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If n is a positive integer then a G-space X is called (2, n)-universal if given any
isovariant map f of a closed invariant subspace of a G-space Y into X there exists
an extension of f to an isovariant map of ¥ into X, provided dim (Y/G) < n.

CLASSIFICATION THEOREM. Let X be a (2, n + 1)-universal G-space and let Z
be a Z-space of dimension < n. Then the map which takes the strong (weak) Z-homo-
topy class of f* — strong (weak) equivalence class of f*—1(X) 7s a one-to-one corre-
spondence between the strong (weak) =-homotopy classes of Z-maps of Z into X /G and
the strong (weak) equivalence classes of G-spaces over Z.

To give content to the above theorem we must be able to construct (Z, n)-uni-
versal G-spaces. This is done as follows. Given G-spaces X, ..., X, let Xo. ..
oX, denote their join (see J. Milnor, The construction of universal bundles II,
Annals of Math., 63, no. 3, May, 1956) made into a G-space by g(tz1, . . ., t,2,) =
(tgzy, ..., t.gz,). We define the reduced join X,* ... * X, of X, ... X, to be the
invariant subset of their join consisting of those points (t,x,, . . ., t,,) for which the
set of isotropy groups G, for which ¢; & 0 has a smallest element under inclusion.
We denote the k-fold join (reduced join) of a space X by XCBP(X™®) Let = =
((Hy), ..., (Hn)) and let n be any positive integer. It follows from Lemma 2.3
(Milnor, loc. cit.) that we can find integers ki, . .., kn such that (N(H,)/(H )"
is n-connected, where N(H;) is the normalizer of H; in G. Then

TaeoreM. (G/H)™y ... «(G/H,)"™ is (2, n)-universal.
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1. Introduction.—The principal purpose of this note is to display the first pair
of orthogonal latin squares of order 10. A latin square of order n isan n X n
matrix with exactly » distinct symbols, each symbol in each row (necessarily only
once) and each symbol in each column (once). Two latin squares of order n are
called orthogonal if each ordered pair of symbols occurs (once) in some cell, the first
symbol in the first latin square and the second symbol in the second latin square.
More generally, several latin squares of order n are a mutually (or pairwise) ortho-
gonal set if each pair of latin squares is orthogonal. Unlike the somewhat similar
magic squares, orthogonal latin squares are today no isolated combinatorial curios-
ity. For a set of n — 1 mutually orthogonal latin squares of order n is equivalent
to an affine plane of order n. In turn, an affine plane determines a projective
plane of the same order; and a projective plane is the completion of at least one
affine plane of like order. The nonspecialist is referred to expository papers!—3
and their bibliographies.

Eulre* introduced the concept of pair of orthogonal latin squares (also called
Greco-Latin squares). He obtained several results, and conjectured that no pair
exists of any order n =2 (mod 4). Tarry® demonstrated by a lengthy case-by-case
argument the truth of Euler’s conjecture for order 6; his result made the conjecture
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seem more plausible. Bose and Shrikhande® have very recently obtained the first
counterexamples to Euler’s conjecture; they constructed pairs of orthogonal latin
squares of infinitely many orders n = 2 (mod 4), their lowest order being 22.

Order 10 is of considerable interest in itself, being the Jowest order for which the
existence of a projective plane remains undecided, and having been also the lowest
undecided order for existence of a pair of orthogonal latin squares. Considerable
effort has been expended in searching by digital computer for a pair of orthogonal
latin squares of order 10, but machines have proved too slow to cope with a search of
such magnitude.

Section 2 contains a theorem and a corollary yielding construction of pairs of
orthogonal latin squares of infinitely many orders n = 2 (mod 4), the first order
being 10. In Section 3 a pair of orthogonal latin squares of order 10 is displayed.
In Section 4 are some concluding remarks.

2. The Theorem.—First will be proved a lemma, which is familiar to some, but is
apparently not in the literature. (Thislemmain more general form is in reference 7).

LEMMA. A pair of orthogonal latin squares of order n is equivalent to a set of n?

ordered quadruples (a1, @, 3, au); T = 1, ..., n?, with elements a;; the numbers 1,
..., n, and such that for each pair u, v of integers, 1 < u < v < 4, and each pair x, y
of numbers from 1, ..., n, a;, = x and a;, = y both hold for some < (i = 1, ..., n?).

Proof: There being exactly n? ordered quadruples in the set, a;,, = xand a;, = y
are satisfied for a unique 7. Associate the n? ordered quadruples with cells of two
n X n matrices, a; and a;; chosen as the row and column indices, respectively, a;
and ay as the digits in the designated cell of the first and second matrix, respectively.
The conditions imply that the matrices are orthogonal latin squares. For when u
and v are 1 and 2, each cell is accounted for. When v = 1 and v is 3 or 4, each row
of the appropriate matrix contains each digit—only once, of course. Similarly
when u = 2 and v is 3 or 4, the same holds on columns. When u and v are 3 and 4,
each ordered pair of digits occurs (exactly once) in some cell of the matrices. The
converse construction of the set of ordered quadruples from the pair of orthogonal
latin squares is carried out similarly.

THEOREM. There exists a pair of orthogonal latin squares of order (3¢ — 1)/2,
where q is a prime-power, and ¢ =3 (mod 4). (While there exists a pair of orthogonal
latin squares of order 4, the construction below fails for ¢ = 3.)

