Journal of Integrative Bioinformatics, 8(1):152, 2011 http://journal.imbio.de

An Advanced Environment for Hybrid Modeling of
Biological Systems Based on Modelica

Sabrina ProR and Bernhard Bachmann

University of Applied Sciences Bielefeld, Am Stadtholz 24, 33609 Bielefeld, Germany,
http://www.fh-bielefeld.de/ammo

Summary

Biological systems are often very complex so that an appropriate formalism is needed for
modeling their behavior. Hybrid Petri Nets, consisting of time-discrete Petri Net elements
as well as continuous ones, have proven to be ideal for this task. Therefore, a new Petri
Net library was implemented based on the object-oriented modeling language Modelica
which allows the modeling of discrete, stochastic and continuous Petri Net elements by
differential, algebraic and discrete equations. An appropriate Modelica-tool performs the
hybrid simulation with discrete events and the solution of continuous differential
equations. A special sub-library contains so-called wrappers for specific reactions to
simplify the modeling process.

The Modelica-models can be connected to Simulink-models for parameter optimization,
sensitivity analysis and stochastic simulation in Matlab.

The present paper illustrates the implementation of the Petri Net component models, their
usage within the modeling process and the coupling between the Modelica-tool Dymola
and Matlab/Simulink. The application is demonstrated by modeling the metabolism of
Chinese Hamster Ovary Cells.

1 Introduction

The modeling of biological systems demand often a combination of continuous and discrete
processes, a differential equation system sole is often not sufficient. Examples are gene
regulation and processes where the organism switches from substance production to
consumption or vice versa when special environmental conditions occur. The structure of the
differential equation for a substance depends on specific conditions and changes within time.
This kind of process takes place within the metabolism of Chinese Hamster Ovary Cells
(CHO-Cells) which switches from lactate and ammonium production to consumption after a
specific change of environmental conditions. The concrete mechanism is part of section 3.

The realization of the CHO-model requires an appropriate formalism. Hybrid Petri Nets
consisting time-discrete as well as continuous Petri Net elements have proven to be ideal. The
biological pools, e.g. metabolites, genes, proteomes and signals are represented by Places and
the reactions between them can be modeled by Transitions. This transfer of biological systems
to Petri Nets was first introduced by Reddy [1] and an introduction in the basic Petri Net
concepts is given in section 1.1.

For the modeling and simulation of hybrid Petri Nets a new library was developed with the
object-oriented modeling language Modelica [2], whereby the Petri Net component models
consist of differential, algebraic and discrete equations. The Modelica language and the
available simulation tools are introduced in section 1.2 and the concrete implementation and
usage of these Petri Net components are part of section 2. A short introduction in other hybrid
Petri Net simulators is given in section 1.3.

doi:10.2390/biecoll-jib-2011-152 1

http://www.fh-bielefeld.de/ammo

Journal of Integrative Bioinformatics, 8(1):152, 2011 http://journal.imbio.de

1.1 Petri Nets

The Petri Net formalism for graphical modeling of concurrent and nondeterministic processes,
was first introduced by Carl Adam Petri in 1962 [3]. A Petri Net is mathematically a directed,
2-colored and bipartite graph. The property 2-colored implies the division in two unique node
sets which are called Transitions and Places and only Places can be connected to Transitions
or Transitions to Places according to the bipartite attribute. The Places are represented
graphically by circles and Transitions by rectangles. Places model states for example of
objects or conditions while Transitions model the changes of these states for example
activities or events.

Definition 1: A Petri Net is the tupel (P,T,F,G,f) of a finite set of Places
P = {Pl, p,, ...,Pp}, a finite set of Transitions T = {Ty, T,, ..., Tz}, where PNT = @,
an edge set F € (P X T), an edge set G < (T X P) and an edge weighting function
f:(FUG) - N", where f,; is the weighting of the edge from Place p € P to
Transition t € T and f;,, is the weighting of the edge from t to p.

Every Place can contain an integer number of Tokens. These Tokens are represented
graphically by little, black dots or numbers inside the Places. A concrete determination of the
Token number of a Place is called state of the Place and a concrete determination of the
Token numbers of every Place is called the state of the Petri Net. A Transition can fire these
Tokens if all Places in its previous area (previous Places) have at least as much Tokens as the
respective edge weighting. It is said that the Transition is ready-to-fire. A Transition that is
ready-to-fire, fires by removing as much Tokens as the respective edge weighting determines
from all its previous Places and by adding as much Tokens as the edge weighting specifies to
all Places in its past area (past Places).

Figure 1 shows on the top an example of a Petri Net where the Transitions T1 and T2 are
ready-to-fire and the others not. The Petri Net at the bottom displays the new state after firing
the Transitions 71 and T2.

In the last years, the basic Petri Net concept, described above and defined in Definition 1 has
been more and more extended in order to model different kind of applications (e.g. biological
systems). The first extension is that every Place in a Petri Net can have a lower and upper
limit of Tokens. These Petri Nets are called Petri Nets with capacity.

Not only the Places can have lower and upper limits. It is also thinkable that the edges from
Places to Transitions are bounded with threshold (lower bound) and inhibition (upper bound)
values. In the biological sense these parameters are useful to model reactions that are inhibited
or activated by a specific substance concentration.

The edge weighting function can be modified for modeling dynamic edge weightings that
depend on the actual Token number of several Places. Thus, not only positive integers can be
written at the edges but also the names of the Places. This Petri Net extension is called self-
modified Petri Net and was first introduced by Valk [4].

These self-modified Petri Nets can be further expanded to functional Petri Nets. The edge
weightings can be functions depending on the Token numbers of several Places [5].

For the simulation of a Petri Net it is necessary to associate time with its behavior. One
possibility to do this is that every Transition gets a delay. A delay is the time period that the
respective state change takes.

This concept can be also modified by random delays, i.e. the fixed values are replaced by
random numbers that change at every activation point in time. The delays are exponential

doi:10.2390/biecoll-jib-2011-152 2

Journal of Integrative Bioinformatics, 8(1):152, 2011 http://journal.imbio.de

distributed random numbers, whereby the characteristic parameter A can depend functionally
on the Token numbers of several places. This modification is called stochastic Petri Net (see

e.g. [6], [7].

o
[y
s U
(2]

—

\1/]

Figure 1: Petri Net example, top: the Transitions T1 and T2 are ready to fire, bottom: the new
state of the Petri Net after firing Transition T1 and T2.

Biochemical reactions occur in the most of the cases continuously. In order to model these
reactions, the discrete Petri Net concept has to be transferred to a continuous one [8]. The
most serious difference between discrete and continuous Petri Nets is that the Token numbers
are real and that the Transitions fire continuously. A function is assigned to every edge of a
continuous Petri Net depending on the Token numbers of several Places just like the
functional Petri Nets. These functions specify the speed of the firing process and are the right
sides of differential equations.

Definition 2: A continuous Petri Net is the tupel (P,T,F,G,f) of a finite set of Places
P= {Pl, P,, ...,Pp}, a finite set of Transitions T = {Ty, T,, ..., T¢}, where PNT = @,
an edge set F € (P X T), an edge set G < (T X P) and an edge weighting function
g:(F U G) » H which assigns every edge a function h € H: R - R, depending on

doi:10.2390/biecoll-jib-2011-152 3

Journal of Integrative Bioinformatics, 8(1):152, 2011 http://journal.imbio.de

a subset of Place states, whereby h,, is the function assigned to the edge f,; from a
Place p € P to a Transition t € T and h;, is the function assigned to f;,.

The state change of the Place p € P can be recalculated by the following differential
equation

ST D et

tETFpast(p) tET Fpre(P)

where TFp,q5(p) € T is the set of all firing past Transitions and TF,,..(p) S T is the
set of all firing previous Transitions.

A continuous Petri Net is an ordinary differential equation system whose structure can change
within time.

Additionally, the modeling of biological systems demands often a combination of discrete
processes and continuous ones. One example is gene regulation or the metabolic reactions of
substances which switch from production to consumption or vice versa when specific
conditions appear. Hybrid Petri Nets which contain discrete as well as continuous Petri Nets
elements accomplish this [9].

