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Active Balancing and Vibration Control
of Rotating Machinery: A Survey

Shiyu Zhou and Jianjun Shi

ABSTRACT—Vibration suppression of rotating machinery
is an important engineering problem. In this paper, a review
of the research work performed in real-time active balanc-
ing and active vibration control for rotating machinery, as
well as the research work on dynamic modeling and analy-
sis techniques of rotor systems, is presented. The basic
methodology and a brief assessment of major difficulties
and future research needs are also provided.

1. Introduction

Rotating machinery is commonly used in mechanical
systems, including machining tools, industrial turbo-
machinery, and aircraft gas turbine engines. Vibration
caused by mass imbalance is a common problem in rotat-
ing machinery. Imbalance occurs if the principal axis of
inertia of the rotor is not coincident with its geometric
axis. Higher speeds cause much greater centrifugal imbal-
ance forces, and the current trend of rotating equipment
toward higher power density clearly leads to higher opera-
tional speeds. For example, speeds as high as 30,000 rpm
are not rare in current high-speed machining applications.
Therefore, vibration control is essential in improving
machining surface finish; achieving longer bearing, spin-
dle, and tool life in high-speed machining; and reducing
the number of unscheduled shutdowns. A great cost sav-
ings for high-speed turbines, compressors, and other
turbomachinery used in petrochemical and power genera-
tion industries can be realized using vibration control
technology.

It is well established that the vibration of rotating
machinery can be reduced by introducing passive devices
into the system (Cunningham, 1978; Nikolajsen and
Holmes, 1979). Although an active control system is usu-
ally more complicated than a passive vibration control
scheme, an active vibration control technique has many
advantages over a passive vibration control technique.
First, active vibration control is more effective than passive
vibration control in general (Fuller et al., 1996). Second,
the passive vibration control is of limited use if several
vibration modes are excited. Finally, because the active
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actuation device can be adjusted according to the vibration
characteristic during the operation, the active vibration
technique is much more flexible than passive vibration
control. The main purpose of this paper is to review and
reevaluate the active vibration control techniques for rotat-
ing machinery and shed some light on future research
directions.

There are two major categories in active vibration con-
trol techniques for rotating machinery: direct active vibra-
tion control (DAVC) techniques directly apply a lateral
control force to the rotor, and active balancing techniques
adjust the mass distribution of a mass redistribution actua-
tor. The control variable in DAVC techniques is a lateral
force generated by a force actuator such as the magnetic
bearing. The advantage of DAVC techniques is that the
input control force to the system can be changed quickly.
By applying a fast-changing lateral force to the rotating
machinery, the total vibration, including the synchronous
vibration, the transient-free vibration, and other non-
synchronous vibration of the rotating machinery, can be
suppressed. The limitation of most force actuators is the
maximum force they can provide. In high rotating speed,
the imbalance-induced force could reach a very high level.
Most force actuators cannot provide sufficient force to
compensate for this imbalance-induced force. Under this
condition, active balancing methods can be used. In active
balancing methods, a mass redistribution actuator (namely,
whose mass center can be changed) is mounted on the
rotor. After the vibration of the rotating system is mea-
sured and the imbalance in the rotating machinery is esti-
mated, the mass center of the actuator is changed to offset
the system imbalance. The vibration of the rotating
machinery is suppressed by eliminating the root cause of
the vibration—system imbalance. Contrary to the force
actuator, the mass redistribution actuator can provide large
compensating force. However, the speed of the mass redis-
tribution actuator is slow. Although active balancing meth-
ods can eliminate imbalance-induced synchronous
vibration, they cannot suppress transient vibration and
other nonsynchronous vibration.

In this paper, both DAVC and active balancing tech-
niques are reviewed. Because the mathematical model is
the foundation of any active vibration control technique, a
review of relevant dynamic modeling techniques of rotat-
ing machinery is also included in this paper for complete-
ness. The review of dynamic modeling and analysis of
rotor systems is presented in Section 2. Section 3 presents
a review of DAVC and active balancing techniques. The
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limitations of current technologies and future research
directions are discussed in Section 4.

2. Dynamic Modeling and Analysis of Rotor
Systems

The planar rotor model is the simplest rotor model. Only
the motion in the plane, which is perpendicular to the
rotating shaft, is considered. The geometric setup of the
planar rotor model is shown in Figure 1.

In this model, the imbalance-induced vibration is
described by the particle motion of the geometric center of
the disk. P is the geometric center of the disk, and G is the
mass center of the disk. The motion is represented by the
vector r. It is well known that the governing equation of
motion is (Childs, 1993)
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where m, ¢, and k are the mass, the viscous damping coef-
ficient, and the shaft-stiffness coefficient, respectively. [ay,
az] is the vector from P to G, expressed in the stationary
coordinate system. ¢ is the rotating angle of the rotor. For a
constant rotating speed, ¢ is zero. Although the planar rotor

is a very simple rotor model, it can be used to study the ba-
sic phenomena in rotor dynamics such as critical speed, the
effect of damping, and so on.

