
American Journal of Modeling and Optimization, 2016, Vol. 4, No. 1, 1-12
Available online at http://pubs.sciepub.com/ajmo/4/1/1
© Science and Education Publishing
DOI:10.12691/ajmo-4-1-1

Modeling and Optimization of Dynamical Systems by
Unconventional Spreadsheet Functions

Chahid Kamel Ghaddar*

ExcelWorks LLC, Sharon, MA, USA
*Corresponding author: cghaddar@excel-works.com

Abstract The spreadsheet computational engine is exploited via a nonstandard mechanism to support a functional
formulation for constrained optimization of parameterized differential systems by unconventional spreadsheet
functions. The nonstandard mechanism enables encapsulation of numerical algorithms into functions which take
variable formulas as a new type of input argument while retaining purity and recursion properties. This is in contrast
to conventional spreadsheet functions which are restricted to static input types. Several solvers for differential
equations and nonlinear minimization are developed which serve as building blocks for the functional formulation.
The latter makes it possible to express a program for a constrained dynamical minimization problem in as few as
three formula evaluations in Excel as demonstrated by several examples. The solver functions integrate seamlessly
with MS Excel, and propel the spreadsheet beyond traditional applications as a powerful tool for exploring
dynamical optimization problems.

Keywords: dynamical optimization, optimal control, differential equations, spreadsheet, functional paradigm

Cite This Article: Chahid Kamel Ghaddar, “Modeling and Optimization of Dynamical Systems by
Unconventional Spreadsheet Functions.” American Journal of Modeling and Optimization, vol.4, no. 1 (2016): 1-
12.doi:10.12691/ajmo-4-1-1.

1. Introduction
The spreadsheet inherent simplicity of defining formulas

and manipulating data, combined with rich intrinsic
mathematical functions, graphing tools, and extensibility,
have contributed to its widespread adoption in engineering
and scientific applications [1,2,3]. Models for differential
equations [4-10], optimization of algebraic and stochastic
systems, and risk analysis [11,12] are well known.
However, computational problems in constrained dynamical
minimization involving systems of differential equations,
and more generally optimal control problems, have remained
beyond the utility of the spreadsheet. An example of such
problems is computing optimal parameters for a
differential equation system that minimize the sum of
square errors for prescribed constraints on its response.
The sought parameters may be any controls that influence
the response of the system such as coefficients, forcing
terms, boundary conditions, etc. Solving similar problems
requires seamless integration of multiple solvers for
constrained minimization and differential equations.

The standard design of the spreadsheet makes such an
integration of solvers technically impractical. To point out
the reasons, we briefly review the two distinct venues for
adding functionality to a spreadsheet: Commands and
Functions [13,14]. A command is the standard mechanism
for evaluating formulas in the spreadsheet. MS Excel’s
built in optimization solver is a good example of a
command which works as follows:

1. The user selects cells to hold initial values for each
decision variable in a model.

2. In another group of cells, the user defines formulas
for the objective function and the left hand side of
each constraint.

3. Via a command dialogue, the solver is executed
which iterates, altering the decision cells values and
recalculating the dependent objective and
constraints cell values until such values are found
which minimize the objective function value and
satisfy the constraints.

Obviously, a command works by transforming its own
inputs and does not behave as a proper mathematical
function. It lacks the properties of purity, composition and
could not support recursion. Differential equations solver
extensions to Excel rely on commands, and operate in a
similar fashion to the built in Excel solver, or may utilize
the structured spreadsheet layout as a finite difference grid
mixing up the input, algorithm and output [4-10]. Furthermore,
a command cannot to be invoked programmatically as a
re-usable function from other spreadsheet formulas [14].
Therefore, it is unfeasible to integrate multiple commands
to solve a dynamical minimization problem.

On the other hand, the second mechanism for extending
the spreadsheet utility is through the addition of new
functions. The spreadsheet design permits only pure
functions restricted to operating on constant inputs
[13,14,15]. Some external programs, such as MATLAB
[16] offer interfaces to Excel to expose a portion of their
functionality. This model permits exchange of basic data
types such as numbers, but cannot be used to expose
differential and optimization solvers. Therefore, the
standard spreadsheet functions could not either support a
constrained minimization of a dynamical system.

2 American Journal of Modeling and Optimization

Certainly, the inherent design limitations of the
spreadsheet unduly limit its full potential. Given the
spreadsheet intuitive interface for defining formulas, it
presents a practical platform for supporting native calculus
solvers that could support a functional paradigm for
dynamical optimization problems. Accordingly, the author
has developed a method which overcomes the spreadsheet
limitation and enables the creation of a first class function
– function that can take other functions (i.e., formulas and
variables) as arguments while preserving its mathematical
properties including purity and recursion. Details of the
method are provided in [17] and are rather technical in
nature. However, the main idea is to capture the definition
of an input formula via the spreadsheet Advanced
Programming Interface (API) and construct a relational
graph representing the formula inter-dependence on nested
formulas, variable cells, and recursive calls. A graph
evaluator which exploits the spreadsheet API evaluates the
value of a formula without modifying any data in the
spreadsheet.

The flowchart logic for developing a first class solver is
shown in Figure 1. The benefits gained by enabling a first
class solver in the spreadsheet are noteworthy. The
spreadsheet’s computational engine could be exploited to
support intrinsic solvers for virtually any system that can
be modelled by formulas and variables [18]. For example,
the flow chart of Figure 1 makes possible, for the first
time, the existence of the following intrinsic worksheet
integration function:

 (, , , , [])QUADF f x a b Options= (1)

for computing a formula integral ()b
a

f x dx∫
using

appropriate algorithms [19].

Figure 1. Flow chart for unconventional first class spreadsheet function
design

Table 1 illustrates utilizing (1) to compute the integral

of
1
0

ln 4xdx
x

= −∫

in Excel. The reference to the integrand

formula A1 1, the variable of integration X1, and limits are
passed to (1) as regular parameters. Evaluating QUADF
formula in A2 computes the results without any side
effects. Such a practical integration function has never
existed in a spreadsheet application before.

Table 1. Computing a formula integral in Excel by the worksheet
function (1)

 A A

1 =LN(X1)/SQRT(X1) 1 #NUM!

2 =QUADF(A1,X1,0,1) 2 -4

More importantly, by preserving function properties
including purity and recursion, the first class solvers can
be utilized as building blocks of a functional paradigm for
solving dynamical optimization problems. A simple
example of a functional program is illustrated in Table 2
in which (1) is employed to compute the volume integral

32 3 6 3 2
2

0 0 0
1 3.

x x y
xdzdydx

− − −
− =∫ ∫ ∫ Here each inner

QUADF formula serves as the integrand for the next outer
QUADF formula. Evaluating the outer integral in A4
computes the triple integral value.

