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Abstract  The spreadsheet computational engine is exploited via a nonstandard mechanism to support a functional 
formulation for constrained optimization of parameterized differential systems by unconventional spreadsheet 
functions. The nonstandard mechanism enables encapsulation of numerical algorithms into functions which take 
variable formulas as a new type of input argument while retaining purity and recursion properties. This is in contrast 
to conventional spreadsheet functions which are restricted to static input types. Several solvers for differential 
equations and nonlinear minimization are developed which serve as building blocks for the functional formulation. 
The latter makes it possible to express a program for a constrained dynamical minimization problem in as few as 
three formula evaluations in Excel as demonstrated by several examples. The solver functions integrate seamlessly 
with MS Excel, and propel the spreadsheet beyond traditional applications as a powerful tool for exploring 
dynamical optimization problems. 
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1. Introduction 
The spreadsheet inherent simplicity of defining formulas 

and manipulating data, combined with rich intrinsic 
mathematical functions, graphing tools, and extensibility, 
have contributed to its widespread adoption in engineering 
and scientific applications [1,2,3]. Models for differential 
equations [4-10], optimization of algebraic and stochastic 
systems, and risk analysis [11,12] are well known. 
However, computational problems in constrained dynamical 
minimization involving systems of differential equations, 
and more generally optimal control problems, have remained 
beyond the utility of the spreadsheet. An example of such 
problems is computing optimal parameters for a 
differential equation system that minimize the sum of 
square errors for prescribed constraints on its response. 
The sought parameters may be any controls that influence 
the response of the system such as coefficients, forcing 
terms, boundary conditions, etc. Solving similar problems 
requires seamless integration of multiple solvers for 
constrained minimization and differential equations.  

The standard design of the spreadsheet makes such an 
integration of solvers technically impractical. To point out 
the reasons, we briefly review the two distinct venues for 
adding functionality to a spreadsheet: Commands and 
Functions [13,14]. A command is the standard mechanism 
for evaluating formulas in the spreadsheet. MS Excel’s 
built in optimization solver is a good example of a 
command which works as follows: 

1.   The user selects cells to hold initial values for each 
decision variable in a model. 

2.   In another group of cells, the user defines formulas 
for the objective function and the left hand side of 
each constraint. 

3.   Via a command dialogue, the solver is executed 
which iterates, altering the decision cells values and 
recalculating the dependent objective and 
constraints cell values until such values are found 
which minimize the objective function value and 
satisfy the constraints. 

Obviously, a command works by transforming its own 
inputs and does not behave as a proper mathematical 
function. It lacks the properties of purity, composition and 
could not support recursion. Differential equations solver 
extensions to Excel rely on commands, and operate in a 
similar fashion to the built in Excel solver, or may utilize 
the structured spreadsheet layout as a finite difference grid 
mixing up the input, algorithm and output [4-10]. Furthermore, 
a command cannot to be invoked programmatically as a 
re-usable function from other spreadsheet formulas [14]. 
Therefore, it is unfeasible to integrate multiple commands 
to solve a dynamical minimization problem. 

On the other hand, the second mechanism for extending 
the spreadsheet utility is through the addition of new 
functions. The spreadsheet design permits only pure 
functions restricted to operating on constant inputs 
[13,14,15]. Some external programs, such as MATLAB 
[16] offer interfaces to Excel to expose a portion of their 
functionality. This model permits exchange of basic data 
types such as numbers, but cannot be used to expose 
differential and optimization solvers. Therefore, the 
standard spreadsheet functions could not either support a 
constrained minimization of a dynamical system.  
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Certainly, the inherent design limitations of the 
spreadsheet unduly limit its full potential. Given the 
spreadsheet intuitive interface for defining formulas, it 
presents a practical platform for supporting native calculus 
solvers that could support a functional paradigm for 
dynamical optimization problems. Accordingly, the author 
has developed a method which overcomes the spreadsheet 
limitation and enables the creation of a first class function 
– function that can take other functions (i.e., formulas and 
variables) as arguments while preserving its mathematical 
properties including purity and recursion. Details of the 
method are provided in [17] and are rather technical in 
nature. However, the main idea is to capture the definition 
of an input formula via the spreadsheet Advanced 
Programming Interface (API) and construct a relational 
graph representing the formula inter-dependence on nested 
formulas, variable cells, and recursive calls. A graph 
evaluator which exploits the spreadsheet API evaluates the 
value of a formula without modifying any data in the 
spreadsheet.  

The flowchart logic for developing a first class solver is 
shown in Figure 1. The benefits gained by enabling a first 
class solver in the spreadsheet are noteworthy. The 
spreadsheet’s computational engine could be exploited to 
support intrinsic solvers for virtually any system that can 
be modelled by formulas and variables [18]. For example, 
the flow chart of Figure 1 makes possible, for the first 
time, the existence of the following intrinsic worksheet 
integration function:  

  ( ,  ,  ,  ,  [ ])QUADF f x a b Options=  (1) 

for computing a formula integral ( )b
a

f x dx∫  
using 

appropriate algorithms [19]. 

 
Figure 1. Flow chart for unconventional first class spreadsheet function 
design 

Table 1 illustrates utilizing (1) to compute the integral 

of 
1
0

ln  4xdx
x

= −∫
 
in Excel. The reference to the integrand 

formula A1 1, the variable of integration X1, and limits are 
passed to (1) as regular parameters. Evaluating QUADF 
formula in A2 computes the results without any side 
effects. Such a practical integration function has never 
existed in a spreadsheet application before. 

Table 1. Computing a formula integral in Excel by the worksheet 
function (1) 

 A   A 

1 =LN(X1)/SQRT(X1)  1 #NUM! 

2 =QUADF(A1,X1,0,1)  2 -4 
 

More importantly, by preserving function properties 
including purity and recursion, the first class solvers can 
be utilized as building blocks of a functional paradigm for 
solving dynamical optimization problems. A simple 
example of a functional program is illustrated in Table 2 
in which (1) is employed to compute the volume integral

32 3 6 3 2
2

0 0 0
1 3.

x x y
xdzdydx

− − −
− =∫ ∫ ∫ Here each inner 

QUADF formula serves as the integrand for the next outer 
QUADF formula. Evaluating the outer integral in A4 
computes the triple integral value. 

