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Abstract: We introduce the notion of a hypersymmetric abelian variety
over a field of positive characteristic p. We show that every symmetric New-
ton polygon admits a hypersymmetric abelian variety having that Newton
polygon; see 2.5 and 4.8. Isogeny classes of absolutely simple hypersymmet-
ric abelian varieties are classified in terms of their endomorphism algebras
and Newton polygons. We also discuss connections with abelian varieties
of PEL-type, i.e. abelian varieties with extra symmetries, especially abelian
varieties with real multiplications.

Introduction

The notion of a hypersymmetric abelian variety over a field of positive charac-
teristic p is an analog of the notion of an abelian variety of CM-type over a
field of characteristic zero. Recall that an abelian variety A over an algebraically
closed field of dimension g is said to admit sufficiently many complex multiplica-
tions, abbreviated smCM, also called “of CM-type”, if its endomorphism algebra
End0(A) := End(A)⊗Z Q contains a semi-simple commutative algebra of rank 2g
over Q; see [19], pp. 43/44; [4], page 63; [13], page 347; [10], I.3; see [16] and [17]
for further properties and references. In a moduli space of abelian varieties of
PEL-type over a base field of characteristic zero, those points whose underlying
abelian varieties have smCM are often called “CM points”, or “special points”;
they are of fundamental importance to arithmetic.
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Although the notion of abelian varieties with smCM still makes sense over a
base field of positive characteristic p, they are “too abundant” in characteristic p:
Tate showed that every abelian variety over F := Fp has smCM. In other words,
in a moduli space of polarized abelian varieties over an algebraically closed field
K ⊇ Fp, a point is a CM-point if it is rational over F; having smCM does not
make an abelian variety over characteristic p “special enough”.

If we require that an abelian variety A over a field K ⊇ Fp has “as many endo-
morphisms as allowed by the slope constraint”, then we obtain a class of abelian
varieties which are indeed “special”. We call them “hypersymmetric abelian vari-
eties”; see Definition 2.1 for a precise definition. An example of a hypersymmetric
abelian variety is a g-fold product of an ordinary elliptic curve over Fp with itself;
the Hecke orbit of such a point in the Siegel modular variety Ag is easily seen to
be dense in Ag, c.f. Larsen’s example on p. 443 of [1].

The notion of hypersymmetric abelian varieties was motivated by the Hecke
orbit problem over a field of positive characteristic p. As will be shown in [3], the
Zariski closure of a prime-to-p Hecke orbit of a point x0 in the Siegel modular
variety is dense in the irreducible component of the central leaf C(x0) passing
through x0; see [18] for the notion of a central leaf, and [2] for a survey of the Hecke
orbit problem. Hypersymmetric points are useful for proving the irreducibility of
central leaves and for computing the naive p-adic monodromy of central leaves;
see 10.4 and 14.1 of [2].

The major theme of this article is the existence problem of a hypersymmetric
abelian variety with a prescribed Newton polygon and/or ring of endomorphisms.
We show that for any given symmetric Newton polygon ξ, there exists a hyper-
symmetric abelian variety with Newton polygon ξ; see 4.8. Furthermore, we give
a necessary and sufficient condition for the existence of a simple hypersymmetric
abelian variety over Fp with a given symmetric Newton polygon; see Theorems
4.7, 3.3, see 3.6 and see Prop. 4.1. The same method also gives a partial converse
to the Honda-Tate theorem. In Section 6 we give a necessary and sufficient con-
dition for the existence of hypersymmetric abelian varieties on a given Newton
polygon stratum in a Hilbert modular variety.

In Section 7 we explore the possibility of a characteristic-p version of the André-
Oort conjecture, replacing CM-points in characteristic zero by hypersymmetric
points in characteristic p. We show that the naive analog is false: there are subva-
rieties in the moduli space of abelian varieties, which are not Shimura subvarieties
but have a dense set of hypersymmetric points. This phenomenon reflects the
fact that there exist modular varieties of PEL-type in characteristic p such that
every rational point over Fp is a hypersymmetric point. Whether this is “the only
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reason” for the naive analog of the André-Oort conjecture to be false is an open
question; a precise formulation of this question is given at the end of Section 7.

The authors would like to thank the referee for a very careful reading.

§1. Notation

(1.1) Let p be a prime number, fixed in this article. All abelian varieties and
p-divisible groups are defined over a field of characteristic p. We write F = Fp for
an algebraic closure of Fp. For an abelian variety A we write X = A[p∞] for its
p-divisible group.

(1.2) Newton polygons with slopes between 0 and 1 will be denoted by a symbol
like ζ or ξ. When we write ζ =

∑

i (mi, ni) we intend to say that the (lower
convex) Newton polygon starting from the origin of the plane, such that the
multiplicity of a slope ν is equal to

∑

(mi + ni), summation taken over i such
that mi/(mi +ni) = ν. In the notation above, it is understood that mi, ni ∈ Z≥0

and gcd(mi, ni) = 1 for all i.

A Newton polygon ξ is said to be symmetric if the multiplicity of ν in is
equal to the multiplicity of 1 − ν for every slope ν that appears in ξ. We say
that two Newton polygons are disjoint if they have no slopes in common. Every
symmetric Newton polygon ξ can be written as a sum of disjoint symmetric
Newton polygons, each having at most two slopes.

Every symmetric Newton polygon ξ can be written in a unique way in the
following standard form

ρ0 (1, 1) +
s

∑

i=1

ρi ((mi, ni) + (ni,mi)) , gcd(mi, ni) = 1 ∀i,

where ρ0, ρ1, . . . , ρs ∈ Z≥0, and mi > ni ≥ 0 for i = 1, . . . , s, and (mi, ni) 6=
(mj , nj) if 1 ≤ i 6= j ≤ s. The coefficients ρ0, ρ1, . . . , ρs are called the multiplici-
ties of the simple parts of ξ. Define g(ξ) = ρ0 +

∑

1≤i≤s ρi·(mi + ni).

(1.3) According to the Dieudonné-Manin classification of p-divisible groups over
an algebraically closed field, see [12], page 35, every p-divisible group X over an
algebraically closed field k ⊃ Fp is isogenous to a direct product of isoclinic p-
divisible groups Gm,n, with m,n ∈ Z≥0 and gcd(m,n) = 1, with dim(Gm,n) = m;
in this case Gm,n has height m + n and is isoclinic of slope m/(m + n). The
Newton polygon of a p-divisible group X isogenous to

∏

i Gmi,ni is

∑

i

(mi, ni) =: N (X) .
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For an abelian variety A over a field K ⊃ Fp, the Newton polygon attached to
A[p∞] is a symmetric Newton polygon N (A), and it can be written in standard
form as above. Then we have dim(A) = g(ξ). We hope there will be no confusion
caused by the formal sum expressing ξ and the summation as in the formula for
g.

(1.4) Let A be an abelian variety over a field K. An isogeny

A ∼
∑

1≤i≤r

Aµi
i ,

is called a primary isogeny decomposition of A if:

• µi ∈ Z>0;
• for every 1 ≤ i ≤ r the abelian variety Ai is simple;
• for 1 ≤ i < j ≤ r the abelian varieties Ai and Aj are non-isogenous.

The Poincaré-Weil theorem says that every abelian variety over a field admits
a primary isogeny decomposition over this field. Here we shall use this over an
algebraically closed field.

(1.5) As Tate proved, see [20], an abelian variety defined over a finite field admits
smCM. If an abelian variety over field K ⊃ Fp admits smCM, than over K = k
this abelian variety is isogenous with an abelian variety defined over a finite field,
as was proved by Grothendieck, see [16]. These results will be used without
further mention.

