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Summary 

Biological systems are often very complex so that an appropriate formalism is needed for 
modeling their behavior. Hybrid Petri Nets, consisting of time-discrete Petri Net elements 
as well as continuous ones, have proven to be ideal for this task. Therefore, a new Petri 
Net library was implemented based on the object-oriented modeling language Modelica 
which allows the modeling of discrete, stochastic and continuous Petri Net elements by 
differential, algebraic and discrete equations. An appropriate Modelica-tool performs the 
hybrid simulation with discrete events and the solution of continuous differential 
equations. A special sub-library contains so-called wrappers for specific reactions to 
simplify the modeling process. 

The Modelica-models can be connected to Simulink-models for parameter optimization, 
sensitivity analysis and stochastic simulation in Matlab. 

The present paper illustrates the implementation of the Petri Net component models, their 
usage within the modeling process and the coupling between the Modelica-tool Dymola 
and Matlab/Simulink. The application is demonstrated by modeling the metabolism of 
Chinese Hamster Ovary Cells. 

1 Introduction 

The modeling of biological systems demand often a combination of continuous and discrete 
processes, a differential equation system sole is often not sufficient. Examples are gene 
regulation and processes where the organism switches from substance production to 
consumption or vice versa when special environmental conditions occur. The structure of the 
differential equation for a substance depends on specific conditions and changes within time. 
This kind of process takes place within the metabolism of Chinese Hamster Ovary Cells 
(CHO-Cells) which switches from lactate and ammonium production to consumption after a 
specific change of environmental conditions. The concrete mechanism is part of section 3. 

The realization of the CHO-model requires an appropriate formalism. Hybrid Petri Nets 
consisting time-discrete as well as continuous Petri Net elements have proven to be ideal. The 
biological pools, e.g. metabolites, genes, proteomes and signals are represented by Places and 
the reactions between them can be modeled by Transitions. This transfer of biological systems 
to Petri Nets was first introduced by Reddy [1] and an introduction in the basic Petri Net 
concepts is given in section 1.1. 

For the modeling and simulation of hybrid Petri Nets a new library was developed with the 
object-oriented modeling language Modelica [2], whereby the Petri Net component models 
consist of differential, algebraic and discrete equations. The Modelica language and the 
available simulation tools are introduced in section 1.2 and the concrete implementation and 
usage of these Petri Net components are part of section 2. A short introduction in other hybrid 
Petri Net simulators is given in section 1.3. 
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1.1 Petri Nets 

The Petri Net formalism for graphical modeling of concurrent and nondeterministic processes, 
was first introduced by Carl Adam Petri in 1962 [3]. A Petri Net is mathematically a directed, 
2-colored and bipartite graph. The property 2-colored implies the division in two unique node 
sets which are called Transitions and Places and only Places can be connected to Transitions 
or Transitions to Places according to the bipartite attribute. The Places are represented 
graphically by circles and Transitions by rectangles. Places model states for example of 
objects or conditions while Transitions model the changes of these states for example 
activities or events. 

Definition 1: A Petri Net is the tupel ሺ  of a finite set of Places 
ܲ ൌ ൛ܲ ,  ܲ , … , ܲ ൟ, a finite set of Transitions ,  ܶ , … , ܶ ሽ, where ܲ ת ܶ ൌ  ,׎

ൈ ܶሻ, an edge set ܩ ك ሺܶ ൈ  weightin n 
݂: ሺܨ ׫ ሻܩ ՜  ௣݂,௧ is the weighting of the edge from Place ݌ א ܲ to 

௧݂,௣ is the weighting of the edge from ݐ to ݌. 

ain an integer number of Tokens. These T ke

ܲ, ܶ, ,ܨ G, ݂ሻ
ଵ ଶ ௣ ܶ ൌ ሼ ଵܶ ଶ ௧

an edge set ܨ ك ሺܲ ܲሻ and an edge g functio
Գ௡, where

Transition ݐ א ܶ and 

Every Place can cont o ns are represented 
graphically by little, black dots or numbers inside the Places. A concrete determination of the 

ri Net at the bottom displays the new state after firing 

o odel different kind of applications (e.g. biological 
irs n n is that every Place in a Petri Net can have a lower and upper 

actions that are inhibited 

es. This Petri Net extension is called self-

This concept can be also modified by random delays, i.e. the fixed values are replaced by 
random numbers that change at every activation point in time. The delays are exponential 

Token number of a Place is called state of the Place and a concrete determination of the 
Token numbers of every Place is called the state of the Petri Net. A Transition can fire these 
Tokens if all Places in its previous area (previous Places) have at least as much Tokens as the 
respective edge weighting. It is said that the Transition is ready-to-fire. A Transition that is 
ready-to-fire, fires by removing as much Tokens as the respective edge weighting determines 
from all its previous Places and by adding as much Tokens as the edge weighting specifies to 
all Places in its past area (past Places). 

Figure 1 shows on the top an example of a Petri Net where the Transitions ܶ1 and ܶ2 are 
ready-to-fire and the others not. The Pet
the Transitions ܶ1 and ܶ2. 

In the last years, the basic Petri Net concept, described above and defined in Definition 1 has 
been more and m re extended in order to m
systems). The f t exte sio
limit of Tokens. These Petri Nets are called Petri Nets with capacity. 

Not only the Places can have lower and upper limits. It is also thinkable that the edges from 
Places to Transitions are bounded with threshold (lower bound) and inhibition (upper bound) 
values. In the biological sense these parameters are useful to model re
or activated by a specific substance concentration. 

The edge weighting function can be modified for modeling dynamic edge weightings that 
depend on the actual Token number of several Places. Thus, not only positive integers can be 
written at the edges but also the names of the Plac
modified Petri Net and was first introduced by Valk [4]. 

These self-modified Petri Nets can be further expanded to functional Petri Nets. The edge 
weightings can be functions depending on the Token numbers of several Places [5]. 

For the simulation of a Petri Net it is necessary to associate time with its behavior. One 
possibility to do this is that every Transition gets a delay. A delay is the time period that the 
respective state change takes. 
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distributed random numbers, whereby the characteristic parameter ߣ can depend functionally 
on the Token numbers of several places. This modification is called stochastic Petri Net (see 
e.g. [6], [7]). 
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Figure 1: Petri Net example, top: the Transitions ࢀ૚ and ࢀ૛ are ready to fire, bottom: the new 
state of the Petri Net after firing Transition ࢀ૚ and ࢀ૛. 