Table 2. Example of using recursion to compute triple integral in
Excel
 A A

1 =1-X1 1 1

2 =QUADF(A1,Z1,0,6-3*X1-2*Y1) 2 6

3 =QUADF(A2,Y1,0,3-3*X1/2) 3 9

4 =QUADF(A3,X1,0,2) 4 3

In Section 2 we present an abstract functional
formulation which permits us to utilize first class
spreadsheet functions to solve constrained dynamical
minimization problems in Excel. The formulation is
motivated by the combination of the benefits of a
functional programming paradigm [20] with the simplicity
of using the spreadsheet application. It enables expressing
the solution steps from an engineering view point, rather
than describe the computational logic in a procedural style,
as is commonly practiced. Given a set of control
parameters, we model and obtain an initial response of the
differential system based on initial values for the control
parameters. In the next step, we state design objectives in
the form of constraint formulas, which penalize the
deviation of the initial response from a desired target
response. Finally, we compute values for the control
parameters to minimize the sum of squared errors in the
set of design constraints. These steps map directly to three
classes of first class functions: solvers for differential
equation systems; criterion functions to enable definition
of dynamical constraints on a system response; and a
functional minimizer for the set of constraints. As shall be
demonstrated in the examples, it is possible to express a

1The #NUM! error reported by Excel is due to division by X1 which is
undefined. X1 is chosen as a dummy variable for the formula. Its value,
assumed zero by Excel, is irrelevant, and the error can be ignored.

 American Journal of Modeling and Optimization 3

program for constrained minimization in as few as three
function evaluations in Excel.

The three classes of functions which form the building
blocks of the functional formulation are presented in the
following section with full description provided in
Appendices A-C. Section 3 presents three examples
employing the spreadsheet functions for solving the
following constrained optimization problems:
• Computing the required thrust and arrival time for a

travelling train.
• Customizing a second order dynamical system.
• Controlling heat transfer across a slab.
We note that this article primary focus is to introduce

and illustrate the solution framework using pedagogical
examples rather than analyze any specific physical
problem. In addition, the article does not review other
non-spreadsheet methods, but leave it to the reader to
withdraw own conclusion on the merits of the presented
approach in comparison to other familiar mathematical
software. Finally, we recommend reviewing Appendix A
which includes a brief description of basic spreadsheet
concepts for any reader not familiar with the spreadsheet.

2. Functional Formulation for the
Dynamical Optimization Problem

In the following, we present a functional formulation
for the constrained minimization problem which is based
on first class spreadsheet solvers. In what follows, a bold
symbol indicates a vector value. Let 𝒖(𝑥,𝒑𝒅) be the
solution function to a system of differential equations
where 𝑥 is an independent variable and 𝒑𝒅 is a set of
design parameters that influence the system response.
𝒖(𝑥,𝒑𝒅) can be interpreted as a solution function returned
by a higher order solver function [20] for the differential
equations system. The solution function provides values
for the differential system variables 𝒖 = [𝑢1,𝑢2, . . ,𝑢𝑛] at
a specified value for the independent variable , 𝑥, and for a
given configuration of the system design parameters, 𝒑𝒅.
In a spreadsheet context, 𝒖(𝑥,𝒑𝒅) represents an abstract
tabular result value of a differential equation system solver.

Let 𝑓𝑖(𝒖(𝑥,𝒑𝒅), [𝑥],𝒑𝒅) be a criterion functional that
computes a scalar property of interest from the differential
system response, 𝒖(𝑥,𝒑𝒅) , for a specified range of the
independent variable, [𝑥] , and specified values for the
design parameters, 𝒑𝒅 . For example, 𝑓𝑖 may simply
extract a single value from 𝒖(𝑥,𝒑𝒅), or may compute a
complex property by applying a prescribed operation, such
as integrating a component of 𝒖(𝑥,𝒑𝒅) over a specified
range [𝑥] . Given a target design value, 𝜏𝑖 , for each
criterion functional, 𝑓𝑖, we construct the following ordered
system of 𝑚 constraints:

()
()

0, 1,..,

0, 1,..,
i

j

g i k

g j k m

= =

≥ = +
d

d

p

p
 (2)

where 𝑔𝑖 , 𝑖 = 1, . . ,𝑚 is a suitable penalty functional
which may take the simple form:

 () () [](), , , ,i i ig f x x τ≡ −d d dp u p p (3)

Let:

 () ()0, 0

1,
j

j
if g is ture

else
δ

 ≥= 


d
d

p
p (4)

for 𝑗 = 𝑘 + 1, . . ,𝑚, be an indicator weight function which
takes on the value one for each active (unsatisfied)
inequality constraint, or zero otherwise.

Accordingly, the optimal design parameters values we
seek to compute, minimize the following implicit cost
functional:

 () () () () 22

1 1
i j jC g g δ

= = +

 = +  ∑ ∑
k m

d d d d
i j k

p p p p (5)

Based on the flowchart of Figure 1, in conjunction with
a suitable minimization algorithm such as the Levenberg-
Marquardt algorithm [21,22], the minimization of the
objective (5) can be practically expressed in the
spreadsheet by the evaluation of a worksheet functional
minimizer solver of the form:

 ()(, ,[])solve m k= −d d g p p (6)

which takes the vector of constraint formulas, design
variables, and the number of inequality constraints, 𝑚− 𝑘.
The functional formulation ensures that evaluation of a
criterion constraint formula by the solver algorithm
triggers re-evaluation of the underling dynamical system
in order to compute a current value for the constraint at
any given values of the design parameters [17].

We remark that although the above formulation does
not specify an explicit general cost functional, it is easily
amenable to incorporating one. Such a modification would
entail: modifying the solver (6) interface to accept an
additional cost formula, 𝐺(𝒑𝒅) , and updating the
underlining solver algorithm. Expanding the framework to
support an explicit cost functional including continuous
time cost functional for optimal control problems [23] will
be addressed in a forthcoming effort.

The abstract functional formulation (2)-(6) lays the
foundation for a practical three-step dynamical
optimization process that can be carried out using three
type of pure spreadsheet functions which we described
next.

2.1. Differential Equations Solvers
Two spreadsheet solvers, IVSOLVE() and BVSOLVE()

suitable for initial and boundary value problems, have
been developed and described in Appendix A. To utilize
the solvers, the differential system must be presented as a
set of first order equations

 (), , , 1,..,i
i

du
f x i n

dx
= =du p (7)

which are easily modelled in a spreadsheet by the system
RHS formulas (𝑓1, 𝑓2, . . , 𝑓𝑛). These formulas are passed as
arguments to the solvers along with the system variables
(𝑥,𝑢1,𝑢2, . . ,𝑢𝑛) , as detailed in Appendix A. The 3rd
solver, PDSOLVE(), suitable for initial-boundary value
partial differential problems is also presented in Appendix
A, and utilized in Example 3.3.