Table 2. Example of using recursion to compute triple integral in 
Excel 
 A   A 

1 =1-X1  1 1 

2 =QUADF(A1,Z1,0,6-3*X1-2*Y1)  2 6 

3 =QUADF(A2,Y1,0,3-3*X1/2)  3 9 

4 =QUADF(A3,X1,0,2)  4 3 
 

In Section 2 we present an abstract functional 
formulation which permits us to utilize first class 
spreadsheet functions to solve constrained dynamical 
minimization problems in Excel. The formulation is 
motivated by the combination of the benefits of a 
functional programming paradigm [20] with the simplicity 
of using the spreadsheet application. It enables expressing 
the solution steps from an engineering view point, rather 
than describe the computational logic in a procedural style, 
as is commonly practiced. Given a set of control 
parameters, we model and obtain an initial response of the 
differential system based on initial values for the control 
parameters. In the next step, we state design objectives in 
the form of constraint formulas, which penalize the 
deviation of the initial response from a desired target 
response. Finally, we compute values for the control 
parameters to minimize the sum of squared errors in the 
set of design constraints. These steps map directly to three 
classes of first class functions: solvers for differential 
equation systems; criterion functions to enable definition 
of dynamical constraints on a system response; and a 
functional minimizer for the set of constraints. As shall be 
demonstrated in the examples, it is possible to express a 

                                                           
1The #NUM! error reported by Excel is due to division by X1 which is 
undefined. X1 is chosen as a dummy variable for the formula. Its value, 
assumed zero by Excel, is irrelevant, and the error can be ignored. 
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program for constrained minimization in as few as three 
function evaluations in Excel.  

The three classes of functions which form the building 
blocks of the functional formulation are presented in the 
following section with full description provided in 
Appendices A-C. Section 3 presents three examples 
employing the spreadsheet functions for solving the 
following constrained optimization problems: 
•  Computing the required thrust and arrival time for a 

travelling train. 
•  Customizing a second order dynamical system. 
•  Controlling heat transfer across a slab. 
We note that this article primary focus is to introduce 

and illustrate the solution framework using pedagogical 
examples rather than analyze any specific physical 
problem. In addition, the article does not review other 
non-spreadsheet methods, but leave it to the reader to 
withdraw own conclusion on the merits of the presented 
approach in comparison to other familiar mathematical 
software. Finally, we recommend reviewing Appendix A 
which includes a brief description of basic spreadsheet 
concepts for any reader not familiar with the spreadsheet. 

2. Functional Formulation for the 
Dynamical Optimization Problem 

In the following, we present a functional formulation 
for the constrained minimization problem which is based 
on first class spreadsheet solvers. In what follows, a bold 
symbol indicates a vector value. Let 𝒖(𝑥,𝒑𝒅)  be the 
solution function to a system of differential equations 
where 𝑥  is an independent variable and 𝒑𝒅  is a set of 
design parameters that influence the system response. 
𝒖(𝑥,𝒑𝒅) can be interpreted as a solution function returned 
by a higher order solver function [20] for the differential 
equations system. The solution function provides values 
for the differential system variables 𝒖 = [𝑢1,𝑢2, . . ,𝑢𝑛] at 
a specified value for the independent variable , 𝑥, and for a 
given configuration of the system design parameters,  𝒑𝒅. 
In a spreadsheet context, 𝒖(𝑥,𝒑𝒅) represents an abstract 
tabular result value of a differential equation system solver. 

Let 𝑓𝑖(𝒖(𝑥,𝒑𝒅), [𝑥],𝒑𝒅) be a criterion functional that 
computes a scalar property of interest from the differential 
system response, 𝒖(𝑥,𝒑𝒅) , for a specified range of the 
independent variable,  [𝑥] , and specified values for the 
design parameters,  𝒑𝒅 . For example, 𝑓𝑖  may simply 
extract a single value from 𝒖(𝑥,𝒑𝒅), or may compute a 
complex property by applying a prescribed operation, such 
as integrating a component of 𝒖(𝑥,𝒑𝒅) over a specified 
range  [𝑥] . Given a target design value,  𝜏𝑖 , for each 
criterion functional, 𝑓𝑖, we construct the following ordered 
system of 𝑚 constraints: 

 
( )
( )

0, 1,..,

0, 1,..,
i

j

g i k

g j k m

= =

≥ = +
d

d

p

p
 (2) 

where 𝑔𝑖 , 𝑖 = 1, . . ,𝑚  is a suitable penalty functional 
which may take the simple form: 
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for 𝑗 = 𝑘 + 1, . . ,𝑚, be an indicator weight function which 
takes on the value one for each active (unsatisfied) 
inequality constraint, or zero otherwise. 

Accordingly, the optimal design parameters values we 
seek to compute, minimize the following implicit cost 
functional:  

 ( ) ( ) ( ) ( ) 22

1 1
i j jC g g δ

= = +

 = +  ∑ ∑
k m

d d d d
i j k

p p p p  (5) 

Based on the flowchart of Figure 1, in conjunction with 
a suitable minimization algorithm such as the Levenberg-
Marquardt algorithm [21,22], the minimization of the 
objective (5) can be practically expressed in the 
spreadsheet by the evaluation of a worksheet functional 
minimizer solver of the form: 

 ( )( , ,[ ])solve m k= −d d g p p  (6) 

which takes the vector of constraint formulas, design 
variables, and the number of inequality constraints, 𝑚− 𝑘. 
The functional formulation ensures that evaluation of a 
criterion constraint formula by the solver algorithm 
triggers re-evaluation of the underling dynamical system 
in order to compute a current value for the constraint at 
any given values of the design parameters [17]. 

We remark that although the above formulation does 
not specify an explicit general cost functional, it is easily 
amenable to incorporating one. Such a modification would 
entail: modifying the solver (6) interface to accept an 
additional cost formula, 𝐺(𝒑𝒅) , and updating the 
underlining solver algorithm. Expanding the framework to 
support an explicit cost functional including continuous 
time cost functional for optimal control problems [23] will 
be addressed in a forthcoming effort. 

The abstract functional formulation (2)-(6) lays the 
foundation for a practical three-step dynamical 
optimization process that can be carried out using three 
type of pure spreadsheet functions which we described 
next.  