Biochemical reactions occur in the most of the cases continuously. In order to model these 
reactions, the discrete Petri Net concept has to be transferred to a continuous one [8]. The 
most serious difference between discrete and continuous Petri Nets is that the Token numbers 
are real and that the Transitions fire continuously. A function is assigned to every edge of a 
continuous Petri Net depending on the Token ers of several Places just like the 
func f sp d of the firing process and are the right 
sides of differential equations. 

numb
tional Petri Nets. These functions speci y the ee

Definition 2: A continuous Petri Net is the tupel ሺܲ, ܶ, ,ܨ G, ݂ሻ of a finite set of Places 
ܲ ൌ ൛ ଵܲ,  ଶܲ, … , ௣ܲൟ, a finite set of Transitions ܶ ൌ ሼ ଵܶ,  ଶܶ, … , ௧ܶሽ, where ܲ ת ܶ ൌ  ,׎
an edge set ܨ ك ሺܲ ൈ ܶሻ, an edge set ܩ ك ሺܶ ൈ ܲሻ and an edge weighting function 
݃: ሺܨ ׫ ሻܩ ՜ ࣢ which assigns every edge a function ݄ א :ܪ Թା

௣ ՜ Թା depending on 
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a subset of Place states, whereby ݄௣,௧ is the function assigned to the edge ௣݂,௧ from a 
Place ݌ א ܲ to a Transition ݐ א ܶ and ݄௧,௣ is the function assigned to ௧݂,௣. 
The state change of the Place ݌ א ܲ can be recalculated by the following differential 
equation 

ሻ݌ሺܯ݀
ݐ݀ ൌ െ ෍ ௣݂,௧

௧்אி೛ೌ ி೛ೝ೐ሺ௣ሻ்א

ሻ ك ܶ is the set of all firing past Trans ሺ݌ሻ ك ܶ is the 

inuous et is an ordinary dif tial equation system whose structure can change 
time. 

nally, the modeling of biological systems demands often a combination of discrete 

ೞ೟ሺ௣ሻ

൅ ෍ ௣,ݐ݂
௧

 

where ܶܨ௣௔௦௧ሺ݌ itions and ܶܨ௣௥௘
set of all firing previous Transitions. 

A cont Petri N feren
within 

Additio
processes and continuous ones. One example is gene regulation or the metabolic reactions of 
substances which switch from production to consumption or vice versa when specific 
conditions appear. Hybrid Petri Nets which contain discrete as well as continuous Petri Nets 
elements accomplish this [9]. 

Definition 3: A hybrid Petri Net is the tuple ሺܲܦ, ,ܥܲ ,ܦܶ ,ܥܶ ,ܨ ,ܩ ݂݀, ݂ܿ, ݀,  ଴ሻ, wherebyܯ

o ܲ ,ଵܦ ,ଶܦܲ  … , ܲ
o ܲ t of continuous Places 

ܦܶ  ൌ ሼܶܦ , ܦܶ  , … , ܦܶ ሽ is a finite set of discrete Transitions 

ܦ ת ܦܶ ൌ ,׎ ܥܲ ת ܥܶ ൌ ,׎ ܦܲ ת ܥܲ ൌ ,׎ ܦܶ ת ܥܶ ൌ ,׎ ܦܲ ת ܥܶ ൌ  and  ׎

ction ݃ א ࣡: Գ ՜ Գ depending on a subset of discrete Place 
states 

׫  ሺܲܥ ൈ ሻܦܶ ׫ ሺܶܦ ൈ ሻሽܥܲ ՜ ࣢ e 
݄ א ࣢: Թା ା 

depending on a subset of  
݀: ܦܶ ՜ Թା

௧ௗ is a delay function 
:଴ܯ ܦܲ ՜ Գା

௣ௗ, ܲ

following connectio

discrete Place ՜ discr
te Transition ՜ discrete Place 

 continuous Place ՜ continuous Transition 
continuous Transition ՜ continuous Place 
continuous Place ՜ discrete Transition 
discrete Transition ՜ continuous Place 

llowed are the connections 

nsition
ous Transition ՜ discrete Place 

ܦ ൌ ൛ܲ  ௣ௗൟ is a finite set of discrete Placesܦ
ܥ ൌ ൛ܲܥଵ, ,ଶܥܲ  … , ௣௖ൟ is a finite seܥܲ

o ଵ ଶ ௧ௗ
o ܶܥ ൌ ሼܶܥଵ, ,ଶܥܶ  … ,  ௧௖ሽ is a finite set of continuous Transitionsܥܶ
o with ܲ

ܥܲ ת ܦܶ ൌ  ׎
o ܨ ك ሺܲܦ ൈ ሻܦܶ ׫ ሺܲܥ ൈ ሻܥܶ ׫ ሺܲܥ ൈ  ሻ is the set of edgesܦܶ
o ܩ ك ሺܶܦ ൈ ሻܦܲ ׫ ሺܶܥ ൈ ሻܥܲ ׫ ሺܶܦ ൈ  ሻ is the set of edgesܥܲ
o ݂݀: ሺܨ ׫ ܥሻ\ሼሺܲܩ ൈ ሻܥܶ ׫ ሺܶܥ ൈ ሻሽܥܲ ՜ ࣡ is an edge weighting function which 

assigns every edge a fun ௣ௗ

o ݂ܿ: ሺܨ ׫ ܦሻ\ሼሺܲܩ ൈ ሻܦܶ ׫ ሺܶܦ ൈ ሻܦܲ  is an edg
weighting function which assigns every edge a function ௣ௗା௣௖ ՜ Թ

 discrete and continuous Place states
 o
o ܥ ՜ Թା

୮ୡ is the initial state. 

The ns are allowed within hybrid Petri Nets 

 ete Transition 
 discre

 
 
 

Not a

 discrete Place ՜ continuous Tra  
 continu
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The a is described by the 
exam

 

change-over from a discrete to a continuous process and vice vers
ples in Figure 2. 

 

Figure 2: Hybrid Petri Net examples, left: a discrete Transition 
continuous Place, right: a continuous Place is connected to a discrete

(delay=2) is connected to a 
 Transition (delay=7). 

e units before one Token is removed 
okens are added to ܲ1ܥ continuously, i.e. its state 

Left: If Transition ܶ1ܦ is ready to fire, it waits two tim
from ܲ1ܦ. In these two time units five T
change is described by the differential equation 
 

1ሻܥሺܲܯ݀ ݂
ൌ

5
ݐ2݀ ൌ ்஽ଵ,௉஼ଵ

்݀஽ଵ
. 

Thus, the Token number of ܲ1ܥ increases linearly with the slope ହ
ଶ
. Right: If Transition ܶ2ܦ 

g three Tokens in seven time units continuously from ܲ2ܥ 

ݐ݀

is ready to fire, it fires by removin

2ሻܥሺܲܯ݀
ൌ െ ௉݂஼ଶ,்஽ଶ

்݀஽ଶ
ൌ െ

3
7

 

 

 the range of the delay a line with the slope െ ଷ
଻

and by adding nine Tokens to ܲ2ܦ after seven time units. Thus, the Token number of ܲ2ܥ is 
in . The change-over interpretation is also 

Figure 3. 

 

displayed in 

  
Figure 3: The change-over interpretation from discrete to continuous (left) and vice versa (right) 
of the examples in Figure 2. 

