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Abstract— We present a unified methodology for humanoid
robot control and activity classification using motor primitives
[1], computationally efficient behaviors capable of perception and
control. These primitives constitute a vocabulary for humanoid
control capable of generating a large variety of complex move-
ment through sequencing and superposition. We demonstrate
how such primitives can be automatically derived from human
motion-capture data, how they can be used to construct upper-
body controllers, and how they can be applied to classification
of observed humanoid behavior in real time.

I. INTRODUCTION

Real and simulated humanoid robots have been programmed
to successfully catch balls [2], vault [3], juggle [4], dance [5],
etc. However, there has been little success in getting humanoid
robots to perform tasks in dynamic, human-populated environ-
ments. A humanoid that is to be effective in such environments
must be able to react to unforeseen, exigent situations. It
must also interact with humans, necessitating the ability to
understand human activity. Motor primitives [1], modular and
computationally efficient behaviors capable of perception and
control, aim to provide these capabilities.

Our implementation of primitives provides the means for
humanoid control with minimal or no planning and the ability
to classify observed human movement. The primitive structure
acts as a model of humanoid and human behavior, thereby
providing a mechanism for control. The same model serves
as a reference for classifying observed humanoid and human
movement. It follows that primitives can serve as a foundation
for imitation learning [1]: primitives act both in control and
recognition of activity.

We implement motor primitives in this paper as sets of ex-
emplars coupled with an interpolation mechanism; the imple-
mentation is drawn from Rose et al.’s Verbs and Adverbs work
[6]. The collective set of exemplars acts as a movement model
from which novel motion can be synthesized. Additionally,
These sets intrinsically define probability distributions over
robot configurations, given the model class. Similarly, primi-
tives are dynamical systems, allowing their use for movement
prediction for a given model class. We demonstrate the utility
of exemplar-based primitives for humanoid control and human
movement classification.

II. RELATED WORK

There has been much work to date in the area of hu-
manoid control. Matarić et al. [5] used three different control
strategies to make a dynamically simulated humanoid dance.
Hodgins and Wooten [3] used state-machine based algorithms
for animating dynamically simulated human athletes running,
bicycling, and vaulting. Faloutsos et al. [7] controlled dy-
namically simulated humanoid characters rolling, rising, and
performing other complex activities. Ijspeert et al. [8] used
non-linear dynamical systems and locally linear learning to
store and execute trajectories for swinging a tennis racket on
a humanoid robot. These methods are predicated on primitive
movements and some utilize modular control architectures.
Our method differs from these in generating parametric joint
angle trajectories, unlike the nonparametric trajectories in [8]
and in operating at the kinematic level, unlike [3] and [7].
Additionally, Murray et al. [9], among others, have presented
dynamic level motor primitives for robot control, but did
not attempt to use their representation for perception. In
contrast, we use the same representation for both control and
perception, thereby reducing the complexity of the control
architecture and ensuring that each function is an inverse of
the other.

There exist several methods that operate at the kinematic
level and are usable for humanoid control. Rose et al. [6]
developed a system for interpolating motion data that is
usable for both humanoid robots and non-humanoid animated
agents. Kavraki et al. [10] planned paths for agents in high-
dimensional spaces (e.g., configuration spaces) around ob-
stacles. Kovar and Gleicher [11] splice clips of generalized
motion-capture data together to create new motions. Our
method draws from these areas, particularly from interpolating
motion data.

Little research has been conducted on human action recog-
nition using joint angle or joint-position data. Mori et al.
[12] used a fuzzy rule-based system, with rules determined
by human judges, in order to classify human joint angle
data. Campbell and Bobick [13] successfully recognized ballet
movements by first converting joint-position trajectories into
a high-dimensional phase space and then operating within
that space. We believe that our method for classification in



joint-space is faster and more robust than [12], and that our
Cartesian-space classification method is simpler to implement
than [13].

III. PRIMITIVE REPRESENTATION

Motor primitives are parametric, kinematic models of move-
ment for individual behaviors, where a behavior is defined
as a class of structurally identical yet stylistically varied
movements. Tennis forehand strokes are good examples of
behaviors; each type of stroke (e.g., forehand, backhand, etc.)
is a recognizably different behavior and would thus compose a
separate primitive. In contrast, there are many ways to perform
each stroke; varying the model parameters alters stroke target
and style. A primitive model for a behavior is constructed
from an interpolation function trained on a set of exemplar
joint angle trajectories; the trajectories correspond to defining
movements for the behavior.

The remainder of this section discusses determining the
primitive vocabulary (Section III-A), interpolation algorithms
(Section III-B), and primitive flowfields (Section III-C), a dy-
namical systems representation of primitives used throughout
this paper.

A. Development of primitives

The first problem that must be resolved before employ-
ing motor primitives is that of determining an appropriate
movement vocabulary. This can be performed automatically
as in [14] or through manual choreography as in [15], [6].
Both methods are appropriate in specific situations. Automated
derivation, as summarized below, allows for behavior design
and implementation to be dictated by capabilities demonstrated
by humans, but requires a significant amount of representative
motion capture data. Manual determination of the exemplar
trajectories is much slower, more tedious, and susceptible to
errors in human judgement, but results in precisely chore-
ographed trajectories. It is quite feasible in limited domains,
such as sports.

