceding machine action:

),|(),,,,|(muumuduuu asapaasssap ′′=′′ . (11)

The third term, which we call the dialog history model, captures relevant historical
information about the dialog. We assume this component has access to the most recent
value of all variables:

),,,|(),,,,,|(mduudmuduuud assaspaasssasp ′′′=′′′ . (12)

Substituting (10), (11) and (12) into (9) then gives the SDS-POMDP transition function:

),,,|(),|(),|(),|(mduudmuumuu assaspasapasspassp ′′′′′′=′ . (13)

From (5) and (7), the observation function of the SDS-POMDP becomes:

),,,|,~(),|(muduu aasscapasop ′′′′′=′′ . (14)

The observation function accounts for the corruption introduced by the speech
recognition and language understanding process, so we assume that the observation
depends only on the action taken by the user:11

)|,~(),,,|,~(uumuduu acapaasscap ′′′=′′′′′ . (15)

The two equations (13) and (15) represent a statistical model of a spoken dialog system.
The transition function allows future behaviour to be predicted and the observation
function provides the means for inferring the hidden system state from observations. The
models themselves have to be estimated of course. The user goal model and the user
action model (the first two components of Eq. (13)) will typically be estimated from a
corpus of annotated interactions. For example, conditional distributions over user dialog
acts can be estimated given a machine dialog act and a user goal. To appropriately cover
all of the conditions, the corpus would need to include variability in the strategy

11 This implicitly assumes that the same recognition grammar is always used. For systems where the
grammar is switched at each turn, the dependence on am should be retained.

employed by the machine – for example, using a Wizard-of-Oz framework with a
simulated ASR channel (Stuttle et al., 2004).

The dialog history model can either be estimated from data, handcrafted, or replaced by a
deterministic function representing information state update rules as in for example
(Larsson and Traum, 2000). Thus the SDS-POMDP system dynamics enable both
probabilities estimated from corpora and hand-crafted heuristics to be incorporated. This
is a very important aspect of the SDS-POMDP framework in that it allows deterministic
programming to be incorporated in a natural way.

The observation function can be estimated from a corpus or derived analytically using a
phonetic confusion matrix, language model, etc. (Deng et al., 2003; Stuttle et al., 2004).

C, Au

Au

Sd

Su

Am

R

C, Au

Au

Sd

Su

Am

R

Timestep n Timestep n+1

~ ~

Figure 6: Influence diagram representation of the SDS-POMDP model. The dashed box indicates the

composite state s which is comprised of three components, su, sd, and au (see text for a complete
definition of variables). The dashed line from the dashed box to am indicates that the action am is a

function of the belief state sm = b(su, au, sd).

The reward function is not specified explicitly since it depends on the design objectives
of the target system. The reward function is well-suited to encoding a variety of
objectives. Expressing simple, single optimization metrics is straightforward – for
example, the chances of successful closure could be maximized by setting a positive
reward for successful closure, and a zero reward for information gathering actions.
Alternatively, the number of turns to completion could be minimized by setting a uniform
negative reward for all information gathering actions, and a zero reward for closure
actions.

Of course in a spoken dialog system, multiple competing criteria are important, and often
a system should strive to maximize the chances of successful closure while also
minimizing the number of turns required to do so. To combine multiple optimization
criteria into one metric, weightings between the criteria are needed, and in a POMDP
these weightings are naturally expressed in the reward function. For example, the reward
function can include components for successful and unsuccessful closure, abandonment,

and per-turn penalties, and the ratios between these reward components specifies the
relative cost of longer dialogs, user abandonment, unsuccessful closure, etc. Moreover,
the per-turn penalties can be used to encourage dialog “appropriateness”, for example by
setting a higher per-turn penalty for confirming an item which has not been discussed yet.

Finally, given the definitions above, the belief state can be updated at each time step by
substituting equations (13) and (15) into (2), and simplifying:

 ∑ ∑ ∑
∈ ∈ ∈

′′′′
⋅′′⋅′′′⋅=′′′′

uu dd uuSs Ss Aa
udumduudmuu

muuuuudu

assbassaspassp

asapacapkassb

).,,(),,,|(),|(

),|()|,~(),,(
 (16)

The summations over),,(duu sass = predict a new distribution for s′ based on the

previous values weighted by the previous belief. For each assumed value of ua′ , the

leading terms outside the summation scale the updated belief by the probability of the
observation given ua′ and the probability that the user would utter ua′ given the user’s

goal and the last machine output. Fig. 6 shows the influence diagram depiction of the
SDS-POMDP, which clearly shows these dependencies. This figure will also be useful
later for making comparisons between the SDS-POMDP representation and other
approaches to dialog management.

 Standard POMDP SDS-POMDP

State set S),,(duu SAS

Observation set O),
~

(CAu

Action set A mA

Transition function),|(assp ′),,|(),|(),|(mdudmuumuu asaspasapassp ′′′′′

Observation function),|(asop ′′)|,~(uu acap ′′′

Reward function),(asr),,,(mduu asasr

Belief state)(sb),,(duu sasb

Table 5: Summary of SDS-POMDP components.

For ease of reference, Table 5 summarises the expansion of terms in a standard POMDP
to give the SDS-POMDP needed to characterise a spoken dialog system.

2. POMDPs and existing architectures
As described in the previous section, the SDS-POMDP model allows the dialog
management problem to be cast in a statistical framework. It is therefore particularly
well-suited to coping with the uncertainty inherent in spoken dialog systems. In this
section, three existing techniques for handling uncertainty in an SDS will be reviewed:
maintaining multiple dialog states, local use of confidence scores, and automated
planning. In each case, it will be shown that the SDS-POMDP model provides an
equivalent solution but in a more principled way which admits global parameter

optimisation from data. Indeed, it will be shown that each of these existing approaches
represents a simplification or special case of the SDS-POMDP model.

2.1. POMDPs and parallel state hypotheses
Traditional dialog management schemes maintain (exactly) one dialog state mm Ss ∈ , and

when a recognition error is made, ms may contain erroneous information. Although

designers have developed ad hoc techniques to avoid dialog breakdowns such as allowing
a user to “undo” system mistakes, the desire for an inherently robust approach remains.
A natural approach to coping with erroneous evidence is to maintain multiple hypotheses
for the correct dialog state. Similar to a beam search in a hidden Markov model,
maintaining many possible dialog states allows a system to explore many paths through a
dialog, always allowing for the possibility that each piece of evidence is an error. In this
section, we briefly review two techniques for maintaining multiple dialog hypotheses:
greedy decision theoretic approaches and an M-Best list.

Sm

Timestep n Timestep n+1

Sm

Am Am

MEU MEU

R R

C, Au
~

C, Au
~

C, Au
~

C, Au
~

Figure 7: View of a spoken dialog system as a greedy decision theoretic process. Action mA is

selected to maximize the expected immediately utility R, indicated by the subscript MEU (“Maximum
Expected Utility”). The dashed line indicates that mA is a function of the distribution over mS ,

rather than its actual (unobserved) value.

Greedy decision theoretic approaches construct an influence diagram as shown in Figure
7. The structure of the network is identical to a POMDP: the system state mS is a belief

state over hidden variables, such as us , ua , and ds . The dashed line in the figure from

mS to mA indicates that mA is chosen based on the distribution over mS rather than its

actual (unobserved) value. As with a POMDP, a reward (also called a utility) function is
used to select actions – however, greedy decision theoretic approaches differ from a
POMDP in how the reward is used to selection actions. Unlike a POMDP, in which
machine actions are chosen to maximize the cumulative long-term reward, greedy
decision theoretic approaches choose the action which maximizes the immediate

reward.12 In other words, the POMDP is performing planning, whereas the greedy
decision theoretic approach is not. As such, action selection is certainly tractable for real-
world dialog problems, and greedy decision theoretic approaches have been successfully
demonstrated in real working dialog systems (Horvitz and Paek, 2000; Paek et al., 2000).

However, whether the dialog manager explicitly performs planning or not, a successful
dialog must make progress to some long-term goal. In greedy decision theoretic
approaches, a system will make long-term progress toward a goal only if the reward
metric has been carefully crafted. Unfortunately, crafting a reward measure which
accomplishes this is a non-trivial problem and in practice encouraging a system to make
progress to long-term goals inevitably requires some hand-crafting resulting in the need
for ad hoc iterative tuning.

Sm

Timestep n Timestep n+1

Sm

Am Am

HC HC

Sm* Sm*
DET DET

C, Au
~

C, Au
~

C, Au
~

C, Au
~

Figure 8: Influence diagram showing multiple state hypotheses. ∗
mS takes the value of the state mS

with the highest probability mass at each time-step. The superscript DET indicates that the variable
∗
mS is not random but is rather a deterministic function of its inputs.