2.1. Differential Equations Solvers 
Two spreadsheet solvers, IVSOLVE() and BVSOLVE() 

suitable for initial and boundary value problems, have 
been developed and described in Appendix A. To utilize 
the solvers, the differential system must be presented as a 
set of first order equations 

 ( ), , , 1,..,i
i

du
f x i n

dx
= =du p  (7) 

which are easily modelled in a spreadsheet by the system 
RHS formulas (𝑓1, 𝑓2, . . , 𝑓𝑛). These formulas are passed as 
arguments to the solvers along with the system variables 
(𝑥,𝑢1,𝑢2, . . ,𝑢𝑛) , as detailed in Appendix A. The 3rd 
solver, PDSOLVE(), suitable for initial-boundary value 
partial differential problems is also presented in Appendix 
A, and utilized in Example 3.3. 

A solver is executed as a regular intrinsic array formula 
in an allocated range of the spreadsheet. The solver 
computes and displays a formatted result as shown in 
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Figure 2. The result table serves as a discrete proxy for the 
function 𝒖(𝑥,𝒑𝒅) in (2)-(6) providing a map between the 
independent variable 𝑥  and the state variables 𝒖  for 
specified values of the design parameters 𝒑𝒅. 

 
Figure 2. Solution layout in Excel for differential systems solvers 
IVSOLVE() and BVSOLVE() 

2.2. Criterion Functions 
A criterion function corresponds to 𝑓𝑖(𝒖(𝑥,𝒑𝒅), [𝑥],𝒑𝒅) 

in (3), and computes a scalar property from the solution 
array (see Figure 2) of a differential systems solver for the 
purpose of constraining the response. A constraint formula 
penalizes the difference between the computed scalar 
property value and a target value. In essence, the criterion 
function provides the dynamical link that connects the 
differential systems solver with the functional minimizer 
and enables the operation of the functional formulation 
(2)-(6). The dynamical links are achieved naturally such 
that evaluation of a constraint formula leads to re-evaluation 
of the underling differential solver [17] in order to 
compute a current value for the scalar property of interest.  

The scalar property may be a direct value extracted 
from the solution at a specified point, or an indirect 
computed value utilizing a prescribed calculus operation 
or a user defined formula. To accommodate general 
applications, two criterion functions, ARRAYVAL() and 
ODEVAL(), have been developed and described in 
Appendix B. ARRAYVAL() applies user-defined formulas 
to map a selected data set within the solution array (Figure 
2) to a scalar value. On the other hand, ODEVAL() 
applies a calculus operation, such as differentiation or 
interpolation, to compute a value from the solution array. 
We remark that the parameter differences between the 
abstract criterion functional and the actual implementations 
described in Appendix B are rather a technical exploitation of 
the spreadsheet and functional programming properties, 
which permit us to assign and recover functions from 
variables [17]. 

2.3. Functional Minimizer 
A functional minimizer NLSOLVE(), which 

corresponds to (6), is described in Appendix C. It receives 
the set of formula constraints, and design parameters 
variables, and computes optimal values for the latter that 
minimize the implicit cost functional (5).  

The aforementioned spreadsheet functions enable the 
three-step optimization formulation (2)-(6) comprising the 
following practical steps. 

I.    Using initial values of the design parameters, obtain 
an initial response to the parameterized differential 

system by a suitable solver IVSOLVE(), 
BVSOLVE(), or PDSOLVE(). 

II.  Define constraints on the initial system response 
using the criterion functions ARRAYVAL() and 
ODEVAL(). 

III. Solve for the set of constraints for the optimal 
design parameters using NLSOLVE(). 

These steps are demonstrated in the following section 
with three examples in Excel. 

3. Constrained Optimization Examples 

3.1. Travelling Train Problem 
In this example we compute the required propulsion 

force and the travel time for a frictionless train travelling 
between two cities through a straight tunnel. The train 
uses a constant propulsion force to accelerate, but relies 
solely on the gravitational pull of the Earth, as well as 
aerodynamic drag, for deceleration. Using the assumptions 
shown in Table 3 and referring to Figure 3, we formulate 
the problem as a constrained optimization problem as 
follows. 

Figure 3 shows the forces acting on the train during its 
trip from City A to City B along the circular path of the 
earth. The motion for the train is governed by the second 
order equation: 

 ( ) ( ( ))t p d gm x F F x F xθ= − +   (8) 

with the initial conditions 𝑥(0) = 0, �̇�(0) = 0 at departure 
City A. 

Table 3. Assumptions and parameters for problem 3.1 
Train mass  𝑚𝑡 = 100,000 (kg) 
Distance travelled 𝑑 = 1000,000 (m) 
Earth Radius 𝑅 = 6371,000 (m) 
Gravitational constant 𝑔 = 10 𝑚/𝑠2 
Drag force 𝐹𝑑(𝑣) = 0.5 ∗ 𝑣2 (N) 
Propulsion force 𝐹𝑝= constant (N) 
Gravitational force 𝐹𝑔(𝜃) = 𝑚𝑡 ∗ 𝑔 ∗ cos (𝜃) (N) 

 
Figure 3. Schematic for the forces acting on the travelling train of 
problem 3.1 

Using 𝑑/𝑅 ≪ 1, the angle of rotation, 𝜃, (see Figure 3) 
can be approximated by the following formula: 

 ( )

1

1

tan , / 2
/ 2

, / 2
2

tan , / 2
/ 2

R x d
d x

x x d

R x d
d x

πθ

π

−

−

   <  − 


= =

   + >  − 

 (9) 
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On arrival at City B, the train comes to a halt, so the 
final conditions can be stated as: 

 ( )
( ) 0

f

f

x t d

x t

=

=

 (10) 

The final conditions (10) can be viewed as constraints 
on the differential equation (8) for the train’s motion. The 
problem is thus reduced to finding optimal values for the 
unknown propulsion force 𝐹𝑝  and the travel time 𝑡𝑓  such 
that the two constraints (10) are satisfied. We compute the 
answer by a simple functional program in Excel 
spreadsheet corresponding to the three-step optimization 
process as shown below. 

Step 1 
We model the differential equation (8) in Excel as a 

parameterized two first order equations in B2:B3 as shown 
in Table 4. For convenience, we assign names to raw cells 
addresses, e.g., ‘x’ for B6, ‘v’ for B7, ‘Fd’ for D2, ‘Th’ 
for D4 and so on. 