1.2 Modelica 

The basic Petri Net concept and its extensions described above have been implemented with 
ed modeling language Modelica [2]. Modelica is a free language 

and developed by the Modelica Association since 1996. Furthermore, several libraries for 
simulating technical systems have been developed over the last decade. Since the year 2000 

the aid of the object-orient
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Modelica is used successfully in industry, which is documented in the proceedings of many 
Modelica conferences and journ . The development of the language and libraries is ongoing 
and driven by several European projects (EUROSYSLIB, MODELISAR, and OPENPROD). 
The Modelica-models c
textual level and by sc

als

an be described by differential, algebraic and discrete equations on the 
hematics on the graphical level. The schematics consist of connected 

omponents which are defined by other components or on the lowest level by equations in the 
Modelica syntax. The components have connectors which describe the interaction between 
them. By drawing lines between the connectors of the components these components are 
connected and can interact. In this manner a model is constructed. The components can be 
structured in libraries, called packages, which make hierarchical modeling possible. For the 
graphical modeling and the simulation an appropriate environment is needed. Here are some 
examples of free and commercial Modelica simulation environments. 

Free: 

o OpenModelica (Compiler, www.openModelica.org

c

) and SimForge (graphical 
environment, https://trac.ws.dei.polimi.it/simforge/)  

o JModelica (www.jmodelica.org ) 

Com

o Dymola from Dassault Systemes (www.3ds.com/products/catia/portfolio/dymola

mercial: 

) 
om Maplesoft (www.maplesoft.com/products/maplesim/index.aspxo MapleSimTM fr ) 

 Designer from MathCore o MathModelica System
(www.mathcore.com/products/mathmodelica) 

For the examples in this paper the commercial tool Dymola – Dynamic Modeling Laboratory 
– version 7.4 has been used. 

The first Petri Net Library in Modelica was developed by Mosterman and others [10]. 
Herewith the modeling of a special case of discrete Petri Nets is possible where all Places 
have one Token as the maximum capacity and zero as minimum capacity. Additionally, all 
edges have the weighting one. No time was associated with their behavior. An external signal 
is associated with the Transitions which can enable or disable them. This Petri Net Library 
was further developed by Fabricius [11]. The extensions are that the Places can contain an 
integer number of Tokens and can have minimal and maximal capacities. The Transitions can 
be timed or stochastic. The first Petri Net concept of Mosterman and other was also further 
developed by Otter and others [12] to so-called StateGraphs. The StateGraph Library is a part 
of the Modelica standard library. 

1.3 Petri Net Simulation Tools 

There are already a lot of Petri Net simulators available. An overview can be found in [13]. 
B  common 
to i biological 

ols Visual Object Net of the TU 
of the Yamaguchi University [17]. The Cell Illustrator 

er interface and is easy to handle but the simulation is like a black box. No 

 not 
po b eter 

ut only a few of them are applicable for the hybrid Petri Net simulation. The most
ol s the Cell Illustrator which is a hybrid Petri Net simulator especially for 

 and bases on the tosystems ([14], [15]). It is commercial
Ilmenau [16] and Genomic Object Net 
has a good us
definitions of the hybrid simulation are available and no choice of the solver for the ODEs is 
possible, additionally it is not known which solver is really used. Furthermore, it is

ssi le to make neither a Monte Carlo simulation to get knowledge about the param
sensitivity nor a parameter optimization. 
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To close this gap a Petri Net Library was developed with the object-oriented modeling 
language Modelica. The code behind the several Petri Net component models is visible, 

provements are [18]: 
 

n values) 

he sub-package Models. 

changeable and expendable. Additionally, this library will be free available. Dymola 7.4 
consists 16 different ODE-solver (e.g. Dassl, Euler, Rkfix2) which are useable for the hybrid 
Petri Net simulation. Moreover, the Modelica-models can the connected to Simulink-models, 
in this manner all the Matlab power can be used for the parameter optimization, sensitivity 
analysis and stochastic simulation. 

2 Petri Net Library in Modelica 

The Petri Net Library described in this paper bases on the previous ones developed in 
Modelica ([10], [11], [12]). The im

o Discrete Petri Nets 
- The edges can have integer or functional weightings depending on the Token 

numbers of several Places 
- The edges can have integer bounds (threshold and inhibition values) 
- If a Place has a bottleneck, the connected Transitions are enabled randomly with 

different probabilities (see Figure 9) 
o Continuous Petri Nets 

- Transfer of the discrete Petri Net concept to a continuous one 
- The edges can have functional weightings depending on the Token numbers of 

several Places 
- The Places can have minimum and maximum capacities and the edges can have 

bounds (threshold and inhibitio
o Hybrid Petri Nets 

- Combination of discrete and continuous Petri Net elements to hybrid Petri Nets 

The Petri Net library is structured in five sub-libraries: Discrete, Continuous, Stochastic, 
Reactions and Global. Additionally, there are packages for Interfaces, Constants, Functions 
and Blocks which are used within the component models (see Figure 4). The individual 
developed models can be stored in t

 
Figure 4: Structure of the Petri Net library. 
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The Petri Net elements o
and red tr

f the library are represented by the icons in Figure 5. The little white 
 be 

connected graphically by drawing a line from a white to a red triangle. Not allowed are 

exchange the variables that are 
defined within their connectors. Thus, they can interact with each other. The Petri Net Library 
has four different connectors FirePortIn, SetPortIn, FirePortOut and SetPortOut. 
Both output connectors, FirePortOut and SetPortOut, are represented graphically by 
white triangles and both input connectors, FirePortIn and SetPortIn, by red triangles 
(see Figure 7). The FirePortOut-connector can be only connected to the FirePortIn-
connector and the SetPortOut-connector can be only connected to the SetPortIn-
connector. In this manner a Place can be only connected to a Transition or a Transition to a 
Place, like it is demanded. A connection can be graphically constructed by drawing a line 
from the connector of one component to a connector of another component or textually by the 
equation connect(connector1, connector2). The connector itself can be implemented 
in Modelica with the aid of the following construct: 
 

connector <name> 
 <data type> variable1; 
 <data type> variable2; 
 … 
end <name>; 

iangles at the Petri Net icons are the connectors. Transitions and Places can

connections between discrete Places and continuous Transitions (cp. Definition 3). Figure 6 
shows an example of a hybrid Petri Net modeled by the Petri Net library in Dymola. 

A connector defines the variables that are part of the communication interface. Two 
components that are connected via their connectors can 

The connectors can be found in the Interfaces sub-library. 

 

 
Figure 5: Icons of the Petri Net library. 
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Figure 6: Hybrid Petri Net modeled by the Petri Net library in Dymola where P1, P2, P4 and T1 
are discrete, T2 is stochastic and P3, P5, P6, P7 and T3 are continuous Petri Net elements. 

The Token number of a Place is one example of a connector variable. It is calculated in the 
Place but also needed in the connected Transitions to check whether they are ready to fire or 
not. The keywords input and output determine if the equations of these variables are in the 
component where the connector is used or if they are in a connected component. The equation 
for Token number is provided in the Place, i.e. it is an output variable of the FirePortOut-
connector and an input of the FirePortIn-connector. The keywords input and output in 
the connectors guarantee that the Place and Trans
same number of equations tha inition in [2]). 