§2. Hypersymmetric abelian varieties

(2.1) Definition. Let B be an abelian variety over a field K ⊃ Fp. We say that
B is hypersymmetric if the natural map

End
(

B ×Spec(K) Spec(K)
)

⊗Z Zp
∼−→ End

(

B[p∞]×Spec(K) Spec(K)
)

is an isomorphism. If confusion might arise we will say “K-hypersymmetric”.

Using the result of Grothendieck in [16] we see that 2.1 is equivalent with:

(2.2) Definition. Let B be an abelian variety over a field K ⊃ Fp; we say that

B is hypersymmetric if there exist an abelian variety A defined over F := Fp and
an isogeny

B ×Spec(K) Spec(K) ∼ A×Spec(Fp)
Spec(K) ,

such that the natural map

End(A)⊗Z Zp
∼−→ End(A[p∞])

is an isomorphism.
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(2.3) Remark. An abelian variety B over an algebraically closed field k ⊃ Fp

is hypersymmetric if and only if

End(B)⊗Z Qp
∼−→ End(B[p∞])⊗Zp Qp

is an isomorphism. In particular, if an abelian variety B is isogenous to a hyper-
symmetric abelian variety A, then B is hypersymmetric.

(2.4) Remark. Tate proved that for an abelian variety A defined over a finite
field Fq, the natural homomorphism

End(A)⊗Z Zp
∼−→ End(A[p∞])

is an isomorphism. This shows that End(A)⊗ZZp is identified with the Gal(F/Fq)-

invariant endomorphisms of End
(

A[p∞]×Spec(Fq) Spec(F)
)

. Suppose that

End(A)
∼−→ End

(

A×Spec(Fq) Spec(F)
)

,

then A is hypersymmetric if and only if every element of the ring of endomor-
phisms of the p-divisible group A[p∞]×Spec(Fq) Spec(F) is fixed by every element

of Gal(F/Fq). From this we see that there are “many” abelian varieties over a
finite field which are not hypersymmetric. Also we see that for a hypersymmetric
abelian variety this Galois action is “in diagonal form” for every isoclinic part of
A[p∞]. This can be made precise as follows.

Let K be a finite field and let B be an abelian variety over K. Then B is hyper-
symmetric if and only if there exists a positive integer n such that the n-th power

of the Frobenius πB of B lies in the center of End0
(

B[p∞]×Spec(K) Spec(F)
)

.

In other words, any two eigenvalues of the action of πB on the Dieudonné module
of B[p∞] ×Spec(K) Spec(F) which have the same p-adic absolute value, differ by

a root of unity.

(2.5) Proposition.

(i) Every elliptic curve defined over a finite field is a hypersymmetric abelian
variety. (This handles the cases ξ = (1, 0) + (0, 1) and ξ = (1, 1).)

(ii) Suppose ξ = (m,n) + (m,n) with coprime integers m > n > 0. Then
there exists a hypersymmetric abelian variety with Newton polygon equal
to ξ.

(iii) If A is hypersymmetric, and µ ∈ Z>0 then Aµ is hypersymmetric.
(iv) Suppose A and B are hypersymmetric abelian varieties over an alge-

braically closed field k ⊃ Fp such that N (A) and N (B) have no slopes
in common, i.e. Hom(A[p∞], B[p∞]) = 0; then A×B is hypersymmetric.

(v) For every symmetric Newton polygon ξ and every prime number p, there
exists a hypersymmetric abelian variety over Fp whose Newton polygon is
ξ.
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Proof. For an ordinary elliptic curve E over a finite field we know that End0(E)
has rank two over Q (it is an imaginary quadratic extension of Q); for a supersin-
gular elliptic curve E over F we know that End0(E) has rank four over Q (these
facts follow from [20], but in this case this was already known to Deuring.) From
these facts (i) follows.

By [21], page 98 (= page 352-4) “Un exemple spécial (Problème de Manin)”
we see that (ii) holds.

The statements (iii) and (iv) are proved in a straight-forward way. Hence the
statement (v) for an arbitrary symmetric Newton polygon follows.

§3. A classification up to isogeny

In this section we give a characterization of hypersymmetric simple abelian vari-
eties.

(3.1) For a simple abelian variety A of dimension g over a field K we write

Q ⊂ L := Centre(D) ⊂ D := End0(A),

with

[D : L] =: d2, [L : Q] =: e;

if A admits smCM then ed = 2g. In the case when K = Fq is a finite field
and π = πA = FrA,q is the geometric Frobenius endomorphism, we have L =
Q(πA). In the case when K = F, there exists r = pi such that A is defined
over Fr and L = Q(πAFr

), where AFr is an abelian variety over Fr such that
A ∼= AFr ×Spec(Fr) Spec(F).

(3.2) Lemma. Let A be a simple abelian variety over a field K of characteristic
p. Let X := A[p∞] be the p-divisible group attached to A. Let v1, · · · , vt be
the places of L above the rational prime p ∈ Q. The decomposition L ⊗Q Qp =
Lv1
× · · · × Lvt induces a decomposition X ∼ ∏

Xvi of X up to isogeny.

In case K is a finite field, L = Q(πA), the decomposition L ⊗Q Qp = Lv1
×

· · · × Lvt induces a decomposition X ∼ ∏

Xvi of X up to isogeny; each of the
factors Xvi is isoclinic.

In case K is a finite field and A is a K-hypersymmetric, i.e. we assume
End(A) ∼= End(AK), simple abelian variety over K, different factors Xvi have
different slopes, i.e. the decomposition is the splitting into isoclinic factors up to
isogeny. Moreover, we have

Dvi

∼−→ End0(Xvi),

and Lv = Qp for every v dividing p, i.e. p splits completely in L/Q.
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Proof. We have L →֒ End0(X). From this the splitting up to isogeny as in the
first part of the lemma follows.

In case K = Fq, we see that π = πA acts as a power of Frobenius; the value
vi(π) determines the slope of the p-divisible group on which Dvi acts non-trivially;
we see that Xvi is isoclinic of this slope.

In case A is hypersymmetric it follows that Dvi

∼−→ End0(Xvi). If the slopes
of Xvi and Xvj with i < j would be the same, we would see that Dvi ×Dvj would
operate in block form on the isoclinic Xvi ×Xvj ; this would imply that D ⊗ Zp

does not map surjectively on End(A[p∞]), a contradiction with the fact that A
is hypersymmetric; hence the Xvi are the isoclinic parts. We see:

Lvi = Centre(Dvi)
∼= Centre(End0(Xvi)) = Qp.

This finishes the proof of the lemma.

(3.3) Theorem. Let A be a simple abelian variety over F. Then: a necessary
and sufficient condition for A to be hypersymmetric is that p is totally split in
L/Q, and the slopes of Xvi and Xvj are different, for every pair of primes vi 6= vj

of L/Q both dividing p.

Proof. By the previous lemma we know that the last two conditions are satisfied
for a hypersymmetric simple abelian variety.

Suppose the last two conditions are satisfied. Let v1, · · · , vt be the primes in
L above p; here t = [L : Q]. Write N (Xi) = ρi·(mi, ni) and hi = mi + ni for
1 ≤ i ≤ t. Write ρi·hi−d = εi. As [D : L] = [Dvi : Lvi ] = d2 and Dvi ⊂ End0(Xvi)
we have εi ≥ 0 for every i. As A has smCM we have 2g = td. Moreover we have
2g =

∑

ρihi. Hence

td = 2g =
∑

ρihi =
∑

(d + εi) = td +
∑

εi.

This shows that εi = 0 for all i, and we have

dimQp(Dvi) = d2 = ρ2
i h

2
i = dimQp End0(Xvi) ∀i = 1, . . . , s .

Hence Dvi
∼= End0(Xvi) for all i = 1, . . . , s, and D ⊗Q Qp

∼= End0(A[p∞]).
Therefore A is hypersymmetric.

