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ABSTRACT

We examine the effect of listening level, i.e. the abso-
lute sound pressure level at which sounds are reproduced,
on music similarity, and in particular, on playlist gener-
ation. Current methods commonly use similarity metrics

based on Mel-frequency cepstral coefficients (MFCCs), which

are derived from the objective frequency spectrum of a
sound. We follow this approach, but use the level-dependent
auditory spectrum, evaluated using the loudness models of
Glasberg and Moore, at three listening levels, to produce
auditory spectrum cepstral coefficients (ASCCs). The AS-
CCs are used to generate sets of playlists at each listen-
ing level, using a typical method, and these playlists were
found to differ greatly. From this we conclude that music
recommendation systems could be made more perceptu-
ally relevant if listening level information were included.
We discuss the findings in relation to other fields within
MIR where inclusion of listening level might also be of
benefit.

1. INTRODUCTION

The auditory system can be thought of, in signal processing
terms, as a level-dependent filter bank, where each compo-
nent is known as an auditory filter [15]. Incoming sound
is first processed by the frequency and direction depen-
dent filter of the pinna (outer ear), before passing through
the ear canal, which acts as a narrowband resonant ampli-
fier. The acoustic pressure at the ear-drum is mechanically
transmitted, via the amplifying stage of the middle-ear os-
sicles, to the fluid of the cochlea (inner ear) via the oval
window [19]. Due to continuous variation in mass and
stiffness along the basilar membrane, the cochlea provides
a tonotopic representation (arranged in order of frequency)
of sound energy spectrum that is broadly consistent with
Fourier analysis.

Within the cochlea, inner hair cells are tonotopically ar-
ranged along the basilar membrane. The inner hair cells are
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innervated with neurons that provide the firing-rate coded
signal that is sent to the brain via the auditory nerve. The
inner hair cells are accompanied by respective outer hair
cells. Pressure gradients in the cochlear fluid cause the
inner hair cells at any given location to be deflected in a
shearing motion which results from place-frequency de-
pendent resonance of the basilar membrane. At the same
time, the motile outer hair cells act in phase-locked syn-
chrony to amplify the excitation. This system is known as
the cochlear amplifier.

Each inner hair cell is innervated with a population of
neurons that code the local signal in terms of the rate-level
function (the function that relates the rate of neuron fir-
ing to the perceived intensity level). The stochastic firing
rate-level function of a neuron, or a population of neurons,
can be thought of as having three distinct stages: sponta-
neous firing, threshold, and saturation. Below threshold,
the neuron fires randomly at a low rate. Between threshold
and saturation, the function is close to linear and provides
a good coding of level. Above saturation point, increase
in level does not result in a proportional increase in firing
rate. Thus, with increase in sound pressure level, an in-
creasing area of inner hair cells on the basilar membrane
are excited beyond neural threshold. Within the context of
the excitation pattern model described above, this is known
as spread of excitation.

The action of the cochlear amplifier gives rise to strongly
level-dependent tuning of the auditory filter. At low levels,
the phase-locked action of outer hair cells provides tono-
topically localised amplification, which results in a narrow
auditory filter. At high sound pressure levels, the cochlear
amplifier is not able to contribute amplification, due to me-
chanical limits, and so the auditory filter becomes broader
with increase in level.

The parameters of the human auditory filter have been
determined using psychophysical methods [17] and are rep-
resented in terms of equivalent rectangular bandwidth (ERB).
Within the music information retrieval (MIR) community,
the auditory filters are typically more broadly represented
in terms of the approximately analogous Mel frequency
scale [21]. The Mel scale is defined in terms of equal pitch
distance. Both scales produce a “non-linear mapping” of
the frequency domain.

Mel-frequency cepstrum coefficients (MFCC), derived
using the discrete cosine transform, have been used for
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speech recognition [9], music modelling [13] and music
similarity [12]. The ERB scale has been used to improve
speech feature extraction [20]. Other related work [9] used
a gammatone auditory filter-bank [8] (derived from non-
human physiology) in the place of ERBs. The resulting
coefficients were referred to as EFCCs.