 

ition models are balanced, i.e. they have the 
n variables (see balanced model def

 

Figure 7: Connectors of the Petri Net library. 

2.1 The Place 

The he 
prop

 parameters of a Place can be entered to a property dialog in Dymola or textually. T
erty dialog appears by double clicking on the Place icon (see Figure 8). 

Table 1 contains the parameters which can be set in all Places (discrete and continuous) and 
Table 2 those that are only part of discrete Places. The parameter weightingOut is explained 
in Figure 9. 
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Figure 8: Property dialogs of discrete and continuous Places. 

 

Table 1: Parameters of both Places (discrete and continuous). 

Identifier Description Default value 
num_tokens_start The number of Tokens that the Place contains at the 

beginning of the simulation. In the discrete case integer 
and in the continuous case real numbers can be entered. 

zero 

min The minimum number of Tokens that the Place must 
always contain. In the discrete case integer and in the 
continuous case real numbers can be entered. 

zero 

max The maximum number of Tokens that the Place can 
contain. In the discrete case integer and in the continuous 
case real numbers can be entered. 

infinite 

 

Table 2: Parameters only of a discrete Place. 

Identifier Description Default value 
weightingOut Weighting of the Transitions in the past area of a Place. If 

a Place has not enough Tokens to enable all connected 
Transitions, a random decision must be made, whereby 
the respective Transition is chosen with the entered 
probability. The sum of all weightings has to be one (see 
Figure 9). 

1/nOut 
nOut = number of 
connected past 
Transitions 

weightingIn Weighting of the Transitions in the previous area of a 
Place. If a Place cannot gain Tokens from all connected 
Transitions in its previous area due to its maximum value, 

Transition is chosen with the entered probability. The sum 
of all weightings has to be one. 

1/nIn 
nIn = n ber of 
connected previous 

nsitions a random decision must be made, whereby the respective Tra

um
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F etri Net example for the weightingOut-parameter: The Place ࡼ has t 

 firing s ar he Plave has 
a bottleneck and a th th d 
૛ with the probabࢀ  equ

 

eters can be also entered tex es of the parameters and 
 within b

igure 9: P  one Token no
enough for imultaneously in ࢀ૚ and ࢀ૛ since both edge weightings 

random decision is applied, whereby ࢀ૚ is chosen wi
ility 0.1. The sum of all weightings of a Place must be

e one. T
e probability 0.9 an
al to one. 

The Place param
their values

tually by adding the nam
rackets after the component type: 

 

2.1.1 Implementation of the discrete Place 

The Token number is determined in the Place model by calculating two sums. One is the sum 
of all Tokens that are removed from the Place at a certain point in time (sumOut) and the 
other is the sum of all Tokens that are added to the Place at a certain point in time (sumIn). 
The Token number has only to be recalculated when one or more connected Transitions fire 
i.e. one of the sums or both are greater than zero. This is realized by a discrete equation in 
Modelica, the when-equation. The equation within the when statement is only active when 
the corresponding condition, here the Boolean variable tokeninout, becomes true. At this 
point in time an event is triggered and the discrete equation for the Token number  becomes 
acti ly 
befo n u
 
token
when tokeninout then 

t=pre(t) + sumIn - sumOut; 

After every Transition firing, it has to be checked if the Place is empty or full, i.e. if their 
minimum or their maximum capacity is reached. The actual state is then reported to the 

t
ve and the Token number t is recalculated by the pre-value of t, the value immediate
re the event, and the sums sumI and s mOut. 

inout = sumIn > 0 or sumOut > 0; 

 
end when; 

 

Journal of Integrative Bioinformatics, 8(1):152, 2011 http://journal.imbio.de

doi:10.2390/biecoll-jib-2011-152 11



connected Transitions via the connector variables outstate and instate (see Figure 10). 
The connected Transitions can decide with them if they can fire or not. 
 

outstate = not pre(empty) and not fire; 
instate = pre(full) or set; 

 

  
Figure 10: The connector variables inState and outState of a Place are reported to the 
connected Transitions. 

ntial equation in contrast to 
 the most of the cases this is the 

der is the keyword for the differential operator with 
respect to time in Modelica 
 

der(t) = sumIn-sumOut; 

But also some special cases have to be trapped to guarantee an error-free simulation e.g. what 
happens when the Place has zero Tokens and sumOut is greater than sumIn. Besides, the 
variables full and empty are calculated within the Place model. With the aid of these 
variables the state of the continuous Place can be determined and reported to the connected 
Transitions, like in the discrete case (see Figure 10). 

 

2.2 The Transition 

The parameters of a Transition can be entered to the Dymola property dialog which appears 
by double clicking on the Transition icon (see Figure 11). 

 

 

2.1.2 Implementation of the continuous Place 

The Token number of a continuous Place is calculated by a differe
rete Place model. Inthe discrete when-equation of the disc

following differential equation, whereby 
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Figure 11: Property dialogs of discrete, stochastic and continuous Transitions. 

 

The parameters settable in all Transition models (discrete, stochastic and continuous) are 
summarized in Table 3, the parameters only part of the discrete Transition contains Table 4 
and those that can be only set in stochastic Transitions are in Table 5. 
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Table 3: Parameters of all Transitions (discrete, stochastic and continuous). 

Identifier Description Default value 
sub Weightings of the edges from the Places in the previous 

area to the Transition. In the discrete and stochastic case 
integers and functions can be entered and in the 
continuous one real numbers and functions are allowed. 
With the “.t”-notation one can access the Tokens of a 
Place for the edge weightings, e.g. sub={2*P1.t}. 

1 

add Weightings of the edges from the Transition to the Places 
in its past area. In the discrete and stochastic case integer 
numbers and functions can be entered and in the 
continuous one real numbers and functions are allowed. 
With the “.t”-notation one can access the tokens of a Place 
for the edge weightings, e.g. add={2*P1.t}. 

1 

inhibition Upper bounds of the edges from the Places in the previous 
area to the Transition. Integers can be entered in the 
discrete and stochastic case and real ones in the 
continuous case. 

infinite 

threshold Lower bounds of the edges from the Places in the previous 
area to the Transition. Integer numbers can be entered in 
the discrete and stochastic case and real ones in the 
continuous case. 

zero 

con Additional fire condition which has to be true so that the 
Transition become active and fires 
(e.g. time > 9.7) 

true 

 

Table 4: Parameter only of a discrete Transition. 

Identifier Description Default value 
delay The time units that a discrete Transition waits after its 

activation before it fires. 
1 

 

Table 5: Parameters only of a stochastic Transition. 

Identifier Description Default value 
c Constant for the pre-defined lambda functions 1 
lambdafunc Pre-defined function for the lambda calculation; choice 

between stochastic mass action hazard function and 
stochastic level hazard function (see [19]) 

Stochastic mass 
action 

lambda User-defined function for lambda instead of the pre-
defined lambda functions (Stochastic mass action hazard 
function and Stochastic level hazard function) 

 

 

Implementation of the discrete Transition 

 discrete Transition is active if the states of all Places in its previous area are true and none 
of the states of the Places in its past area is true. Additionally, the user-defined condition has 
to be true. 
 

activated = allTrue and not anyTrue and con; 

2.2.1 

In the discrete Transition it is decided with the aid of the Place-reported variables inState 
and outState if it is ready to fire, activated and if it fires. 