Definition 3: A hybrid Petri Net is the tuple (PD, PC,TD,TC,F,G, fd, fc,d, M,), whereby

0]

O OO0 O

o O

PD = {PDl, PD,, ..., PDpd} is a finite set of discrete Places

PC = {PCl, PC,, ..., PCpC} is a finite set of continuous Places

TD ={TD,, TD,, ..., TD;4} is a finite set of discrete Transitions

TC ={TC,, TC,, ..., TC;.} is a finite set of continuous Transitions

with PDNTD =0, PCNTC=@0,PDNPC =0, TDNTC =0, PDNTC =9 and
PCNTD =9

F < (PDXTD)U (PCXTC)U (PC X TD) is the set of edges

G < (TD x PD) U (TC x PC) U (TD x PC) is the set of edges
fd:(FUG\{(PCXTC)U(TC XxPC)} > G is an edge weighting function which
assigns every edge a function g € G: NP4 - N depending on a subset of discrete Place
states

fe:(FUG)\{(PD XTD) U (TD x PD) U(PCXTD)U (TD X PC)} » H is an edge
weighting function which assigns every edge a function h € H: Rﬁdwc - R,
depending on a subset of discrete and continuous Place states

d:TD - R% is a delay function

My: PD — N’id, PC -]REC is the initial state.

The following connections are allowed within hybrid Petri Nets

SN NN NN

discrete Place — discrete Transition
discrete Transition — discrete Place
continuous Place — continuous Transition
continuous Transition — continuous Place
continuous Place — discrete Transition
discrete Transition — continuous Place

Not allowed are the connections

X
X

discrete Place — continuous Transition
continuous Transition — discrete Place

doi:10.2390/biecoll-jib-2011-152 4

Journal of Integrative Bioinformatics, 8(1):152, 2011 http://journal.imbio.de

The change-over from a discrete to a continuous process and vice versa is described by the
examples in Figure 2.

N

TN D) TN

| PD1 —i1—> 5—{ [Pc1 PC2) b—3 9— PD2 |

_/ <) & _/

Figure 2: Hybrid Petri Net examples, left: a discrete Transition (delay=2) is connected to a
continuous Place, right: a continuous Place is connected to a discrete Transition (delay=7).

Left: If Transition TD1 is ready to fire, it waits two time units before one Token is removed
from PD1. In these two time units five Tokens are added to PC1 continuously, i.e. its state
change is described by the differential equation

dM(PC1) _ froipcr 5

dt dppy 2

Thus, the Token number of PC1 increases linearly with the slope ; Right: If Transition TD2
is ready to fire, it fires by removing three Tokens in seven time units continuously from PC2

dM(PC2) _ _fPCZ,TDZ 3

at drpp, 7

and by adding nine Tokens to PD2 after seven time units. Thus, the Token number of PC2 is
in the range of the delay a line with the slope —;. The change-over interpretation is also
displayed in Figure 3.

Py m—ro - 17 t| ——PD2
| P 1BE| sy pC2

Tokens
Tokens
w0

time time

Figure 3: The change-over interpretation from discrete to continuous (left) and vice versa (right)
of the examples in Figure 2.

1.2 Modelica

The basic Petri Net concept and its extensions described above have been implemented with
the aid of the object-oriented modeling language Modelica [2]. Modelica is a free language
and developed by the Modelica Association since 1996. Furthermore, several libraries for
simulating technical systems have been developed over the last decade. Since the year 2000

doi:10.2390/biecoll-jib-2011-152 5

Journal of Integrative Bioinformatics, 8(1):152, 2011 http://journal.imbio.de

Modelica is used successfully in industry, which is documented in the proceedings of many
Modelica conferences and journals. The development of the language and libraries is ongoing
and driven by several European projects (EUROSYSLIB, MODELISAR, and OPENPROD).
The Modelica-models can be described by differential, algebraic and discrete equations on the
textual level and by schematics on the graphical level. The schematics consist of connected
components which are defined by other components or on the lowest level by equations in the
Modelica syntax. The components have connectors which describe the interaction between
them. By drawing lines between the connectors of the components these components are
connected and can interact. In this manner a model is constructed. The components can be
structured in libraries, called packages, which make hierarchical modeling possible. For the
graphical modeling and the simulation an appropriate environment is needed. Here are some
examples of free and commercial Modelica simulation environments.

Free:

0 OpenModelica (Compiler, www.openModelica.org) and SimForge (graphical
environment, https://trac.ws.dei.polimi.it/simforge/)
0 JModelica (www.jmodelica.org)

Commercial:

0 Dymola from Dassault Systemes (www.3ds.com/products/catia/portfolio/dymola)

0 MapleSim™ from Maplesoft (www.maplesoft.com/products/maplesim/index.aspx)

0 MathModelica System Designer from MathCore
(www.mathcore.com/products/mathmodelica)

For the examples in this paper the commercial tool Dymola — Dynamic Modeling Laboratory
— version 7.4 has been used.

The first Petri Net Library in Modelica was developed by Mosterman and others [10].
Herewith the modeling of a special case of discrete Petri Nets is possible where all Places
have one Token as the maximum capacity and zero as minimum capacity. Additionally, all
edges have the weighting one. No time was associated with their behavior. An external signal
is associated with the Transitions which can enable or disable them. This Petri Net Library
was further developed by Fabricius [11]. The extensions are that the Places can contain an
integer number of Tokens and can have minimal and maximal capacities. The Transitions can
be timed or stochastic. The first Petri Net concept of Mosterman and other was also further
developed by Otter and others [12] to so-called StateGraphs. The StateGraph Library is a part
of the Modelica standard library.

1.3 Petri Net Simulation Tools

There are already a lot of Petri Net simulators available. An overview can be found in [13].
But only a few of them are applicable for the hybrid Petri Net simulation. The most common
tool is the Cell Illustrator which is a hybrid Petri Net simulator especially for biological
systems ([14], [15]). It is commercial and bases on the tools Visual Object Net of the TU
[lmenau [16] and Genomic Object Net of the Yamaguchi University [17]. The Cell Illustrator
has a good user interface and is easy to handle but the simulation is like a black box. No
definitions of the hybrid simulation are available and no choice of the solver for the ODEs is
possible, additionally it is not known which solver is really used. Furthermore, it is not
possible to make neither a Monte Carlo simulation to get knowledge about the parameter
sensitivity nor a parameter optimization.

doi:10.2390/biecoll-jib-2011-152 6

Journal of Integrative Bioinformatics, 8(1):152, 2011 http://journal.imbio.de

To close this gap a Petri Net Library was developed with the object-oriented modeling
language Modelica. The code behind the several Petri Net component models is visible,
changeable and expendable. Additionally, this library will be free available. Dymola 7.4
consists 16 different ODE-solver (e.g. Dassl, Euler, Rkfix2) which are useable for the hybrid
Petri Net simulation. Moreover, the Modelica-models can the connected to Simulink-models,
in this manner all the Matlab power can be used for the parameter optimization, sensitivity
analysis and stochastic simulation.

2 Petri Net Library in Modelica

The Petri Net Library described in this paper bases on the previous ones developed in
Modelica ([10], [11], [12]). The improvements are [18]:

0 Discrete Petri Nets
- The edges can have integer or functional weightings depending on the Token
numbers of several Places
- The edges can have integer bounds (threshold and inhibition values)
- If a Place has a bottleneck, the connected Transitions are enabled randomly with
different probabilities (see Figure 9)
0 Continuous Petri Nets
- Transfer of the discrete Petri Net concept to a continuous one
- The edges can have functional weightings depending on the Token numbers of
several Places
- The Places can have minimum and maximum capacities and the edges can have
bounds (threshold and inhibition values)
O Hybrid Petri Nets
- Combination of discrete and continuous Petri Net elements to hybrid Petri Nets

The Petri Net library is structured in five sub-libraries: Discrete, Continuous, Stochastic,
Reactions and Global. Additionally, there are packages for Interfaces, Constants, Functions
and Blocks which are used within the component models (see Figure 4). The individual
developed models can be stored in the sub-package Models.

- [CJPetriets
+ ﬁDiscrete

+ [JContinuous
+ [J|Stochastic
+ [JReactions

+ [aiobal

+ [JInterfaces
+ [JIConstants

+ [JJFunctions

+ |jEi||:u:k5
5 |jMn:udeIs

Figure 4: Structure of the Petri Net library.

doi:10.2390/biecoll-jib-2011-152 7

Journal of Integrative Bioinformatics, 8(1):152, 2011 http://journal.imbio.de

The Petri Net elements of the library are represented by the icons in Figure 5. The little white
and red triangles at the Petri Net icons are the connectors. Transitions and Places can be
connected graphically by drawing a line from a white to a red triangle. Not allowed are
connections between discrete Places and continuous Transitions (cp. Definition 3). Figure 6
shows an example of a hybrid Petri Net modeled by the Petri Net library in Dymola.