The planar rotor model is a special case of the Jeffcott
model that was first introduced in 1919. In the Jeffcott
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model, the rotor was modeled as a rigid disk supported by
a massless elastic shaft that was mounted on fixed rigid
bearings. This model is also equivalent to a rigid shaft sup-
ported by elastic bearings. The major improvement over
the simple planar rotor model is that the motion of the
rotor is depicted by rigid body motion instead of by parti-
cle motion. Although this is a single rigid body model, it
can show the basic phenomena in the motion of the rotor,
including the forward and backward whirling under
imbalance force, critical speeds, the gyroscopic effect, and
so on. The fact that the natural frequency is a function of
the rotating speed can be predicted by this model. A typi-
cal geometric setup of this model is shown in Figure 2.
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Figure 1. Geometric Setup of the Planar Rotor

In this setup, bearings are modeled as isotropic linear
spring and damper. The imbalance is modeled as concen-
trated mass on the rigid shaft. Two coordinate systems are
used: the body-fixed coordinate oxyz and the inertial coor-
dinate OXYZ. The body-fixed y-axis is the rotating axis of
the shaft, and x and z axes are defined by the other two
principal inertia axes of the rotor. The origin of xyz is
selected as the geometric center of the shaft. The XYZ
coordinate system is the stationary coordinate and coin-
cides with the xyz coordinate system when the body is at
rest. The transverse motion of the rotor is described by the
position of the geometric center [Ry R,] and by the orienta-
tion of the rigid shaft with respect to the X and Z axes [0
v]. A simplified governing equation in state space form is
shown as follows (Zhou and Shi, 2000):
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where L is the length of the shaft; /, and I, are the polar
and the diametric moments of inertia of the shaft, respec-
tively; m,, u, u,, u. are the mass and the position of the im-
balance in body-fixed coordinate; and f, =0cosd” sin,

5 =ij§sin¢+d)2 cos¢. This model can be used on a real

system provided that the rigidity of the shaft is high com-
pared to the supporting bearing. The gyroscopic effect can
be studied by this model.

For a more complicated rotor system, a flexible rotor
model was developed. This model allows for the elastic de-
formation of the rotor during rotation. Certainly, it is more
accurate than the rigid rotor model. Breaking down a com-
plex system into many simpler components that are easy to
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Figure 2. Geometric Setup of the Rigid Rotor Model

analyze is very common in engineering applications. A
complicated rotor system is divided into several kinds of
basic elements: rigid disk, bearing (usually linear mod-
eled), flexible shaft segments, couplings, squeeze-film
dampers, and so on. The equations of motion for each of
these components were developed using the appropriate
force-displacement and force-velocity relations and the
momentum principles or other equivalent dynamic rela-
tions. Then, the system equations were assembled using
geometric displacement constraints that guaranteed the
connectivity of the components.

There are two kinds of assembly procedures: the finite
element method and the transfer matrix method. Ruhl and
Booker (1972) used a finite element model to study the
dynamic characteristic of a turbo rotor. In their model, only
elastic bending and translational kinetic energy were
included, whereas the effects of rotatory inertia, gyroscopic
effects, shear deformation, axial torque, axial load, and
internal damping were neglected. Dimaragonas (1975) pre-
sented a more general model that included rotatory inertia,
gyroscopic effects, and internal damping. Gasch (1976)
presented a model that was similar to Dimaragonas’s but
included the effect of distributed eccentricity. At the same
time, Nelson and McVaugh (1976) published their model
that included rotatory inertia, gyroscopic moments, and
axial load. The detailed equations for the elements are
expressed in both a fixed and a rotating reference frame.
Their work was generalized by Zorzi and Nelson (1977),
who included internal damping. Nelson (1980) presented a
model that included the shear deformation effects. In gen-
eral, the governing equation of motion of a flexible rotor
can be written as (Lalanne and Ferraris, 1998)

Mg +Cq+Kq =f(9), 3)

where q is the generalized coordinate to describe the mo-
tion and M, C, and K are coefficient matrices. The dimen-
sions of these matrices are determined by the number of
nodes in the model.

For a complicated rotor-bearing-foundation system, the
system matrices in the governing equations are very large.
The computer memory storage requirements and computa-
tion time will be large. Therefore, most of the recent
research on finite element methods for rotor dynamics has

been designed to reduce the order or to reorder the system
equations to achieve better computational efficiency while
maintaining accuracy. The works of Shiau and Hwang
(1989) and of Nelson and Chen (1993) are particularly
noteworthy. Their work proposed a modeling procedure
using assumed modes to reduce the order of the system
matrices. Childs and Graviss (1982) and Chen (1998) used
different reordering techniques to increase computational
efficiency.