A
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The pre-valu ic loop. An 
algebraic loop is a kind of deadlock between different when-equations. It is present if there 

utual dependen

preactivated = 

When the variable p  an event is trigged which 
ates the equatio ha saves the activation 

time. 

when preactivat
last_activ

; 

When the Transition ed time units before it fires. 
The variable delay_ d or not. 

delay_passed = 
me; 

the determinati n een discrete and 
continuous Places ne  variables fire and set are needed in the 
connected Places for  of their Token numbers (see Figure 12). 

 

e of the variable activated is also needed to avoid an algebra

are m cies [20]. 

pre(activated); 

reactivated switches from false to true,
activ ns of the variables last_activation_time t

ed then 
ation_time = time; 

t 

end when

 is timed, the Transition waits the user-defin
passed saves whether the delay is passe

preactivated and  
time-delay > last_activation_ti

For on when a Transition fires, is a differentiatio
cessary. The output connector
 the calculation

betw

  
Figure 12: The input and output connector variables of Transitions. 

n 

entation this is reflected by an 

d of the function randomexp. The characteristic parameter ߣ of the exponential 
istribution is the value of the entered lambda-function at this point in time. This can be either 

astic level hazard function) or a 

2.2.2 Implementation of the stochastic Transitio

The only difference between a discrete and a stochastic Transition is that the delay is a 
random number instead of a fixed value. In the implem
additional equation which becomes active when the variable preactivated switches from 
false to true. At this point in time, an exponential distributed random number is generated 
with the ai
d
a pre-defined (stochastic mass action hazard function or stoch
special user-defined function. 
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when preactivated then 
  last_activation_time = time; 
  delay = Functions.ran lambd
end when; 

dom.randomexp(pre( a)); 

hat are transformed to exponential distribution are 

l is, compared to the discrete or stochastic one, simple since 
t is also active and fires, i.e. only the states of 
ontinuous Transition fires if all states of its 

s are true and none state of its past Places. Additionally, the user-defined 

fire = all  anytrue and con; 

nected Places for the 
calculation of the new Token num

The Petri Net models of the Discrete, Continuous and Stochastic sub-libraries can be wrapped 
 models for different kinds of biological reactions to simplify the modeling process. These 

model components are organized in the sub-library Reactions which is also divided in several 
sub-libraries for different reaction types. Till now there are: 

o Reaction kinetics 
o Enzyme kinetics 
o Growth kinetics 
o Culture strategies 
o Process activation 

 

The uniform distributed random numbers t
generated by an external C-function. 

2.2.3 Implementation of the continuous Transition 

The continuous Transition mode
when a continuous Transition is ready to fire, i

 Places have to be checked. A cthe connected
previous Place
condition con has to be true. 

true and not

The output connector variable fire is then reported to the con
ber (see Figure 12). 

2.3 The Reactions Sub-Library 

to

 
Figure 13: Wrapper of the Michaelis-Menten Kinetics. 
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The wrapping process is illustrated by the Michaelis-Menten Kinetics in Figure 13. Behind 

dge weighting. In this 
ser has only to enter the parameters of the Michaelis-Menten Kinetics in the 

o make the specific modeling process much faster and 
see [21]. 

 

the “MM-Kinetic”-icon, which is between two continuous Places for substrate and product, is 
n us Transition with the Michaelis-Menten Kinetics as ea co tinuo

manner, the u
property dialog of the “MM-Kinetic”-icon instead of the whole equation every time (see 
Figure 14). All the other wrappers work in the same manner. The user can easily add his 
individual reactions in this package t
easier. For a detailed description of the wrapping process 

 
Figure 14: Property dialog of the Michaelis-Menten Kinetics wrapper. 

 

2.4 Modeling, Simulation and Animation in Dymola 

A Petri Net model can be constructed easily in Dymola by drag the respective Petri Net icon 
from the Package Browser to the diagram (see Figure 15). 

If the model is constructed graphically, it is also textual available. The textual model of the 
Petri Net in Figure 15 is given in Figure 16. In this manner, it is possible to parse hybrid Petri 
Net models of other tools (e.g. in XML-format) to Modelica-text and compile and simulate it 
with a Modelica-tool. 
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Figure 15: Graphical Modeling of Petri Nets in Dymola. 

 
Figure 16: Textual Modeling of Petri Nets in Dymola. 

For the simulation, one has to switch from the Modeling view (see Figure 15 and Figure 16) 
to the Simulation view (see Figure 17). There the model can be translated to C-code with the 
translation button  in the toolbar and afterwards it can be simulated with the simulation 

utton . Dymola offers a lot of properties for tuning the simulation by clicking on 
simulation properties button , i.e. one can choose among others the start and stop time and 
the ODE-solver, whereby 16 different are available. 

b
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Figure 17: Simulati

 

on view of a Petri Net model in Dymola. 

 
Figure 18: The representation of the simulation results by several plots with selected Token 
numbers. 

The sim ation results can be displayed by either plots of selected Token numbers (see ul
e 

has many Tokens and a white Place is 
empty. The redness degree can be scaled from 0 to 100 by the green Settings-box which is a 

Figure 
18) or by an animation. By th latter one the degree of redness changes during time according 
to the Token number of the Place, i.e. a red Place 
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component of the Global sub-library (see Figure 19). This animation is realized by the 
annotation DynamicSelect 
 

annotation(fillColor = DynamicSelect ({255,255,255},if scale<100 
then {255,255-2.55*tokenscale,255-2.55*scale} else {255,0,0}) 

 

 
Figure 19: Scaling of the redness degree by the Settings-component of the Global sub-library. 

Figure 20 shows the redness change of a Petri Net example during time. This animation offers 
a good way for analyzing large and complex Petri Nets. 

2.5 Connection Dymola and Matlab/Simulink 

For parameter optimization, sensitivity analysis and stochastic simulation according to 
Gillespie [22], it is necessary to simulate the model several times with different parameter 
settings. Dymola offers a possibility to connect a Modelica-model to Matlab by a Simulink 
interface (DymolaBlock) and a set of Matlab m-files [23]. 
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time = 0

time = 50

time = 100

 
Figure 20: Animation of a Petri Net in Dymola; the Token distribution of the Petri Net example, 
top: at the beginning of the simulation, middle: after a simulation of 50 time units, bot m: after 

. a 

n number of a Place over the time is 
te a connector above the respective 

he case of a discrete Place or a blue 

an Output connector in Dymola. These connectors can the connected via Bus to an Outport so 
that these simulation results are saved within a matrix and are available in the Matlab 

to
a simulation of 100 time units; the degree of redness corresponds to the Token numbers, i.e
red Place has many Tokens and a white Place is empty. 