A solver is executed as a regular intrinsic array formula
in an allocated range of the spreadsheet. The solver
computes and displays a formatted result as shown in

4 American Journal of Modeling and Optimization

Figure 2. The result table serves as a discrete proxy for the
function 𝒖(𝑥,𝒑𝒅) in (2)-(6) providing a map between the
independent variable 𝑥 and the state variables 𝒖 for
specified values of the design parameters 𝒑𝒅.

Figure 2. Solution layout in Excel for differential systems solvers
IVSOLVE() and BVSOLVE()

2.2. Criterion Functions
A criterion function corresponds to 𝑓𝑖(𝒖(𝑥,𝒑𝒅), [𝑥],𝒑𝒅)

in (3), and computes a scalar property from the solution
array (see Figure 2) of a differential systems solver for the
purpose of constraining the response. A constraint formula
penalizes the difference between the computed scalar
property value and a target value. In essence, the criterion
function provides the dynamical link that connects the
differential systems solver with the functional minimizer
and enables the operation of the functional formulation
(2)-(6). The dynamical links are achieved naturally such
that evaluation of a constraint formula leads to re-evaluation
of the underling differential solver [17] in order to
compute a current value for the scalar property of interest.

The scalar property may be a direct value extracted
from the solution at a specified point, or an indirect
computed value utilizing a prescribed calculus operation
or a user defined formula. To accommodate general
applications, two criterion functions, ARRAYVAL() and
ODEVAL(), have been developed and described in
Appendix B. ARRAYVAL() applies user-defined formulas
to map a selected data set within the solution array (Figure
2) to a scalar value. On the other hand, ODEVAL()
applies a calculus operation, such as differentiation or
interpolation, to compute a value from the solution array.
We remark that the parameter differences between the
abstract criterion functional and the actual implementations
described in Appendix B are rather a technical exploitation of
the spreadsheet and functional programming properties,
which permit us to assign and recover functions from
variables [17].

2.3. Functional Minimizer
A functional minimizer NLSOLVE(), which

corresponds to (6), is described in Appendix C. It receives
the set of formula constraints, and design parameters
variables, and computes optimal values for the latter that
minimize the implicit cost functional (5).

The aforementioned spreadsheet functions enable the
three-step optimization formulation (2)-(6) comprising the
following practical steps.

I. Using initial values of the design parameters, obtain
an initial response to the parameterized differential

system by a suitable solver IVSOLVE(),
BVSOLVE(), or PDSOLVE().

II. Define constraints on the initial system response
using the criterion functions ARRAYVAL() and
ODEVAL().

III. Solve for the set of constraints for the optimal
design parameters using NLSOLVE().

These steps are demonstrated in the following section
with three examples in Excel.

3. Constrained Optimization Examples

3.1. Travelling Train Problem
In this example we compute the required propulsion

force and the travel time for a frictionless train travelling
between two cities through a straight tunnel. The train
uses a constant propulsion force to accelerate, but relies
solely on the gravitational pull of the Earth, as well as
aerodynamic drag, for deceleration. Using the assumptions
shown in Table 3 and referring to Figure 3, we formulate
the problem as a constrained optimization problem as
follows.

Figure 3 shows the forces acting on the train during its
trip from City A to City B along the circular path of the
earth. The motion for the train is governed by the second
order equation:

 () (())t p d gm x F F x F xθ= − +  (8)

with the initial conditions 𝑥(0) = 0, �̇�(0) = 0 at departure
City A.

Table 3. Assumptions and parameters for problem 3.1
Train mass 𝑚𝑡 = 100,000 (kg)
Distance travelled 𝑑 = 1000,000 (m)
Earth Radius 𝑅 = 6371,000 (m)
Gravitational constant 𝑔 = 10 𝑚/𝑠2
Drag force 𝐹𝑑(𝑣) = 0.5 ∗ 𝑣2 (N)
Propulsion force 𝐹𝑝= constant (N)
Gravitational force 𝐹𝑔(𝜃) = 𝑚𝑡 ∗ 𝑔 ∗ cos (𝜃) (N)

Figure 3. Schematic for the forces acting on the travelling train of
problem 3.1

Using 𝑑/𝑅 ≪ 1, the angle of rotation, 𝜃, (see Figure 3)
can be approximated by the following formula:

 ()

1

1

tan , / 2
/ 2

, / 2
2

tan , / 2
/ 2

R x d
d x

x x d

R x d
d x

πθ

π

−

−

   <  − 


= =

   + >  − 

 (9)

 American Journal of Modeling and Optimization 5

On arrival at City B, the train comes to a halt, so the
final conditions can be stated as:

 ()
() 0

f

f

x t d

x t

=

=

 (10)

The final conditions (10) can be viewed as constraints
on the differential equation (8) for the train’s motion. The
problem is thus reduced to finding optimal values for the
unknown propulsion force 𝐹𝑝 and the travel time 𝑡𝑓 such
that the two constraints (10) are satisfied. We compute the
answer by a simple functional program in Excel
spreadsheet corresponding to the three-step optimization
process as shown below.

Step 1
We model the differential equation (8) in Excel as a

parameterized two first order equations in B2:B3 as shown
in Table 4. For convenience, we assign names to raw cells
addresses, e.g., ‘x’ for B6, ‘v’ for B7, ‘Fd’ for D2, ‘Th’
for D4 and so on.

Table 4. Parametrized differential system definition in Excel for
problem 3.1

 A B C D

1 Differential system Forces formulas

2 dx/dt =v Fd =0.5*v^2

3 dv/dt =(Fp-
Fd+Fg)/m Fg =m*g*COS(Th)

4 System variables with
initial conditions Th

=IF(x<d/2,ATAN(Re/(d/2-
x)),IF(x>d/2,ATAN(Re/(d/2-
x))+PI(),PI()/2))

5 t 0
6 x 0 Constant parameters

7 v 0 g 10

8 Design parameters
with initial values Re 6371000

9 Fp 1000 d 1000000

10 Tf 4500 m 100000

The system is simulated with a guess value 𝐹𝑝 = 1000
for a sufficient time of 4500 seconds by evaluating the
IVSOLVE() array formula:

 ()()2 : 3, , , , {0,4500}IVSOLVE B B t x v= (11)

in the range J1:L38 2 . The first argument to (11) is a
reference to the system formulas (see Table 4), the second
argument is the system variables, and the third argument
specifies the time interval. IVSOLVE() computes and
displays the solution in the range J1:L38 as shown in
Table 5.