The other important method in rotor dynamics analysis
is the transfer matrix method. This method is particularly
well suited for “chainlike” structures. It was first used in
the area of torsional vibrations. Lund (Lund and Orcutt,
1967; Lund, 1974a, 1974b) presented procedures that use
this method for rotor dynamics analysis. The advantage of
the transfer matrix method is that it does not require the
storage and manipulation of large system arrays. The trans-
fer matrix method uses a marching procedure: it begins
with the boundary conditions at one side of the system and
successively marches along the structure to the other side.
The solution should satisfy all the boundary conditions at
all boundary points. The disadvantage of this method is
that it is difficult, although not impossible (Kumar and
Sankar, 1984), to extend to time domain and nonlinear
analysis. Therefore, it is difficult to conduct active balanc-
ing controller design using the transfer matrix method.

All methods mentioned above focus on linear systems,
which means the system equations are a set of ordinary
differential equations that are linearized in the neighbor-
hood of an operating point. Generally, they require that the
rotating speed be constant.

Only a few analyses have dealt with speed-varying tran-
sient rotor dynamics. The earliest paper on the transient
response of rotors may be from Lewis (1932). Using a
graphical method, Lewis presented an approximate solu-
tion to the problem of running a system that has a single
degree of freedom and linear damping through its critical
speed from rest at a uniform acceleration. The solution
shows that the resonant vibration amplitude is smaller than
the corresponding amplitude if the spin speed is held con-
stant at the critical speed. Furthermore, in transient time an
apparent shift in the position of the critical speed will
occur that is higher than the true critical speed when speed
is increasing and lower when speed is decreasing. These



364  The Shock and Vibration Digest / September 2001

effects are commonly observed in reality. This delay is
possibly due to the fact that there is not enough time to
accumulate energy at critical speed. Shen (1972) used
Newton’s laws to derive a mathematical formulation for
the analysis of both the transient and the steady-state flexi-
ble rotor dynamics. Many effects were included in that for-
mulation, but no further numerical examples were given.
Childs (1969, 1972) developed a simulation model for gen-
eral flexible spinning bodies in his two papers. In this
development, Childs attempted to separate the rigid body
motion and the flexible motion. Although the modal analy-
sis method was proposed as a possible way for the model
order reduction, how to apply it was not stated and no
examples were given. So far, no further research work on
the transient response has followed these two formulations.
Recently, Nelson and Meacham (1981) used the compo-
nent mode synthesis method to conduct transient analysis
of rotor-bearing systems under the finite element frame-
work and found that the number of degrees of freedom in
the rotor system model is directly proportional to the num-
ber of elements (or modes) implicit in the problem. This
requires very large computational effort. Subbiah and
Rieger (1988) and Subbiah et al. (1988) proposed a meth-
odology that combines finite element and transfer matrix
methods to perform the transient dynamic analysis, thereby
overcoming the computational difficulties. This approach
uses the finite element method to model symmetric shafts
and then transforms the system properties to transfer
matrix mode. This is a computational technique rather than
an analytical tool.

From the above review on rotor dynamics, it is clear that
many powerful tools for the linear system and frequency
response are available. However, most of these techniques
are targeted at the rotor design analysis. For the active
vibration control system synthesis, a suitable analytical
model is needed that is small in comparison to the overall
system equations while still providing the essential dynamic
characteristics.

Maslen and Bielk (1992) presented a stability model for
flexible rotors with magnetic bearings. Besides the flexible
rotor model itself, their model included the dynamics of
the magnetic bearing and the sensor-actuator non-
collocation. This model can be used for stability analysis
and active vibration synthesis. Most recently, an analytical
imbalance response of the Jeffcott rotor with constant
acceleration was developed by Zhou and Shi (2001a). The
solution quantitatively shows that the motion consists of
three parts: the transient vibration at damped natural fre-
quency, the synchronous vibration with the frequency of
instantaneous rotating speed, and a suddenly occurring
vibration at damped natural frequency. This solution pro-
vides physical insight into the imbalance-induced vibration
of the rotor during acceleration. It can be used for the syn-
thesis of active vibration control schemes.

For the synthesis of DAVC techniques, most researchers
used simplified low-order finite element models of the
rotor system. Although the techniques developed can be
extended to a high-order system theoretically, the computa-
tional load will be heavier and the signal-to-noise ratio will
have to be higher. The DAVC techniques can be difficult to
implement for the high-order system. Therefore, it is nec-
essary to use a low-order system to approximate the
high-order system. Model reduction techniques and the

specific impact of the model reduction on the performance
of the DAVC schemes require further investigation.

3. Active Balancing and Vibration Control of
Rotor Systems

3.1. Active Balancing Techniques

A large body of literature is available on rotor balancing
methods. A rough classification of the various balancing
methods is shown in Figure 3. The most recent develop-
ment in active balancing is summarized in the dashed-line
box in Figure 3. The rotor balancing techniques can be
classified as off-line balancing methods and real-time
active balancing methods. Because active balancing meth-
ods are extensions of off-line balancing methods, we also
provide a review of off-line methods.