Figure 21 displays on the left a Petri Net modeled by the Petri Net library in Dymola and on 
the right the corresponding Simulink model. If the Toke
needed in Matlab for further calculations, one has to crea
Place. This is an orange IntegerOutput connector in t
RealOutput connector if it is a continuous Place. In the Petri Net example of Figure 21 the 
Token numbers of the Places ܲ1, ܲ5 and ܲ7 are needed in Matlab where ܲ1 is a discrete 
Place with an IntegerOutput connector and ܲ5 and ܲ7 are continuous with a RealOutput 
connector. The DymolaBlock in Simulink generates a connector for all Places connected with 
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environment for further calculations. In the same manner it is also possible that the Petri Net 
model gets inputs from Matlab via a connection between a Simulink source and a Modelica 
IntegerInput or RealInput connector. 

 
Figure 21: Connection Dymola and Matlab/Simulink by a Simulink Interface (DymolaBlock), 
left: Petri Net modeled by the Petri Net library in Dymola, right: Simulink interface of the 
Dymola-model in Matlab/Simulink. 

To connect a Dymola-model with Simulink, one has to enter the model name and its path in 
the property dialog of the DymolaBlock (see Figure 22). After that, the model can be 
complied and the parameters can be set. The parameters can be also set within Matlab by 
special m-files and the model can be simulated by the prompt 

sim(model,timespan,options,ut) 

For a detailed description see [23]. 

 
Figure 22: Property dialog of the DymolaBlock in Simulink. 
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3 Example: Antibody production of the Chinese Hamster Ovary 
Cells 

The Chinese Hamster Ovary Cells (CHO-cells) produce antibodies which are part of many 
pharmaceuticals [24]. Additionally, they produce the waste-products lactate and ammonium 
which can inhibit their growth and antibody production when specific concentrations are 
exceeded ([25], [26], [27]). The main metabolism of CHO-cells is displayed in Figure 23. 
Experiments were performed by growing the CHO-Cells in shaking flaks. They are fed with 
the nutrients glucose and glutamine and they produce antibodies, ammonium and lactate. By 
the latter ones it is assumed that they cannot only be produced by the CHO-Cells but also 
consumed when the environmental conditions are appropriate ([28], [29]). 
 

CHO‐CELLS

Glucose

Glutamine

Antibodies

Lactate

Ammonium

 
Figure 23: The main metabolism of CHO-cells. 

 

Figure 24 represents the experimental data of CHO-Cells growing in shaking flaks. The 
experiments were performed by the University of Applied Sciences Bielefeld, Instrumental 
Biotechnology Institute [30]. The exponential growing phase of the cells ends at day 4 and the 
cells pass over to a stationary phase which takes approximately 2 days. Afterwards more cells 
die than new ones grow thus the curve of living cells decreases and the curve of death cells 
increases (death phase). The nutrient Glucose is exhausted at the end of the experiment and 
the waste-product lactate is produced till day 4 and afterwards it is consumed by the CHO-
Cells. They convert it back to pyruvate which enters the citric acid cycle (TCA-cycle) [29]. 
Here, it is assumed that they start the lactate consumption when a specific lactate 
concentration is exceeded. Additionally, the ammonium concentration decreases after 4 days 
and the glutamine concentration increases. In this conjunction, it seems likely that the CHO-
cells can convert ammonium back to glutamine when the glutamine concentration falls below 
a specific value. The Antibody production starts first after 2.5 days and not stops until the end 
of the experiment. At this point the supposition is that the cells start the production first when 
the glucose becomes limiting. 
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Figure 24: Experimental data of CHO-Cells growing in shaking flaks. 

A continuous Petri Net models the dynamics of the CHO-cells (see Figure 25). This Petri Net 
covers a lot of different differential equation systems. Which of them is chosen depends on 
the environmental conditions. At the beginning of the experiment, it represents the following 
ODEs 
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Living Cells (10^8cells/L) Death Cells (10^8cells/L) Total Cells (10^8cells/L)

Glucose (mM) Lactate (mM) Antibodies (mg/L)

Glutamine (mM) Ammonium (mM)

ܺ
ൌ ߤ ڄ ܺ௧

ݐ݀ ௩ Eq. 1

݀ܺ
ൌ ௗߤ ڄ ܺௗ

ݐ݀ ௩ 
Eq. 2

݀ܺ
ൌ ሺߤ െ ௗሻߤ · ܺ௩

ݐ݀ ௩ 
Eq. 3

݈ܿܩ݀
ݐ݀ ൌ െݍ௚௟௖ ڄ ܺ௩ 

Eq. 4

ݑ݈ܩ݀
ݐ݀ ൌ െݍ௚௟௨ ڄ ܺ௩ െ ݇௦ௗ ڄ  ݑ݈ܩ

Eq. 5

ܿܽܮ݀
ݐ݀ ൌ ௟௔௖ݍ ڄ ܺ௩ 

Eq. 6

݉݉ܣ݀
ݐ݀ ൌ ௔௠௠ݍ ڄ ܺ௩ ൅ ݇௦ௗ ڄ ܺ௩ 

Eq. 7

ܾܣ݀
ݐ݀ ൌ 0 

Eq. 8

ܺ௧ሺ0ሻ ൌ ܺ௧଴, ܺௗሺ0ሻ ൌ ܺௗ଴, ܺ௩ሺ0ሻ ൌ ܺ௩଴, ሺ0ሻ݈ܿܩ ൌ ,଴݈ܿܩ  

ሺ0ሻݑ݈ܩ ൌ ,଴ݑ݈ܩ ሺ0ሻܿܽܮ ൌ ܮ ݉݉ሺ0ሻ ൌ ܾሺ0ሻ ൌܽܿ଴, ܣ ,଴݉݉ܣ ܣ  ଴ܾܣ

Eq. 9
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where ܺ௧ is the concentration of total cells (108 cells/L), ܺௗ is the concentration of death cells 
(108 cells/L), ܺ௩ is the concentration of living cells (108 cells/L), ݈ܿܩ is the glucose 
concentration (mM), ݑ݈ܩ is the glutamine concentration (mM), ܿܽܮ is the lactate 
concentration (mM), ݉݉ܣ is the Ammonium concentration (mM), ܾܣ is the Antibody 
concentration (mg/L), ߤ is the specific growth rate (1/d), ߤௗ is the specific death rate (1/d), 
 ௚௟௨ is the specific glutamineݍ ,௚௟௖ is the specific glucose uptake rate (mmol/108 cells/d)ݍ
uptake rate (mmol/108 cells/d), ݇௦ௗ is the constant for the spontaneous degradation of 
glutamine, ݍ௟௔௖ is the specific lactate production rate (mmol/108 cells/d), ݍ௔௠௠ is the specific 
ammonium production rate (mmol/108 cells/d) and ܺ௧଴,  ܺௗ଴,  ܺ௩଴, ,଴݈ܿܩ ,଴ݑ݈ܩ ,଴ܿܽܮ  ଴݉݉ܣ
and ܾܣ଴ are the start concentrations. 