A connector defines the variables that are part of the communication interface. Two
components that are connected via their connectors can exchange the variables that are
defined within their connectors. Thus, they can interact with each other. The Petri Net Library
has four different connectors FirePortln, SetPortln, FirePortOut and SetPortOut.
Both output connectors, FirePortOut and SetPortOut, are represented graphically by
white triangles and both input connectors, FirePortln and SetPortln, by red triangles
(see Figure 7). The FirePortOut-connector can be only connected to the FirePortln-
connector and the SetPortOut-connector can be only connected to the SetPortln-
connector. In this manner a Place can be only connected to a Transition or a Transition to a
Place, like it is demanded. A connection can be graphically constructed by drawing a line
from the connector of one component to a connector of another component or textually by the
equation connect(connectorl, connector?2). The connector itself can be implemented
in Modelica with the aid of the following construct:

connector <name>
<data type> variablel;
<data type> variable2;
end <name>;

The connectors can be found in the Interfaces sub-library.

« PD | Discrete Place

. PC Continuous Place

Discrete Transition

Stochastic Transition

HE b Continuous Transition

Figure 5: Icons of the Petri Net library.

doi:10.2390/biecoll-jib-2011-152 8

Journal of Integrative Bioinformatics, 8(1):152, 2011 http://journal.imbio.de

Figure 6: Hybrid Petri Net modeled by the Petri Net library in Dymola where P1, P2, P4 and T1
are discrete, T2 is stochastic and P3, P5, P6, P7 and T3 are continuous Petri Net elements.

The Token number of a Place is one example of a connector variable. It is calculated in the
Place but also needed in the connected Transitions to check whether they are ready to fire or
not. The keywords input and output determine if the equations of these variables are in the
component where the connector is used or if they are in a connected component. The equation
for Token number is provided in the Place, i.e. it is an output variable of the FirePortOut-
connector and an input of the FirePortln-connector. The keywords input and output in
the connectors guarantee that the Place and Transition models are balanced, i.e. they have the
same number of equations than variables (see balanced model definition in [2]).

FirePortIn SetPortln

P1 P2

FirePortOut SetPortOut

Figure 7: Connectors of the Petri Net library.
2.1 The Place

The parameters of a Place can be entered to a property dialog in Dymola or textually. The
property dialog appears by double clicking on the Place icon (see Figure 8).

Table 1 contains the parameters which can be set in all Places (discrete and continuous) and
Table 2 those that are only part of discrete Places. The parameter weightingOut is explained
in Figure 9.

doi:10.2390/biecoll-jib-2011-152 9

Journal of Integrative Bioinformatics, 8(1):152, 2011

General Add modifiers

Name pD

Comment

Model

Path Petritets. Discrate, PD
Comment

pD

Tokens

numn_tokens_skart 20 »
min 1
max 100 »

Transition Weightings

weightingOut {0.8,0.2 §

weightingIn {0.1,0.9} &

Companent leon

@

stark Taken number
minimal capacity

maximal capacity

v weightings of past Transitions

» weightings of previous Transitions

General Add modifiers

Marme pC

Comment
Maodel

Path Petritets. Continuous.PC

Comment

Tokens
num_tokens_start 17.89 »
min 0.95 »
max 103.76 *

Component Icon

start Token nurmber
minimal capacity

maximal capacity

Figure 8: Property dialogs of discrete and continuous Places.

Table 1: Parameters of both Places (discrete and continuous).

Identifier

Description

Default value

num_tokens_start

The number of Tokens that the Place contains at the
beginning of the simulation. In the discrete case integer
and in the continuous case real numbers can be entered.

Z€ro

min The minimum number of Tokens that the Place must Zero
always contain. In the discrete case integer and in the
continuous case real numbers can be entered.

max The maximum number of Tokens that the Place can infinite

contain. In the discrete case integer and in the continuous
case real numbers can be entered.

Table 2: Parameters only of a discrete Place.

http://journal.imbio.de

Identifier Description Default value

weightingOut Weighting of the Transitions in the past area of a Place. If | 1/nOut
a Place has not enough Tokens to enable all connected nOut = number of
Transitions, a random decision must be made, whereby connected past
the respective Transition is chosen with the entered Transitions
probability. The sum of all weightings has to be one (see
Figure 9).

weightingin Weighting of the Transitions in the previous area of a 1/nln

Place. If a Place cannot gain Tokens from all connected
Transitions in its previous area due to its maximum value,
a random decision must be made, whereby the respective
Transition is chosen with the entered probability. The sum
of all weightings has to be one.

nln = number of
connected previous
Transitions

doi:10.2390/biecoll-jib-2011-152

10

Journal of Integrative Bioinformatics, 8(1):152, 2011 http://journal.imbio.de

N
o

Figure 9: Petri Net example for the weightingOut-parameter: The Place P has one Token not
enough for firing simultaneously in T1 and T2 since both edge weightings are one. The Plave has
a bottleneck and a random decision is applied, whereby T1 is chosen with the probability 0.9 and
T2 with the probability 0.1. The sum of all weightings of a Place must be equal to one.

The Place parameters can be also entered textually by adding the names of the parameters and
their values within brackets after the component type:

PetriNets.Discrete.PD pD | | (num_tokens_start=20, min=1, max=100, weightingOut={0.8,0.2}, weightingIin={0.1,0.9});

PetriNets.Continuous.PC | | pC | | (num_tokens_start=17.89, min=0.98, max=103.76);

Component Type Component Name Parameter Values

2.1.1 Implementation of the discrete Place

The Token number is determined in the Place model by calculating two sums. One is the sum
of all Tokens that are removed from the Place at a certain point in time (sumOut) and the
other is the sum of all Tokens that are added to the Place at a certain point in time (sumlIn).
The Token number has only to be recalculated when one or more connected Transitions fire
1.e. one of the sums or both are greater than zero. This is realized by a discrete equation in
Modelica, the when-equation. The equation within the when statement is only active when
the corresponding condition, here the Boolean variable tokeninout, becomes true. At this
point in time an event is triggered and the discrete equation for the Token number t becomes
active and the Token number t is recalculated by the pre-value of t, the value immediately
before the event, and the sums sumln and sumOut.

tokeninout = sumln > 0 or sumOut > O;
when tokeninout then

t=pre(t) + sumln - sumOut;
end when;

After every Transition firing, it has to be checked if the Place is empty or full, i.e. if their
minimum or their maximum capacity is reached. The actual state is then reported to the

doi:10.2390/biecoll-jib-2011-152 11

Journal of Integrative Bioinformatics, 8(1):152, 2011 http://journal.imbio.de

connected Transitions via the connector variables outstate and instate (see Figure 10).
The connected Transitions can decide with them if they can fire or not.

outstate = not pre(empty) and not fire;
instate = pre(full) or set;

Figure 10: The connector variables inState and outState of a Place are reported to the
connected Transitions.

2.1.2 Implementation of the continuous Place

The Token number of a continuous Place is calculated by a differential equation in contrast to
the discrete when-equation of the discrete Place model. In the most of the cases this is the
following differential equation, whereby der is the keyword for the differential operator with
respect to time in Modelica

der(t) = sumln-sumOut;

But also some special cases have to be trapped to guarantee an error-free simulation e.g. what
happens when the Place has zero Tokens and sumOut is greater than sumln. Besides, the
variables full and empty are calculated within the Place model. With the aid of these
variables the state of the continuous Place can be determined and reported to the connected
Transitions, like in the discrete case (see Figure 10).

2.2 The Transition

The parameters of a Transition can be entered to the Dymola property dialog which appears
by double clicking on the Transition icon (see Figure 11).

doi:10.2390/biecoll-jib-2011-152 12

Journal of Integrative Bioinformatics, 8(1):152, 2011 http://journal.imbio.de

General | Add modifiers Genersl | Add modfiers
Companent Teon Component Tcon
Name [t5
Name to
Comment
Comment
Model
R Path PetriNets.Stochastic.TS
Path Petrihets,Discrete, TD Comment
Comment Exp. Distribution
Delay < » constant for the lambda functions
lambdafunc () Stochastic mass action (O Stochastic level v function for the lambda calculation
delay 799+ delay of timed Transition © N
lambda 3.2%P2k v user-defined Function for lambda

Edge Weightings
ge Weighting Edge Weightings

sub {1,5¢ EB weigthing of the edge from Flace to Transition sub {2 |E2 weigthing of the edge from Place to Transition
aod 13,721} B wesgthing of the edge from Transition to Place add {1,2,3; E§» weigthing of the edge from Transition to Place
Edge Boundaries Edge Boundaries
threshold e e threshold {o} EE » lower edge boundaries
i . . — . inhibition {10} |5 » upper edge boundaries
inhibiticn {Modelica.Constants, Integer_inf,100} E5 » upper edge boundaries
Condition
Condition
con time < 7.6 w|v additional fire condition
con time > 19.8 & |+ additional fire condition

General | Add modifiers
Component Icon
Name tC

Comnment

]

Model

Path PetriNets, Continuous.TC

Comment

Edge Weightings
sub E weigthing of the edge from Place to Transition
add {pr.t*s.9} R ¢ weigthing of the edge from Transition to Place

Edge Boundaries

threshold {o,0r EE » lower edge boundaries

inhibition {Modelica.Constants.inf,Modelica. Constants.inf} & * upper edge boundaries
Condition

con vl additional fire condition

Figure 11: Property dialogs of discrete, stochastic and continuous Transitions.

