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Abstract

We introduce a method of feature selection for Support Vector Machines.

The method is based upon finding those features which minimize bounds
on the leave-one-out error. This search can be efficiently performed via
gradient descent. The resulting algorithms are shown to be superior to
some standard feature selection algorithms on both toy data and real-life
problems of face recognition, pedestrian detection and analyzing DNA

microarray data.

1 Introduction

In many supervised learning problehfeature selection is important for a variety of rea-
sons: generalization performance, running time requirements, and cats#ad interpre-
tational issues imposed by the problem itself.

In classification problems we are givémlata pointx; € R” labeledy € +1 drawn i.i.d
from a probability distributionP(x, ). We would like to select a subset of features while
preserving or improving the discriminative ability of a classifiers & brute force search
of all possible features is a combinatorial problem one needs to takadotunt both the
quality of solution and the computational expense of any given algorit

Support vector machines (SVMs) [12] have been extensively used as a cgsifitool
with a great deal of success in a variety of areas from object recognition [Fo t@ssifi-
cation of cancer morphologies [9]. In this article we introduce featuexsieh algorithms
for SVMs. The methods are based on minimizing generalization boundgathent de-
scent and are feasible to compute. This allows several new possibilitiescan speed
up time critical applications (e.g object recognition) and one can performriediscov-
ery (e.g cancer diagnosis). We also show how SVMs can perform badly inttteicn
of many irrelevant examples, a problem which is remedied by using ounéestlection
approach.

The article is organized as follows. In section 2 we describe the featwetiosl problem,
in section 3 we review SVMs and some of their generalization bounds as®ttion 4 we

1In this article we restrict ourselves to the case of Patterodgnition. However, the reasoning
also applies to other domains.



introduce the new SVM feature selection method. Section 5 then descriloéts @s toy
and real life data indicating the usefulness of our approach.

2 The Feature Selection problem

The feature selection problem can be addressed in the following two wBygvén a fixed

m < n, find them features that give the smallest expected generalization error; or (2) given
a maximum allowable generalization error, find the smaltestn both of these problems

the expected generalization error is of course unknown, and thus musgtrbated. In this
article we will consider problem (1). Note that problem (2) can be fdated as the dual

of problem (1).

Problem (1) is formulated as follows. Given a fixed set of functigns f(x, a) we wish
to find a preprocessing of the data— (x - o), 0 € {0,1}", and the parameters of the
functiona that give the minimum value of

(,0) = / Vi, f(x - 0),0))dF(x,y) 1)

subject to||o||o = m, whereF(x,y) is unknown,V (-, ) is a loss functional anfl - ||, is
the Ly norm.

In the literature one distinguishes between two types of method te $oils problem: the
so-called filter and wrapper methods [2]. Filter methods are defined as a pesping step
to induction that can remove irrelevant attributes before induction gcamd thus wish to
be valid for any set of functiong(x, «). For example one popular filter method is to use
Pearson correlation coefficients.

The wrapper method, on the other hand, is defined as a search through thefdpatare
subsets using the estimated accuracy from an induction algorithm as a mebgoodness
of a particular feature subset. Thus, one approximateswy) by minimizing

Twrap(0, @) = mgin Talg(0) (2)

subjecttar € {0, 1}™ wherer,,, is a learning algorithm trained on data preprocessed with
fixed o. Wrapper methods can provide more accurate solutions than filter met8pds [
but in general are more computationally expensive since the inducgontiimr,;, must

be evaluated over each feature set (vealaronsidered, typically using performance on a

hold out set as a measure of goodness of fit.

In this article we introduce a feature selection algorithm for SVMs thkés advantage
of the performance increase of wrapper methods whilst avoiding theipatational com-
plexity. Note, some previous work on feature selection for SVMs dpést, however it
has been limited to linear kernels [3] or linear probabilistic models ijr approach can
be applied to nonlinear problems. In order to describe this algoritierfirst review the
SVM method and some of its properties.

3 Support Vector Learning

Support Vector Machines [12] realize the following idea: they map R" into a high
(possibly infinite) dimensional space and construct an optimal hyperptathis space.
Different mappings — ®(x) € #H construct different SVMs.

The mappingd(-) is performed by a kernel functioli (-, -) which defines an inner product
in H. The decision function given by an SVM is thus:

f(x)=w-®(x)+b= Z a¥y; K (x;,%) + b. (3)



The optimal hyperplane is the one with the maximal distancé{(&pace) to the closest im-
aged(x;) from the training data (called the maximal margin). This reduces to maiimi
the following optimization problem:
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under constraintgf:] a;y; = 0 anda; > 0, i = 1,...,£. For the non-separable case

one can quadratically penalize errors [4] with the modified keffiel- K + %I wherel
is the identity matrix and a constant penalizing the training errors.

Suppose that the size of the maximal margin is equalMoand that the images
®(x1),..., B(xy) of the training vectorx,, ..., x, are within a sphere of radiu8. Then

the following theorem holds true [12].