The conversion from glutamine to ammonium can take place in two different ways: the CHO-
cells can perform it (ݍ௚௟௨ ڄ ܺ௩, ݍ௔௠௠ ڄ ܺ௩) and it can occur within the medium by spontaneous 
decomposition (݇௦ௗ ڄ  No antibodies are produced at the beginning of the .[31] (ݑ݈ܩ
experiment thus the differential equation is set to zero. After an specific change of the 
environmental conditions, the Antibody production starts and Eq. 8 has to be changed to 
 

ܾܣ݀
ݐ݀ ൌ ௔௕ݍ ڄ ܺ௩ 

Eq. 10

where ݍ௔௕ is the antbody production rate (mg/108 cells/d). The supposition is that the 
decreasing glucose concentration initiates the antibody production. In terms 
 

ܾܣ݀
ݐ݀ ൌ ൜ 0, ݈ܿܩ ൒ 14 ܯ݉

௔௕ݍ ڄ ܺ௩, ݈ܿܩ ൏ 14 ܯ݉

A similar switching situation occurs by the lactate concentration. At the beginning the 
dynamics are represented by 

 
Eq. 11

ns, especially the lactate concentration passes a threshold, the dynamics are described 
by 
 

ܿܽܮ݀
ݐ݀

Eq. 6 and after a specific change of the environmental 
conditio

ൌ ൜ݍ௟௔௖ ڄ ܺ௩ െ ௟௔௖௦ݍ ڄ ܺ௩, ܿܽܮ ൒ 19 ܯ݉
௟௔௖ݍ ڄ ܺ௩, ܿܽܮ ൏ 19  ܯ݉

E

where ݍ௟௔௖௦ is the specific lactate consumption rate (mmol/108 cells/d). The glu  
consumption and production, respectively, leads to the following switching equation, whereby 
the change is initiated by the decreasing glutamine concentration 
 

ݑ݈ܩ݀
ݐ݀

q. 12

tamine

ൌ ൜
െݍ௚௟௨ ڄ ܺ௩ െ ݇௦ௗ ڄ ,ݑ݈ܩ ݑ݈ܩ ൒ 0.4 ܯ݉

െݍ௚௟௨ ڄ ܺ௩ െ ݇௦ௗ ڄ ݑ݈ܩ ൅ ௚௟௨௦ݍ ڄ ܺ௩, ݑ݈ܩ ൏ 0.4  ܯ݉
Eq. 13

where ݍ௚௟௨௦ is the specific glutamine production rate (mmol/108 cells/d) and the 
corresponding dynamics for the ammonium concentration are 
 

݉݉ܣ݀
ݐ݀ ൌ ൜ ௔௠௠ݍ ڄ ܺ௩ ൅ ݇௦ௗ ڄ ,ݑ݈ܩ ݑ݈ܩ ൒ 0.4 ܯ݉

௔௠௠ݍ ڄ ܺ௩ ൅ ݇௦ௗ ڄ ݑ݈ܩ െ ௔௠௠௦ݍ ڄ ܺ௩, ݑ݈ܩ ൏ 0.4  ܯ݉
Eq. 14

where ݍ௔௠௠௦ is the specific ammonium consumption rate (mmol/108 cells/d). 

Figure 25 displays the Petri Net modeling the discussed conditions above (Eq. 1 - Eq. 4, Eq. 
11 - Eq. 14). All Places and Transitions are continuous. Table 6 contains the Places and their 
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corresponding substances and Table 7 summarizes the information of the Transition
orange Activation-boxes are wrappers of the Reactions sub-library and they work  
discrete switch. When the Token number of the connected Place exceeds the entered value of 
the parameter tres or fall below the entered value of the parameter inhi, the connected 
Transition becomes active and remain active until one of the connected P ces becomes
in contrast to the threshold and inhibition values of the Transitions. Everything inside the blue 
box with a macroscopic picture of the CHO-cells occurs within the cells and outside of the 
blue box are the reaction for the spontaneous decomposition of glutamine and the substances 

mo

s. The 
like a

la  empty 

that the cells releases to the medium. The total amount of cells, the sum of living cells and 
death cells, is deled by an algebraic equation 

Xt_t=Xv.t+Xd.t. 

 
Figure 25: Petri Net model of the main CHO-metabolism in Dymola. 

Place Substance 

 

Table 6: Places of the CHO-model in Figure 25 and the corresponding substances. 

Xv Concentration of living CHO-Cells 
Xd Concentration of death CHO-Cells 
Glc Glucose concentration 
Glu Glutamine concentration 
Lac Lactate concentration 
Amm Ammonium concentration 
Ab Antibody concentration 
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Tabl Transitions of the CHO-model in Figure 25, the corresponding reactions and the edge 
weighting functions (Eq. 1 - Eq. 4, Eq. 11 - Eq. 14). 

Transition Reaction Weightings Conditions 

e 7: 

Growth Cell growth Glc → Growth ݍ ڄ .ݒܺ ௚௟௖ ݐ
Glu → Growth ݍ௚௟௨ ڄ .ݒܺ  ݐ
Growth → Xv ߤ ڄ .ݒܺ ݐ
Growth → Lac ݍ௟௔௖ ڄ .ݒܺ ݐ
Growth → Amm ݍ௔௠௠ ڄ .ݒܺ  ݐ

 

Death Cell death Xv → Death ߤௗ ڄ .ݒܺ ݐ
Death → Xd ߤௗ ڄ .ݒܺ ݐ

 

TCA Lactate 
consumption 

Lac → TCA ݍ௟௔௖௦ ڄ .ݒܺ ݐ
 

Orange Activation 
Box 
thres=19 

Abprod Antibody 
production 

Abprod → Ab ݍ௔௕ ڄ .ݒܺ  ݐ
 

Orange Activat
Box 
i =14 

ion 

nhi
SpDec Spontaneous 

decomposition 
Glu → SpDec ݇௦ௗ ڄ .ݑ݈ܩ ݐ

of glutamine to 
ammonium 

SpDec → Amm ݇௦ௗ ڄ .ݑ݈ܩ  ݐ
 

 

ConvB Conversion of 
ammonium back 
to glutamine 

Amm → ConvB ݍ௔௠௠௦ ڄ .ݒܺ  ݐ
ConvB → Glu ݍ௚௟௨௦ ڄ .ݒܺ  ݐ

 

Orange Activation 
Box 
inhi=0.4 

The experimental data of Figure 24 are approximated by smoothing splines to get further 
insight to the relations between the respective specific rates. The rates at the beginning of the 
simulation can be calculated by the following equations 

ߤ ൌ
1

ܺ௩
ڄ

݀ܺ௧

ݐ݀  
Eq. 15

ௗߤ ൌ
1

ܺ௩
ڄ

݀ܺௗ

ݐ݀  
Eq. 16

௚௟௖ݍ ൌ െ
1

ܺ௩
ڄ

݈ܿܩ݀
ݐ݀  

Eq. 17

௚௟௨ݍ ൌ െ
1

ܺ௩
ڄ ൬

ݑ݈ܩ݀
ݐ݀ ൅ ݇௦ௗ ڄ  ൰ݑ݈ܩ

Eq. 18

௟௔௖ݍ ൌ
1

ܺ௩
ڄ

ܿܽܮ݀
ݐ݀  

Eq. 19

௔௠௠ݍ ൌ
1

ܺ௩
ڄ ൬

ݑ݈ܩ݀
ݐ݀ െ ݇௦ௗ ڄ  ൰ݑ݈ܩ

Eq. 20

The specific antibody production rate can be calculated after day 2.5 when the cells start the 
production 