(3.4) Definition. We say that a symmetric Newton polygon is balanced if

ξ =
∑

1≤i≤s

ρi·((mi, ni) + (ni,mi))

with mi > ni ≥ 0 and gcd(mi, ni) = 1 for all i = 1, . . . , s, such that

• (mi, ni) 6= (mj , nj) whenever i 6= j,
• there exists d ∈ Z>0 with ρi·(mi + ni) = d for all i, and
• gcd(ρ1, · · · , ρs) = 1.
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Equivalently, a symmetric Newton polygon ξ is balanced if

• it does not contain a slope equal to 1/2 ,
• all slopes of ξ have the same multiplicity, and
• the greatest common divisor of the multiplicities of the simple parts of ξ

is equal to 1.

(3.5) Lemma. Suppose A is a simple, hypersymmetric abelian variety over F

with Newton polygon N (A) = ξ. Then one of the following cases holds:

• either A = E is a supersingular elliptic curve, ξ = (1, 1);

• or ξ is balanced.

Proof. In the case when A is not a supersingular elliptic curve, we have to show
that N (A) = ξ is balanced. In this case L 6= Q, see [21], case (a) on page 97.
Hence [L : Q] is even. By Lemma 3.2 we see that Lvi = Qp for all i, and the
number of mutually different slopes of A[p∞] equals the number of places of L
above p equals. This shows that the number of different slopes of A[p∞], being
equal to [L : Q], is even, and we conclude that the slope 1/2 does not appear.

Notation: we write vi for the place of L related with the slope mi/(mi + ni),
and v2s−i for the place of L related with the slope ni/(mi + ni).

For every 1 ≤ i ≤ 2s we have Dvi

∼−→ End0(Xvi). This proves ρ2
i ·(mi + ni)

2 =
[D : L] =: d2.

Let gcd(ρ1, · · · , ρs) = b. Consider a simple p-divisible group Y having slope
m/(m + n); then End0(Y ) is a division algebra, central over Qp with invariant

equal to m/(m + n). Hence the invariant of End0(Xvi) equals mi/(mi + ni) and
the invariant of End0(Xv2s+1−i) equals ni/(mi + ni) for each i ≤ s. This shows
that for every prime v of L above p we have (d/b)· invv(D) ∈ Z. As D is a central
division algebra of dimension d2 over L , this proves that b = 1.

(3.6) Conclusion. Let A be a hypersymmetric, non-supersingular abelian
variety over K = Fq, with q = pa. Suppose A is absolutely simple and suppose
all endomorphisms of AF are already defined over K, i.e. End(A) = End(AF).
Write N (A) = ξ. Then:

(i) Q(πA) = L := Centre(End0(A)).
(ii) ξ := N (A) is balanced.
(iii) The field L is a CM-field such that [L : Q] = 2s, where s is the number

of different slopes of A[p∞]. Moreover the rational prime p is completely
split in L/Q, i.e. L⊗Q Qp

∼= Qp × · · · ×Qp = (Qp)
2s as Qp-algebras.
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(iv) There is a natural bijection between the set of isoclinic parts of the New-
ton polygon ξ and the set of places of L above p, defined as follows.
Suppose that vi is a place of L above p, corresponding to an isoclinic part
ξi of the Newton polygon ξ. Then D ⊗L Lvi is a central simple algebra
over Lvi

∼= Qp with Brauer invariant vi(π)/vi(q) = νi, the slope of the
corresponding isoclinic part of ξ.

§4. Existence results for hypersymmetric abelian varieties

(4.1) Proposition. For every balanced Newton polygon ξ, there exists an ab-
solutely simple hypersymmetric abelian variety A defined over Fp with N (A) = ξ.

(4.2) Lemma. For every positive integer s, there exists a totally real number
field E with [E : Q] = s such that E ⊗Q Qp

∼= Qp × · · · ×Qp as Qp-algebras.

Proof. Immediate from Ekedahl’s version [7] of Hilbert irreducibility theorem
with weak approximation.

(4.3) Remark. For every real number X, denote by Ns,p(X) the number of
isomorphism classes of totally real number fields E such that p is completely split
in E over Q, with [E : Q] = s, disc(E) ≤ X, and the Galois group Gal(F/Q) of
the Galois closure of E is isomorphic to the symmetric group Ss. Then one can
show that

Ns,p(X)≫ X
1

2
+ 1

s2

by adapting the proof of [8, Theorem 1.1].

(4.4) Proposition. Let E be a totally real number field, and let w1, . . . , ws be the
places of E above p. Let ν1, . . . , νs be rational numbers such that 0 ≤ ν1, . . . , νs <
1
2 . Then there exists a power q of p and an element b ∈ OE such that

(i) b ∈ O×
w for every finite place w of E which is prime to p,

(ii) wi(b)
wi(q)

= νi, for i = 1, . . . , s,

(iii) |ι(b)2| < 4q for every embedding ι : E →֒ R of E.

Proof. In case E = Q this is an elementary statement, c.f. the “exemple spécial”
on p. 98 of [20]. So we may assume that [E : Q] > 1.

Choose an integer d0 > 0 such that d0νi ∈ N for i = 1, · · · , s. Let ei =
e(Ewi/Qp) be the absolute ramification index of Ewi , and let pi be the prime

ideal of OE corresponding to wi. Denote by I0 the OE-ideal
∏s

i=1 p
d0νiei
i . Choose

a positive integer d1 such that Id1

0 is a principal OE-ideal. Pick an element b1 ∈ OE

such that Id1

0 = b1OE . We want to show that there exists a positive integer n and
a unit u ∈ O

×
E such that the required properties (i), (ii), (iii) hold for b = bn

1 u
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and q = pd0d1n. It is clear that conditions (i), (ii) hold for every n ∈ Z>0 and
every u ∈ O

×
E . So it suffices to show that there exists a constant n0 such that for

all integers n ≥ n0, there exists a unit u ∈ O
×
E such that the required property

(iii) holds for b = bn
1 u and q = pd0d1n.

Let ι1, . . . , ιh : E →֒ R be the h embeddings of E in R, and h = [E : Q]. The

condition |ιj(bn
1 · u)| < 2 · pnd0d1/2 means that

log |ιj(u)| < log 2− n log |ιj(b1)|+
n

2
· d0d1 · log |p| , j = 1, . . . , h. (∗)

Let V be the subspace of Rh consisting of all vectors v ∈ Rh such that the sum
of the coordinates of v is equal to 0. Let β : O

×
E → V be the map such that for

β(u) = (log |ι1(u)|, . . . , log |ιh(u)|)
β(O×

E) is a cocompact lattice in V by Dirichlet’s unit theorem. Let

∆n =
{

(x1, . . . , xs) ∈ V |xj < log 2− n log |ιj(b1)|+
n

2
· d0d1 · log p, j = 1, . . . , h

}

for n ∈ Z>0. By Minkowski’s theorem, it suffices to show that the subset ∆n

is a non-empty convex subset of V for all n > 0, and the volume of ∆n goes to
infinity as n→∞.

We state an easy result on subsets of V defined by a system of linear inequalities
such as (∗) The proof is omitted.

Sublemma. Let a1, . . . , ah be real numbers such that a1 + · · ·+ ah > 0. Then

S = {(x1, . . . , xs) ∈ V |xj < aj j = 1, . . . , h}
is a non-empty convex subset of V . Moreover, the volume of S with respect to
the inner product on S induced by the standard inner product on Rh is equal to√

h
(h−1)!(a1 + . . . + ah)h−1.

2

Let Dn = h log 2− n
∑h

j=1 log |ιj(b1)|+ nh
2 d0 d1 · log p. By the product formula,

we have
h

∑

j=1

log |ιj(b1)| =
s

∑

i=1

d0 d1 · νi ei fi · log p ,

where fi = [κwi : Fp] is the degree of the residue field of wi over Fp. Hence

Dn = h log 2 + n · d0 d1 · log p ·D1 ,

where

D1 = −
s

∑

i=1

νi ei fi +
h

2
.
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Since
∑s

i=1 ei fi = h, and νi < 1
2 for i = 1, . . . , s, we have D1 > 0. By the

Sublemma, ∆n is non-empty for all n > 0, and the volume of ∆n is
√

h

(h− 1)!
(h · log 2 + n · d0 d1 · log p ·D1)

h−1 →∞ as n→∞ .