Thus far, although the MFCCs and EFCCs applied to
MIR problems have made some attempt to address the ques-
tion of perception in terms of frequency warping, no at-

tempt has been made to demonstrate the major level-dependent

effects of cochlear processing: (i) absolute threshold, (ii)
spread of excitation, (iii) compression, and (iv) masking.
In other words, the major parameter of listening level has
not been investigated.

At present, MIR is usually based on recordings, which
listeners can reproduce at any listening level. Whilst we
acknowledge the immediate practical difficulty that this
imposes, we believe it is important to determine whether
the effects of listening level may be significant. In this arti-
cle, we use a psychoacoustic model to produce level depen-
dent spectrograms, which incorporate the effects of (i) ab-
solute threshold, (ii) spread of excitation and (iii) compres-
sion, and which can be used to evaluate level dependent
similarity metrics. The similarity ratings are compared for
each listening level to determine whether specific applica-
tions of MIR, such as music playlist generation, may be
listening level dependent. This article also serves to begin
a more general discussion as to the relevance and impor-
tance of listening level for other areas within MIR.

2. MODELLING

The loudness models [7, 16] provide a means to predict
time and level dependent excitation patterns for time-varying
acoustic stimuli. The outer and middle ear stages are mod-
elled as a single FIR filter. Next, a bank of parallel fil-
ters is used to calculate spectral magnitude over specific
frequency bands. The resulting excitation pattern is then
transformed into instantaneous specific loudness (ISL) ac-
cording to a compressive nonlinearity designed to model
the action of the cochlea. The instantaneous specific loud-
ness is essentially a level dependent spectrogram with the
frequency axis in the ERB scale. We refer to it as an audi-
tory spectrogram.

We collected a random subset of 500 recordings from
the Magnatagatune data set [10]. Magnatagatune is a col-
lection of over 56,000, 30-second music clips from the
Magnatune catalogue, with matching tags collected from
Law’s TagATune game. Our subset of 500 clips has ap-
proximately the same proportion of genres as the full data

set, including roughly 22% Classical, 17% each of Pop/Rock,

Electronic and “Ethnic” or World music, and the rest from
assorted genres. The clips, all 44.1kHz, 32kbps mono mp3
files, were obtained using the “Source Only” version of the
Magnatagatune data set.

Using the auditory model, auditory spectrograms were
estimated at three listening levels for each recording. A
20 ms normalised Hanning window was used with a 50%
overlap. The frequency axis was split into ERB bands,
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which gave 53 discrete frequency bins. The listening lev-
els were characterised by peak sound pressure levels of 40,
80 and 120 dB SPL. The input to the loudness model is a
waveform in Pascals (Pa), where a pressure of 1 Pa cor-
responds to 94 dB SPL. Therefore, in order to convert a
normalised digital recording (peak amplitude is 1), s4, into
a pressure signal s, with a peak level of X SPL, we use,
(X —94)
s, =10720 s4. (1)
Figure 1 shows the auditory spectrograms for a ran-
domly selected recording played at each listening level. At
40 dB SPL it becomes relatively narrow-band due to the
high and low frequency energy falling below the absolute
thresholds of audibility. At 80 dB the majority of the en-
ergy is above absolute threshold and the auditory spectro-
gram is similar to the objective spectrogram. At 120 dB
SPL the spread of excitation causes smearing of the energy
across the frequency range, and the recording becomes rel-
atively broadband.

ERB band

Time

Figure 1. The auditory spectrograms of a randomly se-
lected recodring with peak play-back intensity levels from
left to right of: 40, 80 and 120 dB SPL respectively.

3. ANALYSIS

An acoustic model of musical timbre is often a core com-
ponent of content-based MIR systems. It is fundamental in
tasks such as content-based music recommendation [13],
playlist generation [18], genre classification [23] and in-
strument recognition [5]. In our experiments, we choose to
follow a deliberately simple, yet widely adopted method of
modelling the overall timbre of a recording first by extract-
ing frame-wise cepstral coefficients, and then modelling
the overall timbre distribution by fitting a single Gaussian
to the resulting coefficient vectors [13]. In order to be able
to take the effect of listening level into account, we use
a set of auditory spectra cepstral coefficients (termed AS-
CCs), computed from auditory spectra, calculated using
the method outlined in Section 2.