3.1.1. OFF-LINE BALANCING METHODS

The off-line rigid rotor balancing method is very com-
mon in industrial applications. In this method, the rotor is
modeled as a rigid shaft that cannot have elastic deforma-
tion during operation. Theoretically, any imbalance distri-
bution in a rigid rotor can be balanced in two different
planes (Wowk, 1995). Methods for rigid rotors are easy to
implement but can only be applied to low-speed rotors,
where the rigid rotor assumption is valid. A simple rule of
thumb is that rotors operating under 5000 rpm can be con-
sidered rigid rotors. It is well known that rigid rotor bal-
ancing methods cannot be applied to flexible rotor balanc-
ing. Therefore, researchers developed modal balancing and
influence coefficient methods to off-line balance flexible
rotors.

Modal balancing procedures are characterized by the use
of the modal nature of the rotor response. In this method,
each mode is balanced with a set of masses specifically
selected so as not to disturb previously balanced, lower
modes. There are two important assumptions: (1) the
damping of the rotor system is so small that it can be
neglected and (2) the mode shapes are planar and orthogo-
nal. The first balancing technique similar to modal balanc-
ing was proposed by Grobel (1953). This method was
refined in both theoretical and practical aspects by Bishop
(1959; Bishop and Gladwell, 1959; Bishop and Parkinson,
1972). Many other researchers also published works on the
modal balancing method, including Saito and Azuma
(1983) and Meacham et al. (1988). Their work resolved
many problems with the modal balancing method such as
how to balance the rotor system when the resonant mode is
not separated enough, how to balance the rotor system with
residual bow, how to deal with the residual vibration of
higher modes, and how to deal with the gravity sag. An
excellent review of this method can be found in Darlow
(1989). Most applications of modal balancing use analyti-
cal procedures for selecting correction masses. Therefore,
an accurate dynamic model of the rotor system is required.
Generally, it is difficult to extend the modal balancing
method to automatic balancing algorithms.

Unlike the modal balancing method, the influence coef-
ficient method is an experimental method. It was originally
proposed by Goodman (1964), refined by Lund and
Tonneson (1972), and verified by Tessarzik and others
(1972).
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Figure 3. Classification of Balancing Methods

The basic principle used in the influence coefficient
method is

v, = Cw, (@)

where v,, is a complex number representing the magnitude
and phase of the rotor imbalance response, w is a column
vector representing the imbalances in these planes, and C
is a matrix whose elements are the influence coefficients
relating the imbalance and the rotor response. The influ-
ence coefficient is a function of the sensor/actuator posi-
tion and the rotating speed. The assumptions behind equa-
tion (4) are that (1) the rotor response is proportional to the
imbalance and (2) the effect of a set of imbalances can be
obtained by superimposing each individual unbalance.
These two assumptions have been generally accepted if the
imbalances, and hence the imbalance-induced vibration,
are not very large. Considering both the system imbalance
and the controlled imbalance, the overall vibration is

v =v, + Cw, (%)

where v is the vibration at the sensor position, vj is the vi-
bration caused by the unknown imbalance at the sensor po-
sition, C is the influence coefficient matrix, and w is the
correction imbalance mass vector. If C is a square matrix,
meaning that the correction mass planes are equal to the
sensor planes, then w is simply w = —C™'v,. If C is not a
square matrix, the least squared solution can be used to
find w, where

w = ~(C'C)"'Cly,. (6)

The superscript 7 is the conjugate transpose operator.
Moreover, many least squares estimation techniques (e.g.,
weighted least squares estimation) can be used in this case.

Some researchers (Pilkey and Bailey, 1979; Pilkey et al.,
1983) have extended the least squares estimation method

to the constraint optimization method to control the possi-
ble range of the correction weight. A good review of this
method can be found in Darlow (1989). The influence
coefficient method is an entirely experimental procedure
and is easily automated. Therefore, this method has been
expanded for application to the automatic balancing
scheme. A disadvantage of this method is that more trial
runs are needed, and if the operation speed changes, all the
experiments have to be done over again because influence
coefficients are functions of rotating speeds. If an active
automatic balancer is used, these disadvantages will
disappear.

The unified balancing method attempts to combine the
modal and the influence coefficient balancing methods to
achieve a better result with fewer trial runs. The theoretical
basis, practical procedures, and experimental verifications
of this method are described in detail in Darlow (1987).

3.1.2. REAL-TIME ACTIVE BALANCING METHODS

The real-time balancing methods can be classified into
passive balancing methods and active balancing methods
according to which kinds of balancing devices are used.