Step 2
Using the criterion function ODEVAL() (B.2), we

define in Table 6 two constraint formulas, which
correspond to the final conditions (10). Constraint C14
penalizes the difference between the interpolated value for

2The choice of the range location and its allocated number of rows are
arbitrary. By default, the number of rows determines the uniform interval
for the output solution. This behavior can be changed via the options to
the solver [24], such as to use a custom step or non-uniform output
points.

the displacement, 𝑥, at the final but unknown time, 𝑡𝑓, and
the travelled distance 𝑑 , while constraint C15 demands
that the interpolated value for the velocity, 𝑣, at the final
time, 𝑡𝑓 , vanishes. As described in Appendix B,
ODEVAL() uses internally a spline curve fit to perform
the interpolation operation. The first argument for
ODEVAL(), J2:J38, (selected from Table 5) defines the
desired range for the interpolation operation, and second
argument, x, identifies the variable to interpolate3.

Table 5. Solution computed by (11) for the system definition given in
Table 4

 J K L J K L

1 t x V 20 2250 535135 146.4526

2 0 0 0 21 2375 552249.8 127.3546

3 125 6115.463 96.66716 22 2500 566971.2 108.1826

4 250 23618.42 180.3757 23 2625 579292.2 88.95507

5 375 50345.74 243.5815 24 2750 589207.6 69.68509

6 500 83614.12 285.3167 25 2875 596712.8 50.38592

7 625 120912.9 308.8178 26 3000 601804.6 31.06775

8 750 160244.8 318.6075 27 3125 604479.3 11.73845

9 875 200165.6 318.7776 28 3250 604737.5 -7.59494

10 1000 239672.8 312.4788 29 3375 602579.9 -26.9254

11 1125 278105.9 301.8894 30 3500 598007 -46.2459

12 1250 315027.7 288.4672 31 3625 591022 -65.5454

13 1375 350145.5 273.1784 32 3750 581623.1 -84.8236

14 1500 383269.8 256.6382 33 3875 569814.6 -104.068

15 1625 414271.2 239.2515 34 4000 555605.2 -123.257

16 1750 443058.6 221.296 35 4125 539003.6 -142.369

17 1875 469577.2 202.9315 36 4250 520018.9 -161.382

18 2000 493781.3 184.2855 37 4375 498664.1 -180.264

19 2125 515639.8 165.4439 38 4500 474960.7 -198.957

Table 6. Constraints formulas on the initial solution of Table 5. The
constraints correspond to the conditions given in (10)

 C

14 =ODEVAL(J2:J38, x, "INTERP", Tf) - d

15 =ODEVAL(J2:J38, v, "INTERP", Tf)

Step 3
Using the functional minimizer NLSOLVE() (C.1), the

system of constraints C14:C15 is solved with 𝐹𝑝 and 𝑡𝑓 as
variables by evaluating the NLSOLVE() formula:

 ()() 14 : 15, , NLSOLVE C C Fp Tf= (12)

in the allocated range A16:B18. NLSOLVE() computes
and displays the values for 𝐹𝑝 and 𝑡𝑓 as shown Table 7.

Table 7. Optimal parameters computed by (12) satisfying the
constraints of Table 6

 A B

16 Fp 62648.94

17 Tf 3863.575

18 SSERROR 1E-16

3 In general, the second argument may be an arbitrary formula of system
variables and parameters [24].

6 American Journal of Modeling and Optimization

Figure 4 plots a simulation of equation (8) using the
computed values for 𝐹𝑝 and 𝑡𝑓 in Table 7. The plot shows
that the final arrival conditions (10) are satisfied.

Figure 4. Simulation of train motion using optimal parameters of Table 7

3.2. Customizing a 2nd Order Dynamical
System

In this example, we design the response of the 2nd order
dynamical system:

2

2
2 2 0n n

d x dxw w x
dtdt

ζ+ + = (13)

in order to control its overshoot, peak time, and energy
using the damping coefficient, 𝜁 , the natural frequency,
𝑤𝑛, and initial condition, 𝑥(0), as design parameters.

Table 8 shows the system model in Excel with equation
(13) represented as two first order parametrized equations
in B2:B3 using named variables t, x, v, zeta, and wn,
which are assigned the initial values 0.25 and 1
respectively. Note that the design parameters x0, x_peak,
t_peak, and e_min will be used in the coming exercises.
Starting from the initial conditions 𝑥(0) = 1, �̇�(0) = 0,
we simulate the system in the interval [0 10] using
IVSOLVE() formula:

 ()()2 : 3, , , ,{0,10}IVSOLVE B B t x v= (14)

in the allocated range I1:K41. IVSOLVE() computes the
solution shown in Table 9, which is plotted in Figure 5.
The plot shows that the system response for the initial
parameters is underdamped with an absolute overshoot
greater than 0.4 at approximately a peak time of 3.3.

Figure 5. Plot of system response computed in Table 9 using the
parameters values given in Table 8

Table 8. Parametrized differential systeqm definitions in Excel for
problem 3.2

 A B C D

1 Differential system Design parameters

2 dx/dt =v zeta 0.25

3 dv/dt =-2*zeta*wn*v-wn^2*x wn 1

4 System variables with initial
conditions x0 1

5 t 0 x_peak -0.2

6 x =x0 t_peak 2.0

7 v 0 e_min 0.1

Table 9. Solution computed by (14) for the system definition given in
Table 8
 I J K I J K

1 t x v 22 5 -0.03655 0.293447

2 0 1 0 23 5.25 0.032784 0.259071

3 0.25 0.970168 -0.23257 24 5.5 0.092059 0.213592

4 0.5 0.887138 -0.42422 25 5.75 0.138985 0.160974

5 0.75 0.762013 -0.56855 26 6 0.172275 0.10513

6 1 0.607055 -0.66269 27 6.25 0.19159 0.049698

7 1.25 0.434825 -0.70704 28 6.5 0.197429 -0.00212

8 1.5 0.25741 -0.70486 29 6.75 0.191048 -0.04772

9 1.75 0.085824 -0.66173 30 7 0.17425 -0.08518

10 2 -0.07064 -0.585 31 7.25 0.149241 -0.11326

11 2.25 -0.20459 -0.48309 32 7.5 0.118448 -0.13142

12 2.5 -0.31084 -0.36492 33 7.75 0.084347 -0.13977

13 2.75 -0.38643 -0.23931 34 8 0.049333 -0.13896

14 3 -0.43055 -0.11448 35 8.25 0.015541 -0.13013

15 3.25 -0.44434 0.002384 36 8.5 -0.01519 -0.11473

16 3.5 -0.43053 0.105374 37 8.75 -0.04141 -0.09443

17 3.75 -0.39318 0.190104 38 9 -0.06214 -0.071

18 4 -0.33723 0.253773 39 9.25 -0.0768 -0.04618

19 4.25 -0.26816 0.295115 40 9.5 -0.08525 -0.02157

20 4.5 -0.19152 0.314355 41 9.75 -0.08772 0.001409

21 4.75 -0.11269 0.312972 42 10 -0.08478 0.021604

3.2.1. Exercise 1
In the first exercise, we redesign the response such that

the system has an absolute overshoot of 0.2 at a peak time
of 2.0. We define two constraints shown in Table 10 on
the response of Table 9. Constraint C1 penalizes the
difference between the minimum value of the
displacement and the target overshoot, x_peak, while
constraint C2 demands that the velocity vanishes at the
peak time 4.