Similarly to MFCCs, the computation of this feature is
derived from the computation of the real Cepstrum shown
in Equation 2, where X (w) represents the Fourier trans-
form of the analysed signal. The cepstrum separates the
slowly varying components of a signal from superimposed
higher frequency and noise like components. It can be
viewed as a rearranged spectrum, such that relatively few
coefficients are sufficient to characterise the spectral enve-
lope; however, the higher the number of coefficients, the
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more spectral detail is retained.

c(n) = % /jf log | X (w)] e?“"dw )

In many applications, including speech recognition and
audio similarity analysis, it has become common to char-
acterise short audio segments using a set of cepstral coeffi-
cients, such that non-linear frequency warping is used to
emphasise perceptually relevant frequencies correspond-

ing to auditory bands. Mel-scaling is the most widely adopted

method for this purpose.

Our feature extraction follows a common procedure of
computing MFCCs [4]; however instead of using Mel-scaled
magnitude spectra, we use auditory spectra estimated at
three different listening levels. The auditory spectrograms
are logarithmically compressed and then decorrelated us-
ing the Discrete Cosine Transform (DCT) given in Equa-
tion 3.

—O5)T thn=1.2... J,

3)
where M is the number of auditory filters, J is the num-
ber of ASCCs (typically J < M), and X (i) is the log-
magnitude output of the ¢-th filter. These coefficients are
then modelled using a single Gaussian characterising the
distribution of ASCCs over a song in our collection.

This method makes several simplifying assumptions. For
one, it ignores musical structure, and also the fact that the
distribution of timbre features is not necessarily Gaussian.
A solution to these problems may be the use of Gaussian
mixture models (GMM) or a sequence of Gaussians fitted
on coherent segments, for instance, a single Gaussian rep-
resenting each bar or each structural segment of the music,
for modelling a track. However, approaches to estimate
similarity between these models such as Monte Carlo sam-
pling are computationally expensive. Detailed discussions
on timbre models and the effects of the above assumptions
can be found, for instance, in [1], [2] and [3]. Besides mod-
elling recordings using a single Gaussian, a further simpli-
fying assumption is introduced by using Gaussians with
diagonal covariance. Although modelling timbre using a
single Gaussian is a very simple approach, it was shown
in [14] that it can perform comparably to mixture models
when computing similarity between recorded audio tracks.
It was also shown to be effective and computationally ef-
ficient for finding similar songs in personal music collec-
tions in [11]. An important advantage of using this model
is that the similarity between two tracks can be estimated
using closed form expressions, such as the Jensen-Shannon
(JS) or Kullback-Leibler (KL) divergences. Here, we use
the symmetrised KL divergence given in Equation 4, where
p and q are Gaussian distributions, with ;4 mean and X co-
variance, and d is the dimensionality of the feature vectors.
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Using this simple model, we calculate symmetric dis-
tance matrices holding pair-wise KL-divergences (similar-
ity estimates) between all recordings in our collection. For
each distance matrix computation, different sets of ASCCs
are used that are calculated from the auditory spectra esti-
mated for different listening levels. The distance matrices
are then individually analysed using the methods described
in Section 4.1 and 4.2, and the results produced at three
different levels are compared.

4. RESULTS

The data set is analysed as per Section 3 to produce a KL,
divergence rating per pair of recordings at each listening
level. To illustrate the approach, 25 tracks from the set
(n=500) were selected at random and KL divergence matri-
ces computed at each listening level (40, 80, 120 dB SPL).
Figure 2 shows the matrices. Blue indicates low values
(similar) and red indicates high values (dissimilar). Fig-
ure 3 shows a box-plot of the matrix data. Figs. 2 and 3
clearly illustrate that the similarity ratings are strongly de-
pendent on the listening level. At low level, the set shows
a high mean similarity with relatively small variance. At
high level the mean similarity is lower and the variance is
larger. At the medium level the variance lies between the
low and high listening levels.