Automatic balancing using passive devices. Very little re-
search has been done on passive auto-balancing devices. The
first passive balancer was proposed by Thearle (1950).
Thearle described a device in which one or two particles that
are subject to viscous damping are free to move in a groove on
the rotor. Thearle showed that plane rotors with this device
exhibit auto-balancing, a property due to the dynamic charac-
teristic of the plane rotor. Bovik and Hogfors (1986) used per-
turbation theory to show that some fairly general rotor
systems exhibit auto-balancing. Their analysis was based on a
simple rotor model. For more complicated models (i.e., the
nonplanar rotor), the system requires axial motion of the par-
ticles. However, this is not usually feasible in industry. Thus,
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the passive balancing method is not widely implemented in
industry.

Active real-time balancing using active mass redistribu-
tion balancers. The first research on the active mass redistri-
bution balancer was presented by Van De Vegte (1964). The
operation of the mass redistribution balancer was based on
the motion of correction masses along two perpendicular axes
fixed to the rotating system. The masses were driven by two
small servomotors. The power for these two servomotors was
supplied through slip rings. Therefore, the balancing action
could be performed during the operation of the rotor. The only
input to the active balancing system was the measurement of
the imbalance-induced vibration at the supporting bearings.
Van De Vegte found that if the rotating speed is far from the
critical speed, the inherited system imbalance (not the imbal-
ance provided by the mass redistribution balancer) can be cal-
culated from the vibration measurement and the
predetermined influence coefficient. However, if the rotating
speed is close to critical speed, the errors in the measurement
and influence coefficient estimation will lead to serious errors
in the balancer correction. In this case, a modal balancing
method is needed instead. In Van De Vegte’s follow-up re-
search (Van De Vegte and Lake, 1978; Van De Vegte, 1981),
two operator-controlled balancing heads provided shifting of
the correction masses in two planes. Because there was no
specialized motor controls, it was impossible to coordinate
the weight adjustments in both planes simultaneously. The
adjustment had to be conducted one plane at a time, or “se-
quentially.” Three different kinds of control schemes were
used: (i) sequentially minimize the imbalances, (ii) sequen-
tially minimize the sum of the squares of the bearing vibration
amplitudes, and (iii) sequentially minimize the sum of the
bearing vibration amplitudes. The procedure of sequential
correction mass shifting proposed by Van De Vegte (1981)
was criticized by other researchers (e.g., Bishop, 1982).
Bishop (1982) pointed out that if the critical speeds account
for all significant vibrations and those critical speeds are
spaced well apart, good balancing result is possible using
only one balancing plane. The procedure proposed by Van De
Vegte is unnecessarily complicated. Gosiewski (1985, 1987)
presented his research on the automatic balancing of flexible
rotors. A digital computer was used as the controller in his
control scheme. Gosiewski’s method is an extension of the in-
fluence coefficient method using the particular mass redistri-
bution actuator proposed by Van De Vegte and Lake (1978).
In this method, it is assumed that the influence coefficients for
several spin-speed ranges are known beforehand and have
been embedded into the computer’s memory. Then, the posi-
tion and magnitude of the correction mass are calculated
based on the vibration measurement and the predetermined
influence coefficient. Because the mass redistribution balan-
cer can be adjusted during the rotating of the rotor,
Gosiewski’s method can handle the situation in which the
system imbalance is time varying. Gosiewski also pointed out
that operating the movable masses enables the influence coef-
ficient matrix to be determined without stopping the rotor, but
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Figure 4. Diagram of the Balancer

how this is done and how it affects the control scheme were
not clearly stated.

A successful extension of the influence coefficient
method to the on-line estimation and active control was
achieved by Dyer and Ni (1999). In their work, an adaptive
control scheme that combines the on-line estimation of the
influence coefficient and flexible rotor balancing method
was successfully implemented using an active mass redis-
tribution actuator. A diagram of the balancer is shown in
Figure 4.

The balancer is mounted on the spindle. It consists of
two rings. These two rings are not balanced. They can be
viewed as two heavy spots. When the balancer is not acti-
vated, these two rings are held in place by a permanent
magnetic force. The two heavy spots can rotate with the
spindle and also can be controlled to rotate with respect to
the spindle. The combination of these two heavy spots is
equivalent to a single heavy spot whose magnitude and
position can change. The details of this actuator can be
found in Dyer et al. (1998).