The parameters settable in all Transition models (discrete, stochastic and continuous) are
summarized in Table 3, the parameters only part of the discrete Transition contains Table 4
and those that can be only set in stochastic Transitions are in Table 5.

doi:10.2390/biecoll-jib-2011-152 13

Journal of Integrative Bioinformatics, 8(1):152, 2011

http://journal.imbio.de

Table 3: Parameters of all Transitions (discrete, stochastic and continuous).

Identifier

Description

Default value

sub

Weightings of the edges from the Places in the previous
area to the Transition. In the discrete and stochastic case
integers and functions can be entered and in the
continuous one real numbers and functions are allowed.
With the “.t”-notation one can access the Tokens of a
Place for the edge weightings, e.g. sub={2*P1.t}.

1

add

Weightings of the edges from the Transition to the Places
in its past area. In the discrete and stochastic case integer
numbers and functions can be entered and in the
continuous one real numbers and functions are allowed.
With the “.t”-notation one can access the tokens of a Place
for the edge weightings, e.g. add={2*P1.t}.

inhibition

Upper bounds of the edges from the Places in the previous
area to the Transition. Integers can be entered in the
discrete and stochastic case and real ones in the
continuous case.

infinite

threshold

Lower bounds of the edges from the Places in the previous
area to the Transition. Integer numbers can be entered in
the discrete and stochastic case and real ones in the
continuous case.

Z€ro

con

Additional fire condition which has to be true so that the
Transition become active and fires
(e.g. time>9.7)

true

Table 4: Parameter only of a discrete Transition.

Identifier

Description

Default value

delay

The time units that a discrete Transition waits after its
activation before it fires.

1

Table 5: Parameters only of a stochastic Transition.

Identifier

Description

Default value

c

Constant for the pre-defined lambda functions

1

lambdafunc

Pre-defined function for the lambda calculation; choice
between stochastic mass action hazard function and
stochastic level hazard function (see [19])

action

lambda

User-defined function for lambda instead of the pre-
defined lambda functions (Stochastic mass action hazard
function and Stochastic level hazard function)

221

In the discrete Transition it is decided with the aid of the Place-reported variables inState

Implementation of the discrete Transition

and outState if it is ready to fire, activated and if it fires.

A discrete Transition is active if the states of all Places in its previous area are true and none
of the states of the Places in its past area is true. Additionally, the user-defined condition has

to be true.

activated = allTrue and not anyTrue and con;

doi:10.2390/biecoll-jib-2011-152

Stochastic mass

Journal of Integrative Bioinformatics, 8(1):152, 2011 http://journal.imbio.de

The pre-value of the variable activated is also needed to avoid an algebraic loop. An
algebraic loop is a kind of deadlock between different when-equations. It is present if there
are mutual dependencies [20].

preactivated = pre(activated);

When the variable preactivated switches from false to true, an event is trigged which
activates the equations of the variables last_activation_time that saves the activation
time.

when preactivated then
last _activation_time = time;
end when;

When the Transition is timed, the Transition waits the user-defined time units before it fires.
The variable delay_passed saves whether the delay is passed or not.

delay passed = preactivated and
time-delay > last _activation_time;

For the determination when a Transition fires, is a differentiation between discrete and
continuous Places necessary. The output connector variables Fire and set are needed in the
connected Places for the calculation of their Token numbers (see Figure 12).

¥ _setT *~>‘,’/ \

p
_-inState” " /

\set\ J—
inState\\\:f Pm
Figure 12: The input and output connector variables of Transitions.

2.2.2 Implementation of the stochastic Transition

The only difference between a discrete and a stochastic Transition is that the delay is a
random number instead of a fixed value. In the implementation this is reflected by an
additional equation which becomes active when the variable preactivated switches from
false to true. At this point in time, an exponential distributed random number is generated
with the aid of the function randomexp. The characteristic parameter A of the exponential
distribution is the value of the entered lambda-function at this point in time. This can be either
a pre-defined (stochastic mass action hazard function or stochastic level hazard function) or a
special user-defined function.

doi:10.2390/biecoll-jib-2011-152 15

Journal of Integrative Bioinformatics, 8(1):152, 2011 http://journal.imbio.de

when preactivated then

last_activation_time = time;

delay = Functions.random.randomexp(pre(lambda));
end when;

The uniform distributed random numbers that are transformed to exponential distribution are
generated by an external C-function.

2.2.3 Implementation of the continuous Transition

The continuous Transition model is, compared to the discrete or stochastic one, simple since
when a continuous Transition is ready to fire, it is also active and fires, i.e. only the states of
the connected Places have to be checked. A continuous Transition fires if all states of its
previous Places are true and none state of its past Places. Additionally, the user-defined
condition con has to be true.

fire = alltrue and not anytrue and con;

The output connector variable fire is then reported to the connected Places for the
calculation of the new Token number (see Figure 12).

2.3 The Reactions Sub-Library

The Petri Net models of the Discrete, Continuous and Stochastic sub-libraries can be wrapped
to models for different kinds of biological reactions to simplify the modeling process. These
model components are organized in the sub-library Reactions which is also divided in several
sub-libraries for different reaction types. Till now there are:

0 Reaction kinetics

0 Enzyme kinetics
0 Growth kinetics
O Culture strategies
0 Process activation
A A
MM-Kinetic
1.1.1.1
graphical textual
model Re MM
paramecer Real kcat = 1 n o numb
Ly e parameter Real Em = 1 "Mick nt
paramater Feal e_con = 1 "
parameter String ec _number = "" "ec-number"™;
Interfaces In sub 3
Intarface Cut pro a
procected
Beal speed;
FetriNets.Continuous.IC tisub = {speed}, add = {speed}) a;
equation
speed = (sub.t * e_con * kecat) / (sub.t + Em);
connect (sub, t.inPlaces(l]) a:
connect (t.outPlaces([l], pro) a;
end ie_H!;

Figure 13: Wrapper of the Michaelis-Menten Kinetics.

doi:10.2390/biecoll-jib-2011-152 16

Journal of Integrative Bioinformatics, 8(1):152, 2011 http://journal.imbio.de

The wrapping process is illustrated by the Michaelis-Menten Kinetics in Figure 13. Behind
the “MM-Kinetic”-icon, which is between two continuous Places for substrate and product, is
a continuous Transition with the Michaelis-Menten Kinetics as edge weighting. In this
manner, the user has only to enter the parameters of the Michaelis-Menten Kinetics in the
property dialog of the “MM-Kinetic”-icon instead of the whole equation every time (see
Figure 14). All the other wrappers work in the same manner. The user can easily add his
individual reactions in this package to make the specific modeling process much faster and
easier. For a detailed description of the wrapping process see [21].

MK-Kinetic

- Ba R ER R

Compaonent Icon
Mame re MM
et
Model
Path PetriNets.Reactions.Enzymekinetics.Re_MM
Comment
Parameters
kcat 0.19 » turn over number
Km 2.57 » Michaelks-Menten constant
e_con 0.013 » enzyme concentration
ec_number L1111 » ec-number

Figure 14: Property dialog of the Michaelis-Menten Kinetics wrapper.

2.4 Modeling, Simulation and Animation in Dymola

A Petri Net model can be constructed easily in Dymola by drag the respective Petri Net icon
from the Package Browser to the diagram (see Figure 15).

If the model is constructed graphically, it is also textual available. The textual model of the
Petri Net in Figure 15 is given in Figure 16. In this manner, it is possible to parse hybrid Petri
Net models of other tools (e.g. in XML-format) to Modelica-text and compile and simulate it
with a Modelica-tool.

doi:10.2390/biecoll-jib-2011-152 17

Journal of Integrative Bioinformatics, 8(1):152, 2011

http://journal.imbio.de

=y Commaeds Wedew Hel

FEHAE N T ODOFARZL S U K- - ¢reSRES o -

Package brovese &=

Pachas -
i
= [Ppetrbiets

5 Jocrete

PetriNets Models pic b

B Moddng | V' Sedstion

Figure 15: Graphical Modeling of Petri Nets in Dymola.

model hyb

Cont imaous .
Contimaous.
Continuous.
Cont inuous.
Stochastic.