An alternative to the greedy decision theoretic approach is to still maintain multiple
dialog hypotheses but select actions by considering only the top dialog hypothesis, using
a handcrafted policy as in conventional heuristic SDS design practice. This approach is
referred to as the M-Best list approximation, and it is shown graphically in Figure 8. In
this figure, the superscript DET indicates that the node ∗mS is not random but rather takes

on a deterministic value for known inputs, and here ∗mS is set to the state mS with the

most probability mass. The M-best list approach has been used to build real dialog
systems and shown to give performance gains relative to an equivalent single-state
system (Higashinaka et al., 2003).13

12 As such, a greedy decision theoretic method could also be classified as an “automatic action selection”
method – the focus here is maintaining multiple dialog state hypotheses.
13 This work makes two further approximations – first, for computational efficiency, a “beam” of
approximately 30 states is maintained rather than all possible states. Second, a “scoring” mechanism is
used as an approximation to a proper probability score.

The M-best approximation can be viewed as a POMDP in which action selection is hand-
crafted, and based only on the most likely dialog state. When cast in these terms, it is
clear that an M-best approximation makes use of only a fraction of the available state
information since considering only the top hypothesis may ignore important information
in the alternative hypotheses such as whether the next-best is very similar or very
different to the best hypothesis. Hence, even setting aside the use of ad hoc hand-crafted
policies, the M-best list approach is clearly sub-optimal. In contrast, since the SDS-
POMDP constructs a policy which covers belief space, it naturally considers all
alternative hypotheses.

2.2. POMDPs and local use of confidence scores
Most speech recognition engines annotate their output word hypotheses W

~
 with

confidence scores)|
~

(uYWp and modern systems can compute this measure quite

accurately (Evermann and Woodland, 2000; Kemp and Schaff, 1997; Moreno et al.,
2001). Subsequent processing in the speech understanding components will often
augment this low level acoustic confidence using extra features such as parse scores,
prosodic features, dialog state, etc (Bohus et al., 2001; Gabsdil and Lemon, 2004;
Hirschberg et al. 2001; Krahmer et al., 1999, 2001; Litman et al., 2001; Pao et al., 1998).

~~
Au

Sm

Am

Timestep n Timestep n+1

Au

Sm

Am

DET DET

HC HC

C C

Ac Ac

SL SL

Figure 9: Influence diagram showing how a confidence score is typically incorporated into a spoken
dialog system. Node C is a random variable representing confidence score. cA may take on values

such as {hi, low}, {explicit-confirm, implicit-confirm, reject}, etc.

For the purposes of a dialog system, the essential point of a confidence score is that it
provides an overall indication of the reliability of the hypothesized user dialog act ua~ .

Traditional systems typically incorporate confidence scores by specifying a confidence
threshold threshc which implements an accept/reject decision for an ua~ : if threshcc > then

ua~ is deemed reliable and accepted; otherwise it is deemed unreliable and discarded. In

practice any value of threshc will still result in classification errors, so threshc can be viewed

as implementing a trade-off between the cost of a false-negative (rejecting an accurate

ua~) and the cost of a false-positive (accepting an erroneous ua~).

Figure 9 shows how a spoken dialog system with a confidence score can be expressed in
an influence diagram. cA is a decision node that indicates the “confidence bucket” or

action relative to the confidence score – for example, {hi, low} or {accept, reject}. cA is

typically trained using a corpus of examples and supervised learning, indicated by the
subscript SL on the node cA .14 This “confidence bucket” is then incorporated into the

dialog state using hand-crafted update rules – i.e.,)
~

,,,(ucmmm AAASfS ′′=′ . As above, the

superscript DET on the node mS indicates that mS takes on a deterministic value – i.e.,

for a known set of inputs, it yields exactly one output. Based on the updated dialog state

mS , the policy determines which action to take. The dialog manager is implemented with

hand-crafted rules, indicated by the subscript HC on the mA decision node.

Figure 9 also highlights key differences between a traditional system with a confidence

score and the SDS-POMDP model. In both models, uA
~

 and C are regarded as observed

random variables. However, in traditional approaches, a hard and coarse decision is

made about the validity of uA
~

 via the decision cA . The decision implemented in cA is

non-trivial since there is no principled way of setting the confidence threshold threshc . In

practice a developer will look at expected accept/reject figures and use intuition. A
slightly more structured approach would attempt to assign costs to various outcomes
(e.g., cost of a false-accept, cost of a false reject, etc.) and choose a threshold
accordingly. However, these costs are specified in immediate terms, whereas in practice
the decisions have long-term effects (e.g., subsequent corrections) which are difficult to
quantify, and which vary depending on context. Indeed, when long-term costs are
properly considered, there is evidence that values for optimal confidence thresholds are
not at all intuitive: one recent study found that for many interactions, the optimal
confidence threshold was zero – i.e., any recognition hypothesis, no matter how poorly
scored, should be accepted (Bohus and Rudnicky, 2005b).

By contrast, the SDS-POMDP is a generative model in which confidence score is
modelled as a continuous observed random variables. Note how in Figure 9, the
confidence score is viewed as a functional input, whereas in the POMDP (Figure 6), it is
viewed as an observed output from a distribution. In this way, the SDS-POMDP never
makes hard accept/reject decisions about evidence it receives, but rather uses the
confidence score to perform inference over all possible user actions uA . Further, the

explicit machine dialog state mS used in traditional approaches is challenged to maintain

a meaningful confidence score history since typically if a value of uA
~

 is rejected, that

information is discarded.15 By contrast, the SDS-POMDP aggregates all information

14 cA could also be handcrafted – the key point that confidence score is quantized.
15 A small body of work has attempted to identify “good dialogs” by looking at features over multiple turns,
but the classification scheme – good dialog vs. bad dialog – is even coarser than accept/reject decisions
(Litman and Pan, 2000), (Langkilde et al., 1999). D.

over time including conflicting evidence via a belief state, properly accounting for the
reliability of each observation in cumulative terms. Finally, whereas accept/reject
decisions in a traditional system are taken based on local notions (often human intuitions)
of utility, in the SDS-POMDP actions are selected based on expected long-term reward –
note how Figure 6 explicitly includes a reward component, absent from Figure 9.

In summary, local use of confidence scores in traditional hand-crafted SDSs does add
useful information, but acting on this information in a way which serves long-term goals
is non-trivial. A traditional SDS with a confidence score can be viewed as an SDS-
POMDP with a number of simplifications: one dialog state is maintained rather than
many; accept/reject decisions are used in place of parallel dialog hypotheses; and actions
are selected based on a hand-crafted strategy rather than selected to maximize a long-
term reward metric.

2.3. POMDPs and automated action selection
Choosing which action ma a spoken dialog system should take in a given situation is a

difficult task since it is not always obvious what the long-term effect of each action will
be. Hand-crafting dialog strategies can lead to unforeseen dialog situations, requiring
expensive iterative testing to build good systems. Such problems have prompted
researchers to investigate techniques for choosing actions automatically and in this
section, the two main approaches to automatic action selection will be considered:
supervised learning, and Markov decision processes.

As illustrated graphically in Figure 10, supervised learning attempts to estimate a direct
mapping from machine state mS to action mA given a corpus of training examples. It

can be thought of as a simplification of the SDS-POMDP model in which a single state is
maintained, and in which actions are learnt from a corpus. Setting aside the limitations of
maintaining just one dialog state and the lack of explicit forward planning, using
supervised learning to create a dialog policy is problematic since collecting a suitable
training corpus is very difficult for three reasons.

Firstly, using human-human conversation data is not appropriate because it does not
contain the same distribution of understanding errors, and because human-human turn-
taking is much richer than human-machine dialog. As a result, human-machine dialog
exhibits very different traits than human-human dialog (Doran et al., 2001; Moore and
Browning, 1992). Secondly, while it would be possible to use a corpus collected from an
existing spoken dialog system, supervised learning would simply learn to approximate
the policy used by that spoken dialog system and an overall performance improvement
would therefore be unlikely. Thirdly, a corpus could be collected for the purpose, for
example, by running Wizard-of-Oz style dialogs in which the wizard is required to select
from a list of possible actions at each step (Bohus and Rudnicky, 2005a; Lane et al.,
2004) or encouraged to pursue more free-form interactions (Skantze, 2003; Williams and
Young, 2004). However, in general such collections are very costly, and tend to be
orders of magnitude too small to support robust estimation of generalized action
selection.

~~
Au

Sm

Am

Timestep n Timestep n+1

Au

Sm

Am

DET DET

SL SL

C C

Ac Ac

SL SL

Figure 10: Supervised learning for action selection. The node mA has been trained using supervised

learning on a corpus of dialogs (indicated with the SL subscript). The DET superscript on mS
indicates that this node is deterministic.