Table 10. Constraints formulas for problem 3.2.1

 C

1 =ARRAYVAL(J2:J41, “MIN”) – x_peak

2 =ARRAYVAL(K10)

4C2 makes use of the readily available velocity in Table 9, however, we
could impose an equivalent constraint on the displacement derivative
directly using ODEVAL() (B.2) as follows
‘=ODEVAL(I1:I41,x,”DERIV”,2.0)’.

 American Journal of Modeling and Optimization 7

The system of constraints C1:C2 is solved with 𝑤𝑛 and
𝜁 as variables by evaluating the functional minimizer
NLSOLVE() formula:

 () ()() 1, 2 , , NLSOLVE C C zeta wn= (15)

in allocated range D1:E3. NLSOLVE() computes the
results shown Table 11. Figure 6 shows the modified
system response using the values for 𝑤𝑛 and 𝜁 of Table 11.

Table 11. Optimal parameters computed by (15) satisfying
constraints of Table 10

 D E

1 zeta 0.451081913

2 wn 1.659599536

3 SSERROR 2.20497E-26

Figure 6. Modified system response using optimal parameters of Table 11

For illustration, we solve the same system of constraints
in Table 10, but with initial displacement, x0, and 𝑤𝑛 as
design variables. Here we simply need to replace zeta with
x0, and evaluate the new NLSOLVE() formula:

 () ()()1, 2 , 0,NLSOLVE C C x wn= (16)

The results are shown in Table 12 and plotted in Figure
7. As expected, the solution satisfies the constraints, but
retains the underdamped behavior of the system.

Table 12. Optimal parameters computed by (16) satisfying
constraints of Table 10

 D E

1 x0 0.450161581

2 wn 1.622267731

3 SSERROR 1.08134E-11

Figure 7. Modified system response using parameters of Table 12

3.2.2. Exercise 2
In this exercise we constrain the absolute overshoot,

and the minimal available energy at the unknown peak
time, 𝑡𝑝 , then compute the damping coefficient, 𝜁 , the
natural frequency, 𝑤𝑛 , and the attained peak time, 𝑡𝑝. At
the overshoot, the velocity is zero and the total energy is
defined by:

 2 *ne w x= (17)

The constraints are stated as follows:

()
()

()

_ 0

0

_ 0

p

p

p

x t x peak

v t

e t e min

− =

=

− ≥

 (18)

where𝑥_𝑝𝑒𝑎𝑘 and 𝑒_𝑚𝑖𝑛 values are specified in Table 8.
Table 13 shows the equivalent Excel constraints defined
on the initial solution of Table 9 by aid of the criterion
function ODEVAL() which uses interpolation to compute
the values at the variable t_peak.

Table 13. Constraints formulas for problem 3.2- Exercise 2

 C
4 =ODEVAL(I2:I41, x, ”INTERP”, t_peak) – x_peak
5 =ODEVAL(I2:I41, v, ”INTERP”, t_peak)
6 =wn*ODEVAL(I2:I41, x, ”INTERP”, t_peak)^2 – e_min

The system of constraints C4:C6 is solved by
NLSOLVE() formula:

 () ()() 4, 6 , , , _ , 1NLSOLVE C C zeta wn t peak= (19)

in the allocated range F1:G3 shown in Table 14. Note that
we pass one in the third argument to indicate the last
constraint is an inequality constraint. Figure 8 shows the
modified system response using the computed values for 𝜁
and 𝑤𝑛 which shows the peak time occurs near 1.4.

Table 14. Optimal parameters computed by (19) satisfying the
constraints of Table 13

 F G
1 zeta 0.455927572
2 wn 2.5
3 t_peak 1.412086279
4 SSERROR 1.08134E-11

Figure 8. Modified system response using parameters of Table 14

3.3. Heat Transfer Problem
In this example, we demonstrate how to setup a simple

functional program to control a heat transfer problem. We

8 American Journal of Modeling and Optimization

consider a slab that is initially at zero temperature with an
insulated right side. At time = 0, the left side is brought to
100 degrees. We are interested in controlling the right side
temperature reached after one second. The problem is
described by the parabolic heat equation:

2

2
u uk
t x

∂ ∂
=

∂ ∂
 (20)

with initial condition 𝑢(𝑥, 0) = 0 , left boundary
condition 𝑢(0, 𝑡) = 100, and right boundary condition
𝜕𝑢(𝑥, 𝑡)/𝜕 𝑥 = 0 at 𝑥 = 1. The problem’s spatial domain
is 𝑥 ∈ [0 1] and the time interval is 𝑡 ∈ [0 1]. Table 15
shows the model definition in Excel for the solver
PDSOLVE() (A.7). Here we use the cells T1, X1, U1, U2,
and U3 to represent system variables 𝑡, 𝑥,𝑢,𝑢𝑥 ,𝑢𝑥𝑥
respectively. We also assign the names u, ux, and uxx for
U1, U2 and U3. The system RHS formula is defined in A1,
the left boundary condition in B1, and the right boundary
condition in C1, the conductivity 𝑘 in K1 and the initial
condition for 𝑢 in U1.

Table 15. PDE System definition in Excel for problem 3.3

 A B C K U
1 =k*uxx =u-100 =ux 1 =IF(X1=0,100,0)

To solve the system, we use the spreadsheet solver,
PDSOLVE() (A.7) by evaluating the array formula:

() { }
{ } { }
 1, 1, 1, 1: 3 , 1, 1, 0,0.5,1 ,

0 1 , , , 1"

A T X U U B C
PDSOLVE

FORMAT TCOL

 
=   

 ， " " "
(21)

in allocated range A5:D21, passing in the system formula,
variables and boundary conditions defined in Table 15.
The 5th argument {0, 0.5, 1} instructs the solver to report
spatial output points at 0, 0.5, and 1 only, whereas
temporal output points for the specified interval {0, 1} in
the 6th argument will be reported uniformly according to
the available rows in the allocated range. We also request
in the optional 8th argument a transient format for the
output [24].