This finishes the proof of Prop. 4.4.

(4.5) Remark. (i) The assumption in Prop. 4.4 on the rational numbers νi’s
can be weakened to:

0 ≤ ν1, . . . , νs ≤
1

2
, ν1 + · · ·+ νs <

s

2
.

The proof works without change.

(ii) In addition to the weakening of the condition on the νi’s above, the con-
clusion of Prop. 4.4 can be strengthened by adding the following requirement on
b:

(iv) Q(b) = E.

Again the same argument works, because ∆n is a non-empty convex cone, while
imposing the condition that Q(b) = E1 for a proper subfield E1 of E corresponds
to a closed subcone of ∆n,E1

⊂ ∆n, which has volume zero. So for n ≫ 0 there
exists a unit u ∈ ∆n whose image in V lies in ∆n but not in ∆n,E1

for every
proper subfield E1 of E.

Proof of Proposition 4.1. Let ν1, . . . , νs, 1 − ν1, . . . , 1 − νs be the distinct
slopes of the given balanced Newton polygon ξ with νi < 1

2 for 1 ≤ i ≤ s. By
Lemma 4.1, there exists a totally real number field E such that [E : Q] = s and
E ⊗Q Qp

∼= Qp × · · · × Qp. Let b ∈ OE and let q be a power of p satisfying the
properties (i), (ii), (iii) in Prop. 4.4. Let α be a zero of the quadratic polynomial
X2 + bX + q. Then α is a q-Weil number, and Prop. 4.1 follows from the Honda-
Tate theory.

(4.6) Lemma. Let A be abelian variety over F, and let A ∼ ∑

1≤i≤r Aµi
i

be a primary isogeny decomposition. The abelian variety A is hypersymmetric if
and only if:

(a) for every 1 ≤ i ≤ r the abelian variety Ai is hypersymmetric, and
(b) for every 1 ≤ i < j ≤ r the Newton polygons N (Ai) and N (Aj) are

disjoint.

Lemma 4.6 generalizes 2.5 (iv). The proof is straight forward.

We characterize isogeny classes of hypersymmetric abelian varieties. Previous
results can be summarized in the following theorem.
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(4.7) Theorem. (1) Let A be hypersymmetric abelian variety over F and let

A ∼
∑

1≤i≤r

Aµi
i

be a primary isogeny decomposition. Then:

(a) either Ai is a supersingular elliptic curve, or N (Ai) is balanced;
(b) for j 6= j′ the Newton polygons N (Aj) and N (Aj′) are disjoint;

(c) if Ai is not supersingular, the center of End0(Ai) equals Li = Q(πAi),
with properties as in 3.6.

(2) Suppose given a symmetric Newton polygon ξ. Suppose ξ =
∑

µjξ
(j), where:

(a) every ξ(j) is either supersingular of height 2 or balanced, and

(b) for j < j′ the Newton polygons ξ(j) and ξ(j′) are disjoint.

Then there exists a hypersymmetric abelian variety over F, with N (A) = ξ, such
that there exits a primary isogeny decomposition A ∼ ∑

j A
µj

j of A with

N (Aj) = ξ(j).

(4.8) Corollary. For every symmetric Newton polygon ξ and every prime num-
ber p there exists a hypersymmetric abelian variety A over F with N (A) = ξ.

(4.9) Proposition. For every symmetric Newton polygon ξ which is not su-
persingular, there exist infinitely many isogeny classes of hypersymmetric abelian
varieties over F = Fp with Newton polygon equal to ξ.

There are many ways to prove this proposition. An abstract proof can be given
along the lines of [11]. We give two proofs. The first proof is based on a concrete
example. In the second proof we show directly the existence of a Weil number
with prescribed slopes in a given imaginary quadratic field.

First Proof. It suffices to show this in case ξ = (m,n) + (n,m) for coprime
integers m > n ≥ 0. Write h = m + n. Write ε := h− 2n; note that m > n hence
ε = h− 2n = m + n− 2n > 0.

For every b ∈ Z>1 let πb be a zero of the polynomial

fb := T 2 + p2bn(1− 2pbε)T + p2bh, ε := h− 2n = m− n.

The discriminant of this polynomial is

Db := (p2bn(1− 2pbε)2 − 4p2bh = −p4bn(4pbε − 1) < 0.

Hence πb is a p2bh-Weil number. Let Ab be an abelian variety over Fp2bh con-
tained in the isogeny class defined by πb. We see that the center of the ring

End0
(

Ab ×Spec(F
p2bh )Spec(F)

)

is equal to Q(πb). We see that N (Ab) = (m,n) +
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(n,m).
Claim.

#
(

{ℓ | ℓ is a prime number and ∃b ∈ Z>0 such that ℓ divides (4pbε − 1)}
)

=∞.

Proof of the claim (we thank Frits Beukers for reminding us to use the S-
unit equation). Let S = {ℓ1, · · · , ℓr} be a finite set of rational primes. If A =
(a1, · · · , ar) ∈ (Z)r we write symbolically LA = ℓa1

1 × · · · × ℓar
r . We write ZS :=

{a/LA | a ∈ Z, A = (a1, · · · , ar)}. We see that its multiplicative group of units
(ZS)∗ = {±LB/LA} is finitely generated. A conjecture by Julia Robinson, proved
by a theorem of Siegel and Mahler, says:

# ({λ | λ ∈ (ZS)∗, λ− 1 ∈ (ZS)∗}) <∞
is a finite set, see [9], Theorem 3.1 in 8.3 on page 194 (Note: the Siegel-Mahler
finiteness theorem is much more general, but we only need this special case).
Suppose the set S0 of all primes dividing at least one of the numbers 4pbε − 1
with b ∈ Z>0 is finite, say S0 = {ℓ3, · · · , ℓr}. Write ℓ1 = 2, ℓ2 = p, and S =
{2, p, ℓ3, · · · , ℓr}; we see that λb := 4pbε ∈ (ZS)∗ and also λb − 1 ∈ (ZS)∗ for all
b ∈ Z>0; this is a contradiction with the Siegel-Mahler finiteness theorem. This
proves the claim.

We see that for infinitely many primes ℓ there exists b ∈ Z>0 such that ℓ
ramifies in the number field Q(πb). Hence the set {Q(πb) | b ∈ Z>0}/ ∼=Q is an
infinite set of isomorphism classes of quadratic fields. We conclude that the set

{Ab ×Spec
�

F
p2bh

� Spec(F) | b ∈ Z>1} ,

where Ab is an abelian variety over Fp2bh contained in the isogeny class correspond-
ing to πb, gives an infinite number of F-isogeny classes with Newton polygon equal
to (m,n) + (n,m).

Second proof. It suffices to show that, for any imaginary quadratic field L such
that p splits in L and any pair of coprime natural numbers m > n ≥ 0, there
exists a hypersymmetric abelian variety A over Fq for some power q of p such that
N (A) = (m,n) + (n,m), and Q(πA,q) = L. By Honda-Tate, this is equivalent

to showing the existence of an element π ∈ OL[1/p]× such that v(π)
v̄(π) = n

m , where

v and v̄ are the two normalized p-adic valuations of L above p; note that every
element of OK [1/p]× is a Weil number for a suitable power of p. Consider the
map

α : OK [1/p]× −→ Z2, α(x) 7→ (v(x), v̄(x)) .