Fully-observable Markov decision processes (usually just called Markov decision
processes, or MDPs) take a very different approach to automated action selection. As
their name implies, a Markov decision process is a simplification of a POMDP in which
the state is fully observable. This simplification is shown graphically in Figure 11. In an

MDP, uA
~

 is again regarded as a random observed variable and mS′ is a deterministic

function of mS , mA , uA′~
, and cA′ . Since at a given state ms a host of possible

observations ua~ are possible, planning is performed using a transition function – i.e.

),|'(mmm assP . Like POMDPs, MDPs choose actions to maximize a long-term

cumulative sum of rewards: i.e., they perform planning. Unlike POMDPs, the current
state in an MDP is known, so a policy is expressed directly as a function of state s:

.)(As ∈π This representation is discrete (a mapping from discrete states to discrete
actions), and as a result, MDPs are usually regarded as a more tractable formalism than
POMDPs. Indeed, MDPs enjoy a rich literature of well-understood optimization
techniques and have been applied to numerous real-world problems (Sutton and Barto,
1998).

By allowing designers to specify rewards for desired and undesired outcomes (e.g.,
successfully completing a task, a caller hanging up, etc) without specifying explicitly
how to achieve each required goal, much of the tedious “handcrafting” of dialog design is
avoided. Moreover, unlike the supervised learning approach to action selection, MDPs
make principled decisions about the long-term effects of actions, and the value of this
approach has been demonstrated in a number of research systems. For example, in the
ATIS Air Travel domain, Levin et al. constructed a system to optimize the costs of
querying the user to restrict (or broaden) their flight search, the costs of presenting too
many (or too few) flight options, and the costs of accessing a database (Levin and
Pieraccini, 1997; Levin et al., 1998, 2000). In addition, researchers have sought to find

optimal initiative, information presentation, and confirmation styles in real dialog
systems (Singh et al., 2002; Walker et al., 1998). MDP-based spoken dialog systems
have also given rise to a host of work in user modelling and novel training/optimization
techniques (Denecke et al., 2004; Goddeau and Pineau, 2000; Henderson et al., 2005;
Pietquin 2004; Pietquin and Renals, 2002; Scheffler and Young, 2002).

Sm

Timestep n Timestep n+1

Sm

DET DET

Am Am

RL RL

R R

~
Au C

Ac

SL

~
Au C

Ac

SL

Figure 11: Depiction of an MDP used for dialog management. The action mA is chosen to maximize
the sum of rewards R over time.

A key weakness of MDPs is that they assume that the current state of the world is known
exactly and this assumption is completely unfounded in the presence of recognition
errors. The impact of this becomes clear when the MDP transition function is
calculated:16

 ∑
′

′′′=′
ua

ummmmmummm aassPasaPassP
~

)~,,|(),|~(),|((17)

To compute the transition function properly, an estimate of),|~(mmu asaP is required, but

in reality uA
~

 depends critically (via uA) on uS . Dialog designers try to ensure that mS

closely models uS , but as errors are introduced and the two models diverge, the effects of

the dependence of uA
~

 on a hidden variable increasingly violate the Markov assumption

expressed in),|(mmm assP ′ , compromising the ability of the MDP to produce good

policies. While there exist sophisticated learning techniques (such as eligibility traces)
which attempt to partially overcome the fact that the user’s state is not fully observable
(Scheffler and Young, 2002), in simple terms, as speech recognition errors become more
prevalent, theory predicts that POMDPs will perform better than MDPs by an increasing

16 In this calculation, ca′ has been omitted for clarity.

margin. As will be shown below, the results of simulation studies support this theoretical
prediction.

In summary, from a theoretical standpoint, maintaining multiple dialog hypotheses,
confidence scoring, and automated planning can all be viewed as special cases or
simplifications of a POMDP. Of course, contemporary spoken dialogue systems may
employ more than one of these techniques, but a POMDP is unique in providing a unified
statistical framework that supports global optimization. For example, an MDP may
include a confidence bucket in its state space, but there is no straightforward way to
search for optimal confidence threshold settings (i.e., those which maximize expected
return), save a brute-force search. Further, some combinations of these techniques have
only been demonstrated with a POMDP – for example, as far as the authors are aware,
the only systems in the literature which both maintain multiple hypotheses for the dialog
state and perform forward planning are POMDPs.

In the next section, we illustrate the benefits of these theoretical advantages concretely
through example dialogs and experimental simulations.

3. Empirical support for the SDS-POMDP framework
Section 1 has shown how POMDPs can be viewed as a principled theoretical approach to
dialog management under uncertainty and section 2 has demonstrated that existing
approaches to handling uncertainty are subsumed and generalised by the SDS-POMDP
framework. In this section, the practical advantages of utilising the SDS-POMDP
framework are demonstrated through example interactions and simulation experiments.

3.1. Benefits of parallel state hypotheses
A central claim of this paper is that because POMDPs maintain parallel dialog state
hypotheses, they are able to cope better with speech recognition errors. In this section,
we will first discuss how multiple dialog hypotheses add robustness to speech recognition
errors. In doing so, we will also explain how the SDS-POMDP model takes proper
account of a user model.

To begin illustrating this claim, consider a spoken dialog system with no confidence
scoring and which makes speech recognition errors with a fixed error rate. For this
example, which is in the pizza ordering domain, it is assumed that all cooperative user
actions are equally likely: i.e., there is no effect of a user model. An example
conversation with such a system is shown in Figure 12. In this figure, the first column
shows interactions between the user and the machine. Text in brackets shows the

recognized text (i.e., uA
~

). The middle column shows a portion of a POMDP

representation of the user’s goal. The last column shows how a traditional dialog model
might track this same portion of the dialog state with a frame-based representation

This conversation illustrates how multiple dialog hypotheses are more robust to errors by
properly accounting for conflicting evidence. In this example, the frame-based
representation must choose whether to change its value for the size field or ignore new
evidence; by contrast, the POMDP easily accounts for conflicting evidence by shifting
belief mass. Intuitively, a POMDP naturally implements a “best two out of three”
strategy.

M: How can I help you?
U: A small pepperoni pizza

[a small pepperoni pizza]

Sml Med Lrg

b

Sml Med Lrg

b

M: Ok, what toppings?
U: A small pepperoni

[a small pepperoni]

M: And what type of crust?
U: Uh just normal

[large normal]

Sml Med

b

LrgSml Med

b

Lrg

Sml Med

b

LrgSml Med

b

Lrg

Sml Med

b

LrgSml Med

b

Lrg

order: {
size: <empty>
…

}

order: {
size: small
…

}

order: {
size: small
…

}

order: {
size: large [?]
…

}

Prior to start of dialog

System / User / ASR POMDP belief state Traditional method

Figure 12: Example conversation with a spoken dialog system illustrating the benefit of maintaining

multiple dialog state hypotheses. This example is in the pizza ordering domain. The left column
shows the machine and user utterances, and the recognition results from the user’s utterance is

shown in brackets. The center column shows a portion of the POMDP belief state; b represents the
belief over a component of the user’s goal (pizza size). The right-hand column shows a typical frame-

based method which is also tracking this component of the user’s goal. Note that a speech
recognition error is made in the last turn – this causes the traditional method to absorb a piece of bad
information, whereas the POMDP belief state is more robust. In this example no account is taken of
which user actions are more or less likely, or of confidence score – see below for illustrations of these

elements.

A POMDP is further improved with the addition of a user model which indicates how a
user’s goal uS changes over time, and what actions uA the user is likely to take in a

given situation. For example, consider the dialog shown in Figure 13. In this figure, a

user model informs the likelihood of each recognition hypothesis uA
~

 given uS and mA .

In this example, the machine asks for the value of one slot, and receives a reply. The
system then asks for the value of a second slot, and receives a value for that slot and an
inconsistent value for the first slot.

In the traditional frame-based dialog manager, it is unclear how this evidence should be
incorporated – should the new information replace the old information, or should it be

ignored? If the frame is extended to allow conflicts, how can they be resolved? Finally,
how can the fact that the new evidence is less likely than the initial evidence be
incorporated? By contrast, in the SDS-POMDP the belief state update is scaled by the
likelihood predicted by the user model. In other words, the POMDP takes minimal (but
non-zero) account of very unlikely user actions it observes, and maximal account of very
likely actions it observes.