Continuous.

equation
connect (P1.
connect (P2.
connect (T1.
connect (T1.
connect {P5.
connect (P&,
connect (T3,
connect (P4.
connect (P3.
connect (PL.
connect (PS,
connect (P7.

end hyb;

Discrete. PDOut Pl{nlut=l, num tokens_ start=100} a;
Discrete.TD TlinIn=2, nlut=2Z,add={3,2}) a:

Discrete. PDOut PZinluc=1, num tokehs_start=200) a5;
Discrete PD P4(nIn=1, nluc=l rumn tokens_ start=30 min=2Z) a;

PC PSinIn=1l, nOuc=l, rmum tokens starc=10) a;
TC T3{nIn=2,
PCOut PéinOut=1, num tokens_start=100) a;

PCIn P7inIn=1) 3;

T3In TZinIn=2) a;

PCOut P3{n0ut=l num_tokens_start=100, min=10} a;

inner Global.settings settingsiscale=0.5) a;
Hodelica.Blocks. Interfaces. Integerfutput pl_t a;
Hodelica.Blocks. Interfaces. RealOutput p&_t a;
Hodelica.Blocks. Inter faces. RealOutput p7_t

outTransition(l]), Tl.inPlaces[l]) &;
outTransitien[l], Tl.inPlaces[Z]) &;
oucPlaces[l], P4.inTransicien(l]) a;
outPlaces[Z], PS.inTransitionfl]) a;
outTransition[l], T3.inPlaces[l]) a;
eucTransitien(l], T3.inPlaces[2]) a;
oucPlaces[l], P7.inTransicien(l]) a;
outTransicion(l], TZ.inPlaces[l]) a;
outTransition(l], TZ.inPlaces[2]) a;
pd e, pl_t) B8;

pe_t, ps) a8

pe_t, p7 £l a;

niut=1,sub={1,P6.t*0. 05}, add={P6.£*0_1}} =;

Figure 16: Textual Modeling of Petri Nets in Dymola.

For the simulation, one has to switch from the Modeling view (see Figure 15 and Figure 16)
to the Simulation view (see Figure 17). There the model can be translated to C-code with the
translation button [#] in the toolbar and afterwards it can be simulated with the simulation
button Dymola offers a lot of properties for tuning the simulation by clicking on
simulation properties button i.e. one can choose among others the start and stop time and
the ODE-solver, whereby 16 different are available.

doi:10.2390/biecoll-jib-2011-152

18

Journal of Integrative Bioinformatics, 8(1):152, 2011

http://journal.imbio.de

) Smdeten Mol Awnaton Conweands Widom Heb

FuHOE N +8 o - Beyon 8 FEE OO £-

TR R P ot 1 -

Varubly Browier #x

Variabien " sk i

=k 1

e,

i

m

£ e

ip 3

= @) -
- & 1

wF7

1
2 @ A¢ o

=) >
—| r -

y A A ,_,L_\

-] >—¢I"\ P7 1l

L NS

S l—") L
X Tk stk Custom - bhiuEgam Ei- =HNe=
& ———r—
. Erwe
- true
- bawe
E wirmlatesodel ("Petrikets Nodels. pic. hyb ", method="dassl”. resultFile="N");

Figure 17: Simulation view of a Petri Net model in Dymola.

B Smdwon Pt Aveaten Coaods Wedon e 5
FASREY N e XN iEeYeOE @ FER OHE &-
P UM AP T 0 3 |
LorT— & x i
Voruaties " ek ~ 120-
e —
Cdertt) 50 o
Dl Soberss_sart i B s S
a w0 e —
ey =]
nint —
s v — |
et
T3 ' i ' ' v
Le o 10 » » “ % 0 0) w0 100
vt
dait) —m Pat
nam_tokars_siart] 1
-—r -
il Wod— il
usenare R m— S S i
ot e "
" 100 e —]
i
deft) —
nm_tobers_start +
s 3 u.’—- —
"“‘:"”-"'] 1 0 0 @ =) m -0 & 00
=l
1z
P pe1 et 71
'
durt)
num_pobera_stort o e —
- [
ot
tokenscale 1004 e
S - - 1
o S B —
a2 L= ———]
o7 - 0+
< »
Advanced]] 10 n 0 @ E 60 0 0 o 00
X | bt sty Custom = biyu EZEAEEL = Be=
& | —cre
= rae
simulataliodel (“PetriNats Nodels pic. Mh. methode"dassl®. reswltFiles-hybe)
- tres
E il at abiodel { “ButuiMabe. lodeln. pic. byh*, stoplise=ii$, method= dassl®, reeulifile=‘hys"3;
& moorkg |V seuiste

Figure 18: The representation of the simulation results by several plots with selected Token

numbers.

The simulation results can be displayed by either plots of selected Token numbers (see Figure
18) or by an animation. By the latter one the degree of redness changes during time according
to the Token number of the Place, i.e. a red Place has many Tokens and a white Place is
empty. The redness degree can be scaled from 0 to 100 by the green Settings-box which is a

doi:10.2390/biecoll-jib-2011-152

19

Journal of Integrative Bioinformatics, 8(1):152, 2011 http://journal.imbio.de

component of the Global sub-library (see Figure 19). This animation is realized by the
annotation DynamicSelect

annotation(fillColor = DynamicSelect ({255,255,255%},if scale<100
then {255,255-2_55*tokenscale,255-2_55*scale} else {255,0,0})

General Add modifiers

Component Icon
MName settings
Comrment

Model

Path Petrifdets, Global, settings

Comment
Setup
scale 05+ scale factor for Token animation 0-100
Level Concentrations only for discrete Places
* amount of levels
M L2 maximum concentration

Figure 19: Scaling of the redness degree by the Settings-component of the Global sub-library.

Figure 20 shows the redness change of a Petri Net example during time. This animation offers
a good way for analyzing large and complex Petri Nets.

2.5 Connection Dymola and Matlab/Simulink

For parameter optimization, sensitivity analysis and stochastic simulation according to
Gillespie [22], it is necessary to simulate the model several times with different parameter
settings. Dymola offers a possibility to connect a Modelica-model to Matlab by a Simulink
interface (DymolaBlock) and a set of Matlab m-files [23].

doi:10.2390/biecoll-jib-2011-152 20

Journal of Integrative Bioinformatics, 8(1):152, 2011 http://journal.imbio.de

time =20
time = 50
time = 100

Figure 20: Animation of a Petri Net in Dymola; the Token distribution of the Petri Net example,
top: at the beginning of the simulation, middle: after a simulation of 50 time units, bottom: after
a simulation of 100 time units; the degree of redness corresponds to the Token numbers, i.e. a
red Place has many Tokens and a white Place is empty.

Figure 21 displays on the left a Petri Net modeled by the Petri Net library in Dymola and on
the right the corresponding Simulink model. If the Token number of a Place over the time is
needed in Matlab for further calculations, one has to create a connector above the respective
Place. This is an orange IntegerOutput connector in the case of a discrete Place or a blue
RealOutput connector if it is a continuous Place. In the Petri Net example of Figure 21 the
Token numbers of the Places P1, P5 and P7 are needed in Matlab where P1 is a discrete
Place with an IntegerOutput connector and P5 and P7 are continuous with a RealOutput
connector. The DymolaBlock in Simulink generates a connector for all Places connected with
an Output connector in Dymola. These connectors can the connected via Bus to an Outport so
that these simulation results are saved within a matrix and are available in the Matlab

doi:10.2390/biecoll-jib-2011-152 21

Journal of Integrative Bioinformatics, 8(1):152, 2011 http://journal.imbio.de

environment for further calculations. In the same manner it is also possible that the Petri Net
model gets inputs from Matlab via a connection between a Simulink source and a Modelica
Integer Input or Reallnput connector.

Dymola-Model Simulink-Model

pit

pSt
Outl

Pt

DymaolaBlock

Figure 21: Connection Dymola and Matlab/Simulink by a Simulink Interface (DymolaBlock),
left: Petri Net modeled by the Petri Net library in Dymola, right: Simulink interface of the
Dymola-model in Matlab/Simulink.

To connect a Dymola-model with Simulink, one has to enter the model name and its path in
the property dialog of the DymolaBlock (see Figure 22). After that, the model can be
complied and the parameters can be set. The parameters can be also set within Matlab by
special m-files and the model can be simulated by the prompt

sim(model , timespan,options,ut)

For a detailed description see [23].