Theorem 1 If images of training data of sizébelonging to a sphere of siZzéare separa-
ble with the corresponding margii/, then the expectation of the error probability has the
bound

(M2 T4
where expectation is taken over sets of training data of&size

EP,., < lE{ i } — LB {R*W3(a")}, (5)

This theorem justifies the idea that the performance depends on théurai/ 112} and
not simply on the large margih/, whereR is controlled by the mapping functich(-).

Other bounds also exist, in particular Vapnik and Chapelle [4] derived timats using
the concept of thepanof support vectors.

Theorem 2 Under the assumption that the set of support vectors does not clhémee
removing the example
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whereW is the step functionk(sy is the matrix of dot products between support vectors,
p’.} is the probability of test error for the machine trained on a séagf size/ — 1 and
the expectations are taken over the random choice of the sample.

4 Feature Selection for SVMs

In the problem of feature selection we wish to minimize equation (1) evand«. The
support vector method attempts to find the function from thef 6etw, b) = w - ®(x) + b
that minimizes generalization error. We first enlarge the set of functiomsidered by the
algorithm tof (x, w,b,0) = w - ®(x - o) + b. Note that the mapping, (x) = ¢(x - o)
can be represented by choosing the kernel funciigrin equations (3) and (4):

Ko (x,y) = K((x-0),(y - 0)) = (®,(x) - 2, (y)) ()

for any K. Thus for these kernels the bounds in Theorems (1) and (2) still M#dce, to
minimize (o, o) overa ando we minimize the wrapper functiona),.,, in equation (2)
wherer,,, is given by the equations (5) or (6) choosing a fixed value mhplemented by
the kernel (7). Using equation (5) one minimizes aver

R*W?(0) = R*(0)W?%(a°, 0) (8)



where the radiug for kernel K, can be computed by the following optimization problem
[12]:
= maxz B:iK Xzaxz Zﬁzﬁj XuX]) (9)

subjecttoy,; 8; =1, 6; >0, i =1,....¢, andW2(a ,0) is defined by the maximum

of functional (4) using kernel (7). In a similar way, one can minimizegpanbound over
o instead of equation (8).

Finding the minimum ofR21W?2 over o requires searching over all possible subsets of
features which is a combinatorial problem. To avoid this problem classiesthods of
search include greedily adding or removing features (forward or backwardiseleahd
hill climbing. All of these methods are expensive to computeis large.

As an alternative to these approaches we suggest the following methadxipate the
binary valued vector € {0,1}", with a real valued vectos € R™. Then, to find the
optimum value ofr one can minimize?2W?2, or some other differentiable criterion, by
gradient descent. As explained in [4] the derivative of our criterion is:

27172 20,0 2
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OR*(0) 00K, ( X“X] 0 K, (xi,x;)
rel - s S
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T‘k = — Z a; yl'yj T. (12)

We estimate the minimum of(a,a) by minimizing equation (8) in the spaece € R"”
using the gradients (10) with the following extra constraint athapproximates integer
programming:

R*W?(0) + A Z(ai)') (13)

subjectto) ", 0, =m, 0; >0,i=1,...,¢

For large enough asp — 0 only m elements ot will be nonzero, approximating opti-
mization problemr (o, «). One can further simplify computations by considering a step-
wise approximation procedure to fimd features. To do this one can minimizZW?2 (o)

with o unconstrained. One then sets the n smallest values of to zero, and repeats
the minimization until onlym nonzero elements ef remain.

5 Experiments

5.1 Toy data

We compared standard SVMs, our feature selection algorithms and threealdstsr
methods to select features followed by SVM training. The three filter nastbbose then
largest features according to: Pearson correlation coefficients, the Fishebarieoré,

and the Kolmogorov-Smirnov t€t The Pearson coefficients and Fisher criterion cannot
model nonlinear dependencies.

ut

2F(r) = —+2—g‘ wherep? is the mean value for theth feature in the positive and negative

classes ana‘;t is the standard deviation
3KSyai(r) = VI sup(f?{X <fY—P{X< fo,yr = 1}) wheref, denotes the-th feature
from each training example, arf¢lis the corresponding empirical distribution.



In the two following artificial datasets our objective was to assess thigyatti the algo-
rithm to select a small number of target features in the presence of irrekvdmédundant
features.

Linear problem Six dimensions o202 were relevant. The probability of = 1 or
—1 was equal. The first three featurés,, z,,z3} were drawn ax; = yN(i,1) and
the second three featurés,, =5, z¢} were drawn as;; = N(0, 1) with a probability
of 0.7, otherwise the first three were drawn as = N(0, 1) and the second three as
xz; = yN(i — 3,1). The remaining features are noisge= N(0,20),i =7,...,202.