Table 16. Solution computed by (21) for the system definition given
in Table 15

 E F G H
1 X1 0 0.5 1
2 T1 u u u
3 0 100 0 0
4 0.05 100 11.38488 0.313100897
5 0.1 100 26.43517 5.069308645
6 0.15 100 36.7479 13.57766027
7 0.2 100 44.68197 22.76939125
8 0.25 100 51.29839 31.45587281
9 0.3 100 57.01478 39.32101487

10 0.35 100 62.0256 46.33272712
11 0.4 100 66.43943 52.55248913
12 0.45 100 70.33672 58.05646724
13 0.5 100 73.78095 62.92253049
14 0.55 100 76.82433 67.22546077
15 0.6 100 79.51285 71.03140753
16 0.65 100 81.88989 74.39453117
17 0.7 100 83.99159 77.36648292
18 0.75 100 85.85031 79.99204101
19 0.8 100 87.49342 82.3128696
20 0.85 100 88.94526 84.36516013
21 0.9 100 90.22807 86.18001317
22 0.95 100 91.36183 87.78445318
23 1 100 92.36414 89.20245472

PDSOLVE() populates the range with the requested
transient format solution shown in Table 16 and plotted in
Figure 9A. Alternatively, in the default snapshot format
for the output array, the order of time and space are
exchanged in the table. The latter format simplifies
plotting the temperature spatial profile at different times as
shown in Figure 9B.

Figure 9A.Transient plot of the system response computed in Table 16 at
different spatial points

Figure 9B. Snapshot plot shows the temperature spatial profile at
different times

Table 16 shows that the right side reaches a temperature
of approximately 89.2 after one second (value of cell H23
at T1=1, X1=1). In this example, we will demand that the
right side reaches a target temperature of 75 degrees after
one second, and then compute the required left boundary
condition that will produce the target temperature. To vary
the left boundary condition value, we introduce a design
variable P1 with an initial value of 100, and parametrize
the initial condition and left boundary condition formulas,
as shown in Table 17.

Table 17. Parametrized PDE system definition in Excel for problem
3.3

 A B C K P U

1 =k*uxx =u-P1 =ux 1 1000 =IF(X1=0,P1,0)

Based on the initial response of Table 16, we define the
simple constraint C2 in Table 18, which penalizes the
difference between the actual temperature at the right side
(cell H23 of Table 16) and the target value of 75. Note
that although we are extracting one element from the
solution array, we must do that by means of the criterion
function ARRAYVAL() according to the functional
formulation (2)-(6). Next, we run NLSOLVE() formula:

 American Journal of Modeling and Optimization 9

 ()2, 1NLSOLVE C P= (22)

with P1 as the variable. NLSOLVE() computes an optimal
value of 84.0786 for P1, as shown in Table 18. Although
not shown, re-simulating the system (20) with the
computed value for P1 shows that the constraint C2 is
satisfied.

Table 18. Constraint and solver formulas for problem 3.3. The
optimal value computed by the solver is shown to the right

 C C

2 =ARRAYVAL(H23) - 75
3 =NLSOLVE(C2,P1)  84.07859699

4. Conclusion
The spreadsheet computing engine is exploited via a

nonconventional approach to develop a novel set of
solvers which support a functional paradigm for
dynamical optimization. Design of the solvers was made
possible by overcoming inherent limitations that restricted
spreadsheet functions to operating on static inputs only,
while retaining essential properties of purity and recursion.
The solvers are assembled in an add-in software library
[24], which integrates seamlessly with MS Excel. Three
examples were presented to demonstrate the merits of the
solvers, which expand the spreadsheet utility into a new
direction. Future effort will consider extending the
capability of this framework to solve general optimal
control problems.

Although we do not provide benchmark performance
data in this paper, we comment that all the preceding
examples compute on the order of a second or less, on a
typical computer with an Intel core i5 processor. The
performance is directly linked to the true performance of
the spreadsheet engine due to direct interface to the
spreadsheet engine API [17].

Appendix A

A.1 Basic Spreadsheet Concepts
A spreadsheet is composed of a large structured grid.

Each cell in the grid is referenced by its column label and
row number (e.g., A1), and represents a global memory
placeholder. A range of cells can be referenced as a
rectangular array, e.g., A1:B3 or a union of disjoint arrays
and cells, e.g., (X1, A1:A3). A cell may store a constant
value or a formula defined using basic spreadsheet syntax,
e.g., ‘= SQRT(X1^2 + Y1*Y1)’. The spreadsheet engine
insures orderly evaluation of all dependent formulas upon
a change in the value of any cell. A general function can
thus be identified by a root formula and a list of variable
cells. Nested dependency allows arbitrarily complex
functions to be constructed. To motivate the possibilities,
consider the formula ‘=SUM(X1:Z1)’ assigned to A1, the
pair (A1, Y1) identifies the function 𝑓(𝑦) = 𝑋1 + 𝑦 + 𝑍,
where X1 and Z1 are treated as constant values. In another
example, consider the formula ‘=1+COS(B1)’ assigned to
A1, and the formula ‘=SQRT(ABS(X1))’ assigned to B1,
the pair (A1,X1) identifies the function 𝑓(𝑥) = 1 +
cos (�|𝑥|).

Excel supports two types of formulas: simple formulas
and array formulas. A simple formula is assigned to one
cell and evaluates to a single value, e.g., ’=SUM(A1:B4)’.
Alternatively, an array formula is assigned to a range of
cells and evaluates to an array of values, e.g.,
‘=MINVERSE(A1:C3)’ which computes the inverse of
the 3 by 3 matrix A1:C3.

A.2 Differential Systems Solvers

A.2.1 Initial Value Spreadsheet Solver: IVSOLVE()

 [] (, , , ,)IVSOLVE rhs vars interval m options= (A.1)

The spreadsheet solver IVSOLVE (A.1) computes the
solution to an initial value ordinary differential-algebraic
system represented in the ordered form:

()

()

, , , 1,...,

0 , , , 1,...,

i
i

j

du
f t i n

dt
g t j m

= =

= =

u y

u y
 (A.2)

with initial conditions 𝑢𝑖(0) = 𝑎𝑖 , 𝑦𝑗(0) = 𝑏𝑗 , and over
the Interval 𝑡 ∈ [0 𝑇].

References to the system RHS formulas
(𝑓1, 𝑓2, . . , 𝑓𝑛,𝑔1,𝑔2, . .𝑔𝑚) are supplied in the first
parameter rhs and the system variables
(𝑡,𝑢1,𝑢2, . . ,𝑢𝑛,𝑦1,𝑦2, . .𝑦𝑚) are seeded with initial values
and supplied via the 2nd parameter vars. The integration
interval is defined in the third parameter, interval, and the
number of algebraic constraints, if nonzero, is supplied in
4th parameter m. IVSOLVE() implements several
integration schemes [25,26], suitable for stiff and smooth
problems. Algorithm control parameters and an optional
system analytic Jacobian can be supplied via the
[options][24].