M: How can I help you?
U: A small pepperoni pizza

[a small pepperoni pizza]

Sml Med Lrg

b

M: And what type of crust?
U: Uh just normal

[large normal]

Sml Med

b

Lrg

Sml Med

b

Lrg

order: {
size: <empty>
…

}

order: {
size: small
…

}

order: {
size: large [?]
…

}

Prior to start of dialog

System / User / ASR POMDP belief state Traditional method

Figure 13: Example conversation with a spoken dialog system illustrating the benefit of an embedded

user model. In the POMDP, for the first recognition, the observed user’s response is very likely
according to the user model. The result is a large shift in belief mass toward the Sml value. In the

second recognition, providing information about the size is predicted as being less likely; as a result,
the observed response Lrg (which happens to be a speech recognition error) is given less weight, and
the final POMDP belief state has more mass on Sml than Lrg. By contrast, the traditional method

must choose whether to update the state with Sml or Lrg.

To test these intuitions experimentally, a test-bed dialog simulation experiment was
created (Williams et al., 2005a). The goal of the experiment was to quantify the benefits
of multiple dialog hypotheses and the embedded user model, and explore the effects of
different speech recognition errors rates. This assessment is made by comparing the
performance of a POMDP to an MDP which (as described in section 3.3) does not
maintain multiple hypotheses.

The test-bed simulation is in the travel domain. A simulated user is trying to buy a ticket
to travel from one city to another city. The machine asks the user a series of questions,
and then “submits” the ticket purchase request, ending the dialog. The machine may also
choose to “fail,” abandoning the dialog. To make the system relatively straightforward to
optimize, there are just three cities in the test-bed problem. The machine has 16 actions
available, including greet, ask-from/ask-to, confirm-to-x/confirm-from-x, submit-x-y, and

fail. The user’s goal specifies the user’s desired itinerary, and the dialog history sd
indicates (from the user’s perspective) whether the from place and to place have not been
specified, are unconfirmed, or are confirmed. The user’s action and the speech
recognition result are drawn from the set x, from-x, to-x, from-x-to-y, yes, no, and null,
where in all cases x and y indicate cities. These state components yield a total of 1945
states.

ma us′ Description ua′),|(muu asap ′′

User wasn’t paying attention null 0.100

User says both places from-x-to-y 0.540

User says just “from” place from-x 0.180

User says just “to” place to-y 0.180

greet
from x

to y

All other user actions (all others) 0.000

User wasn’t paying attention null 0.100

User says just the name of the place x 0.585

User says the name of the place
preceded by “from” from-x 0.225

User says both places from-x-to-y 0.090

ask-from
from x

to y

All other user actions (all others) 0.000

User wasn’t paying attention null 0.100

User says just “yes” yes 0.765

User says the item that was being
confirmed

y 0.101

User says the item being confirmed,
with the “to” preposition

to-y 0.034

confirm-
to-y

from x
to y

(NB - the
system has the

right
hypothesis)

All other user actions (all others) 0.000

Table 6: Extracts from the hand-crafted user model employed in simulation experiments.

In the test-bed problem the user has a fixed goal for the duration of the dialog, and we
define the user goal model accordingly. We define the user action model to include a
variable set of responses – for example, the user may respond to ask-to/ask-from with x,
to-x/from-x, or from-x-to-y. The probabilities in the user action model were chosen such
that the user provides cooperative but varied responses, and sometimes does not respond
at all. The probabilities were handcrafted, selected based on experience performing
usability testing with slot-filling dialog systems. A portion of the user model parameters
is given in Table 6.

We define the observation function to encode the probability of making a speech
recognition error to be errp , and define the observation function as:

  ′≠′
−

′=′−
=′′

uu
u

err

uuerr

uu aaif
A

p
aaifp

aap ~
1

~1
)|~((18)

Below we will vary errp to explore the effects of speech recognition errors.

The reward measure includes components for both task completion and dialog
“appropriateness” and reflects the intuition that behaving inappropriately or even
abandoning a hopeless conversation early are both less severe than submitting the user's
goal wrong. The reward assigns -3 for confirming a field before it has been referenced
by the user; -5 for taking the fail action; +10 or -10 for taking the submit-x-y action when
the user’s goal is (x,y) or not, respectively; and -1 otherwise. This reward function
expresses how trade-offs should be made between the system’s competing objectives of
speed and accuracy – for example, this reward function indicates that a dialog which
requires 15 turns to arrive at the correct answer (and receives 510151 −=+⋅−) obtains
the same reward as one in which the system immediately abandons the interaction via the
fail action (and receives 5−). Thus if the planner determines that successful completion
would require more than 15 turns, it will instead choose to immediately abandon the
conversation and not waste the user’s time.17

POMDP optimization was performed with a variant of point-based value iteration called
Perseus (Spaan and Vlassis, 2005).

An MDP was constructed to assess performance of a model which does not track multiple
dialog states, and which does not make use of an explicit user model. The MDP was
patterned on systems in the literature, for example (Pietquin, 2004)). The MDP was
trained and evaluated through interaction with a model of the environment, which was
formed from the POMDP transition, observation, and reward functions. This model of
the environment takes an action from the MDP as input, and emits an observation and a
reward to the MDP as output.

List of MDP states

u-u o-u c-u

u-o o-o c-o

u-c o-c c-c

dialog-start dialog-end

Table 7: The 11 MDP states used in the test-bed simulation. In the items of the form x-y, the first
item refers to the from slot, and the second item refers to the to slot. u indicates unknown; o indicates

observed but not confirmed; c indicates confirmed.

The MDP state contains components for each field which reflect whether, from the
standpoint of the machine, a value has not been observed, a value has been observed but
not confirmed, or a value has been confirmed. Two additional states – dialog-start and
dialog-end – which were also in the POMDP state space, are included in the MDP state
space for a total of 11 MDP states, shown in Table 7. The MDP was optimized using
Watkins Q-Learning (Watkins, 1989).

Figure 14 shows the average return (i.e. total cumulative reward) for the POMDP and
MDP solutions vs. the recognition error rate errp ranging from 0.00 to 0.65. The

(negligible) error bars for the MDP show the 95% confidence interval for the estimate of

17 For clarity, this illustration has assumed that the discount factorγ is equal to 1.

the return assuming a normal distribution.18 The POMDP and MDP perform equivalently
for 0=errp , and the return for both methods decreases consistently as errp increases but

the POMDP solution consistently achieves the larger return. Thus, in the presence of
perfect recognition accuracy, there is no advantage to maintaining multiple dialog states,
however, when errors do occur, the POMDP solution is always better and furthermore the
difference in performance increases as errp increases. This result confirms that the use of

multiple dialog hypotheses and an embedded user model enable higher recognition error
rates to be tolerated compared to the conventional single-state approach. A detailed
inspection of the dialog transcripts confirmed that the POMDP is better at interpreting
inconsistent information, agreeing with the intuition shown in Figure 12.

-15

-10

-5

0

5

10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

p err

A
ve

ra
ge

 r
et

ur
n

POMDP
MDP

Figure 14: Expected or average return of the POMDP policy and the MDP baseline. Error bars

show the 95% confidence interval

Although there is little related work in the literature, experiments by Roy et al also
showed performance gains compared to a conventional MDP, using a simpler Augmented
MDP in which planning is performed considering only the (discrete) best state, and the
entropy of the belief state, (Roy et al., 2000).

3.2. Benefits of the POMDP approach to confidence s coring
A second central claim of this work is that POMDPs provide a principled approach to
confidence scoring.

To illustrate this claim, consider a spoken dialog system which makes use of a per-
utterance confidence score which ranges from 0 to 1. Assume that all cooperative user
actions are equally likely so that the effects of a user model can be disregarded. In the
traditional version of this system with three confidence buckets {reject, low, hi}, suppose
that a good threshold between reject and low has been found to be 0.4, and a good
threshold between low and hi has been found to be 0.8.

18 The POMDP value is exact and hence error bars aren’t shown.

An example conversation is shown in Figure 15 in which the machine asks a question and
correctly recognizes the response. In the traditional method, the confidence score of 0.85
is in the high confidence bucket, hence the utterance is accepted with “hi” confidence and
the dialog state is updated accordingly. In the POMDP, the confidence score is
incorporated into the magnitude of the belief state update.

Now consider the conversation in Figure 16, in which each of the recognitions is again
correct, but the confidence scores are lower. In the traditional method, each confidence
score falls into the “reject” confidence bucket, and nothing is incorporated into the dialog
frame. In the POMDP-based system, however, the magnitude of the confidence score is
incorporated into the belief update as above, although this time since the score is lower,
each update shifts less belief mass.

M: What size do you want?
U: Small please

[small please] ~ 0.85

Sml Med Lrg

b

Sml Med Lrg

b

Sml Med

b

Lrg

order: {
size: <empty>
…

}

size: {
val: small
conf: hi

}

Prior to start of dialog

System / User / ASR POMDP belief state Traditional method

Figure 15: Example conversation with a spoken dialog system illustrating a high-confidence

recognition. The POMDP incorporates the magnitude of the confidence score by scaling the belief
state update correspondingly. The traditional method quantizes the confidence score into a “bucket”

such as {reject, low, hi}.