Table 4. Parametrized differential system definition in Excel for 
problem 3.1 

 A B C D 

1 Differential system Forces formulas 

2 dx/dt =v Fd =0.5*v^2 

3 dv/dt =(Fp-
Fd+Fg)/m Fg =m*g*COS(Th) 

4 System variables with 
initial conditions Th 

=IF(x<d/2,ATAN(Re/(d/2-
x)),IF(x>d/2,ATAN(Re/(d/2-
x))+PI(),PI()/2)) 

5 t 0   
6 x 0 Constant parameters 

7 v 0 g 10 

8 Design parameters 
with initial values Re 6371000 

9 Fp 1000 d 1000000 

10 Tf 4500 m 100000 
 

The system is simulated with a guess value 𝐹𝑝 = 1000 
for a sufficient time of 4500 seconds by evaluating the 
IVSOLVE() array formula: 

 ( )( )2 : 3,  , , ,  {0,4500}IVSOLVE B B t x v=  (11) 

in the range J1:L38 2 . The first argument to (11) is a 
reference to the system formulas (see Table 4), the second 
argument is the system variables, and the third argument 
specifies the time interval. IVSOLVE() computes and 
displays the solution in the range J1:L38 as shown in 
Table 5. 

Step 2 
Using the criterion function ODEVAL() (B.2), we 

define in Table 6 two constraint formulas, which 
correspond to the final conditions (10). Constraint C14 
penalizes the difference between the interpolated value for 
                                                           
2The choice of the range location and its allocated number of rows are 
arbitrary. By default, the number of rows determines the uniform interval 
for the output solution. This behavior can be changed via the options to 
the solver [24], such as to use a custom step or non-uniform output 
points. 

the displacement, 𝑥, at the final but unknown time, 𝑡𝑓, and 
the travelled distance 𝑑 , while constraint C15 demands 
that the interpolated value for the velocity, 𝑣, at the final 
time, 𝑡𝑓 , vanishes. As described in Appendix B, 
ODEVAL() uses internally a spline curve fit to perform 
the interpolation operation. The first argument for 
ODEVAL(), J2:J38, (selected from Table 5) defines the 
desired range for the interpolation operation, and second 
argument, x, identifies the variable to interpolate3.  

Table 5. Solution computed by (11) for the system definition given in 
Table 4 

 J K L   J K L 

1 t x V  20 2250 535135 146.4526 

2 0 0 0  21 2375 552249.8 127.3546 

3 125 6115.463 96.66716  22 2500 566971.2 108.1826 

4 250 23618.42 180.3757  23 2625 579292.2 88.95507 

5 375 50345.74 243.5815  24 2750 589207.6 69.68509 

6 500 83614.12 285.3167  25 2875 596712.8 50.38592 

7 625 120912.9 308.8178  26 3000 601804.6 31.06775 

8 750 160244.8 318.6075  27 3125 604479.3 11.73845 

9 875 200165.6 318.7776  28 3250 604737.5 -7.59494 

10 1000 239672.8 312.4788  29 3375 602579.9 -26.9254 

11 1125 278105.9 301.8894  30 3500 598007 -46.2459 

12 1250 315027.7 288.4672  31 3625 591022 -65.5454 

13 1375 350145.5 273.1784  32 3750 581623.1 -84.8236 

14 1500 383269.8 256.6382  33 3875 569814.6 -104.068 

15 1625 414271.2 239.2515  34 4000 555605.2 -123.257 

16 1750 443058.6 221.296  35 4125 539003.6 -142.369 

17 1875 469577.2 202.9315  36 4250 520018.9 -161.382 

18 2000 493781.3 184.2855  37 4375 498664.1 -180.264 

19 2125 515639.8 165.4439  38 4500 474960.7 -198.957 

Table 6. Constraints formulas on the initial solution of Table 5. The 
constraints correspond to the conditions given in (10) 

 C 

14 =ODEVAL(J2:J38, x, "INTERP", Tf) - d 

15 =ODEVAL(J2:J38, v, "INTERP", Tf) 

Step 3 
Using the functional minimizer NLSOLVE() (C.1), the 

system of constraints C14:C15 is solved with 𝐹𝑝 and 𝑡𝑓 as 
variables by evaluating the NLSOLVE() formula: 

 ( )( ) 14 : 15,  ,  NLSOLVE C C Fp Tf=  (12) 

in the allocated range A16:B18. NLSOLVE() computes 
and displays the values for 𝐹𝑝 and 𝑡𝑓 as shown Table 7. 

Table 7. Optimal parameters computed by (12) satisfying the 
constraints of Table 6 

 A B 

16 Fp 62648.94 

17 Tf 3863.575 

18 SSERROR 1E-16 
 

                                                           
3 In general, the second argument may be an arbitrary formula of system 
variables and parameters [24]. 
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Figure 4 plots a simulation of equation (8) using the 
computed values for 𝐹𝑝 and 𝑡𝑓 in Table 7. The plot shows 
that the final arrival conditions (10) are satisfied. 

 

Figure 4. Simulation of train motion using optimal parameters of Table 7 

3.2. Customizing a 2nd Order Dynamical 
System 

In this example, we design the response of the 2nd order 
dynamical system: 

 
2

2
2 2 0n n

d x dxw w x
dtdt

ζ+ + =  (13) 

in order to control its overshoot, peak time, and energy 
using the damping coefficient, 𝜁 , the natural frequency, 
𝑤𝑛, and initial condition, 𝑥(0), as design parameters. 

Table 8 shows the system model in Excel with equation 
(13) represented as two first order parametrized equations 
in B2:B3 using named variables t, x, v, zeta, and wn, 
which are assigned the initial values 0.25 and 1 
respectively. Note that the design parameters x0, x_peak, 
t_peak, and e_min will be used in the coming exercises. 
Starting from the initial conditions 𝑥(0) = 1, �̇�(0) = 0,  
we simulate the system in the interval [0 10] using 
IVSOLVE() formula: 

 ( )( )2 : 3, , , ,{0,10}IVSOLVE B B t x v=  (14) 

in the allocated range I1:K41. IVSOLVE() computes the 
solution shown in Table 9, which is plotted in Figure 5. 
The plot shows that the system response for the initial 
parameters is underdamped with an absolute overshoot 
greater than 0.4 at approximately a peak time of 3.3. 