The control algorithm used in Dyer et al. (1998) is an
extension of the off-line influence coefficient method. The
input to the algorithm is the vibration measurement. The
imbalance provided by the balancer is assumed known. In
equation (6), the influence coefficient matrix is obtained
through experimental trial runs. Ideally, this control law
needs only one movement if the estimated influence coeffi-
cients are perfect and the vibration measurement is accu-
rate. In practice, however, several control iterations are
needed to minimize the imbalance-induced vibration. For
the kth iteration,

Vi, = vy + Cw,. (7
The objective is to reduce the overall vibration v,. There-

fore, the control action for the (k + 1)th iteration is

w,,, = ~(C'Cy'Cly,, ®)



However, the vibration induced by system imbalance is un-
known. Equation (7) has to be used to estimate v, as v, —
Cw,. Substituting this estimation into equation (8) yields
the control law

W, = w, — (CTO)'Cy,. )

The influence coefficient matrix C is estimated on-line in
each control iteration by equation (10):
Viket “Vik (10)

Cikn1t =

Wik =Wk
where v;, is the vibration measurement of the kth iteration
at the ith plane, w;, is the balancer position at the jth plane
of the kth iteration, and c¢;; . is the estimation of the in-
fluence coefficient from the jth plane to the ith plane at the
(k + D)th iteration. This control law only works at constant
rotating speed because the influence coefficients change
with the rotating speed.

Although balancing at a single working speed is com-
mon in practice, balancing during speed-varying periods is
also needed. For example, in high-speed machining, the
machining tool will engage in cutting as soon as the spin-
dle speed reaches its steady state. If an active balancing
scheme is used on such a machine, the balancing has to be
completed during the acceleration period to avoid increas-
ing the cutting cycle time. Furthermore, the maximum
vibration of a rotor usually occurs when it passes through
its critical speeds. To avoid this hostile vibration, balancing
during acceleration is needed.

Compared to the constant rotating speed case, there are
many technical challenges to active balancing during the
speed-varying period. In the constant rotating speed case,
only the response at a single excitation frequency (the
rotating speed) is important. Hence, a simple rotor model
(e.g., the influence coefficient model) can be used to
develop an active balancing algorithm. However, the over-
all dynamics of the rotor are excited in the acceleration
case. A more comprehensive rotor model needs to be stud-
ied, and a more complicated active balancing scheme
needs to be developed.

Most recently, Zhou and Shi (2000, 2001b, 2001¢c) and
Shin (2001) developed several active balancing methods
for the speed-varying condition. Shin’s work was based on
the concept of positive real. He found that if the sensor and
the actuator are located at the same position on a rotor, the
rotor system is positive real. A direct adaptive control
scheme can be constructed based on this positive realness
property. The resulting active balancing law is simple:
instead of using the estimated influence coefficient as in
equation (10), a constant influence coefficient can be used
in equation (9). Shin discussed the stability and guidelines
for the selection of this constant influence coefficient.
Zhou and Shi (2000) adopted the recursive least squares
method to estimate the unknown dynamics and the imbal-
ance of the rotor system during the speed-varying period.
The estimation was based on the equation of motion of the
rotor system and the time domain vibration signal. After
the system imbalance was estimated, the mass distribution
of the actuator was adjusted to offset the system imbal-
ance. If the system dynamic parameters are known, the
time-varying observer technique can be used to obtain the
position of the system imbalance (Zhou and Shi, 2001c). A
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rigid rotor model was used to present this technique. First,
a speed-varying transient rigid rotor model was developed
in the state space form as shown in equation (2). The states
of this model were augmented to include imbalance forces
and moments. A time-varying observer could then be
designed for the augmented system using canonical trans-
formation. After obtaining an estimation of the imbalance
forces and moments as the states of the augmented system,
the estimated imbalance could be directly calculated. This
estimation method can be used in the active vibration con-
trol or active balancing schemes for a rigid rotor. Zhou and
Shi (2001b) presented a one-plane active balancing scheme
to eliminate the imbalance-induced vibration for a rigid
rotor system during acceleration. There are two vibration
modes in the vibration of a rigid rotor system. In general,
the optimal positions of the balancer to suppress different
vibration modes are different. To balance these two modes,
a switching function for the balancer from balancing the
first mode to balancing the second mode is needed. In
Zhou and Shi (2001b), an optimal one-plane active balanc-
ing problem was formulated to minimize the imbalance-
induced vibration during acceleration. The optimal
switching time and switching function could be obtained
by solving this optimization problem based on the analyti-
cal solution of the imbalance-induced rotor vibration dur-
ing acceleration. The switching function was found to be a
simple step function.

The active balancing methods eliminate the imbalance-
induced vibration by eliminating the root cause of the
vibration—system imbalance. However, an mass redistri-
bution actuator needs to be mounted on the spindle, which
could not be allowed. In this situation, the DAVC tech-
nique can be used.

3.2. DAVC for Rotating Machinery

Active vibration control for rotating machinery is a spe-
cial case of active vibration control for a flexible structure.
The general topic of active vibration control was discussed
by Meirovitch (1990) and Inman and Simonis (1987). The
difference between rotating machinery and other flexible
structures is that the dynamics of the rotor changes with
the rotating speed of the rotor system. Best control perfor-
mance will be obtained if control gains vary with rotating
speed. Also, because the shaft is a moving part, a non-
contact actuator is used to apply the control force to the
rotating shaft. There are many types of actuators for direct
active vibration control, including electromagnetic, hydrau-
lic, piezoelectric, and so on. The active magnetic bearing is
an established industrial technology with a rapidly growing
number of applications. A good example of the application
of magnetic bearings in the machine tool industry can be
found in Bleuler et al. (1994).