By Dirichlet’s unit theorem, the image of α is a subgroup of finite index in Z2.
Therefore there exists an element π ∈ O[1/p]× such that α(π) = (a, b) 6= (0, 0)
such that a/b = n/m.
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(4.10) Remark. The proof of Prop. 4.1 and the second proof of Prop. 4.9 are
based on strategies which are somewhat different. In the proof of 4.1, one first
constructs a suitable totally real number field with suitable properties using the
Hilbert irreducibility theorem, then one writes down a quadratic polynomial with
coefficients in the previously constructed totally real number field, which defines
a Weil number having the required properties. This strategy was employed in
[11]. In the second proof of 4.9, one finds a suitable Weil number in a given
CM-field. In the next section we will combine the two methods to give a partial
converse to the Honda-Tate theorem in [21].

§5. Construction of abelian varieties with given invariants

(5.1) In this section we indicate in which way (not necessarily hypersymmetric)
abelian varieties over finite fields with prescribed invariants can be constructed.
This generalizes the main result of [11] and can be considered a partial converse
of the Honda-Tate theorem as in [21]; also see 2.27 and 4.14 of [15]. It is only
a partial converse because we have no control of the finite field over which the
abelian variety can be defined.

(5.2) Invariants. In Theorem 1 of [21] we see in which way a simple abelian
variety A of dim(A) = g over a finite field K = Fq determines invariants:

A 7→ (ξ, e, d, {iv}) ,

where ξ = N (A), e = [L : Q] with L = Centre(D) = Centre(End0(A)),

d =
√

[D : L], and where Brauer invariants of the central division algebra D =

End0(A) over Q(πA) = L, at places of L above p are given by the iv’s, where v
runs over all places of L above p, and iv ∈ Q/Z for each v. Notice that the Brauer
invariants of D at all finite places of L outside p vanish, and L is a quadratic
extension of a totally real number field unless L is totally real; in case L is totally
real then A is supersingular and D is positive definite at all archimedean places
of L. The invariants (ξ, e, d, {iv}) are submitted to the following constraints:

de = 2g, d = lcmv(denom(iv)), iv ≡
v(πA)

v(q)
[Lv : Qp] (mod Z) ,

and the Newton polygon ξ has slopes v(πA)/v(q), with multiplicities d [Lv : Qp],
for all places v of L above p. Also note that from a q-Weil number π = πA one can
reconstruct Q ⊂ L ⊂ D and the above invariants (ξ, e, d, {iv}) , and the isogeny
class of A is determined by the q-Weil number π.

Remark. In the definition of the invariant of an endomorphism algebra of a
p-divisible group, and hence in the definition of the invariants iv used here, we
follow [21]; this coincides with the definitions given in [5], see page 80; for a simple
p-divisible group X of dimension d and of height h we define its (Frobenius-) slope



Hypersymmetric Abelian Varieties 15

as d/h, and the central Qp-algebra End0(X) has invariant d/h; in [15], page 19,
and in [6], page 227 the invariant defined there is the opposite in sign of the one
considered here.

As a partial converse to Theorem 1 of [21] we have:

(5.3) Theorem. Suppose a set of invariants (ξ, e, d, {iv}) is given, submitted to
the conditions stated above. Then there exists a simple abelian variety A over
F = Fp which gives these invariants.

Taking d = 1 we have the main result of [11].

In case A is supersingular, equivalently a power of π is real, this result is well
known, see [21], page 97.

Convention. For an abelian variety we write its Newton polygon in standard
form

N (A) = ρ0 (1, 1) +

s
∑

i=1

ρi ((mi, ni) + (ni,mi))

with ρ0 ∈ Z≥0, and ρ1, . . . , ρs ∈ Z>0, and mi > ni ≥ 0 for i = 1, . . . , s, and
mi 6= mj if 1 ≤ i 6= j ≤ s.

In this section we suppose A to be non-supersingular. Equivalently: s > 0. For
an abelian variety over a finite field K this means πA 6∈ R.

The following theorem is a more precise form of Theorem 5.3.

(5.4) Theorem. Let ξ = ρ0 · (1, 1) +
∑s

i=1 ρi · ((mi, ni) + (ni,mi)) be a
symmetric Newton polygon written in standard form. Suppose s > 0. Write
hi = mi + ni for i = 1, . . . s.

Suppose given: integers r1, . . . , rs > 0, and di,j > 0, where the index (i, j) runs
through 1 ≤ i ≤ s, 1 ≤ j ≤ ri.

If ρ0 > 0, suppose also that we are given integers r0 > 0, and d0,1, . . . , d0,r0
> 0,

and an integer t with 0 ≤ t ≤ r0. Write d′0,j = d0,j for 1 ≤ j ≤ t, and d′0,j = 2d0,j

for t < j ≤ r0. We use the convention that r0 = 0 if ρ0 = 0.

Let h′ be the least common multiple of the natural numbers hi/ gcd(hi, dij),
where the index runs through all i = 1, . . . , s, all j = 1, . . . , ri. Let h be the least
common multiple of h′ and the natural numbers 2/ gcd(2, d′0j) for 1 ≤ j ≤ r0. In

other words, h = 2h′ if ρ0 > 0, h′ is odd, and d′0,j is odd for some j = 1, . . . , r0;

otherwise h = h′. Assume that

h ·
ri

∑

j=1

dij = ρi · hi for i = 1, . . . , r
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and

h ·
r0

∑

j=1

d0j = ρ0 .

Then there exist

• a simple abelian variety A over Fp,
• a totally imaginary quadratic extension L of a totally real number field E,
• an isomorphism from L to the center of the division algebra D := End(A)0,
• finite extension fields Eij/Qp, i = 1, . . . , s, j = 1, . . . , ri,
• finite extension fields E0j/Qp, j = 1, . . . , r0, if ρ0 > 0,

• quadratic extension fields Ẽ0j/E0j if ρ0 > 0 and t < j ≤ r0,
• an isomorphism E⊗QQp

∼=
∏

i,j Eij, where the indices (i, j) runs through
all pairs such that 0 ≤ i ≤ s, 1 ≤ j ≤ ri,
• isomorphisms (L/E)⊗E E0j

∼= Ẽ0j/E0j if ρ0 > 0 and t < j ≤ r0,

such that the following statements hold.

(i) dimE(D) = 2·h2.
(ii) [Eij : Qp] = dij for all i = 0, . . . , s, all j = 1, . . . , ri.
(iii) Let wij be the place of E above p corresponding to the factor Eij of E⊗Q

Qp. Then L/E splits over wi,j for all i = 1, . . . , s, all j = 1, . . . , ri.
(iv) If ρ0 > 0, then L/E splits over w0,j for all j with 1 ≤ j ≤ t.
(v) Let A[p∞] ∼ ∏

i,j Xi,j be a decomposition of A[p∞] up to isogeny,

corresponding to the decomposition E ⊗Q Qp
∼=

∏

i,j Eij of E ⊗Q Qp.
Then

N (Xij) =
dij · h

hi
· ((mi, ni) + (ni,mi)) ∀i = 1, . . . , s, ∀j = 1, . . . , ri ,

and

N (X0j) = d0j h · (1, 1).
(vi) The local Brauer invariant invv(D/L) at the two places of L above a place

wij of E with i ≥ 1 are
mi·dij

mi+ni
(mod Z) and

ni·dij

mi+ni
(mod Z) respectively.

(vii) If ρ0 > 0, then the local Brauer invariant invv(D/E) at a place of L

above a place w0j is equal to
d′
0j

2 (mod Z) for all j = 1, . . . , r0.

(5.5) Remark. (a) Note that for

N (A) = ρ0 · (1, 1) +

s
∑

i=1

ρi · ((mi, ni) + (ni,mi)) = ξ ,

(v) implies that dim(A) = h · [E : Q], and that e/2 = [E : Q] is given by
e/2 =

∑s
1=0

∑ri
j=1 di,j .
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(b) If ξ =
∑ri

j=1 ρi ·((mi, ni)+(ni,mi)) is balanced, ρ0 = 0, we can choose r1 =
1 = · · · = rs and the abelian variety given by the construction is hypersymmetric.