 
Figure 5. Plot of system response computed in Table 9 using the 
parameters values given in Table 8 

Table 8. Parametrized differential systeqm definitions in Excel for 
problem 3.2 

 A B C D 

1 Differential system Design parameters 

2 dx/dt =v zeta 0.25 

3 dv/dt =-2*zeta*wn*v-wn^2*x wn 1 

4 System variables with initial 
conditions x0 1 

5 t 0 x_peak -0.2 

6 x =x0 t_peak 2.0 

7 v 0 e_min 0.1 

Table 9. Solution computed by (14) for the system definition given in 
Table 8 
 I J K   I J K 

1 t x v  22 5 -0.03655 0.293447 

2 0 1 0  23 5.25 0.032784 0.259071 

3 0.25 0.970168 -0.23257  24 5.5 0.092059 0.213592 

4 0.5 0.887138 -0.42422  25 5.75 0.138985 0.160974 

5 0.75 0.762013 -0.56855  26 6 0.172275 0.10513 

6 1 0.607055 -0.66269  27 6.25 0.19159 0.049698 

7 1.25 0.434825 -0.70704  28 6.5 0.197429 -0.00212 

8 1.5 0.25741 -0.70486  29 6.75 0.191048 -0.04772 

9 1.75 0.085824 -0.66173  30 7 0.17425 -0.08518 

10 2 -0.07064 -0.585  31 7.25 0.149241 -0.11326 

11 2.25 -0.20459 -0.48309  32 7.5 0.118448 -0.13142 

12 2.5 -0.31084 -0.36492  33 7.75 0.084347 -0.13977 

13 2.75 -0.38643 -0.23931  34 8 0.049333 -0.13896 

14 3 -0.43055 -0.11448  35 8.25 0.015541 -0.13013 

15 3.25 -0.44434 0.002384  36 8.5 -0.01519 -0.11473 

16 3.5 -0.43053 0.105374  37 8.75 -0.04141 -0.09443 

17 3.75 -0.39318 0.190104  38 9 -0.06214 -0.071 

18 4 -0.33723 0.253773  39 9.25 -0.0768 -0.04618 

19 4.25 -0.26816 0.295115  40 9.5 -0.08525 -0.02157 

20 4.5 -0.19152 0.314355  41 9.75 -0.08772 0.001409 

21 4.75 -0.11269 0.312972  42 10 -0.08478 0.021604 

3.2.1. Exercise 1 
In the first exercise, we redesign the response such that 

the system has an absolute overshoot of 0.2 at a peak time 
of 2.0. We define two constraints shown in Table 10 on 
the response of Table 9. Constraint C1 penalizes the 
difference between the minimum value of the 
displacement and the target overshoot, x_peak, while 
constraint C2 demands that the velocity vanishes at the 
peak time 4.  

Table 10. Constraints formulas for problem 3.2.1 

 C 

1 =ARRAYVAL(J2:J41, “MIN”) – x_peak 

2 =ARRAYVAL(K10) 
 

                                                           
4C2 makes use of the readily available velocity in Table 9, however, we 
could impose an equivalent constraint on the displacement derivative 
directly using ODEVAL() (B.2) as follows 
‘=ODEVAL(I1:I41,x,”DERIV”,2.0)’. 
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The system of constraints C1:C2 is solved with 𝑤𝑛 and 
𝜁  as variables by evaluating the functional minimizer 
NLSOLVE() formula: 

 ( ) ( )( ) 1, 2 ,  ,  NLSOLVE C C zeta wn=  (15) 

in allocated range D1:E3. NLSOLVE() computes the 
results shown Table 11. Figure 6 shows the modified 
system response using the values for 𝑤𝑛 and 𝜁 of Table 11. 

Table 11. Optimal parameters computed by (15) satisfying 
constraints of Table 10 

 D E 

1 zeta 0.451081913 

2 wn 1.659599536 

3 SSERROR 2.20497E-26 

 

Figure 6. Modified system response using optimal parameters of Table 11 

For illustration, we solve the same system of constraints 
in Table 10, but with initial displacement, x0, and 𝑤𝑛 as 
design variables. Here we simply need to replace zeta with 
x0, and evaluate the new NLSOLVE() formula: 

 ( ) ( )( )1, 2 , 0,NLSOLVE C C x wn=  (16) 

The results are shown in Table 12 and plotted in Figure 
7. As expected, the solution satisfies the constraints, but 
retains the underdamped behavior of the system. 

Table 12. Optimal parameters computed by (16) satisfying 
constraints of Table 10 

 D E 

1 x0 0.450161581 

2 wn 1.622267731 

3 SSERROR 1.08134E-11 

 
Figure 7. Modified system response using parameters of Table 12 

3.2.2. Exercise 2 
In this exercise we constrain the absolute overshoot, 

and the minimal available energy at the unknown peak 
time, 𝑡𝑝 , then compute the damping coefficient, 𝜁 , the 
natural frequency, 𝑤𝑛 , and the attained peak time, 𝑡𝑝. At 
the overshoot, the velocity is zero and the total energy is 
defined by:  

 2 *ne w x=  (17) 

The constraints are stated as follows: 

 

( )
( )

( )

_ 0
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e t e min

− =

=

− ≥

 (18) 

where𝑥_𝑝𝑒𝑎𝑘 and 𝑒_𝑚𝑖𝑛 values are specified in Table 8. 
Table 13 shows the equivalent Excel constraints defined 
on the initial solution of Table 9 by aid of the criterion 
function ODEVAL() which uses interpolation to compute 
the values at the variable t_peak. 

Table 13. Constraints formulas for problem 3.2- Exercise 2 

 C 
4 =ODEVAL(I2:I41, x, ”INTERP”, t_peak) – x_peak 
5 =ODEVAL(I2:I41, v, ”INTERP”, t_peak)  
6 =wn*ODEVAL(I2:I41, x, ”INTERP”, t_peak)^2 – e_min 

 

The system of constraints C4:C6 is solved by 
NLSOLVE() formula: 

 ( ) ( )( ) 4, 6 ,  , , _ ,  1NLSOLVE C C zeta wn t peak=  (19) 

in the allocated range F1:G3 shown in Table 14. Note that 
we pass one in the third argument to indicate the last 
constraint is an inequality constraint. Figure 8 shows the 
modified system response using the computed values for 𝜁 
and 𝑤𝑛 which shows the peak time occurs near 1.4. 