This second example illustrates two key benefits of POMDPs. First, looking within one
time-step, whereas the traditional method creates a finite set of confidence buckets, the
POMDP in effect utilizes an infinite number of confidence buckets and as a result the
POMDP belief state is a lossless representation of a single confidence score. Second,
looking across time-steps, whereas the traditional method is challenged to track
aggregate evidence about confidence scores over time, a POMDP effectively maintains a
cumulative confidence score over user goals. For the traditional method to approximate a
cumulative confidence score, a policy which acted on a historical record of confidence
scores would need to be devised, and it is quite unclear how to do this.

Moreover, the incorporation of confidence score information and user model information
are complementary since they are separate product terms in the belief update equation
(16). The probability)|,~(uu acap ′′′ reflects the contribution of the confidence score and

the probability),|(muu asap ′′ reflects the contribution of the user model. The belief term

),,(udu assb records the dialog history and provides the memory needed to accumulate

evidence. This is in contrast to traditional approaches which typically have a small

number of confidence score “buckets” for each recognition event, and typically log only
the most recently observed “bucket”. POMDPs have in effect infinitely many confidence
score buckets and they aggregate evidence properly over time as a well-formed
distribution over dialog states (including user goals).

To test these intuitions experimentally, the dialog management problem presented in
Section 3.1 was extended to include a confidence score (Williams et al., 2005b). In the
POMDP, the confidence score c is regarded as a continuous component of the
observation, and in the MDP, the confidence score is quantized into “buckets” as is
customarily done (Pietquin, 2004).

S: What size do you want?
U: Small please

[small please] ~ 0.38

Sml Med Lrg

b

S: Sorry, what size?
U: i said small

[I said small] ~ 0.39

Sml Med

b

Lrg

Sml Med

b

Lrg

order: {
size: <empty>
…

}

order: {
size: <empty>
…

}

order: {
size: <empty>
…

}

Prior to start of dialog

System / User / ASR POMDP belief state Traditional method

Figure 16: Example conversation with a spoken dialog system illustrating two successive low-

confidence recognitions. In this example, both recognitions are correct. The POMDP incorporates
the confidence score in the same way as shown in Figure 15, accumulating weak evidence. For the
traditional method, both confidence scores are below the threshold of 0.40, and thus they are both

ignored. In effect, the traditional method is ignoring possibly useful information.

In the POMDP, the observation function)|,~(uu acap ′′′ is in practice impossible to

estimate directly from data, so it is decomposed into two distributions – one for “correct”
recognitions and another for “incorrect” recognitions. In the test-bed problem we assume
that all confusions are equally likely and occur with probability errp , yielding:

  ′≠′
−

⋅′−

′=′−⋅′
=′′′

uu
u

err
h

uuerrh

uu aaif
A

p
cp

aaifpcp
acap ~

1
)1(

~)1()(
)|,~((19)

where c' is defined on the interval [0,1], and)(cph ′ is an exponential probability density

functions with slope determined by a parameter h. When 0=h ,)(cph ′ is a uniform

density and conveys no information; as h approaches infinity,)(cph ′ provides complete

and perfect information. POMDP policy optimization was performed with a technique
which admits continuous observations (Hoey and Poupart, 2005).

The MDP baseline was similarly extended to include M confidence buckets, patterned on
systems in the literature, such as (Pietquin, 2004). Ideally the thresholds between
confidence buckets would be selected so that they maximize average return; however, it
is not obvious how to perform this selection – indeed, this is one of the weaknesses of the
“confidence bucket” method. Instead, a variety of techniques for setting confidence score
threshold were explored, and it was found that dividing the probability mass of the
confidence score c evenly between buckets produced the largest average returns.

List of MDP-2 states

u-u u-o(l) u-o(h) u-c(l,l) u-c(l,h) u-c(h,l) u-c(h,h)

o(l)-u o(l)-o(l) o(l)-o(h) o(l)-c(l,l) o(l)-c(l,h) o(l)-c(h,l) o(l)-c(h,h)

o(h)-u o(h)-o(l) o(h)-o(h) o(h)-c(l,l) o(h)-c(l,h) o(h)-c(h,l) o(h)-c(h,h)

c(l,l)-u c(l,l)-o(l) c(l,l)-o(h) c(l,l)-c(l,l) c(l,l)-c(l,h) c(l,l)-c(h,l) c(l,l)-c(h,h)

c(l,h)-u c(l,h)-o(l) c(l,h)-o(h) c(l,h)-c(l,l) c(l,h)-c(l,h) c(l,h)-c(h,l) c(l,h)-c(h,h)

c(h,l)-u c(h,l)-o(l) c(h,l)-o(h) c(h,l)-c(l,l) c(h,l)-c(l,h) c(h,l)-c(h,l) c(h,l)-c(h,h)

c(h,h)-u c(h,h)-o(l) c(h,h)-o(h) c(h,h)-c(l,l) c(h,h)-c(l,h) c(h,h)-c(h,l) c(h,h)-c(h,h)

dialog-start dialog-end

Table 8: The 51 states in the “MDP-2” simulation. In the items of the form x-y, the first item refers
to the from slot, and the second item refers to the to slot. u indicates unknown; o indicates observed

but not confirmed; c indicates confirmed. o(l) means that the value was observed with low
confidence; o(h) means that the value was observed with high confidence. c(l,l) means that both the
value itself and the confirmation were observed with low confidence; c(l,h) means that the value was

observed with low confidence and the confirmation was observed with high confidence, etc.

The MDP state was extended to include this confidence “bucket” information. Because
the confidence bucket for each field (including its value and its confirmation) is tracked
in the MDP state, the size of the MDP state space grows with the number of confidence
buckets. For M=2, the resulting MDP called MDP-2 has 51 states; this is shown in Table
8.19 Watkins Q-learning was again used for MDP optimization.

Figure 17 shows the average returns for the POMDP and MDP-2 solutions vs. errp
ranging from 0.00 to 0.65 for 1=h . The error bars show the 95% confidence intervals
for the return assuming a normal distribution. Note that return decreases consistently as

errp increases for all solution methods, but the POMDP solutions attain larger returns

than the MDP method at all values of errp .20

We next explored the effects of varying the informativeness of the confidence score.
Figure 18 shows the average returns for the POMDP method and the MDP-2 method vs.

19 For reference, M=1 produces an MDP with 11 states, and M=3 produces an MDP with 171 states.
20 The MDP-3 system was also created but we were unable to obtain better performance from it than we did
from the MDP-2 system.

h for errp = 0.3. The error bars show the 95% confidence interval for return assuming a

normal distribution. The POMDP method outperforms the baseline MDP method
consistently for a range of confidence score measures. This trend was also observed for a
range of other values of errp (Williams et al., 2005a). Note that increasing h increases

the average return for all methods.

-6

-4

-2

0

2

4

6

8

10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

perr

A
ve

ra
ge

 r
et

ur
n

POMDP
MDP-2

Figure 17: Average return for the POMDP and MDP-2 methods for h = 1.

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0 1 2 5

h (Informativeness of confidence score)

A
ve

ra
ge

 r
et

ur
n

POMDP
MDP-2

Figure 18: Average return vs. h (informativeness of confidence score) at perr = 0.30 for the POMDP

and MDP-2 methods.

3.3. Benefits of automated planning
A third central claim of this work is that POMDPs provide a principled framework for
automated planning. In this section we support this claim with two discussions. First,
since there exists considerable expertise in hand-crafting spoken dialog systems, it is
important to make comparisons with hand-crafted strategies. We show how these
comparisons can be made and demonstrate the relative gains of POMDPs. Second, the
benefits of planning (vs. not planning) for automatically generated dialog mangers are
also addressed.

To compare a POMDP policy with a hand-crafted policy, first the form of POMDP
policies must be considered. In the previous sections, we relied on the representation of a
POMDP policy produced by value iteration – i.e., a value function, represented as a set of
N vectors each of dimensionality || S . A second way of representing a POMDP policy is
as a “policy graph” which is a finite state controller consisting of N nodes and some
number of directed arcs. Each controller node is assigned a POMDP action, and)(ˆ nπ
indicates the action associated with the nth node. Each arc is labelled with a POMDP
observation, such that all controller nodes have exactly one outward arc for each
observation. Nonl ∈),(denotes the successor node for node n and observation o.