IVSOLVE() is executed as an array formula in a pre-
allocated range of cells. It evaluates to an ordered tabular
array of values for the system variables with the layout
shown in Figure 2. By default IVSOLVE() reports the
output at uniform intervals according to the allocated
number of rows for the output array. Custom output
formats can be achieved via the optional parameters [24].

A.2.2 Boundary Value Spreadsheet Solver:
BVSOLVE()

[]

 , , , ,
, ,

rhs vars bpts bcs
BVSOLVE

interval m options
 

=  
 

 (A.3)

The spreadsheet function BVSOLVE() (A.3) computes
the solution to a multi-point boundary-value first order
differential-algebraic systems represented in the order
defined in (A.2), with boundary conditions expressed in
the form 0 = 𝑏𝑐𝑖(𝒖, 𝑥) at 𝑥 = 𝑝𝑖 for 𝑖 = 1, … ,𝑛 in the
domain 𝑥 ∈ [0 𝐿].

BVSOLVE() shares similar parameters with
IVSOLVE(), except for the boundary points and
associated conditions formulas, which are supplied via
bpts and bcs, respectively. BVSOLVE() implements the
COLDAE collocation algorithm [27,28], and evaluates to
the same results layout shown in Figure 2. Optional
analytical system and boundary conditions Jacobians as
well as algorithm control parameters can be supplied via
[𝑜𝑝𝑡𝑖𝑜𝑛𝑠] [24].

10 American Journal of Modeling and Optimization

To demonstrate BVSOLVE(), we solve the 4th order
equation:

 () ()
() ()

2 ''' ''
''''

3

''

''

1 6 6 , 1 2

1 0 1 0,

2

,

2 0 0,

x z xzz x
x

z z

z z

− −
= ≤

=

==

=

≤

 (A.4)

which models a uniformly loaded beam of variable
stiffness simply supported at both ends [29]:

Using standard substitution, we convert (A.4) into a
system of 1st order equations. Letting 𝑢 = 𝑧′, 𝑣 = 𝑢′ =
𝑧′′,𝑤 = 𝑣′ = 𝑧′′′, we have:

2

3
1 6 6dw x w xv

dx x
dv w
dx
du v
dx
dz u
dx

− −
=

=

=

=

 (A.5)

with equivalent boundary conditions: 𝑧(1) = 0, 𝑣(1) =
0, 𝑧(2) = 0, 𝑣(2) = 0 . The complete system model in
Excel is shown in Table 19. Next we evaluate the array
formula:

()

{ }
2 : 5, 1, 1, 1, 1, 1 ,

2 : 5, 2 : 5, 1, 2

A A X W V U Z
BVSOLVE

C C D D

 
=   

 
 (A.6)

in the allocated range H4:L25, and obtain the solution
shown partially in Table 20 and plotted in Figure 10.

Table 19. Differential system (A.5) definition in Excel for input to
BVSOLVE()

 A C D

1 System RHS formulas Boundary
points

Boundary
conditions

2 =(1-6*X1^2*W1-
6*X1*V1)/X1^3 1 =Z1

3 =W1 1 =V1

4 =V1 2 =Z1

5 =U1 2 =V1

Figure 10. Plot for results of Table 20 for boundary value problem (A.4)

Table 20. partial listing of results computed by (A.6) for the system
definition given in Table 19

A.2.3 Initial Boundary Value Problem Spreadsheet
Solver: PDSOLVE()

[]() , , , , , ,)PDSOLVE rhs vars lbc rbc L T options= (A.7)

The spreadsheet function PDSOLVE() (A.7) computes
the solution to an initial boundary-value differential
system represented in the ordered form:

 (), , , , , 1,...,i
i

u
f t x i n

t
∂

= =
∂ x xxu u u (A.8)

with initial conditions expressed in the form 0 = 𝑢𝑖(𝑥, 0),
and left and right boundary conditions expressed in the
form 0 = 𝑏𝑐𝑖(𝒖,𝒖𝒙) at 𝑥 = 0 and 𝐿, in the time interval:
𝑡 ∈ �0 𝑇� and spatial domain: 𝑥 ∈ �0 𝐿�.

References to the system RHS formulas are supplied in
the 1st parameter rhs, and the system variables
(𝑡, 𝑥,𝒖,𝒖𝒙,𝒖𝒙𝒙) supplied via the 2nd parameter vars, with
𝒖 seeded with initial value formulas. Left and right
boundary condition formulas are specified via lbc and rbc.
Spatial and temporal domains are defined via the 5th and
6th parameters L and T. Optional System Jacobians and
algorithm controls can be supplied via [𝑜𝑝𝑡𝑖𝑜𝑛𝑠] [24].

PDSOLVE() implements the method of lines [30].
Spatial discretization is carried out on a uniform mesh
using a standard collocation method [27]. The resulting
implicit ODE system is integrated by any of the schemes
RADAU5, BDF, or ADAMS with adaptive step control
[25,26]. The output result can be presented in one of two
formats: a snapshot of the system variables’ spatial
distribution at desired temporal values, or a transient view
of the system variables at specified spatial points. The
snapshot format is demonstrated in Figure 11 for a system
with two equations, where the system variables are
reported in repeated column blocks for each pair of the
output time and space values. The transient view layout is
identical except that the roles of time and space are
interchanged.

Figure 11.Snapshot solution layout in Excel for partial differential
equation solver PDSOLVE(). The display of 1st and 2nd derivative
variables is optional

 H I J K L

4 X1 W1 V1 U1 Z1

5 1 -0.5 1.552E-30 0.017132 0

6 1.05 -0.3301 -0.020516 0.016584 0.0008472

-- -- -- -- -- --

24 1.95 0.065617 -0.003203 -0.01121 0.0005634

25 2 0.0625 1.735E-18 -0.01129 -1.084E-19

 American Journal of Modeling and Optimization 11

Appendix B

B.1. Criterion Spreadsheet Function:
ARRAYVAL()
 []() , ,ARRAYVAL DATA GlobalOper LocalOper= (B.1)

The spreadsheet function ARRAYVAL() (B.1)
computes a scalar property for a set of data, DATA,
selected from a system solution array, by applying user
supplied formulas specifying local and global operations
on DATA. The optional local operation transforms
elements of DATA (e.g., an absolute value operation), and
the global operation maps the entire data set to a scalar
(e.g., a maximum value operation). Common global
operations such as computing maximum or minimum can
be defined directly as “MAX” or “MIN”.