Table 14. Optimal parameters computed by (19) satisfying the 
constraints of Table 13 

 F G 
1 zeta 0.455927572 
2 wn 2.5 
3 t_peak 1.412086279 
4 SSERROR 1.08134E-11 

 
Figure 8. Modified system response using parameters of Table 14 

3.3. Heat Transfer Problem 
In this example, we demonstrate how to setup a simple 

functional program to control a heat transfer problem. We 
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consider a slab that is initially at zero temperature with an 
insulated right side. At time = 0, the left side is brought to 
100 degrees. We are interested in controlling the right side 
temperature reached after one second. The problem is 
described by the parabolic heat equation: 

 
2

2
u uk
t x

∂ ∂
=

∂ ∂
 (20) 

with initial condition 𝑢(𝑥, 0) =  0 , left boundary 
condition 𝑢(0, 𝑡) =  100,  and right boundary condition 
𝜕𝑢(𝑥, 𝑡)/𝜕 𝑥 = 0 at 𝑥 = 1. The problem’s spatial domain 
is 𝑥 ∈ [0 1] and the time interval is 𝑡 ∈ [0 1]. Table 15 
shows the model definition in Excel for the solver 
PDSOLVE() (A.7). Here we use the cells T1, X1, U1, U2, 
and U3 to represent system variables 𝑡, 𝑥,𝑢,𝑢𝑥 ,𝑢𝑥𝑥 
respectively. We also assign the names u, ux, and uxx for 
U1, U2 and U3. The system RHS formula is defined in A1, 
the left boundary condition in B1, and the right boundary 
condition in C1, the conductivity 𝑘  in K1 and the initial 
condition for 𝑢 in U1. 

Table 15. PDE System definition in Excel for problem 3.3 

 A B C K U 
1 =k*uxx =u-100 =ux 1 =IF(X1=0,100,0) 

 

To solve the system, we use the spreadsheet solver, 
PDSOLVE() (A.7) by evaluating the array formula: 

( ) { }
{ } { }
 1, 1, 1, 1: 3 , 1, 1, 0,0.5,1 ,

0 1 , , , 1"  

A T X U U B C
PDSOLVE

FORMAT TCOL

 
=   

 ， " " "
(21) 

in allocated range A5:D21, passing in the system formula, 
variables and boundary conditions defined in Table 15. 
The 5th argument {0, 0.5, 1} instructs the solver to report 
spatial output points at 0, 0.5, and 1 only, whereas 
temporal output points for the specified interval {0, 1} in 
the 6th argument will be reported uniformly according to 
the available rows in the allocated range. We also request 
in the optional 8th argument a transient format for the 
output [24]. 

Table 16. Solution computed by (21) for the system definition given 
in Table 15 

 E F G H 
1 X1 0 0.5 1 
2 T1 u u u 
3 0 100 0 0 
4 0.05 100 11.38488 0.313100897 
5 0.1 100 26.43517 5.069308645 
6 0.15 100 36.7479 13.57766027 
7 0.2 100 44.68197 22.76939125 
8 0.25 100 51.29839 31.45587281 
9 0.3 100 57.01478 39.32101487 

10 0.35 100 62.0256 46.33272712 
11 0.4 100 66.43943 52.55248913 
12 0.45 100 70.33672 58.05646724 
13 0.5 100 73.78095 62.92253049 
14 0.55 100 76.82433 67.22546077 
15 0.6 100 79.51285 71.03140753 
16 0.65 100 81.88989 74.39453117 
17 0.7 100 83.99159 77.36648292 
18 0.75 100 85.85031 79.99204101 
19 0.8 100 87.49342 82.3128696 
20 0.85 100 88.94526 84.36516013 
21 0.9 100 90.22807 86.18001317 
22 0.95 100 91.36183 87.78445318 
23 1 100 92.36414 89.20245472 

PDSOLVE() populates the range with the requested 
transient format solution shown in Table 16 and plotted in 
Figure 9A. Alternatively, in the default snapshot format 
for the output array, the order of time and space are 
exchanged in the table. The latter format simplifies 
plotting the temperature spatial profile at different times as 
shown in Figure 9B.  

 

Figure 9A.Transient plot of the system response computed in Table 16 at 
different spatial points 

 

Figure 9B. Snapshot plot shows the temperature spatial profile at 
different times 

Table 16 shows that the right side reaches a temperature 
of approximately 89.2 after one second (value of cell H23 
at T1=1, X1=1). In this example, we will demand that the 
right side reaches a target temperature of 75 degrees after 
one second, and then compute the required left boundary 
condition that will produce the target temperature. To vary 
the left boundary condition value, we introduce a design 
variable P1 with an initial value of 100, and parametrize 
the initial condition and left boundary condition formulas, 
as shown in Table 17. 

Table 17. Parametrized PDE system definition in Excel for problem 
3.3 

 A B C K P U 

1 =k*uxx =u-P1 =ux 1 1000 =IF(X1=0,P1,0) 
 

Based on the initial response of Table 16, we define the 
simple constraint C2 in Table 18, which penalizes the 
difference between the actual temperature at the right side 
(cell H23 of Table 16) and the target value of 75. Note 
that although we are extracting one element from the 
solution array, we must do that by means of the criterion 
function ARRAYVAL() according to the functional 
formulation (2)-(6). Next, we run NLSOLVE() formula: 
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 ( )2, 1NLSOLVE C P=  (22) 

with P1 as the variable. NLSOLVE() computes an optimal 
value of 84.0786 for P1, as shown in Table 18. Although 
not shown, re-simulating the system (20) with the 
computed value for P1 shows that the constraint C2 is 
satisfied. 

Table 18. Constraint and solver formulas for problem 3.3. The 
optimal value computed by the solver is shown to the right 

 C  C 

2 =ARRAYVAL(H23) - 75   
3 =NLSOLVE(C2,P1)  84.07859699 

4. Conclusion 
The spreadsheet computing engine is exploited via a 

nonconventional approach to develop a novel set of 
solvers which support a functional paradigm for 
dynamical optimization. Design of the solvers was made 
possible by overcoming inherent limitations that restricted 
spreadsheet functions to operating on static inputs only, 
while retaining essential properties of purity and recursion. 
The solvers are assembled in an add-in software library 
[24], which integrates seamlessly with MS Excel. Three 
examples were presented to demonstrate the merits of the 
solvers, which expand the spreadsheet utility into a new 
direction. Future effort will consider extending the 
capability of this framework to solve general optimal 
control problems. 