Magnetic bearings can be used to apply a synchronous
force to the shaft to control the imbalance response, either
to cancel the force transmitted to the base or to compensate
for the vibration displacement of the shaft. Knospe and
colleagues (Knospe et al., 1996; Knospe et al., 1995;
Knospe, Tamer, and Fittro, 1997; Knospe, Tamer, and
Fedigan, 1997) presented an adaptive open-loop control
method for the imbalance displacement vibration control
using magnetic bearings. A synchronous force that consists
of sinusoids that are tied to the shaft angular position via a
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key phasor signal was generated and applied to the rotor
through the magnetic supporting bearings. The magnitude
and phase of these sinusoids were periodically adjusted so
as to minimize the rotor unbalance response. The model
relating the imbalance vibration and the applied open-loop
force is

X =TU + X, (1n

where X is an n X 1 vector of the synchronous Fourier co-
efficient (the corresponding frequency is the rotating speed
of the rotor) of n vibration measurements, U is an m X 1
vector of the synchronous Fourier coefficients of the m ap-
plied synchronous forces, X, is an n X 1 vector of the syn-
chronous Fourier coefficient of uncontrolled vibration, and
T is an n X m matrix of influence coefficients relating the
applied force to the vibration measurements. This model is
identical to the model in equation (5). Knospe and col-
leagues’ control method is also an extension of the influ-
ence coefficient method in off-line balancing and is similar
to equation (9). The off-line and on-line estimation of the
influence coefficient matrix were presented. Moreover, the
control problems under slowly varied spin speed were ad-
dressed. This shed light on the imbalance control during
transient time. Knospe and colleagues’ work also presented
the robustness and stability results of the adaptive open-
loop control. The underlying theoretical foundation of this
work was the influence coefficient balancing method. The
magnetic bearings were used to emulate the imbalance-in-
duced force to offset the force induced by the system im-
balance. Therefore, Knospe and colleagues’ methods are
called “active balancing” methods rather than “DAVC”
methods. Other researchers such as Herzog et al. (1996)
and Lum et al. (1996) published their work on the imbal-
ance transmitted force controlled by magnetic bearings.
The basic idea is to use a notch filter to blind the control
system of the supporting magnetic bearing to the imbal-
ance induced response. Therefore, no synchronous forces
can be generated by the magnetic bearings. The rotor will
then rotate about its own principal inertia axis provided
that the gap between the shaft and the bearing is large
enough. Fan et al. (1992) presented a vibration control
scheme for an asymmetrical rigid rotor using magnetic
bearings.

Other researchers working in DAVC for rotating
machinery adopted a state space representation of a rotor
system. The control inputs are lateral forces. Balas (1978)
pointed out that for a feedback control system for flexible
systems, the control and observation spillover due to the
residual (uncontrolled) modes could lead to potential insta-
bilities. In Stanway and Burrows (1981), the dynamic
model of the flexible rotor was written in the state space
format and the controllability and observability of the
model were studied. Stanway and Burrows concluded that
the lateral motion of the rotor can, under certain condi-
tions, be stabilized by the application of a single control
input to a stationary component. Ulsoy (1984) studied the
characteristics of rotating or translating elastic system
vibration problems that are significant for the design of
active controllers. The basic conclusions of his research
were that a controller gain matrix that is a function of the
rotating speed is required to maintain a desired closed-loop
eigenstructure and that a residue model spillover should be

handled carefully by the active controller to avoid instabil-
ity. Firoozian and Stanway (1988) adopted a full-state
observer technique to design a feedback active control sys-
tem. The stability of the closed-loop system was also
studied.

To build an active vibration control system for flexible
structures, the sensor/actuator deployment needs to be
studied. A review is given in the following section.

3.3. Design for Active Balancing and Vibration
Control for Rotating Machinery

The issue of actuator/sensor placement for control of
flexible structures is an active research area. This problem
is often formulated as a constraint optimization problem.
The constraints of this optimization problem are the lim-
ited available locations for the actuators and sensors. The
objective function of this optimization problem is closely
related to the control algorithm used for the flexible
structure.

The main possible optimal cost functions for sensor and
actuator placement are for system identification, state esti-
mation (which is represented by the observability) and
indirect control performance (which is represented by the
controllability), and direct control performance (e.g., the
transient response, stability). A review of the optimal actu-
ator/sensor placement follows.

System identification. The objective function to be maxi-
mized by Qureshi et al. (1980) is the determinant of the Fisher
information matrix associated with the parameters to be iden-
tified. This cost function depends on the spatial locations of
the observation points. An early survey on the sensor location
problem for system identification can be found in Kubrusly
and Malebranche (1985).