A Dymola model is a compiled block allowing acausal physical modeling,
For further reference see the Dymola manual,
Dymola blocks must be compiled before the simulation is started, or you get an error message.
Model Seftings
Model Name byl
Select from Dymola=
4, FlleName by petrinets mo
Edit model [Compile model Reset Parameters
[[] Generate resutt
Advanced: [[] Hierarchical Connector as Bus [] Compiler flag Migobj [Auto-doad
Allovw multiple coples of block P——
Parameters Start Values
&9 Parameters @ Start Values
+- settings - PS
=Pl +- P&
num_tokens_start = 100 - P7
min =0 +-P3
=Tl
delay =1
threshold = [0; 0]
inhibition = [2147483647; 2147483647]
+-P2
+-P4
+-PS
+-T3
+-P6
+-P7
+-T2
+-P3
num_tokens_start 100 B8 |
“start Token number”

Figure 22: Property dialog of the DymolaBlock in Simulink.

doi:10.2390/biecoll-jib-2011-152 22

Journal of Integrative Bioinformatics, 8(1):152, 2011 http://journal.imbio.de

3 Example: Antibody production of the Chinese Hamster Ovary
Cells

The Chinese Hamster Ovary Cells (CHO-cells) produce antibodies which are part of many
pharmaceuticals [24]. Additionally, they produce the waste-products lactate and ammonium
which can inhibit their growth and antibody production when specific concentrations are
exceeded ([25], [26], [27]). The main metabolism of CHO-cells is displayed in Figure 23.
Experiments were performed by growing the CHO-Cells in shaking flaks. They are fed with
the nutrients glucose and glutamine and they produce antibodies, ammonium and lactate. By
the latter ones it is assumed that they cannot only be produced by the CHO-Cells but also
consumed when the environmental conditions are appropriate ([28], [29]).

Antibodies

Figure 23: The main metabolism of CHO-cells.

Figure 24 represents the experimental data of CHO-Cells growing in shaking flaks. The
experiments were performed by the University of Applied Sciences Bielefeld, Instrumental
Biotechnology Institute [30]. The exponential growing phase of the cells ends at day 4 and the
cells pass over to a stationary phase which takes approximately 2 days. Afterwards more cells
die than new ones grow thus the curve of living cells decreases and the curve of death cells
increases (death phase). The nutrient Glucose is exhausted at the end of the experiment and
the waste-product lactate is produced till day 4 and afterwards it is consumed by the CHO-
Cells. They convert it back to pyruvate which enters the citric acid cycle (TCA-cycle) [29].
Here, it is assumed that they start the lactate consumption when a specific lactate
concentration is exceeded. Additionally, the ammonium concentration decreases after 4 days
and the glutamine concentration increases. In this conjunction, it seems likely that the CHO-
cells can convert ammonium back to glutamine when the glutamine concentration falls below
a specific value. The Antibody production starts first after 2.5 days and not stops until the end
of the experiment. At this point the supposition is that the cells start the production first when
the glucose becomes limiting.

doi:10.2390/biecoll-jib-2011-152 23

Journal of Integrative Bioinformatics, 8(1):152, 2011 http://journal.imbio.de

40 6

35

30

25

20

15

10

Glucose, Lactate

Antibodies, Living Cells, Total Cells,
Death Cells, Glutamine, Ammonium

time (days)

== _Living Cells (107 8cells/L) =@=Death Cells (10*8cells/L) =#=Total Cells (10*8cells/L)
== Glucose (mM) =@-Lactate (mM) =2z= Antibodies (mg/L)

== Glutamine (mM) === Ammonium (mM)

Figure 24: Experimental data of CHO-Cells growing in shaking flaks.

A continuous Petri Net models the dynamics of the CHO-cells (see Figure 25). This Petri Net
covers a lot of different differential equation systems. Which of them is chosen depends on

the environmental conditions. At the beginning of the experiment, it represents the following
ODEs

dX; Eq. 1

—=u-X q.
dt M v

d_ X

dt l’ld v

ax Eq.3
= (= pa) - X,

dalc Eq. 4
dt = —qgic " Xy

dGlu Eq. 5

7 = g Xy —kgq - Glu

dLac Eq. 6
dt = qiac " Xv

dAmm Eq. 7

dt = Gamm " Xp + ksq - Xy

dAb _ Eq. 8
dt

X:(0) = X0, X4(0) = X0, X, (0) = X0, Glc(0) = Glcy, Eq.9

Glu(0) = Gluy, Lac(0) = Lacy, Amm(0) = Ammy, Ab(0) = Ab,

doi:10.2390/biecoll-jib-2011-152 24

Journal of Integrative Bioinformatics, 8(1):152, 2011 http://journal.imbio.de

where X, is the concentration of total cells (10® cells/L), X is the concentration of death cells
(10% cells/L), X, is the concentration of living cells (10° cells/L), Glc is the glucose
concentration (mM), Glu is the glutamine concentration (mM), Lac is the lactate
concentration (mM), Amm is the Ammonium concentration (mM), Ab is the Antibody
concentration (mg/L), u is the specific growth rate (1/d), u,4 is the specific death rate (1/d),
dgic 18 the specific glucose uptake rate (mmol/ 10% cells/d), Qgu 1s the specific glutamine
uptake rate (mmol/10° cells/d), ky; is the constant for the spontaneous degradation of
glutamine, q;,. is the specific lactate production rate (mmol/ 10% cells/d), qumm is the specific
ammonium production rate (mmol/10® cells/d) and X,o, X40, Xpo, Glco, Glug, Lacy, Ammy
and Ab, are the start concentrations.

The conversion from glutamine to ammonium can take place in two different ways: the CHO-
cells can perform it (qgyy, * Xy» Gamm * X») and it can occur within the medium by spontaneous

decomposition (kg4 - Glu) [31]. No antibodies are produced at the beginning of the
experiment thus the differential equation is set to zero. After an specific change of the
environmental conditions, the Antibody production starts and Eq. 8 has to be changed to

dAb Eq. 10
W = Qqap * Xy

where q,;, is the antbody production rate (mg/10° cells/d). The supposition is that the
decreasing glucose concentration initiates the antibody production. In terms

dAb { 0, Glc = 14 mM Eq. 11
dt ~ qap - Xu, Glc < 14mM

A similar switching situation occurs by the lactate concentration. At the beginning the
dynamics are represented by Eq. 6 and after a specific change of the environmental
conditions, especially the lactate concentration passes a threshold, the dynamics are described
by

dLac _ {qlac Xy — Qiacs - Xv» Lac = 19 mM Eq. 12
dt Qrac - Xv» Lac <19 mM

where 405 is the specific lactate consumption rate (mmol/10° cells/d). The glutamine
consumption and production, respectively, leads to the following switching equation, whereby
the change is initiated by the decreasing glutamine concentration

dGlu { —Qguu - Xy — ksq - Glu, Glu = 0.4 mM Eq. 13
dt ~ —Qgu Xy —ksq - Glu+ qgps - Xy, Glu < 0.4mM

where qgis 18 the specific glutamine production rate (mmol/ 10% cells/d) and the
corresponding dynamics for the ammonium concentration are

dAmm { Qamm * Xy + ksq - Glu, Glu = 0.4 mM Eq. 14

dt Gamm " Xp + ksqg * Glu — Gmms * Xp» Glu < 0.4 mM

where qgmms 18 the specific ammonium consumption rate (mmol/10® cells/d).

Figure 25 displays the Petri Net modeling the discussed conditions above (Eq. 1 - Eq. 4, Eq.
11 - Eq. 14). All Places and Transitions are continuous. Table 6 contains the Places and their

doi:10.2390/biecoll-jib-2011-152 25

Journal of Integrative Bioinformatics, 8(1):152, 2011 http://journal.imbio.de

corresponding substances and Table 7 summarizes the information of the Transitions. The
orange Activation-boxes are wrappers of the Reactions sub-library and they work like a
discrete switch. When the Token number of the connected Place exceeds the entered value of
the parameter tres or fall below the entered value of the parameter inhi, the connected
Transition becomes active and remain active until one of the connected Places becomes empty
in contrast to the threshold and inhibition values of the Transitions. Everything inside the blue
box with a macroscopic picture of the CHO-cells occurs within the cells and outside of the
blue box are the reaction for the spontaneous decomposition of glutamine and the substances
that the cells releases to the medium. The total amount of cells, the sum of living cells and
death cells, is modeled by an algebraic equation

Xt_t=Xv.t+Xd.t.