Although we do not provide benchmark performance 
data in this paper, we comment that all the preceding 
examples compute on the order of a second or less, on a 
typical computer with an Intel core i5 processor. The 
performance is directly linked to the true performance of 
the spreadsheet engine due to direct interface to the 
spreadsheet engine API [17]. 

Appendix A 

A.1 Basic Spreadsheet Concepts  
A spreadsheet is composed of a large structured grid. 

Each cell in the grid is referenced by its column label and 
row number (e.g., A1), and represents a global memory 
placeholder. A range of cells can be referenced as a 
rectangular array, e.g., A1:B3 or a union of disjoint arrays 
and cells, e.g., (X1, A1:A3). A cell may store a constant 
value or a formula defined using basic spreadsheet syntax, 
e.g., ‘= SQRT(X1^2 + Y1*Y1)’. The spreadsheet engine 
insures orderly evaluation of all dependent formulas upon 
a change in the value of any cell. A general function can 
thus be identified by a root formula and a list of variable 
cells. Nested dependency allows arbitrarily complex 
functions to be constructed. To motivate the possibilities, 
consider the formula ‘=SUM(X1:Z1)’ assigned to A1, the 
pair (A1, Y1) identifies the function 𝑓(𝑦) = 𝑋1 + 𝑦 + 𝑍, 
where X1 and Z1 are treated as constant values. In another 
example, consider the formula ‘=1+COS(B1)’ assigned to 
A1, and the formula ‘=SQRT(ABS(X1))’ assigned to B1, 
the pair (A1,X1) identifies the function 𝑓(𝑥) = 1 +
cos (�|𝑥|). 

Excel supports two types of formulas: simple formulas 
and array formulas. A simple formula is assigned to one 
cell and evaluates to a single value, e.g., ’=SUM(A1:B4)’. 
Alternatively, an array formula is assigned to a range of 
cells and evaluates to an array of values, e.g., 
‘=MINVERSE(A1:C3)’ which computes the inverse of 
the 3 by 3 matrix A1:C3.  

A.2 Differential Systems Solvers 

A.2.1 Initial Value Spreadsheet Solver: IVSOLVE() 

 [ ] ( ,   ,   ,  ,  )IVSOLVE rhs vars interval m options= (A.1) 

The spreadsheet solver IVSOLVE (A.1) computes the 
solution to an initial value ordinary differential-algebraic 
system represented in the ordered form: 

 
( )

( )

, , , 1,...,

0 , , , 1,...,

i
i

j

du
f t i n

dt
g t j m

= =

= =

u y

u y
 (A.2) 

with initial conditions 𝑢𝑖(0) = 𝑎𝑖  ,  𝑦𝑗(0) = 𝑏𝑗 , and over 
the Interval  𝑡 ∈ [0 𝑇]. 

References to the system RHS formulas 
(𝑓1, 𝑓2, . . , 𝑓𝑛,𝑔1,𝑔2, . .𝑔𝑚)  are supplied in the first 
parameter rhs and the system variables 
(𝑡,𝑢1,𝑢2, . . ,𝑢𝑛,𝑦1,𝑦2, . .𝑦𝑚) are seeded with initial values 
and supplied via the 2nd parameter vars. The integration 
interval is defined in the third parameter, interval, and the 
number of algebraic constraints, if nonzero, is supplied in 
4th parameter m. IVSOLVE() implements several 
integration schemes [25,26], suitable for stiff and smooth 
problems. Algorithm control parameters and an optional 
system analytic Jacobian can be supplied via the 
[options][24]. 

IVSOLVE() is executed as an array formula in a pre-
allocated range of cells. It evaluates to an ordered tabular 
array of values for the system variables with the layout 
shown in Figure 2. By default IVSOLVE() reports the 
output at uniform intervals according to the allocated 
number of rows for the output array. Custom output 
formats can be achieved via the optional parameters [24].  

A.2.2 Boundary Value Spreadsheet Solver: 
BVSOLVE() 

 
[ ]

 , , , ,
, ,

rhs vars bpts bcs
BVSOLVE

interval m options
 

=  
 

 (A.3) 

The spreadsheet function BVSOLVE() (A.3) computes 
the solution to a multi-point boundary-value first order 
differential-algebraic systems represented in the order 
defined in (A.2), with boundary conditions expressed in 
the form 0 =  𝑏𝑐𝑖(𝒖, 𝑥)  at 𝑥 = 𝑝𝑖  for 𝑖 = 1, … ,𝑛  in the 
domain 𝑥 ∈ [0 𝐿].  

BVSOLVE() shares similar parameters with 
IVSOLVE(), except for the boundary points and 
associated conditions formulas, which are supplied via 
bpts and bcs, respectively. BVSOLVE() implements the 
COLDAE collocation algorithm [27,28], and evaluates to 
the same results layout shown in Figure 2. Optional 
analytical system and boundary conditions Jacobians as 
well as algorithm control parameters can be supplied via 
[𝑜𝑝𝑡𝑖𝑜𝑛𝑠] [24]. 
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To demonstrate BVSOLVE(), we solve the 4th order 
equation: 

 ( ) ( )
( ) ( )

2 ''' ''
''''

3

''

''

1 6 6  , 1 2

1 0 1 0,

2

,

2 0 0,

x z xzz x
x

z z

z z

− −
= ≤

=

==

=

≤

 (A.4) 

which models a uniformly loaded beam of variable 
stiffness simply supported at both ends [29]: 

Using standard substitution, we convert (A.4) into a 
system of 1st order equations. Letting  𝑢 = 𝑧′, 𝑣 = 𝑢′ =
𝑧′′,𝑤 = 𝑣′ = 𝑧′′′, we have: 

 

2

3
1 6 6dw x w xv

dx x
dv w
dx
du v
dx
dz u
dx

− −
=

=

=

=

 (A.5) 

with equivalent boundary conditions: 𝑧(1) = 0, 𝑣(1) =
0, 𝑧(2) = 0, 𝑣(2) = 0 . The complete system model in 
Excel is shown in Table 19. Next we evaluate the array 
formula: 

 
( )

{ }
2 : 5, 1, 1, 1, 1, 1 ,

2 : 5,  2 : 5,  1, 2  

A A X W V U Z
BVSOLVE

C C D D

 
=   

 
 (A.6) 

in the allocated range H4:L25, and obtain the solution 
shown partially in Table 20 and plotted in Figure 10.  