B.2. Criterion Spreadsheet Function:
ODEVAL()

[]

 , ,
,

range operand
ODEVAL

operation parameters
 

=  
 

 (B.2)

The spreadsheet function ODEVAL() (B.2) computes a
scalar property from an ODE system solution array by
applying a calculus integration, differentiation, or
interpolation operation. The operand for the calculus
operation is a system variable or a formula of system
variables. The operation, which is specified using any of
the labels: “INTEG”, “DERIV” or “INTERP”, is applied
over a selected range for the system’s independent
variable. ODEVAL() perform the requested operation by
the aid of a cubic spline curve fit to the data [31].
Additional required data, such as a differentiation or
interpolation point, are defined in [parameters] [24].

Appendix C

C.1. Functional Minimizer Spreadsheet
Solver: NLSOLVE()
 [] []() , , ,NLSOLVE lhs vars ineq options= (C.1)

The spreadsheet function NLSOLVE() (C.1) computes
a least square minimum error solution toan algebraic
system of 𝑘 equations and 𝑚− 𝑘 inequalities, with
variables 𝒙 = [𝑥1, 𝑥2, . . , 𝑥𝑛], ordered in the form:

()
()

 0, 1,...,

 0, 1,..,
i

i

f i k

f i k m

= =

≥ = +

x

x
 (C.2)

References to the system LHS formulas [𝒇𝒊] are
supplied via lhs, and the system variables via vars. The
number of inequality constraints, is defined in [ineq].
System analytic Jacobian and algorithmic parameters may
be supplied via the [options] [24].

NLSOLVE() employs the Levenberg-Marquardt
algorithm [21,22] to find optimal values for the system
variables 𝒙 by minimizing an implicit objective function
representing the sum of squares of the equations and
active inequalities. When an equation or inequality of
system (C.2) is a dynamical constraint defined by means

of a criterion function, evaluation of the constraints
automatically triggers re-evaluation of underling system to
compute a current value for the constraint [17].

References
[1] Larsen, R. W., “Engineering with Excel,” Pearson PrenticeHall

2009, New Jersey.
[2] Bourq, David M., “Excel scientific and engineering cookbook,”

O’Reilly, 2006.
[3] Laughbaum, Edward D., Seidel, Ken, “Business math Excel

applications,” Prentice Hall ; 2008.
[4] E. J. Billo, Excel for Scientists and Engineers, WILEY-

INTERSCIENCE, 2007.
[5] Ali El-Hajj, Sami Karaki, Mohammed Al-HusseiniKarim Y.

Kabalan, “Spreadsheet Solution of Systems of Nonlinear
Differential Equations”, Spreadsheets in Education, Vol 1, Issue 3.

[6] M. B. Cutlip and M. Shacham, Problem Solving in Chemical and
Biochemical Engineering with POLYMATH, Excel and
MATLAB,Prentice Hall, 2008.

[7] Chung-Yau Lam and F. H. Alan Koh, “A Partial Differential
Equation Solver for the Classroom,” Int. J. Engng Ed.Vol. 22, No.
4, pp. 868-875, 2006.

[8] Hagler, Marion, “Spreadsheet Solution of Partial Differential
Equations,” IEEE Transactions on Education, Volume:E-30
Issue:3.

[9] Olsthoorn TN (1998) Groundwater modelling: calibration and the
use of spreadsheets. Delft University Press, Delft, ISBN 90-407-
1702-8, CIP, about 300 pp.

[10] Karahan H. (2007). Unconditional stable explicit finite difference
technique for the advection-diffusion equation using spreadsheets.
Adv.EngSoftw 38(2):80-86.

[11] Palisade Corporation, “Evolver. The Genetic Algorithm Super
Solver for Microsoft Excel.”, Palisade Corporation (2001).
https://www.palisade.com/evolver/.

[12] Cliff Ragsdale, “Spreadsheet Modeling & Decision Analysis: A
Practical Introduction to Management Science, 6th Edition”.
College Bookstore, 2011.

[13] S. Dalton, Financial Applications using Excel Add-in
Development in C/C++ , The Wiley Finance Series, 2007.

[14] Excel Commands, Functions, and States, MSDN publication,
https://msdn.microsoft.com/en-
us/library/bb687832(v=office.15).aspx.

[15] Description of limitations of custom functions in Excel.
https://support.microsoft.com/en-us/kb/170787.

[16] The MathworksInc, MATLAB Builder EX,
http://www.mathworks.com/products/matlabxl/.

[17] C. Ghaddar, “Method, Apparatus, and Computer Program Product
for Optimizing Parameterized Models Using Functional Paradigm
of Spreadsheet Software,” USA Patent No. 9286286.

[18] C. Ghaddar, Unconventional Calculus Spreadsheet Functions,
ICMS 2016: 18th International Conference on Mathematics and
Statistics. Boston.

[19] R. Piessens, E. de Doncker-Kapenga, C.W. Ueberhuber, and D.K.
Kahaner, QUADPACK A subroutine package for automatic
integration, Springer Verlag, 1983.

[20] Wikipedia. Functional Programming.
https://en.wikipedia.org/wiki/Functional_programming

[21] K. Levenberg, A Method for the Solution of Certain Non-Linear
Problems in Least Squares, Quarterly of Applied Mathematics
vol2, 164-168, 1944.

[22] D. Marquardt , An Algorithm for Least-Squares Estimation of
Nonlinear Parameters,SIAM Journal on Applied Mathematics
vol11 (2), 431-441, 1963.

[23] V. Arnăutu and P. Neittaanmäki, “Optimal Control from Theory to
Computer Programs” Springer. 2003.

[24] C. Ghaddar, ExceLab Reference Manual,
www.excel-works.com

[25] E Hairer and G Wanner, Solving Ordinary Differential Equations
II: Stiff and Differential-Algebraic Problems, Springer Series in
Computational Mathematics, 1996.

[26] Alan C. Hindmarsh, ODEPACK, A Systematized Collection of
ODE Solvers, in Scientific Computing, R. S. Stepleman et al.
(Eds.), North-Holland, Amsterdam, 1983, pp. 55-64.

12 American Journal of Modeling and Optimization

[27] U. M. Ascher, R. M. Mattheij and R. D. Russell, Numerical
Solution of Boundary Value Problems for Ordinary Differential
Equations, SIAM, 1995.

[28] U. Ascher and R. Spiteri, Collocation software for boundary value
differential-algebraic equations, SIAM Journal on Scientific
Computing. 1994, 15,938-952.

[29] GAWAIN, T.H., AND BALL, R.E. Improved finite difference
formulas for boundary value problems. Int. J. Numer. Meth. Eng.
12 (1978), 1151-1160.

[30] Schiesser W.E (1991).The Numerical Method of Lines, San Diego,
CA: Academic Press, 1991.

[31] Gao, Zhang and Cao in the article: “Differentiation and numerical
Integral of the Cubic Spline Interpolation”, in the Journal of
Computers, Vol. 6, No 10, 2011.