State estimation. Gawronski (Gawronski and Lim, 1996;
Gawronski, 1997) used the balanced representation of the
system to do the actuator and sensor placement. The system is
balanced if its controllability and observability gramian are
equal and diagonal. Lim (1993) considered the observability
and controllability separately. The so-called effective inde-
pendence (EI) contributions of the actuator and sensor were
considered. Liu et al. (1994) used the singular value decom-
position of the input matrix B and observation matrix C di-
rectly to determine the degree of controllability and
observability.

Direct control performance. The transmission zeroes were
taken as the target function by Maghami and Joshi (1993a,
1993b). Sepulveda and Schmit (1991) considered the optimi-
zation problem of structure design and actuator/sensor place-
ment in one framework. Several different control objectives,
including the structural mass, control effort, number of actua-
tors, stability margins, controllability and observability, and
so on, were taken into account simultaneously. Dhingra and
Lee (1994) attempted to optimally select the actuator/sensor
positioning and feedback gain simultaneously.

Other optimization criteria include the spillover effect
(Barker and Jacquet, 1986), system performance under
possible component failure conditions (Vander Velde and



Carignan, 1984), and hyperstability of the system (Stieber,
1988).

As for the rotor active vibration control issues, very little
literature deals with the actuator/sensor placement prob-
lem. Bishop (1982) pointed out that it is possible to bal-
ance a flexible shaft as it is rotating provided that the
critical speeds are spaced well apart. He also pointed out
that the balancing plane should not be located near a node
in any of the lowest n principal modes. However, Bishop
did not conduct quantitative analysis of where to put the
balancer. Pilkey et al. (1983) proposed a technique for
optimizing the axial location of balance planes. By know-
ing the vibration induced by rotor imbalance and the influ-
ence coefficients at certain locations, and through the use
of the linear programming method, one can find the opti-
mal correction weights and axial locations of the balancing
planes that minimize the residue vibration. This method
was based on an off-line balancing scheme. Kim and Lee
(1985) used a structural dynamics modification algorithm
to determine the optimal active balancing head location on
flexible rotors. They attempted to minimize the amount of
correction imbalance required to control the imbalance
forces at the critical speeds of interest. Although their the-
oretical derivation is based on the modal balancing tech-
nique, it is clear that their result leads to the maximum of
influence coefficients. Their work requires the constant
rotating speed condition. Most recently, Zhou et al. (2001)
proposed a new optimal balancing plane determination
procedure for the active balancing scheme. This optimiza-
tion procedure is based on an analytical expression of the
influence coefficients. Besides the balancing capacity, the
influence of the measurement uncertainty on control per-
formance is considered in the cost function. The formu-
lated problem is solved by a multicriteria optimization
technique.

4. Conclusion

Rotating machinery is widely used in industry. The
dynamic analysis and active vibration control of the rotat-
ing machinery are important engineering problems for both
industry and academia. In this paper, a review of the active
balancing and direct vibration control for rotating machin-
ery was conducted.

The major problem faced by the active vibration control
scheme is the use of a limited number of actuators to con-
trol an infinite number of vibration modes. To design an
active control scheme, a reduced-order model should be
used and the effect of the spillover of higher vibration
modes assessed. Although the available techniques devel-
oped for dynamic analysis, rotor imbalance estimation, and
active real-time balancing and vibration control can be
extended to high-order systems theoretically, the computa-
tional load will be heavier and the signal-to-noise ratio of
the vibration measurement will have to be higher. Hence,
the available techniques could be difficult to implement in
high-order systems. Therefore, it is necessary to use a
low-order system to approximate the high-order system.
The gyroscopic effect caused by the rotating motion and
the moment of inertia of the rotating body is a unique
dynamic effect in a rotor system and should be considered
in model reduction. The specific impact of this model
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reduction on the performance of the active balancing
should also be investigated in the future.

In many active balancing and vibration control methods,
the imbalance estimation is coupled with the control strat-
egy. So far, there are no systematic methods available to
show the relationship between the estimation and the con-
trol strategy. A control action is preferable if it can obtain
small imbalance-induced vibration and excite the system to
obtain the good imbalance estimation at the same time.
Thus, the coupling effect should be investigated by consid-
ering the estimation algorithm, the system dynamics, and
the control performance. This research can also lay a sci-
entific foundation for the design of an efficient and reliable
generic adaptive control system.

It is clear that active balancing can suppress the imbal-
ance-induced vibration. It is also clear that the active bal-
ancing can improve product quality and improve the
fatigue life of the machine and cutting tools and, hence,
reduce the system cost. However, the installation and
maintenance of an active vibration system for rotating
machinery will increase the system cost. How to assess the
active vibration control system from a cost-effective point
of view and on a higher process level is not well studied in
the literature. We believe this is an interesting and impor-
tant problem in the active balancing and vibration control
of a rotating system.
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