Gle_t Glu_t

Figure 25: Petri Net model of the main CHO-metabolism in Dymola.

Table 6: Places of the CHO-model in Figure 25 and the corresponding substances.

Place Substance
Xv Concentration of living CHO-Cells
Xd Concentration of death CHO-Cells
Glc Glucose concentration
Glu Glutamine concentration
Lac Lactate concentration
Amm Ammonium concentration
Ab Antibody concentration

doi:10.2390/biecoll-jib-2011-152 26

Journal of Integrative Bioinformatics, 8(1):152, 2011

http://journal.imbio.de

Table 7: Transitions of the CHO-model in Figure 25, the corresponding reactions and the edge

weighting functions (Eq. 1 - Eq. 4, Eq. 11 - Eq. 14).

Transition Reaction Weightings Conditions
Growth Cell growth Glc — Growth Qgic - Xv.t
Glu — Growth Qg - Xv.t
Growth — Xv u-Xv.t
Growth — Lac Qrac - Xv. t
Growth > Amm | qgpm - Xv. t
Death Cell death Xv — Death Ug - Xv.t
Death — Xd Ug - Xv.t
TCA Lactate Lac —» TCA Qiacs - Xv.t Orange Activation
consumption Box
thres=19
Abprod Antibody | Abprod — Ab | qqp - Xv. t Orange Activation
production Box
inhi=14
SpDec Spontaneous Glu — SpDec keq - Glu.t
decomposition SpDec — Amm ke - Glu.t
of glutamine to
ammonium
ConvB Conversion of Amm — ConvB | qgmms - Xv. t Orange Activation
ammonium back ConvB — Glu Qgius - XV. Box
to glutamine inhi=0.4

The experimental data of Figure 24 are approximated by smoothing splines to get further
insight to the relations between the respective specific rates. The rates at the beginning of the

simulation can be calculated by the following equations

1 dX;
H= X_v "dt
1 dX4
Ha = X_v dr
1 dGlc
Agic = _X_v : dt
1 /dGlu
Qgiu = _X_v : <7 + kgqg - Glu)
1 dlLac
Qiac = X_v ’ dt
o= (Y)
amm Xv dt sd
The specific antibody production rate can be calculated after day 2.5 when the cells start the
production
1 dAb
Qap = X_v dt

Eq. 15

Eq. 16

Eq. 17

Eq. 18

Eq. 19

Eq. 20

Eq. 21

The relations analysis yields the following equation structures for the specific rates

_ Glu
I’l' - :umax KGlu + Glu

doi:10.2390/biecoll-jib-2011-152

Eq. 22

27

Journal of Integrative Bioinformatics, 8(1):152, 2011 http://journal.imbio.de

_ _ KDgic Eq. 23
Ha = Hamax KDGlc + Glc
o= Eq. 24
gke YX,Glc
Gy = - p Egq. 25
S
1 Eq. 26
Qiac = YLac,Glc “Qgic = Ylac,Glc) Y U
X,Glc
1 Eq. 27
Qamm = YAmm,Glu Qgiu = YAmm,Glu : Y— U q
x,Glu
Gab = Kab Eq. 28
Qiacs = Kiacs Eq. 29
Qamms = Kamms Eq. 30
Qgius = Yeuu,amm * Qamms Eq. 31

with the parameters U4, (1/d) as maximum specific growth rate and K;,, as constant of the
Monod kinetics, fgmax (1/d) as maximum specific death rate, KD as constant of the death
kinetics (mM), Yy ;e (10° cells/mmol), Yy g1, (10° cells/mmol), Yy qc e (mol/mol), Yamm i
(mol/mol) and Yy gmm (mol/mol) as yield coefficients, k,;, (mg/ 10°® cells) as constant of the
antibody production, k;,.; (mmol/ 10® cells) as constant of the lactate consumption and K ;ms
as constant of the ammonium consumption.

For performing a sensitivity analysis and afterwards a parameter optimization for the 13
model parameters, the Petri Net model in Dymola (Figure 25) has to be connected to Matlab
via a Simulink interface as described in section 2.5. The corresponding Simulink-model is
displayed in Figure 26. The simulation results of all Token numbers are needed in Matlab,
thus all Places have a blue RealOutput connector (Figure 25) so that a corresponding port at
the Simulink interface is provided.

Glet
Glu_t econcentrations

cho10

Figure 26: Simulink-model of the Petri Net model in Figure 25.

Before the 13 parameters of the model are estimated a global sensitivity analysis is performed
to get further insight in the parameter characteristics. This analysis is the basis of the
following parameter optimization since less sensitive parameters can be fixed during the

doi:10.2390/biecoll-jib-2011-152 28

Journal of Integrative Bioinformatics, 8(1):152, 2011 http://journal.imbio.de

optimization process to increase the chance of a converging optimization algorithm. The
global sensitivity analysis is performed by Matlab with a specific method (extended Fourier
Sensitivity Analysis Test (eFAST) see e.g. [32]). Therefore, the model is simulated several
times with different parameter settings and each time the following objective function is
evaluated (least square approach)

o, 1) = Z Z (yi 2 2) (t_j)di(tj)f e

i=1 j=1

where y; (p, tj) is the model output of the ith concentration at time t; with the parameter
values p and di(tj) is the experimental concentration at time t;. The eFAST-method

measures the contribution of each parameter to the variance of this objective function,
whereby the parameters are varied in a specific range. If a parameter contributes less to the
variance, this parameter cannot be identified with an optimization procedure and has to be
fixed and if a parameter contributes much to the variance of the objective function this
parameter is identifiable within the optimization process.

The results of the global sensitivity analysis, i.e. the contribution of each parameter to the
objective function variance, is displayed in Figure 27. It becomes clear that 7 of 13 parameters
contribute 91 % of the variance so that 6 parameters

YX,Glu' Hamax» KDglcr klacs' YLac,Glc' YAmm,Glu

can be fixed during the optimization process and 7

ksd' YGlu,Amm; kammsr YX,Glcr Hmax, Kle kab

have to be optimized.

18% 16%

Glusmm 2Iins

Figure 27: Model variance contribution of every parameter according to the eFAST method.

The parameter optimization is performed by a special kind of an Evolution Strategy
(Covariance Matrix Adaption Evolution Strategy [33]). Local methods fail due to the non-
differentiability of the objective function (Eq. 32) which is a result of the discrete switches
(events) between the different ODEs. The optimization procedure takes place in Matlab via a

doi:10.2390/biecoll-jib-2011-152 29

Journal of Integrative Bioinformatics, 8(1):152, 2011 http://journal.imbio.de

Simulink interface. Figure 28 displays the results of this optimization procedure which shows
a good agreement with the experimental data.

Living Cells (1(P cells/)
Glucose (mi)

=

Glutamine {mhf)
L8] w

Lactate (m)

Antibodies (mh)

Armrmoniurm (mbd)

time (d) time (d)

Figure 28: Results of the parameter optimization procedure.

To achieve a good model of the CHO-metabolism, it is also possible to choose a stochastic
approach, i.e. a stochastic Petri Net model and a stochastic simulation according to Gillespie’s
algorithm ([22], [19]). The edge weightings of the continuous approach in Table 7 are now the
dynamic values of the characteristic parameter A of the exponential distribution by which the
delay of the stochastic Transition is chosen randomly at every activation point in time (cp.
Sections 1.1 and 2.2.2). The transformation of the parameters of the continuous model to the
stochastic one is well studied and can be found in [34]. Figure 29 displays the CHO-
metabolism modeled by a stochastic Petri Net, whereby the Places are discrete and the
Transitions are stochastic. The Tokens represent here different concentration levels like it is
presented in [19]. One Token equates to 0.5 (mM, 10%Cells/I, mg/l), thus there are N + 1 =
90 + 1 different levels since the maximum concentration (M) is set to 45. The values of M
and N can be entered in the green settings-box which has to be a part of every model and can
be found in the Global-library. This stochastic Petri Net model is also connected to a Simulink
interface in Matlab so that the stochastic simulation can take place within an m-file. The
results are displayed in Figure 30 where 500 Simulation are accomplished and the means were
built each with 10 simulations.

doi:10.2390/biecoll-jib-2011-152 30

Journal of Integrative Bioinformatics, 8(1):152, 2011

http://journal.imbio.de

Figure 29: Stochastic Petri Net model of the main CHO-metabolism.