(5.6) Lemma. Let L/E be a totally imaginary quadratic extension of a totally
real number field E, and let p be a prime number. Then there exists a power q of
p and a short exact sequence

0 // W L
0 (q)

α
//
⊕

v|p Z · v β
//
⊕

w|p Z · w // 0

where v ranges over all places of L above p and w ranges over all places of E
above p, with

W L
0 (q) =

{

π ∈ OL[1/p]× : |ι(π)| = 1∀ι : L →֒ C, and ||π||w ∈ qZ ∀w|p
}/

(modulo torsion)

The maps α and β are defined by

α(π) =
∑

v|p
logq(||π||v) · v , β :

∑

v|p
n(v) · v 7→

∑

w|p





∑

v|w
n(v)



 · w .

Proof. This is Prop. 2.27 of [15]; it is a consequence of the theory of complex
multiplication, due to Shimura and Taniyama. Note that in [15], Prop. 2.27 is
placed under the blanket assumption on p. 425 that L is Galois over Q. Although
an examination of the argument shows the statement of Lemma 5.6 remains valid
without the assumption that L is Galois over Q, it is perhaps more convincing
to reduce 5.6 to the case when L is Galois over Q.

Choose a CM field L1 containing L such that L1/Q is a Galois extension. We
have a commutative diagram,

0 // W L1

0 (q)
α

1
//

Nm
L1/L

��

⊕

v
1
|p Z · v

1

β
1

//

γ

��

⊕

w
1
|p Z · w

1
//

δ
��

0

0 // W L
0 (q)

α
//
⊕

v|p Z · v β
//
⊕

w|p Z · w // 0

where the top row is the sequence for the CM field L1 as in the statement of 5.6,
the map Nm

L
1
/L

is induced by the relative norm, and the maps γ, δ are defined

by

γ :
∑

v
1
|p

n(v
1
)·v

1
7→

∑

v|p





∑

v
1
|v

n(v
1
)



·v , δ :
∑

w
1
|p

n(w
1
)·w

1
7→

∑

w|p





∑

w
1
|w

n(w
1
)



·w
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Clearly α and α
1

are injective, while β and β
1

are surjective. It is easy to see
that the map

γ : Ker (β
1
))→ Ker (β))

is a surjection. Therefore the exactness of the bottom row follows from the
exactness of the first row.

(5.7) Lemma. Let p be a prime number. Suppose we are given integers s ≥ 1,
r0 ≥ 0, r1, . . . , rs ≥ 1, and integers dij ≥ 1, where i runs through all integers
from 1 to s, and j runs through all integers from 1 to ri. If r0 > 0, suppose
furthermore that we are given integers d01, . . . , d0r0

≥ 1 and an integer t with
0 ≤ t ≤ r0. Then there exist

(a) a totally real number field E,
(b) a totally imaginary quadratic extension field L of E,
(c) finite extension fields Eij of Qp with [Eij : Qp] = dij , for pairs (i, j) such

that 0 ≤ i ≤ s and 1 ≤ j ≤ rj,

(d) a ring isomorphism E ⊗Q Qp
∼−→ ∏

i,j Eij , where the indices i, j run

through all pairs (i, j) such that 0 ≤ i ≤ s and 1 ≤ j ≤ rj,

with the following properties.

(i) Let wij be the place of E corresponding to the factor Eij of E ⊗Q Qp,
0 ≤ i ≤ s, 1 ≤ j ≤ rj . Then L/E is split over wij if either i ≥ 1, or if
i = 0 and 1 ≤ j ≤ t.

(ii) L⊗E E0j/E0j is a quadratic extension of fields if t < j ≤ r0.
(iii) No proper subfield of L is a CM-field. In other words, M ∩ E = M for

every subfield M of L.

Proof. Let d =
∑

i,j dij , where the indices i, j runs through all pairs (i, j) such
that 0 ≤ i ≤ s, 1 ≤ j ≤ rs. We may and do assume that d > 1. Choose
and fix a prime number ℓ different from p. The first step is to apply Ekedahl’s
version of Hilbert irreducibility to obtain a totally real number field E and a ring
isomorphism E ⊗Q Qp

∼−→∏

i,j Eij as in (d), where Ei,j is a finite extension field

of Qp with [Ei,j : Qp] = dij , satisfying the following properties.

(iv) Let E′ be the Galois closure of E over Q. Then the Galois group Gal(E′/Q)
∼= Sd.

(v) E ⊗Q Qℓ is a finite unramified extension field of Qℓ if d is even.
(vi) E ⊗Q Qℓ

∼= Qℓ × F1, where F1 is a finite unramified extension field of Qℓ

if d is odd.

By the weak approximation theorem, we can find a suitable element b ∈ E×

which is not a square in E× such that the quadratic extension E(
√

b)/E is totally
imaginary and satisfies the required properties (i), (ii), and



Hypersymmetric Abelian Varieties 19

(vii) E(
√

b)/E is unramified and inert above ℓ if d is even,

(viii) E(
√

b)/E is unramified and inert above the degree d−1 place of E above
ℓ, and splits above the degree-one place of E above ℓ, if d is odd.

We claim that L := E(
√

b) has no proper CM-subfield. Otherwise, since Gal(E′/Q)
∼= Sd we see that L contains an imaginary quadratic field K. Then Gal(E′ ·
K/Q) ∼= Sd × (Z/2Z), which is not possible by properties (vii) and (viii).

Proof of Theorem 5.4. The statement of 5.4 means that there exists a power
q of p and a q-Weil number π such that L := Q(π) is a CM-field with the following
properties.

(1) Let E be the maximal totally real subfield of L. Then there is a ring
isomorphism E ⊗Q Qp

∼=
∏

i,j Eij , where the indices i, j runs through

all pairs (i, j) such that 0 ≤ i ≤ s, 1 ≤ j ≤ ri, such that [Ei,j : Qp] = dij

for all (i, j).
(2) Statements (i), (ii) of 5.7 holds.
(3) Let vij and v′ij be the two places of L above wij if either i ≥ 1, or if i = 0

and 1 ≤ j ≤ t.

Then
{

vij(π)

vij(q)
,
v′ij(π)

v′ij(q)

}

=

{

mi

mi + ni
,

ni

mi + ni

}

.

Let L be a CM-field satisfying the properties in Lemma 5.7. Apply Lemma 5.6
to an element

c ·
∑

1≤i≤s
1≤j≤rs

[(

mi

mi + ni
− 1

2

)

dij · vij +

(

ni

mi + ni
− 1

2

)

dij · v′ij
]

∈ ⊕v|p Z · v,

where c is a positive even integer divisible by mi + ni for i = 1, . . . , s. The
existence of a q-Weil number satisfying the above properties (1), (2), (3) follows.

§6. Hypersymmetric abelian varieties with real multiplica-

tion

(6.1) Definition. Let F be a totally real number field. Let p1, . . . , pr be the
prime ideals of OF above p.

(1) An OF -linear abelian variety of HB-type over a field K is a pair (A, ι),
where A is an abelian variety over K, and ι : OF → EndK(A) is a ring
homomorphism such that ι(1) = IdA and such that dim(A) = [F : Q].
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(2) A Newton polygon of HB-type attached to F is a family of the form

{(Fpi , ξi) | i = 1, . . . , r} ,
where each ξi is a Newton polygon such that

– either ξi is equal to [Fpi : Qp] · (1, 1),
– or ξi is of the form ξi = µi(mi, ni) + µi(ni,mi), with µi ∈ Z>0 and

µi · (mi + ni) = [Fpi : Qp] and (mi, ni) = 1, mi 6= ni.
(3) Let (A, ι) be an OF -linear abelian variety of HB-type over a field K of

characteristic p, where F is a totally real number field. We have a canon-
ical decomposition

A[p∞] = ⊕r
i=1 A[p∞i ]

of the p-divisible group attached to A, where p1, . . . , pr are the prime
ideals of OF above p. Each A[p∞i ] is a p-divisible group with action by
OFpi

. Let ξi be the Newton polygon of the p-divisible group A[p∞i ]. Then

{(Fpi , ξi) | i = 1, . . . , r} is a Newton polygon of HB-type attached to F ;
see [22], Lemma 3.1. We call it the Newton polygon of HB-type attached
to (A, ι). It is known that every Newton polygon of HB-type is realized
by an OF -linear abelian variety of HB-type; see [22], Thm. 7.3(1).