Proof: A set of ordered quadruples satisfying the conditions of the Lemma will
be constructed. In all four positions, the (3¢ — 1)/2 symbols are chosen as the ¢
elements of GF[q], and X;,2 = 1, ..., (¢ — 1)/2. Form the ordered quadruples,

Xya,r+a rr+1) +a)
r+ 1) +a, Xy 0, + a)
"+ a, ”*(r + 1) + a, X;, a)
(a) 7‘21 + a" 7.21‘(1. + 1) + (l, Xi))

where 7 = 1, ..., (¢ — 1)/2, a ranges over the elements of GF[q], and r is a fixed
primitive element (i.e., a generator of the cyclic multiplicative group) of GF|q].
The above ordered quadruples are related by cyclic permutation of the four positions.
Selecting all pairs 7, a generates a list of 4-¢- (¢ — 1)/2 = 2¢q(¢ — 1) ordered quad-
ruples. It is easily checked that each X; occurs once in the list with each element
of GF[q] in each ordered pair of positions. No two like or distinct X; occur in
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any of these quadruples; no element of GF[q] is repeated in a quadruple. Since
(r* 4+ a) — a = r* ranges over (nonzero) square elements of GF[q], and {r*(r + 1)
+ a} — (** + a) = r* * ! ranges over nonsquare elements of GF[gq], each pair of
distinet elements of GF[q] occurs once in each adjacent pair of positions once in
either order—here the first and fourth positions are considered adjacent. Since
g =3 (mod 4), —1 is a nonsquare in GF[¢q]. It follows that {r”(r +1) + a} —a
and ¢ — {r*(r + 1) + a} are one square and one nonsquare in GF[g]. Hence
each ordered pair of distinct elements of GF[q] occurs once in the first and third
positions; once in the second and fourth positions. (Since — 1 is the only primitive
element of GF[3], and —1 4+ 1 = 0, the construction fails for ¢ = 3.)

Form the ordered quadruples, (a, a, a, a), where again a ranges over the elements
of GF[q]. These g quadruples account for one occurrence in each pair of positions
of each a with itself. Finally, generate a set of (¢ — 1)2/4 ordered quadruples
equivalent to any pair of orthogonal latin squares of order (¢ — 1)/2, with the X,
in all four positions. (A pair of orthogonal latin squares of any odd order exists.)
In this latter set of ordered quadruples, each pair of like or distinct X; occurs in
each pair of positions once. Collectively, the three classes of ordered quadruples
form a set of {(3q - 1)/ 2} 2 satisfying the conditions of the Lemma.

By the celebrated theorem of Dirichlet, there exist infinitely many prime-powers
g="7 (mod 8). Each such ¢in the above construction produces a pair of orthogonal
latin squares of order (3¢ — 1)/2 =10 (mod 12). ‘

CoROLLARY. There exists a - pair of orthogonal latin squares of order any odd
multiple of any order constructed in the Theorem.

Proof: MacNeish® has shown the following by a straightforward constructive
method: If there exist sets of { mutually orthogonal latin squares of orders m and n,
respectively, then there exists a set of ¢ mutually orthogonal latin squares of order
mn. Specializing to ¢ = 2, and noting a pair of latin squares exists of any odd order,
the Corollary is immediate.

3.—A pair of orthogonal latin squares of order 10, constructed from the Theorem
is displayed. Here ¢ = 7, r = 3, and digits 7, 8, 9 correspond to the X,;. The
horizontal and vertical divisions are intended to bring out relations.

0417298 365 0786935 412
8152739 406 6178094 523
9826374 510 5027819 634
5983047 621 9613782 045
7698415 032 3902478 156
6709852 143 8491357- 260
3071986 2514 7859246 301
1234560 789 4560123 789
2345601 897 1234560 978
4560123 978 2345601 897

4. Remarks.—The author is indebted to Professors Bose and Shrikhande for
the erucial idea® of applying a group of automorphisms to the set of ordered quad-
ruples except for a subset equivalent to a pair of orthogonal latin subsquares. The
author failed to handle Euler’s conjecture with a group of automorphisms over all
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ordered quadruples; he did, however, disprove’ MacNeish’s® generalization of the
Euler conjecture.

The above pair of orthogonal latin squares of order 10 cannot be extended to a
set of 9 mutually orthogonal latin squares of order 10, generating a plane of order 10.
For the plane would have a subplane of order 3 formed by the set of 3 — 1 = 2
orthogonal latin squares of order 3; this is impossible by a theorem of Bruck.®
Whether the techniques referred to”® and this note will lead to more significant
results can hardly be predicted so soon. There is less reason than before to believe
that all finite projective planes are of prime-power orders. The author hopes
that more effort will now be put into attempts to construct projective planes of
nonprime-power orders, and that someone will succeed.
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Lymph nodes aré well known to be the principal site for the synthesis of anti-
bodies.! Since there is a growing body of evidence that an important stage in pro-
tein synthesis involves the condensation of amino acids on microsomes,?-? it was of
interest to determine whether antibody activity could be demonstrated on micro-
somes isolated from the lympn nodes of antigenically stimulated animals. The
assay devised for this purpose was based on the reversible binding of a soluble anti-
gen by antibodies which were insoluble due to their association with microsomal
particles. I'3!labeled antigen was used to provide an indicator of high sensitivity.
In order to increase the opportunities for evaluating the specificity of the assay
procedure, the immune system used was specific for a simple chemical group (2,4-