Figure 2. The normalised KL divergence matrices for a
subset of recordings with peak intensity levels from left
to right of: 40, 80 and 120 dB SPL respectively. Blue
indicates low values (similar) and red indicates high values
(dissimilar).

Whilst Fig. 2 shows that the similarity ratings are de-
pendent upon the listening level, it is important to deter-
mine whether these differences are significant in MIR ap-
plications. The application we choose to study is music
recommendation. Music recommendation tools generate
playlists based on similarity ratings, typically derived from
MFCCs. We compared the similarity data across the three
intensity levels in two ways: (i) by comparing the ordering
of distances within triples, and (ii) by comparing the mem-
bers of playlists with different seed recordings, and with
different playlist sizes.




13th International Society for Music Information Retrieval Conference (ISMIR 2012)

0.8 ]
1
1
1
806 - 1
s 1
Q
E'i 1
204 .
o —
| 1
% 0.2 .
1
1
0 —_—r —_—
40 dBSPL 80 dBSPL 120 dBSPL

Figure 3. Boxplots of the KL divergence matrices (Fig. 2)
at each listening level. Low values correspond to similar
recordings and high values to dissimilar recordings.

4.1 Triple analysis

We analysed all subsets of 3 recordings from the dataset
and the pair of recordings with minimum distance (in terms
of the KL divergence feature space), was identified. The
data was compared across listening level, and changes in
the closest identified pairs were recorded. For example, if
a given triplet (I,J,K) showed that at 40 dB SPL recordings
I and J were closest together, but that at 80 dB SPL I and K
were closest together, this was recorded as a change. The
percentage changes were calculated across all triples and
are shown in Table 1. We see around a 30% change in the
ordering of triples. This suggests that MIR applications
that use similarity metrics, such as playlist generation, will
be affected by listening level.

% Change in Triplet Order
40vs 80 40vs 120 80 vs 120
32 29 27

Table 1. The percentage change in the closest identified
pair within each set of triples. The column headers refer to
the listening levels between which the comparisons were
made, i.e. 40 vs 80 relates to comparison of triplet data
from the 40 dB SPL and 80 dB SPL sets.

4.2 Playlist generation

Playlists were generated by assigning a seed song, and then
identifying the (n— 1) closest songs in the similarity space,
where n is the size of the playlist. The playlists were
compared across listening levels. For example, if a five
song playlist is generated for seed song A, where identi-
fied songs are (T,U,S,X) at 40 dB SPL, but at 80 dB SPL
are (W, T,U,S), the percentage change would be 25%. We
do not consider a playlist to have changed if the order of
the chosen songs is different.

The mean and 95% confidence intervals are calculated
for playlist changes across all seed songs. The mean data
are shown in Table 2 using the first 20 ASCCs. Playlist
change data using first 12, 20 and 29 ASCCs are plotted in
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Figure 4. The changes range from 80% for small playlists,
to 50% for large playlists.

In order to verify the significance of these changes, an
equivalent process is followed but comparisons are made
between playlists generated using different numbers of AS-
CCs at each listening level. These data are shown in Figure
5. The changes range from 50% for small playlists, to 10%
for large playlists. For a 10 song playlists, the average
change (in the songs added) is: 62% caused by listening
level (Fig. 4), and 22% caused by the number of ASCCs
used (Fig. 5).

N. Songs | Mean % Change in Playlist Members
40vs 80 40vs 120 80 vs 120
1 74 67 80
2 69 64 78
3 68 62 76
4 66 59 75
5 66 58 75
6 65 57 74
7 64 56 73
8 63 55 73
9 62 54 72
10 61 53 71
11 61 52 70
12 60 52 70
13 60 51 69
14 59 51 68
15 58 50 68
16 58 49 67
17 58 49 67
18 57 48 66
19 57 47 66
20 57 47 65
21 57 46 65
22 56 46 65
23 56 46 64
24 55 45 64

Table 2. The percentage change in the recommended
playlists using the first 20 ASCCs. The column headers re-
fer to: the length of playlist (excluding seed song), (n—1),
and the listening levels between which the comparisons
were made, i.e. 40 vs 80 relates to comparison of playlists
from the 40 dB SPL and 80 dB SPL sets.