(6.2) Lemma. Let F be a totally real number field, and let (A, ι) be an OF -linear
abelian variety of HB-type over a field K. Then A is isogenous to a multiple of
a simple abelian variety: A ∼ Ba, where B is a simple abelian variety over K.

Proof. Let A ∼ ∑

1≤i≤s Aµi
i be a primary isogeny decomposition. Then

EndK(A) ⊗Z Q ∼=
s

∏

i=1

Mµi(Di),

where Di = End0(Ai). In particular, F can be embedded into End(Aµi
i )0 for

i = 1, . . . , s. We suppose that s > 1, and we will obtain a contradiction. We
have [F : Q] ≤ 2µi dim(Ai) for i = 1, . . . , s. Adding these inequalities, we get
s·dim(A) ≤ 2 dim(A), therefore s = 2, and [F : Q] = 2µi dim(Ai) for i = 1, 2.
Consequently the abelian varieties Aµ1

1 and Aµ2

2 both have smCM, hence they are
isogenous to abelian varieties B1, B2 defined over some finite field. Since F is
totally real, and the Frobenii of B1 and B2 belong to F , we see that B1 and B2

are supersingular, hence isogenous. This is a contradiction.

Remark. The statement of 6.2 holds when the base field K has characteristic
0. As pointed out by the referee, there is an alternative proof, valid in all char-
acteristics. Replace the argument in the next-to-last sentence of the proof above
by the following general fact: if B is an abelian variety and F is a totally real
number field contained in End0(B), then [F : Q] | dim(B). This fact is surely
well-known to the experts, and can be “read off” from the table on p. 202 of
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[14], by considering the dimensions of totally real number fields which can be
embedded in Mn(End0(X)) in each of the cases I–IV of loc. cit.

(6.3) Proposition. Let F be a totally real number field, and let {(Fpi , ξi) | i =
1, . . . , r} be a Newton polygon of HB-type attached to F . Then there exists an
OF -linear abelian variety (A, ι) over F of HB-type such that A is hypersymmetric
if and only if:

(1) either ξi = [Fpi : Qp] · (1, 1) for all i = 1, . . . , r,
(2) or ξi 6= [Fpi : Qp] · (1, 1) for all i = 1, . . . , r, and there exists a subfield

E ⊂ F such that
(a) E splits completely over p, i.e. E ⊗Q Qp

∼= Qp × · · · ×Qp;
(b) if pi1 ∩ OE = pi2 ∩ OE, 1 ≤ i1, i2 ≤ r, then [Fpi2

: Qp] · ξi1 = [Fpi1
:

Qp] · ξi2 ;
(c) if pi1 ∩ OE 6= pi2 ∩ OE, 1 ≤ i1, i2 ≤ r, then ξi1 and ξi2 are disjoint;
(d) the multiplicity of every slope of ξ :=

∑r
i=1 ξi is equal to [F : E].

Remark. (i) The conditions (a)–(d) in (2) above imply that ξ is a multiple of a
balanced Newton polygon ξ′.

(ii) The existence of examples of Newton polygon strata in Hilbert modular
varieties on which there are no hypersymmetric abelian varieties was pointed out
to the first author by Chia-Fu Yu.

Proof of Prop. 6.3. Suppose that {(Fpi , ξi) | i = 1, . . . , r} is a Newton polygon
of HB-type attached to an OF -linear abelian variety (A, ι) of HB-type such that
A is hypersymmetric and not supersingular. By Lemma 6.2, A is isogenous to
a multiple of a simple abelian variety B, necessarily hypersymmetric. Assume
that B is not supersingular. Then the center L of End0(B) is a totally imaginary
quadratic extension of a totally real number field E, and L splits completely
above p by Prop. 3.6. Moreover the multiplicity of every slope of A is equal
to 2· dim(A)/[L : Q]. Let E be the maximal totally real subfield of L. The
subring M of End(A)⊗Z Q generated by F and L is a commutative semi-simple
algebra such that every field factor of M is a CM field of degree at least 2 [F :
Q] = 2 dim(A). Therefore M is a totally imaginary quadratic extension of F .
In particular F contains E, and the multiplicity of every slope of A is equal to
2· dim(A)/[L : Q] = [F : E]. The statements (a), (b), (c) follow from Prop. 3.6.

To prove the “if” part of Prop. 6.3, we first assume that condition (1) holds,
that is, each ξi has only one slope 1

2 . Let A = Eg, where g = [F : Q] and E is a
supersingular elliptic curve over F. Then End(A) ∼= Mg(Dp,∞), where Dp,∞ is a
quaternion division algebra over Q exactly ramified at p and ∞. It is well-known
that OF can be embedded in Mg(Dp,∞). Any embedding ι gives us an OF -linear
abelian variety (A, ι) of HB-type satisfying the required conditions.
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Finally, assume that the condition (2) holds. Let ξ :=
∑r

i=1 ξi = µ · ξ′, where
ξ′ is a balanced Newton polygon. According to Prop. 4.1 and Prop. 4.4 there
exists a hypersymmetric simple abelian variety B over F such that N (B) = ξ′,
and the center L of the division algebra End0(B) is a totally imaginary quadratic
extension of E. It suffices to show that there exists an E-linear embedding
F →֒ Mµ(D), for then one can find a hypersymmetric abelian variety A over
F-isogenous to Bµ and an OE-linear embedding ι : OF →֒ End(A), and the
Newton polygon attached to the OF -linear abelian variety (A, ι) of HB-type is
{(Fpi , ξ) | i = 1, . . . , r}. Let M be the composition of the field extensions F/E and
L/E, so that M is a totally imaginary quadratic extension of F . The conditions
(a)–(d) imply that the central simple algebra Mµ(D) ⊗L M over M splits at all
places above p, hence it is split, because the division algebra D over L splits at
all finite places of L. Therefore there exists an L-linear embedding M →֒ Mµ(D).

From the point of view of Shimura varieties, the notion of hypersymmetric points
needs to be modified when considering the reduction of Shimura varieties. Oth-
erwise hypersymmetric points may not even exist on a Newton polygon stratum
of the reduction of a Shimura variety. We give a proposed definition for modular
varieties of PEL-type.

(6.4) Definition. Let (Γ, ∗) be a finite dimensional semi-simple algebra over
Q with positive involution. Let OΓ be an order of Γ. Let A be an abelian
variety over an algebraically closed field k ⊃ Fp, and let ι : OΓ → End(A) be
a ring homomorphism such that ι(1) = IdA. We say that (A,Γ, ι) is (Γ, ι)-
hypersymmetric if the natural map

EndOΓ
(A)⊗Z Qp → EndOΓ⊗ZZp(A[p∞])⊗Zp Qp

is an isomorphism.