A policy graph is a general and common way of representing handcrafted dialog
management policies (Pieraccini and Huerta, 2005). More complex handcrafted policies
– for example, those created with rules – can usually be compiled into a (possibly very
large) policy graph. A policy graph does not make the expected return associated with
each controller node explicit; however, as pointed out by (Hansen, 1998), the expected
return associated with each controller node can be found by solving a system of linear
equations in υ :

 ∑∑
∈′ ∈

′′′+=
Ss Oo

onln snsopnsspnsrs)())(ˆ,|())(ˆ,|())(ˆ,()(),(υππγπυ (20)

Solving this set of linear equations yields a set of vectors – one vector)(sυ for each

controller node,)(snυ . In words, Eq. (20) sets the value of a node equal to the immediate

reward of taking that node’s action))(ˆ,(nsr π plus the discounted expected future reward.

To find the expected value)(bVn of starting the controller in node n and belief state b we

compute:

 ∑
∈

=
Ss

nn sbsbV)()()(υ (21)

Note that a human designer is free to define the controller however they wish: the
controller may have any number of nodes, and its size is not linked to the size of the
POMDP state space.

To illustrate policy graph evaluation, three handcrafted policies called HC1, HC2, and
HC3 were created for the spoken dialog problem presented above. Each of these policies
encode strategies typically used by designers of spoken dialog systems. All of the
handcrafted policies first take the action greet. HC1 takes the ask-from and ask-to
actions to fill the from and to fields, performing no confirmation. If no response is

detected, HC1 re-tries the same action. If HC1 receives an observation which is
inconsistent or nonsensical, it re-tries the same action. Once HC1 fills both fields, it
takes the corresponding submit-x-y action. A flow diagram of the logic used in HC1 is
shown in Figure 19.21 HC2 is identical to HC1 except that if the machine receives an
observation which is inconsistent or nonsensical, it immediately takes the fail action.
HC3 employs a similar strategy to HC1 but extends HC1 by confirming each field as it is
collected. If the user responds with “no” to a confirmation, it re-asks the field. If the
user provides inconsistent information, it treats the new information as “correct” and
confirms the new information. Once it has successfully filled and confirmed both fields,
it takes the corresponding submit-x-y action.

Figure 20 shows the expected return for the handcrafted policies and the optimized
POMDP solution vs. the recognition error rate errp . The optimized POMDP solution

outperforms all of the handcrafted policies for all values of errp . On inspection,

conceptually the POMDP policy differs from the handcrafted policies in that it tracks
conflicting evidence rather than discarding it. For example, whereas the POMDP policy
can interpret the “best 2 of 3” observations for a given slot, the handcrafted policies can
maintain only 1 hypothesis for each slot. As expected, the additional representational
power of the automated solution is of no benefit in the presence of perfect recognition –
note that where 0=errp , HC1 and HC2 perform identically to the POMDP policy. It is

interesting to note that HC3, which confirms all inputs, performs least well for all values
of errp . For the reward function used in the test-bed system, requiring 2 consistent

recognition results (the response to ask and the response to confirm) gives rise to longer
dialogs which outweigh the benefit of the increase in accuracy.

21 Only the logic of HC1 is shown for clarity: the full controller uses actual city name values instead of the
variables X and Y, resulting in a controller with 15 nodes. This type of expansion is typical of the
“compilation” process mentioned above.

greet

guess
X-Y

ask
from

ask
to

ask
from

else
from X

to Y

X
from X

from X to Y,
X≠Y

from X to Y

X
from X

Y
to Y

from X to Y, X≠Y

from X to Y

else else else

Figure 19: HC1 handcrafted policy represented as a finite state controller. Node labels show the
POMDP action to take for each node, and arcs show which POMDP observations cause which
transitions. Note that the nodes in the diagram are entirely indepenent of the POMDP states.

Finally, we consider whether planning is beneficial to automatically generated dialog
managers by comparing the performance of the POMDP to a greedy decision theoretic
dialog manager (section 3.1) on the dialog problem described in section 4.1. This greedy
dialog manager always takes the action with the highest expected immediate reward –
i.e., unlike a POMDP, it is not performing planning. Both dialog managers were
evaluated by simulating conversations and finding the average reward gained per dialog.
Results are shown in Figure 21. The POMDP outperforms the greedy method by a large
margin for all error rates. Intuitively, the POMDP is able to reason about the future and
determine when gathering information will reap larger gains in the long term even if it
incurs an immediate cost. More specifically, in this example, the POMDP gathers more
information than the greedy approach. As a result, dialogs with the POMDP dialog
manager are longer but the resulting increased cost is offset by correctly identifying the
user’s goal more often. In general, POMDPs are noted for their ability to make effective
trade-offs between the (small) cost of gathering information, the (large) cost of acting on
incorrect information, and rewards for acting on correct information (Cassandra et al.,
1994).

-8

-6

-4

-2

0

2

4

6

8

10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

p err

E
xp

ec
te

d
re

tu
rn

POMDP
HC1
HC2
HC3

Figure 20: Expected return vs. perr for optimized POMDP policy and 3 handcrafted policies.

-8

-6

-4

-2

0

2

4

6

8

10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

pErr

A
ve

ra
ge

 r
et

ur
n

POMDP

Greedy DT

Figure 21: Average concept error rate (pErr) vs. average return for the POMDP and greedy decision

theoretic ("Greedy DT") dialog managers.

3.4. Illustration with real dialog data
All of the above simulations employed a hand-crafted model of the user. To assess the
impact of this, a final experiment was conducted using a dialog manager optimized with a
user model estimated from real dialog data, and then evaluated on a second user model
estimated from held-out data.

In this experiment, we employed real dialog data from the SACTI-1 corpus (Williams
and Young., 2004). The SACTI-1 corpus contains 144 human-human dialogs in the
travel/tourist information domain using a “simulated ASR channel”, which introduces
errors similar to those made by a speech recognizer (Stuttle et al., 2004). One of the
subjects acts as a tourist seeking information (analogous to a user) and the other acts as
an information service (analogous to a spoken dialog system). The corpus contains a
variety of word error rates, and the behaviors observed of the subjects in the corpus are
broadly consistent with behaviors observed of a user and a computer using a real speech
recognition system (Williams and Young, 2004).

 Training Testing

ma us′ Description ua′),|(muu asap ′′),|(muu asap ′′

User wasn’t paying attention null 0.013 0.025

User says both places from-x-to-y 0.573 0.630

User says just “from” place from-x 0.207 0.173

User says just “to” place to-y 0.207 0.173

greet
from x

to y

All other user actions (all others) 0.000 0.000

User wasn’t paying attention null 0.013 0.025

User says just the name of
the place

x 0.444 0.419

User says the name of the
place preceded by “from”

from-x 0.399 0.349

User says both places from-x-to-y 0.144 0.207

ask-from
from x

to y

All other user actions (all others) 0.000 0.000

User wasn’t paying attention null 0.013 0.025

User says just “yes” yes 0.782 0.806

User says the item that was
being confirmed

y 0.108 0.092

User says the item being
confirmed, with the “to”

preposition
to-y 0.097 0.077

confirm-
to-y

from x
to y

(NB - the
system has
the right

hypothesis)

All other user actions (all others) 0.000 0.000

Table 9: Training and Testing user models estimated from disjoint data in the SACTI-1 corpus.

Wizard/User turn pairs which broadly matched the types of action in the test-bed dialog
problem were annotated. The corpus was then segmented into a training sub-corpus and
a testing sub-corpus, each composed of an equal number of dialogs, the same mix of
word error rates, and disjoint subject sets. One user model),|(muu asap ′′ was then

estimated from each sub-corpus, shown in Table 9. Due to data sparsity in the SACTI-1
corpus, the user actions yes and no were grouped into one class, so probabilities for these
actions are equal (with appropriate conditioning for the sense of yes vs. no).

To conduct the simulations, first policy optimization was performed on the test-bed
dialog problem with the training user model using Perseus. Then the testing user model
was installed, and 10,000 dialog turns were run with the policy created from the training
user model. This process was repeated for values of perr from 0.00 to 0.65.Figure 22
shows results for a range of values of perr. The Y-axis shows average return per dialog.
Error bars indicate the 95% confidence interval for the performance on the testing user
model. As speech recognition errors increase, the average reward decreases, consistent
with the findings in the previous sections. For all values of perr, the performance on the
testing user model is very close to the performance on the training user model, and in
some cases it is slightly higher. This is possible because, in some situations, the testing
user model provides slightly more information than the training user model, and this
enables the policy to perform better on the testing user model at certain error rates. For
example, when asked the greet question or asked for the from or to places, the testing
user model is more likely than the training model to reply with both the from and to
places. Overall, the results in Figure 22 demonstrate that the POMDP policy estimation
is reasonably robust to variations in user behaviour, or stated alternatively, that errors in
the estimation of the user model can be tolerated.

-2

-1

0

1

2

3

4

5

6

7

8

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

p err

A
ve

ra
ge

 r
et

ur
n

Train-UM

Test-UM

Figure 22: perr vs. average return per dialog for a dialog manager optimized on the training user

model, and evaluated on the same model (Train-UM) and the testing user model (Test-UM).