Nonlinear problem Two dimensions 062 were relevant. The probability of = 1 or
—1 was equal. The data are drawn from the followingy i —1 then{z, z»} are drawn
from N (pu1, X) or N (u», ¥) with equal probabilityu; = {—2, -3} andu. = {2,3} and

Y =1,if y = 1then{z;,z.} are drawn again from two normal distributions with equal
probability, withu, = {3, -3} andus = {—3,3} and the sam& as before. The rest of
the features are noisg = N(0,20),i = 3,...,52.

In the linear problem the first six features have redundancy and thefribst features are
irrelevant. In the nonlinear problem all but the first two features asdavant.

We used a linear SVM for the linear problem and a second order polynomieger the
nonlinear problem. For the filter methods and the SVM with feature seleete selected
the2 best features.

The results are shown in Figure (1) for various training set sizendake average test
error on 500 samples over 30 runs of each training set size. The Fishersobshdwn in
graphs due to space constraints) performed almost identically to casretatefficients.

In both problems standard SVMs perform poorly: in the linear exampleg? = 500
points one obtains a test errorid% for SVMs, which should be compared to a test error of
3% with ¢ = 50 using our methods. Our SVM feature selection methods also outperformed
the filter methods, with forward selection being marginally better thadignt descent.

In the nonlinear problem, among the filter methods only the Kolmog&mirnov test
improved performance over standard SVMs.
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Figure 1: A comparison of feature selection methods on (a) a linear prodteh{b) a
nonlinear problem both with many irrelevant features. Tkeis is the number of training
points, and the-axis the test error as a fraction of test points.



5.2 Real-life data

For the following problems we compared minimiziff1W?2 via gradient descent to the
Fisher criterion score.

Face detection The face detection experiments described in this section are for the sys-
tem introduced in [11, 5]. The training set consisted®pf29 positive images of frontal
faces of size 19x19 ari#, 229 negative images not containing faces. The test set consisted
of 105 positive images ang, 000, 000 negative images. A wavelet representation of these
images [5] was used, which resultedliyir40 coefficients for each image.

Performance of the system using all coefficieft) coefficients, and 20 coefficients is
shown in the ROC curve in figure (2a). The best results were achieveg abifeatures,
howeverR2W? outperfomed the Fisher score.

Pedestrian detection The pedestrian detection experiments described in this section are
for the system introduced in [10]. The training set consisted2df positive images of
people of size 128x64 anid), 044 negative images not containing pedestrians. The test set
consisted ofi 24 positive images an800, 000 negative images. A wavelet representation
of these images [5, 10] was used, which resultet] 826 coefficients for each image.

Performance of the system using all coefficients &2t coefficients is shown in the ROC
curve in figure (2b). The results showed the same trends that werevetlsarthe face
recognition problem.

False Positive Rate False Positive Rate

(@) (b)

Figure 2: The solid line is using all features, the solid line watleircle is our feature
selection method (minimizing21 2 by gradient descent) and the dotted line is the Fisher
score. (a)The top ROC curves are f@5 features and the bottom one ft20 features for
face detection. (b) ROC curves using all features Hidfeatures for pedestrian detection.

Cancer morphology classification For DNA microarray data analysis one needs to de-
termine the relevant genes in discrimination as well as discriminate acquiatelook at
two leukemia discrimination problems [6, 9] and a colon cancer problem [1]

The first problem was classifying myeloid and lymphoblastic leukeméasth on the ex-
pression o0f7129 genes. The training set consists of 38 examples and the test set of 34
examples. Using all genes a linear SVM malkesrror on the test set. Usirf) genes)

errors are made faR?W?2 and3 errors are made using the Fisher score. Usingenesl

error is made folR?1W2 and5 errors are made for the Fisher score.



The second problem was discriminating B versus T cells for lymphobleslis [6]. Stan-
dard linear SVMs maké error for this problem. Using genes0 errors are made for
R2W? and3 errors are made using the Fisher score.

In the colon cancer problem [1] 62 tissue samples probed by oligonudbdeantiays contain
22 normal and 40 colon cancer tissues that must be discriminated based @ pgpriassion
of 2000 genes. Splitting the data into a training set of 50 and a tesf &&tin 50 separate
trials we obtained a test error of 13% for standard linear SVMs. Takingetes for each
feature selection method we obtained 12.8% R3i112, 17.0% for Pearson correlation
coefficients, 19.3% for the Fisher score and 19.2% for the Kolmog8rairnov test. Our
method is only worse than the best filter method in 8 of the 50 trials.

6 Conclusion

In this article we have introduced a method to perform feature seleaio8\YMs. This
method is computationally feasible for high dimensional datasets comparexisting
wrapper methods, and experiments on a variety of toy and real datasets shexoisu
performance to the filter methods tried. This method, amongst othacapphs, speeds up
SVMs for time critical applications (e.g pedestrian detection), and makestp@$eature
discovery (e.g gene discovery). Secondly, in simple experiments weeshihiat SVMs can
indeed suffer in high dimensional spaces where many features are irrelevarrhethod
provides one way to circumvent this naturally occuring, complex problem
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