5. DISCUSSION

We have demonstrated that the effect of listening level is
larger than that of variation of the number of ASCCs used
in the playlist generation. The large percentage change in
playlist members shown for the comparison between 40-
80 dB SPL is perhaps most relevant to the typical MIR end
user - such variation in listening levels may be typical in
the home (e.g., for radio broadcast). The equally large per-
centage change shown in the results for the highest sound
pressure level (120 dB SPL) may be relevant for the live
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Figure 4. The percentage change in playlist members with
listening level as a function of the length of playlist (ex-
cluding seed song). The data shown are the mean and 95%
confidence intervals across all seed songs. The square, cir-
cle and triangle markers show comparisons between: 40 to
80, 40 to 120 and 80 to 120 dB SPL respectively. Figs. (a)
to (c) show comparisons using the first 12 ASCCs, (d) to
(f) use the first 20, and (g)-(i) use the first 29.

sound (or disc jockey) context, where sound levels tend to
be higher.

Another conclusion that may be drawn from the anal-
ysis is that low listening levels may be considered to pro-
duce a homogenization effect by limiting bandwidth (due
to absolute thresholds). A similar effect is seen at high lev-
els, where saturation and upward spread of excitation limit
the effective number of independent ASCCs. It is conceiv-
able that, given a larger set from which playlist members
are drawn, the trends shown in Figs. 4 and 5 would re-
solve to a more signal or method dependent function, for
example, it may be shown that the effect of listening level
is more significant on certain genre. Future work should
include modelling with larger sets of data.

Although demonstrated here using a music similarity
study, the effect of listening level on auditory spectra may
have wide ranging implications for MIR theory and prac-
tice in general, and initiating this debate was a primary aim
of this article. It seems unlikely that changes in listening
level will manifest changes in MIR properties relating to
musical score (e.g., notation) or structure (e.g., segmen-
tation). However, where MIR methods rely on spectrum
(e.g., timbre) some effects of listening level may be ex-
pected. For example, speech (or even speaker) recogni-
tion in a high noise environment might be enhanced by the
proper masking (noise suppression) effects of loud speech
in the auditory model. In a more general sense, loudness it-
self may be a useful perceptual feature for MIR problems.
For example, in the creation of a playlist, using a simi-
lar procedure to that described in the present paper, loud-
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Figure 5. The percentage change in playlist members with
the number of ASCCs used as a function of the length of
playlist (excluding seed song). The data shown are the
mean and 95% confidence intervals across all seed songs.
The square, circle and triangle markers show comparisons
between: 12 to 20, 12 to 29, and 20 to 29 ASCCs respec-
tively. Figs. (a) to (c) show comparisons at 40 dB SPL, (d)
to (f) at 80 dB SPL and (g)-(i) at 120 dB SPL.

ness and loudness dynamic range may be used to produce
a sequence of songs which is tailored for smooth loudness
transitions between tracks, and for similar loudness dy-
namics. Furthermore, incorporation of complete psychoa-
coustic listening conditions within listening tests designed
to validate such perceptual similarity metrics may lead to
more meaningful ground truth data.

6. CONCLUSIONS

In this paper we have presented a computational analysis of
the effect of listening level on a perceptual music spectrum
similarity metric. The similarity matrices and statistical
data have shown that the metric is strongly level depen-
dent. The playlist data shows similarly striking effects of
listening level. Some general discussion has been given
on the immediate implications of the use of listening-level
dependent auditory models in MIR and loudness itself has
been suggested as possible future similarity feature. The
results of this study suggest that more complete data about
sound [22] and about music production [6] may be useful
to future context specific MIR applications.
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