3.5. Conclusions and future work
Despite the advances made in recent years, the design of robust spoken dialog systems
continues to be a major research challenge. The key problem is that the uncertainty
caused by speech recognition errors makes it extremely difficult to accurately track the
state of the dialog. Typically, these errors lead to false assumptions which in turn lead to
spurious dialogs. This paper has argued that by modelling a spoken dialog system as a
partially observable Markov decision process (POMDP), significant improvements in
robustness can be achieved. Furthermore, it has been shown that the ideas underlying
existing techniques to improving robustness – maintaining multiple state hypotheses,

using local confidence scores to validate user input, and automating action selection and
planning – are all just special cases of the POMDP formalism. Thus, the POMDP
approach provides a basis for both improving the performance of these existing
techniques and unifying them into a single framework supporting global optimisation.
The paper has explained how the various benefits of POMDPs can be exploited in the
form of an SDS-POMDP, and presented empirical results from simulation experiments –
including experiments trained on real dialog data and evaluated on held-out dialog data –
as supporting evidence.

Even so, despite the clear potential of POMDPs, several key challenges remain. Most
crucially, scaling the model to handle real-world problems remains a significant
challenge: the complexity of a POMDP grows with the number of user goals, and
optimization quickly becomes intractable. The POMDPs described in this paper and in
the literature (Roy et al., 2000; Zhang et al., 2001) have been artificially small problems
consisting of a limited set of user goals, yet real systems have thousands or millions of
user goals for which optimization is intractable, even using the latest approximate
optimization techniques.

To illustrate why POMDPs scale poorly for dialog management, consider an SDS-
POMDP in the travel domain which attempts to gather the name of a single city from a
user. The machine is aware of 1000 cities, and since the POMDP maintains a distribution
over all user goals, it must include one user goal for each of the 1000 cities. Further, the
POMDP includes (among other actions) distinct actions to “confirm” and “submit” each
city. Finally, the POMDP includes an observation for each city name. Thus, in general,
the number of states, actions, and observations all grow with the number of distinct user
goals, and adding models for the user actions and dialog history further exacerbates this
growth.

Two strands of recent work have begun to address scalability. First, the Summary
POMDP method provides a way to scale up the SDS-POMDP model for the so-called
slot-filling class of spoken dialog systems (Williams and Young, 2005).22 In a Summary
POMDP, exact belief monitoring is performed, but planning is done in a compressed
space called summary space. For a given slot, summary space expresses the probability
mass of the highest-ranking value but disregards the value itself. Continuing the example
above with 1000 cities, suppose that at a certain time-step, 8.0))(max(=usb and

londonsb u
su

=))((maxarg . The summary POMDP performs planning by considering the

vector]2.0,8.0[)~(=usp , whereas a standard formulation considers a vector over all 1000

cities. As a result, the Summary POMDP method can scale to much larger problems.
This is demonstrated by Figure 23 which shows the expected reward of the optimal
policy computed using both the full POMDP model and the Summary model as the
number M of slot values increases. As can be seen the baseline model fails to find

22 “Slot-filling” dialogs seek to elicit values for N variables – or “slots” – from a user. This construction
makes it possible to enumerate all possible user goals by constructing a vector of all possible values for
each slot. Slot-filling dialogs are generally regarded as a useful class of dialogs but they are limited in
expressiveness and can’t account for more complex dialog behaviours like negotiation, complex
information exchange, stack-like behaviour, etc..

acceptable solutions for M greater than 20 slots, whereas the performance of the
Summary model is unaffected by M. Subsequent work has extended this technique to
scale to a large number of slots by performing planning myopically for each slot, and
then combining each slot’s policy together using a simple heuristic (Williams and Young,
2006). The optimization techniques employed are described in detail in (Williams,
2006).

-10

-8

-6

-4

-2

0

2

4

6

8

3 4 5 10 20 50 10
0

20
0

50
0

10
00

20
00

50
00

M (Number of distinct slot values)

A
ve

ra
ge

 o
r

ex
pe

ct
ed

 r
et

ur
n

Summary POMDP
Baseline

Figure 23: M (number of distinct slot values) vs. average or expected return for a simplified 1-slot
dialog problem. The baseline is a direct solution of the fully-enumerated POMDP. Note that at
about 20 slot values, the direct optimization is no longer able to produce good policies, but the

performance of the Summary POMDP is relatively constant. Taken from (Williams and Young,
2005).

The Summary POMDP performs belief monitoring by enumerating all possible user
goals, and while this enumeration is reasonable for comparatively simple dialog models
such as slot-filling, it is not directly applicable to more complex applications such as
those tackled by Information State Update systems which represent the dialog state by a
large and complex hierarchical data structure (Larsson and Traum, 2000). To deal with
these very large state spaces, a second promising method is to divide the space of user
goals into a hierarchy of equivalence classes or partitions. Belief updating is then
performed on partitions rather than states. By successively splitting partitions, the system
can use the incoming evidence to gradually focus-in on the underlying states of interest
without having to needlessly consider large numbers of low probability states. A specific
implementation of this idea is the Hidden Information State dialog model which uses
probabilistic context-free rules to describe the partition hierarchy. In effect, these rules
form an ontology of the application domain and they enable user goals to be expressed in
a top-down manner which directly reflects the order in which sub-topics are typically
visited in conversation (Young et al., 2006).

In addition to scaling issues, several other interesting questions remain concerning the
uses of POMDPs in dialog. In particular, the choice of appropriate reward functions and

their relationship to established metrics of user performance such as the PARADISE
scheme remain to be resolved (Walker et al., 1997). There is also the related question of
how models of user behaviour should be created and evaluated. Ultimately, the definitive
test of a POMDP-based dialog system must be evaluation using real users, and the next
step is clearly to build such systems and gather the necessary empirical data. In the
meantime, the SDS-POMDP is unique in providing a complete mathematical framework
for designing and building spoken dialog systems. This framework allows all of the key
components to be trained from data and it supports global optimisation. We believe that
POMDPs have clear potential to advance the state-of-the-art in spoken dialog systems
and as such merit serious further investigation.

4. Acknowledgments
The authors thank Pascal Poupart for many helpful discussions and comments.

This work was supported in part by the European Union “Tools for Ambient Linguistic
Knowledge (TALK)” project.

5. References
Bohus D, Carpenter P, Jin C, Wilson D, Zhang R, Rudnicky AI. Is this conversation on track? Proc

Eurospeech, Aalborg, Denmark; 2001.

Bohus D, Rudnicky AI. Integrating multiple knowledge sources for utterance-level confidence annotation
in the CMU communicator spoken dialog system. Carnegie Mellon University, Technical Report
CS190; 2002.

Bohus D, Rudnicky AI. Sorry, I didn't catch that! - An investigation of non-understanding errors and
recovery strategies. Proc SIGdial Workshop on Discourse and Dialogue, Lisbon; 2005a.

Bohus D, Rudnicky AI. A principled approach for rejection threshold optimization in spoken dialog
systems. Proc Eurospeech, Lisbon; 2005b.

Cassandra AR, Kaelbling LP, Littman ML. Acting optimally in partially observable stochastic domains.
Proc Conf on Artificial Intelligence, (AAAI), Seattle; 1994.

Denecke M, Dohsaka K, Nakano M. Learning dialogue policies using state aggregation in reinforcement
learning. Proc Intl Conf on Speech and Language Processing (ICSLP), Jeju, Korea; 2004.

Deng Y, Mahajan M, Acero A. Estimating speech recognition error rate without acoustic test data. Proc
Eurospeech, Geneva; 2003.

Doran C, Aberdeen J, Damianos L, Hirschman L. Comparing several aspects of human-computer and
human-human dialogues. Proc SIGdial Workshop on Discourse and Dialogue, Aalborg, Denmark;
2001.

Evermann G, Woodland P. Posterior probability decoding, confidence estimation and system combination.
Proc Speech Transcription Workshop, Baltimore; 2000.

Gabsdil M, Lemon O. Combining acoustic and pragmatic features to predict recognition performance in
spoken dialogue systems. Proc Association for Computational Linguistics (ACL), Barcelona; 2004.

Glass J. Challenges for spoken dialogue systems. Proc IEEE Workshop on Automatic Speech Recognition
and Understanding (ASRU), Colorado, USA; 1999.

Goddeau D, Pineau J. Fast reinforcement learning of dialog strategies. Proc IEEE Intl Conf. on Acoustics,
Speech, and Signal Processing (ICASSP), Istanbul; 2000.

Hansen EA. Solving POMDPs by searching in policy space. Proc Uncertainty in Artificial Intelligence
(UAI), Madison, Wisconsin; 1998.