Table 19. Differential system (A.5) definition in Excel for input to 
BVSOLVE() 

 A C D 

1 System RHS formulas Boundary 
points 

Boundary 
conditions 

2 =(1-6*X1^2*W1-
6*X1*V1)/X1^3 1 =Z1 

3 =W1 1 =V1 

4 =V1 2 =Z1 

5 =U1 2 =V1 

 

Figure 10. Plot for results of Table 20 for boundary value problem (A.4) 

Table 20. partial listing of results computed by (A.6) for the system 
definition given in Table 19 

A.2.3 Initial Boundary Value Problem Spreadsheet 
Solver: PDSOLVE() 

[ ]( ) ,  ,  ,  ,  ,  ,  )PDSOLVE rhs vars lbc rbc L T options= (A.7) 

The spreadsheet function PDSOLVE() (A.7) computes 
the solution to an initial boundary-value differential 
system represented in the ordered form: 

 ( ), , , , , 1,...,i
i

u
f t x i n

t
∂

= =
∂ x xxu u u  (A.8) 

with initial conditions expressed in the form 0 = 𝑢𝑖(𝑥, 0), 
and left and right boundary conditions expressed in the 
form 0 = 𝑏𝑐𝑖(𝒖,𝒖𝒙) at 𝑥 = 0  and 𝐿, in the time interval: 
𝑡 ∈ �0 𝑇� and spatial domain: 𝑥 ∈ �0 𝐿�. 

References to the system RHS formulas are supplied in 
the 1st parameter rhs, and the system variables 
(𝑡, 𝑥,𝒖,𝒖𝒙,𝒖𝒙𝒙) supplied via the 2nd parameter vars, with 
𝒖  seeded with initial value formulas. Left and right 
boundary condition formulas are specified via lbc and rbc. 
Spatial and temporal domains are defined via the 5th and 
6th parameters L and T. Optional System Jacobians and 
algorithm controls can be supplied via [𝑜𝑝𝑡𝑖𝑜𝑛𝑠] [24]. 

PDSOLVE() implements the method of lines [30]. 
Spatial discretization is carried out on a uniform mesh 
using a standard collocation method [27]. The resulting 
implicit ODE system is integrated by any of the schemes 
RADAU5, BDF, or ADAMS with adaptive step control 
[25,26]. The output result can be presented in one of two 
formats: a snapshot of the system variables’ spatial 
distribution at desired temporal values, or a transient view 
of the system variables at specified spatial points. The 
snapshot format is demonstrated in Figure 11 for a system 
with two equations, where the system variables are 
reported in repeated column blocks for each pair of the 
output time and space values. The transient view layout is 
identical except that the roles of time and space are 
interchanged.  

 

Figure 11.Snapshot solution layout in Excel for partial differential 
equation solver PDSOLVE(). The display of 1st and 2nd derivative 
variables is optional 

 H I J K L 

4 X1 W1 V1 U1 Z1 

5 1 -0.5 1.552E-30 0.017132 0 

6 1.05 -0.3301 -0.020516 0.016584 0.0008472 

-- -- -- -- -- -- 

24 1.95 0.065617 -0.003203 -0.01121 0.0005634 

25 2 0.0625 1.735E-18 -0.01129 -1.084E-19 
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Appendix B 

B.1. Criterion Spreadsheet Function: 
ARRAYVAL() 
 [ ]( ) , ,ARRAYVAL DATA GlobalOper LocalOper= (B.1) 

The spreadsheet function ARRAYVAL() (B.1) 
computes a scalar property for a set of data, DATA, 
selected from a system solution array, by applying user 
supplied formulas specifying local and global operations 
on DATA. The optional local operation transforms 
elements of DATA (e.g., an absolute value operation), and 
the global operation maps the entire data set to a scalar 
(e.g., a maximum value operation). Common global 
operations such as computing maximum or minimum can 
be defined directly as “MAX” or “MIN”. 

B.2. Criterion Spreadsheet Function: 
ODEVAL() 

 
[ ]

 , ,
,

range operand
ODEVAL

operation parameters
 

=  
 

 (B.2) 

The spreadsheet function ODEVAL() (B.2) computes a 
scalar property from an ODE system solution array by 
applying a calculus integration, differentiation, or 
interpolation operation. The operand for the calculus 
operation is a system variable or a formula of system 
variables. The operation, which is specified using any of 
the labels: “INTEG”, “DERIV” or “INTERP”, is applied 
over a selected range for the system’s independent 
variable. ODEVAL() perform the requested operation by 
the aid of a cubic spline curve fit to the data [31]. 
Additional required data, such as a differentiation or 
interpolation point, are defined in [parameters] [24].  

Appendix C 

C.1. Functional Minimizer Spreadsheet 
Solver: NLSOLVE() 
 [ ] [ ]( ) , , ,NLSOLVE lhs vars ineq options=  (C.1) 

The spreadsheet function NLSOLVE() (C.1) computes 
a least square minimum error solution toan algebraic 
system of 𝑘  equations and 𝑚− 𝑘  inequalities, with 
variables 𝒙 = [𝑥1, 𝑥2, . . , 𝑥𝑛], ordered in the form: 

 
( )
( )

  0, 1,...,

  0, 1,..,
i

i

f i k

f i k m

= =

≥ = +

x

x
 (C.2) 

References to the system LHS formulas [𝒇𝒊]  are 
supplied via lhs, and the system variables via vars. The 
number of inequality constraints, is defined in [ineq]. 
System analytic Jacobian and algorithmic parameters may 
be supplied via the [options] [24]. 

NLSOLVE() employs the Levenberg-Marquardt 
algorithm [21,22] to find optimal values for the system 
variables 𝒙 by minimizing an implicit objective function 
representing the sum of squares of the equations and 
active inequalities. When an equation or inequality of 
system (C.2) is a dynamical constraint defined by means 

of a criterion function, evaluation of the constraints 
automatically triggers re-evaluation of underling system to 
compute a current value for the constraint [17]. 
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