Living Cells

Concentration

4 5 B
Time [d]

Glutamine

Concentration

Time [d]

Ammonium

Concentration

4 5 B
Time [d]

Concentration

Concentration

Concentration

i

Glucose

4 5
Tirne [d]

Lactate

Time [d]

Antibodies

Tirme [d]

Figure 30: The stochastic simulation results according to Gillespie’s algorithm of the stochastic

Petri Net model in Figure 29.

doi:10.2390/biecoll-jib-2011-152

31

Journal of Integrative Bioinformatics, 8(1):152, 2011 http://journal.imbio.de

4

Discussion

The Petri Net library in Modelica is a good instrument for hybrid modeling of biological
systems. The advantages of this approach are:

0 The object-oriented modeling language Modelica is able to model discrete Places and
Transitions as well as stochastic and continuous ones. The Places and Transitions are
models that easily can be changed, modified, or expanded so that further Petri Net
extensions can be implemented fast.

0 The language allows the realization of hybrid models by combining discrete and
continuous processes. The hybrid simulation with discrete events and the solution of
continuous differential equations is then performed by the Dymola tool or by another
Modelica-tool.

0 The Reactions sub-library offers a fast and simple way to build up a model and further
personal reactions can be easily added to it.

0 The hierarchical modeling concept of Modelica enables a structuring of the models on
different levels which is useful when the model is complex and used by different
persons with different aims.

0 The Petri Net animation of Dymola offers a way to get insight of the Token
distribution by large and complex Petri Nets.

0 The coupling of Dymola-models and Simulink-models allows the simulation of a
model many times and use the arising simulation results for subsequent calculations so
that the performing of stochastic simulation, sensitivity analysis and parameter
identification in Matlab is possible.

0 The Petri Net library can be integrated in other Petri Net modeling tools by parsing the
Petri net of the respective tool (e.g. XML-format) to Modelica-text and simulate it via
a batch process where the simulation results are saved in a data file.

In this manner the new Petri Net library close the gaps of the Cell Illustrator and other hybrid
Petri Net simulation tool and leads to a complete environment for hybrid modeling of
biological systems.

References

[1]
[2]
[3]
[4]
[3]

[6]
[7]

[8]

[9]

Reddy VN, Mavrovouniotis ML, Liebman MN (eds) (1993) Petri net representations in
metabolic pathways. Proc Int Conf Intell Syst Mol Biol, vol. 1

Modelica Association (2010) Modelica - A Unified Object-Oriented Language for
Physical Systems Modeling Language Specification Version 3.2

Petri CA (1966) Communication with automata. Rome Air Development Center,
Research and Technology Division

Valk R (1978) Self-modifying nets, a natural extension of Petri nets. Automata,
Languages and Programming:464-476

Hofestiddt R, Thelen S (1998) Quantitative modeling of biochemical networks. In Silico
Biology 1(1):39-53

Bause F, Kritzinger PS (2002) Stochastic Petri Nets. Vieweg

Heiner M, Gilbert D, Donaldson R (2008) Petri nets for systems and synthetic biology.
Formal Methods for Computational Systems Biology:215-264

Gilbert D, Heiner M (2006) From Petri nets to differential equations-an integrative
approach for biochemical network analysis. Petri Nets and Other Models of
Concurrency-ICATPN 2006:181-200

Doi A, Fujita S, Matsuno H, Nagasaki M, Miyano S (2004) Constructing biological
pathway models with hybrid functional Petri nets. In Silico Biology 4(3):271-291

doi:10.2390/biecoll-jib-2011-152 32

Journal of Integrative Bioinformatics, 8(1):152, 2011 http://journal.imbio.de

[10] Mosterman PJ, Otter M, Elmgqvist H (1998) Modeling Petri nets as local constraint
equations for hybrid systems using Modelica

[11] Fabricius SM (2001) Extensions to the Petri Net Library in Modelica. ETH Zurich,
Switzerland

[12] Otter M, Arzén KE, Dressler I (eds) (2005) StateGraph-a Modelica library for
hierarchical state machines. 4th International Modelica Conference

[13] Uni-Hamburg (2010) Petri Net World. http://www.informatik.uni-
hamburg.de/TGI/PetriNets/

[14] Nagasaki M, Saito A, Doi A, Matsuno H, Miyano S (2009) Foundations of Systems
Biology: Using Cell Illustrator and Pathway Databases. Springer-Verlag New York Inc

[15] Nagasaki M, Doi A, Matsuno H, Miyano S (2005) Petri net based description and
modeling of biological pathways. Algebraic Biology-Computer Algebra in Biology:19—
31

[16] Dr. Rainer Drath Visual Object Net++. http://www.r-
drath.de/Home/Visual Object Net++.html

[17] Matsuno H, Tanaka Y, Aoshima H, Doi A, Matsui M, Miyano S (2003) Biopathways
representation and simulation on hybrid functional Petri net. In Silico Biology 3(3):389—
404

[18] Prof3 S, Bachmann B (eds) (2009) A Petri Net Library for Modeling Hybrid Systems in
OpenModelica. Modelica Conference, Como, Italy

[19] Gilbert D, Heiner M, Lehrack S (eds) (2007) A unifying framework for modelling and
analysing biochemical pathways using Petri nets. Proceedings of the 2007 international
conference on Computational methods in systems biology. Springer-Verlag

[20] Fritzson PA (2004) Principles of object-oriented modeling and simulation with Modelica
2.1. Wiley-IEEE Press

[21] ProB S, Bachmann B, Hofestdadt R, Niehaus K, Ueckerdt R, Vorholter FJ, Lutter P (2009)
Modeling a Bacterium's Life: A Petri-Net Library in Modelica. Modelica Conference,
Como, Italy

[22] Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. The
journal of physical chemistry 81(25):2340-2361

[23] Dynasim AB (2010) Dymola-Dynamic Modeling Laboratory-User Manual Volume 2,
Lund/Sweden

[24] Birch, JR, Racher AJ (2006) Antibody production. Advanced drug delivery reviews
58(5-6):671-685

[25] Kurano N, Leist C, Messi F, Kurano S, Fiechter A (1990) Growth behavior of Chinese
hamster ovary cells in a compact loop bioreactor. 2. Effects of medium components and
waste products. Journal of biotechnology 15(1-2):113—-128

[26] Lao MS, Toth D (1997) Effects of ammonium and lactate on growth and metabolism of a
recombinant Chinese hamster ovary cell culture. Biotechnology progress 13(5):688—691

[27] Ozturk SS, Riley MR, Palsson BO (1992) Effects of ammonia and lactate on hybridoma
growth, metabolism, and antibody production. Biotechnol. Bioeng. 39(4):418-431

[28] Tsao YS, Cardoso AG, Condon RG, Voloch M, Lio P, Lagos JC, Kearns BG, Liu Z
(2005) Monitoring Chinese hamster ovary cell culture by the analysis of glucose and
lactate metabolism. Journal of biotechnology 118(3):316-327

[29] Provost A, Bastin G, Agathos SN, Schneider YJ (2006) Metabolic design of macroscopic
bioreaction models: application to Chinese hamster ovary cells. Bioprocess and
biosystems engineering 29(5):349-366

[30] Link J (2010) Charakterisierung der Prozessparameter tierischer Zellkulturen in
Schiittelinkubatoren. Bachelor Thesis, Bielefeld

doi:10.2390/biecoll-jib-2011-152 33

Journal of Integrative Bioinformatics, 8(1):152, 2011 http://journal.imbio.de

[31] Ozturk SS, Palsson BO (1990) Chemical decomposition of glutamine in cell culture
media: effect of media type, pH, and serum concentration. Biotechnology progress
6(2):121-128

[32] Saltelli A, Bolado R (1998) An alternative way to compute Fourier amplitude sensitivity
test (FAST). Computational Statistics & Data Analysis 26(4):445-460

[33] Hansen N (2006) The CMA evolution strategy: a comparing review. Towards a new
evolutionary computation:75—102

[34] Wilkinson DJ (2006) Stochastic modelling for systems biology. Chapman & Hall/CRC

doi:10.2390/biecoll-jib-2011-152 34

	1 Introduction
	1.1 Petri Nets
	1.3 Petri Net Simulation Tools

	2 Petri Net Library in Modelica
	2.1 The Place
	2.1.1 Implementation of the discrete Place
	2.1.2 Implementation of the continuous Place

	2.2 The Transition
	2.2.1 Implementation of the discrete Transition
	2.2.2 Implementation of the stochastic Transition
	2.2.3 Implementation of the continuous Transition

	2.3 The Reactions Sub-Library
	2.4 Modeling, Simulation and Animation in Dymola
	2.5 Connection Dymola and Matlab/Simulink

	3 Example: Antibody production of the Chinese Hamster Ovary Cells
	4 Discussion
	References