௔௕ݍ ൌ
1

ܺ௩
ڄ

ܾܣ݀
ݐ݀  

Eq. 21

The relations analysis yields the following equation structures for the specific rates 

ߤ ൌ ௠௔௫ߤ ڄ
ݑ݈ܩ

௟௨ீܭ ൅  ݑ݈ܩ
Eq. 22
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ௗߤ ൌ ௗ௠௔௫ߤ ڄ
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௔௕ݍ ൌ ݇௔௕ Eq. 28

௟௔௖௦ݍ ൌ ݇௟௔௖௦ Eq. 29

௔௠௠௦ݍ ൌ ݇௔௠௠௦ Eq. 30

௚௟௨௦ݍ ൌ ܻீ ௟௨,஺௠௠ ڄ ௔௠௠௦ Eq. 31ݍ

with the parameters ߤ௠௔௫ (1/d) as maximum specific growth rate and ீܭ௟௨ as constant of the 
Monod kinetics, ߤௗ௠௔௫ (1/d) as maximum specific death rate, ீܦܭ௟௖ as constant of the death 
kinetics (mM), ܻ  (108 cells/mmol),  (108 cells/mmol),  (mol/mol), ஺ܻ௠௠,ீ௟௨ 
(mol/mol) and ܻீ ௟௨,  constant of the 
antibody production, ݇௟௔௖௦ (mmol/108 cells) as constant of the lactate consumption and ݇௔௠௠௦ 
as constant of the ammonium consumption.  

For perfor or the 13 
model parameters, the Petri Net model in Dym  25) has to be connected to Matlab 
via a Simulink interface as describ onding Simulink-model is 
displayed in Figure 26. The simula bers are needed in Matlab, 
thus all Places have a blu alOut  25) so that a corresponding port at 
the Simulink interface is provided. 

௑,ீ௟௖ ௑ܻ,ீ௟௨ ௅ܻ௔௖,ீ௟௖

஺௠௠ (mol/mol) as yield coefficients, ݇௔௕ (mg/108 cells) as

ming a sensitivity analysis and afterwards a parameter optimization f
ola (Figure

ed in section 2.5. The corresp
tion results of all Token num

e Re put connector (Figure

 
Figure 26: Simulink-model of the Petri Net model in Figure 25. 

Before the 13 parameters of the model are estimated a global sensitivity analysis is performed 
to get further insight in the parameter characteristics. This analysis is the basis of the 
following parameter optimization since less sensitive parameters can be fixed during the 
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opti he 
glob b with a specific method (extended Fourier 
Sensit sis T T) see e.g. [32 e, the model is several 
times with differen r setti time the following objective function is 
evaluated (least square approach) 
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Eq. 32

whe , ௝൯ is  outputݐ oncentration at time ݐ௝ eter 
values ࢖ and ݀௜൫ݐ௝൯ is the experi entration at time ݐ௝. The eFAST-method 
measures the contribution of each param to the variance of this objective function, 
whereby the param ried in range. If a parameter c  the 
variance, this param  be identified with an optimization procedure and has to be 
fixed  a para ntribute e variance of the objective function this 
parameter is identif n the op  

The  of the   the contribution of e meter to the 
objective function variance, is displayed in . It becomes clear that 7 of 13 parameters 
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Figure 27: Model variance contribution of every parameter according to the eFAST method. 

The parameter optimization is performed by a special kind of an Evolution Strategy 

lity of the objective function (Eq. 32) which is a result of the discrete switches 
(events) between the different ODEs. The optimization procedure takes place in Matlab via a 

(Covariance Matrix Adaption Evolution Strategy [33]). Local methods fail due to the non-
differentiabi
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Simulink interface. Figure 28 displays the results of this optimization procedure which shows 
a good agreement with the experimental data. 

 

 
Figure 28: Results of the parameter optimization procedure. 

 

To achieve a good model of the CHO-metabolism, it is also possible to choose a stochastic 
ccor

ime (cp.
d 2.2.2). ete

d the
sent here different concentration levels like it is 

8

approach, i.e. a stochastic Petri Net model and a stochastic simulation a ding to Gillespie’s 
algorithm ([22], [19]). The edge weightings of the continuous approach in Table 7 are now the 
dynamic values of the characteristic parameter ߣ of the exponential distribution by which the 
delay of the stochastic Transition is chosen randomly at every activation point in t  
Sections 1.1 an  The transformation of the param rs of the continuous model to the 
stochastic one is well studied and can be found in [34]. Figure 29 displays the CHO-
metabolism modeled by a stochastic Petri Net, whereby the Places are discrete an  
Transitions are stochastic. The Tokens repre
presented in [19]. One Token equates to 0.5 (mM, 10 Cells/l, mg/l), thus there are ܰ ൅ 1 ൌ
90 ൅ 1 different levels since the maximum concentration ሺܯሻ is set to 45. The values of ܯ 
and ܰ can be entered in the green settings-box which has to be a part of every model and can 
be found in the Global-library. This stochastic Petri Net model is also connected to a Simulink 
interface in Matlab so that the stochastic simulation can take place within an m-file. The 
results are displayed in Figure 30 where 500 Simulation are accomplished and the means were 
built each with 10 simulations. 
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Figure 29: Stochastic Petri Net model of the main CHO-metabolism. 

 
Figure 30: The stochastic simulation results according to Gillespie’s algorithm of the stochastic 
Petri Net model in Figure 29. 
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4 Discussion 

The Petri Net library in Modelica is a good instrument for hybrid modeling of biological 
systems. The advantages of this approach are: 

o The object-oriented modeling language Modelica is able to model discrete Places and 
Transitions as well as stochastic and continuous ones. The Places and Transitions are 
models that easily can be changed, modified, or expanded so that further Petri Net 
extensions can be implemented fast. 

o The language allows the realization of hybrid models by combining discrete and 
continuous processes. The hybrid simulation with discrete events and the solution of 
continuous differential equations is then performed by the Dymola tool or by another 
Modelica-tool. 

o The Reactions sub-library offers a fast and simple way to build up a model and further 

o

imulation results for subsequent calculations so 
that the performing of stochastic simulation, sensitivity analysis and parameter 
identification in Matlab is possible. 

o The Petri Net library can be integrated in other Petri Net modeling tools by parsing the 
Petri net of the respective tool (e.g. XML-format) to Modelica-text and simulate it via 
a batch process where the simulation results are saved in a data file. 

In this manner the new Petri Net library close the gaps of the Cell Illustrator and other hybrid 
Petri Net simulation tool and leads to a complete environment for hybrid modeling of 
biological systems. 
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