Henderson J, Lemon O, Georgila K. Hybrid reinforcement/supervised learning for dialogue policies from
COMMUNICATOR data. Proc Workshop on Knowledge and Reasoning in Practical Dialogue
Systems, Intl Joint Conf on Artificial Intelligence (IJCAI), Edinburgh, UK; 2005.

Higashinaka H, Nakano M, Aikawa K. Corpus-based discourse understanding in spoken dialogue systems.
Proc Association for Computational Linguistics (ACL), Sapporo, Japan; 2003.

Hirschberg J, Litman D, Swerts M. Detecting misrecognitions and corrections in spoken dialogue systems
from `aware' sites. Proc Prosody in Speech Recognition and Understanding, New Jersey, USA; 2001.

Hoey J, Poupart P. Solving POMDPs with continuous or large observation spaces. Proc Intl Joint Conf on
Artificial Intelligence (IJCAI), Edinburgh, Scotland; 2005.

Horvitz E, Paek T. DeepListener: harnessing expected utility to guide clarification dialog in spoken
language systems. Proc Intl Conf on Spoken Language Processing (ICSLP), Beijing; 2000.

Jensen, F. Bayesian networks and decision graphs. New York: Springer Verlag; 2001.

Jurafsky D, Martin J. Speech and language processing. Englewood, NJ: Prentice-Hall; 2000.

Kaelbling L, Littman ML, Cassandra AR. Planning and acting in partially observable stochastic domains.
Artificial Intelligence; 1998: 101.

Kemp T, Schaff T. Estimating confidence using word lattices. Proc Eurospeech, Rhodes, Greece; 1997,
827–830.

Krahmer E, Swerts M, Theune M, Weegels M. Problem spotting in human-machine interaction. Proc
Eurospeech, Budapest; 1999: 1423-1426.

Krahmer E, Swerts M, Theune M, Weegels M. Error detection in spoken human-machine interaction. Intl
Journal of Speech Technology; 2001: 4 (1), 19-30.

Lane IR, Ueno S, Kawahara T. Cooperative dialogue planning with user and situation models via example-
based training. Proc Workshop on Man-Machine Symbiotic Systems, Kyoto, Japan; 2004, 2837-2840.

Langkilde I, Walker MA, Wright J, Gorin A, Litman D. Automatic prediction of problematic human-
computer dialogues in "How May I Help You?" Proc IEEE Workshop on Automatic Speech
Recognition and Understanding Workshop (ASRU), Colorado, USA; 1999, 369-372.

Larsson S, Traum D. Information state and dialogue management in the TRINDI dialogue move engine
toolkit. Natural Language Engineering; 2000: 5(3–4), 323–340.

Levin E, Pieraccini R. A stochastic model of computer-human interaction for leaning dialog strategies.
Proc Eurospeech, Rhodes, Greece; 1997.

Levin E, Pieraccini R, Eckert W. Using Markov decision process for learning dialogue strategies. Proc Intl
Conf on Acoustics, Speech, and Signal Processing (ICASSP), Seattle; 1998, 201-204.

Levin E, Pieraccini R, Eckert W. A stochastic model of human-machine interaction for learning dialogue
strategies. IEEE Trans on Speech and Audio Processing; 2000: 8 (1), 11-23.

Litman DJ, Hirschberg J, Swerts M. Predicting user reactions to system error. Proc Association for
Computational Linguistics (ACL), Toulouse, France; 2001.

Litman DJ, Pan S. Predicting and adapting to poor speech recognition in a spoken dialogue system. Proc
Conf on Artificial Intelligence (AAAI), Austin, Texas, USA; 2000, 722-728.

Moore R, Browning S. Results of an exercise to collect "genuine" spoken enquiries using woz techniques.
Proc Institute of Acoustics; 1992: 14 (6).

Moreno PJ, Logan B, Raj B. A boosting approach for confidence scoring. Proc Eurospeech, Aalborg,
Denmark; 2001.

Murphy K. A survey of POMDP solution techniques. Technical Report, U. C. Berkeley; 2000.

Paek T, Horvitz E, Ringger E. Continuous listening for unconstrained spoken dialog. Proc Intl Conf on
Speech and Language Processing (ICSLP), Beijing; 2000.

Pao C, Schmid P, Glass J. Confidence scoring for speech understanding systems. Proc Intl Conf on
Speech and Language Processing (ICSLP), Sydney; 1998.

Pieracinni R, Huerta J. Where do we go from here? Research and commercial spoken dialog systems.
Invited talk, SigDial Workshop on Discourse and Dialogue, Lisbon; 2005.

Pietquin O. A framework for unsupervised learning of dialogue strategies, PhD Thesis, Faculty of
Engineering, Mons (TCTS Lab), Belgium; 2004.

Pietquin O, Renals S. ASR modelling for automatic evaluation and optimisation of dialogue systems. Proc
IEEE Intl Conf on Acoustics, Speech and Signal Processing (ICASSP), Florida; 2002.

Pineau J, Gordon G, Thrun S. Point-based value iteration: an anytime algorithm for POMDPs. Proc Intl
Joint Conf on Artificial Intelligence (IJCAI), Acapulco, Mexico; 2003.

Roy N, Pineau J, Thrun S. Spoken dialog management for robots. Proc Association for Computational
Linguistics (ACL), Hong Kong; 2000.

Scheffler K, Young SJ. Automatic learning of dialogue strategy using dialogue simulation and
reinforcement learning. Proc Human Language Technologies (HLT), San Diego, USA; 2002.

Singh S, Litman DJ, Kearns M, Walker MA. Optimizing dialogue management with reinforcement
leaning: experiments with the NJFun system. Journal of Artificial Intelligence; 2002: 16, 105-133.

Skantze G. Exploring human error handling strategies: implications for spoken dialogue systems. Proc
Error Handling in Spoken Dialogue Systems, ISCA Tutorial and Research Workshop, Château d'Oex,
Vaud, Switzerland; 2003.

Spaan MTJ, Vlassis N. Perseus: randomized point-based value iteration for POMDPs. Journal of Artificial
Intelligence Research; 2005: 24, 195–220.

Stuttle M, Williams JD, and Young, SJ. A framework for wizard-of-Oz experiments with a simulated ASR
channel. Proc Intl Conf on Spoken Language Processing (ICSLP), Jeju, South Korea, 2004.

Sutton RS, Barto AG. Reinforcement Learning: An Introduction. Cambridge, MA: MIT Press; 1998.

Walker MA, Litman DJ, Kamm CA, Abell A. PARADISE: A framework for evaluating spoken dialogue
agents. Proc Association for Computational Linguistics (ACL), Madrid, Spain; 1997.

Walker MA, Fromer JC, Narayanan S. Learning optimal dialogue strategies: a case study of a spoken
dialogue agent for email. Proc Association for Computational Linguistics and Intl Conf on
Computational Linguistics (ACL/COLING), Montreal; 1998

Watkins CJCH. Learning from delayed rewards. Ph.D. thesis, Cambridge University; 1989.

Williams JD. Partially Observable Markov Decision Processes for Spoken Dialogue Management. Ph D
thesis, Cambridge University; 2006.

Williams JD, Poupart P, Young SJ. Factored partially observable Markov decision processes for dialogue
management. Proc Workshop on Knowledge and Reasoning in Practical Dialog Systems, Intl Joint
Conf on Artificial Intelligence (IJCAI), Edinburgh; 2005a.

Williams JD, Poupart P, Young SJ. Partially observable Markov decision processes with continuous
observations for dialogue management. Proc SigDial Workshop on Discourse and Dialogue, Lisbon;
2005b.

Williams JD, Young SJ. Characterizing task-oriented dialog using a simulated ASR channel. Proc Intl
Conf on Speech and Language Processing (ICSLP), Jeju, South Korea; 2004.

Williams JD, Young SJ. Scaling up POMDPs for dialog management: the "Summary POMDP" method.
Proc IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), San Juan, Puerto
Rico; 2005.

Williams JD, Young SJ. Scaling POMDPs for dialog management with composite summary point-based
value iteration (CSPBVI). Proc AAAI Workshop on Statistical and Empirical Approaches to Spoken
Dialog Systems, Boston; 2006.

Young SJ, Williams JD, Schatzmann J, Stuttle M, Weilhammer K. The hidden information state approach
to dialogue management. Cambridge University Engineering Department, Technical Report CUED/F-
INFENG/TR.544; 2006.

Young SJ. Probabilistic methods in spoken dialogue systems. Philosophical Trans of the Royal Society
(Series A); 2000: 358 (1769), 1389-1402.

Zhang B, Cai Q, Mao J, Chang E, Guo B. Spoken dialogue management as planning and acting under
uncertainty. Proc Eurospeech, Aarlborg, Denmark; 2001.