(6.5) Remark. In 6.4, suppose furthermore that λ : A→ At is a polarization of
A, and the ring homomorphism ι is compatible with the involution ∗ on B and the
Rosati involution ∗

λ
on End0(A) attached to λ. Then the condition for (A,Γ, ι)

to be (Γ, ι)-hypersymmetric is equivalent to the condition that the natural map

(

End0
OΓ

(A)
)∗=−1 ⊗Q Qp →

(

EndOΓ⊗ZZp(A[p∞])⊗Zp Qp

)∗
λ
=−1

is an isomorphism. The latter condition is more natural from the point of view
of Shimura varieties.
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§7. Hypersymmetric points and special points

We study some density properties of hypersymmetric points in subvarieties of
the moduli space Ag of g-dimensional principally polarized abelian varieties. The

base field in this section is F = Fp.

(7.1) Remark. One can show that in any given Newton polygon stratum Wξ of
the moduli space Ag,1⊗Fp of g-dimensional principally polarized abelian varieties
over F, the set of hypersymmetric points is dense in Wξ. In fact, one can show
that for any hypersymmetric point x0 in Wξ, the set of hypersymmetric points in
Wξ isogenous to x0 is dense in Wξ. This follows from the irreducibility of Wξ for
non-supersingular ξ, and the rigidity result and the action of the local stabilizer
subgroup as explained in [2]. Similarly, one can show that in any given central
leaf C in Ag in the sense of [18], the set of hypersymmetric points is dense in C.
(7.2) One might wonder whether hypersymmetric abelian varieties over F are
the right analog of CM abelian varieties in characteristic zero. However we will
see that an obvious analogous formulation of the André-Oort conjecture does not
hold for hypersymmetric abelian varieties over F.

Let us write A1 = A1,1⊗F for the moduli space of elliptic curves over F; we write
A1 ⊂ P1 = P1

F, and ∞ ∈ P1 for the point corresponding with a degenerate elliptic
curve. We say (x, y) ∈ P1 × P1 is supersingular if x and y are supersingular j-
values. We say (x, y) ∈ P1×P1 is hypersymmetric if Ex×Ey is hypersymmetric,
i.e. all cases where Ex ∼ Ey, i.e. either (x, y) is supersingular, or Ex ∼ Ey is
ordinary, or one is supersingular and the other is ordinary.

Note that not every curve in P1×P1 is a modular curve, i.e. is not the reduction
mod p of a Shimura curve. In fact, let S ⊂ A1 ⊂ P1 be the set of supersin-
gular points and let C ⊂ P1 × P1 be an irreducible curve containing a point
(x, y) ∈ C with x ∈ S and x 6∈ S. Then C is not modular. Hence the following
proposition provides us with examples of non-modular curves with dense sets of
hypersymmetric points.

(7.3) Proposition. Every curve C in the product P1 × P1 of two j-lines over F

contains a dense set of hypersymmetric points.

Before giving a proof we fix some notations. Note that in any horizontal line
{x} × A1 ⊂ P1 = P1

F the hypersymmetric points are dense; for x supersingular,
take all ordinary y; for x ordinary, use the fact that the Hecke orbit H(x) of Ex

in A1,1 ⊗ m is non-finite, see [1], Prop. 1 on page 448; hence H(x) ⊂ A1,1 is
dense. The same argument proves this fact for a vertical line. Hence it suffices
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to prove the proposition under the extra condition that C is an irreducible curve
of bidegree (d1, d2) with d1 > 0 and d2 > 0; here d1 = (C · ({pt} × P1)), and
d2 = (C · (P1 × {pt})).

We consider the morphism Frpn : P1 → P1. We write Fn = Γ(Frpn) ⊂ P1×P1 for
the graph of this morphism. Note that Fn is irreducible of bidegree (1, pn).

(7.4) Lemma. Suppose pn > d2. Let P ∈ C ∩ Fn. Then the local intersection
number of C and Fn at P satisfies iP (C,Fn) ≤ d2.

Proof. Choose local affine coordinates in a neighborhood of P ∈ P1 × P1 such
that P = (0, 0). Write g ∈ F[X,Y ] for an irreducible polynomial defining C in
this neighborhood. Note that

dimF (F[X,Y ]/)/(g, Y )) = dimF (F[X]/(g(X, 0)) .

Let H = P1 ×{0} be the horizontal line defined as the set of zeros of Y . We see:

0 < iP (C,H) = degX(g(X, 0)) ≤ d2.

Moreover
F[X,Y ]/(g, Y −Xpn

) ∼= F[X]/(g(X,Xpn
));

as pn > d2 we see that g(X,Xpn
) ≡ g(X, 0) (mod Xd2). Hence

iP (C,Fn) = iP (C,H) ≤ d2.

This proves the lemma. 2

Proof of 7.3. We know
∑

P

iP (C,Fn) = d1·pn + d2 and iP (C,Fn) ≤ d2 ∀P.

Hence

# (C ∩ Fn) ≥ d1·pn + d2

d2
>

d1

d2
·pn.

If (x, y) = P ∈ (C ∩ Fn)(F) there is an isogeny Frpn : Ex → Ey; hence P ∈ C(F)
is hypersymmetric. As # (C ∩ Fn)→∞ for n→∞ this proves the proposition.
2

(7.5) Remark. Here is another class of counter-examples to the “obvious ana-
log” of the André-Oort conjecture. Let g ≥ 2 be an integer. Let N ≥ 3 be an
integer, (N, p) = 1. Let X be a central leaf in Ag−1,N . As remarked in 7.1,
there exists a countable set of hypersymmetric points {xi : i ∈ Z>0} in X(F)
which is Zariski dense in X. Let f be a non-constant rational map from X to the
modular curve A1,N , i.e. there exists a dense open subset U ⊂ X such that f is
represented by a morphism fU : U → A1,N . Let Γ(f) be the graph of f , i.e. Γ(f)
is the Zariski closure in Ag−1,N × A1,N of the graph of fU . We have a natural
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embedding ι : Ag−1,N×A1,N →֒ Ag,N . Passing to a countable subset if necessary,
we may assume that xi ∈ U for all i ∈ Z>0, and f(xi) is an ordinary point of
A1,N corresponding to an ordinary elliptic curve over F. Let zi := ι(xi, f(xi))
for each i. Then {zi : i ∈ Z>0} is a countable set of hypersymmetric points of
Γ(f)(F) which is Zariski dense in Γ(f). Notice that the subscheme ι(Γ(f)) is
contained in a central leaf C of Ag,N by hypothesis, but in general ι(Γ(f)) is not
the intersection of C with a Shimura subvariety M of Ag.

(7.6) Remark. As an analog of the André-Oort conjecture, one may wonder
whether every irreducible component of the Zariski closure of an infinite set of
hypersymmetric points in a central leaf C in Ag is “cut out” by the reduction
of a Shimura subvariety. As Proposition 7.3 and Remark 7.5 show, that is not
correct. The reason is that, the reduction of some Shimura subvarieties, for
example a modular curve or a Shimura curve, have the property that every point
is hypersymmetric. One might wonder whether this is “the only obstruction”.
Below we formulate statement in this direction as a question.

Question. Let C be a central leaf in Ag,N over F, where N ≥ 3 is an integer,
(N, p) = 1. Suppose that Z is an irreducible subvariety of C such that the set
of all hypersymmetric points on Z is dense in X. Does there exist a (reduction
of a) Shimura subvariety M of Ag,N , attached to a Shimura input data (G,X),
with the following properties?

(i) The simply connected covering Gsc
der of the derived group Gder of the

reductive G is a product Gsc
der
∼= G1 × G2, inducing a decomposition of

Shimura input data (G,X) = (G1,X1)× (G2,X2).
(ii) The reduction modulo p of the Shimura varieties Sh(G1,X1) and Sh(G2,X2)

give rise to Shimura varieties M1, M2 over F, with dim(M1) = 1.
(iii) There exist a finite morphism f : M1 ×M2 → Ag,N , a finite isogeny

correspondence, h : Ag,N ← I → Ag,N and a central leaf C2 in M2 such
that

Z ⊆ h(f(M1 × C2))
and

pr2
(

(M1 × C2) ∩ f−1(h−1(Z)
)

= C2 .
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