Our method for automatic primitive determination takes
as input kinematic motion from some source (e.g., motion
capture [16], robot control, manual animation). The automated
derivation procedure consists of three main subprocedures:
interval segmentation, dimension reduction, and clustering.
The input motion is first segmented into intervals, producing
a data set of motion segments. Each segment is considered
to be atomic in that no relevant “events” occur within it.
To segment, relevant events are found in the input motion
and used as segment boundaries. Because no ground truth is
available for deciding relevant events, heuristics, such as a
thresholding z-function [17], limb pendulum swings [14], or
manual inspection, are used to find relevant events.

Spatio-temporal dimension reduction and clustering are
performed on the data set of motion segments to cluster
exemplars of the same behavior. We assume that every motion
segment represents an exemplar of some underlying behavior.
Dimension reduction is used to transform the motion segments
so that exemplars of the same underlying behavior are placed

Fig. 1. Each plot shows hand trajectories for motion segments grouped
into primitive sequence groups (right hand trajectories are displayed in dark
bold marks, left hand in light bold marks). Interpolated trajectories are also
shown (right hand in dark marks, left hand in light marks). The primitive
sequence groups shown are for (top left) waving an arm across the body, (top
right) dancing the ”monkey”, (bottom left) punching, and (bottom right) an
unintentionally determined sequence group.

into clusterable proximity (i.e., significantly closer to each
other than any other motion segment). We perform this trans-
formation with augmented Isomap [18]. Isomap is a technique
for nonlinear dimension reduction, which we extended to treat
temporal as well as spatial characteristics of the data set
[14]. The result from applying this spatio-temporal Isomap
are separable clusters, each corresponding to a behavior and
containing a set of exemplar trajectories.

B. Interpolation

Primitives use interpolation to produce novel trajectories
from a few reference exemplars. We have experimented with
multiple interpolation algorithms, including Shephard’s [19]
and the Verbs and Adverbs system [6]. The actual method
of interpolation is not relevant to our methodology, but the
running time of the interpolator should be low to facilitate
real-time control.

C. Primitive flowfields

It is possible to sample trajectories from a primitive and
to use those to construct nonlinear dynamical systems. Those
samples lie in joint-space on a low-dimensional manifold that
describes the temporal flow of each primitive. Such manifolds,
or flowfields, provide update vectors from a given posture by
evaluating nearby gradients on the temporal manifold. These
update vectors can be used to predict kinematic motion. Figure
2 illustrates a flowfield for an arm waving primitive.

Primitive flowfields are practical for both movement control
and classification. For control purposes, a set of flowfields
with a high-level controller can produce smooth trajectories
offline or incremental online control. The same underlying
mechanism is used for both online and offline methods by
using the flowfields as predictors that encode the joint space
dynamics of the primitives from a current kinematic posture.



In the offline procedure, the prediction from an activated
primitive is used to incrementally update a synthesized motion
trajectory. In the online procedure, the prediction from an
activated primitive resets the desired joint angle values for
motor level control.

Fig. 2. A primitive flowfield for a horizontal arm waving behavior. The
flowfield moves forward from right to left, with exemplars shown in bold.
Motion for selected exemplars of this primitive are shown.

IV. CONTROL USING PRIMITIVES

We tested primitives as trajectory formation mechanisms for
two physically-simulated humanoid robots, Ares and Adonis,
in order to demonstrate the efficacy of our approach for real-
time control. The two testbeds are similar in size, mass, and
appearance to a male human; the primary difference between
them is in the number of DOF.

Adonis [5] is a humanoid torso, consisting of 20 upper body
DOF with fixed legs. Adonis’ joints include a 3 DOF waist,
3 DOF neck, 3 DOF shoulders, 1 DOF elbows, and 3 DOF
wrists. The simulated humanoid is actuated using proportional-
derivative (PD) controllers. Ares [15] contains 44 Euler joints
(132 DOF), including 72 DOF in the spine, 15 DOF in each
arm, 12 DOF in each leg, and 3 DOF in the neck. Each arm is
composed of five joints located at the clavicle, shoulder, elbow,
wrist, and fingers; the fingers are treated as a single limb. The
legs include joints at the hip, knee, ankle, and toes. Ares’ joints
are controlled by a feedforward plus feedback controller.

We used a behavior-based architecture to control these
humanoids. Each primitive is encapsulated by a behavior
module, which generates joint angle trajectories. The control
architecture (Figure 3) is augmented by ancillary behaviors
that serve to arbitrate conflicts between behaviors or send
commands to behaviors. Our implementation was quite usable
for real-time control and did not induce a significant com-
putational load. Additionally, the Verbs and Adverbs system

[6], which inspired our motor primitive implementation, has
proven to be quite effective at creating animation via trajectory
formation.

Fig. 3. Flowchart for humanoid motion synthesis using flowfield primitives
with an arbitrator. Motion formation using this mechanism requires only an
initial pose and incrementally updates desired configurations using a primitive
selected by an arbitrator.

V. MOVEMENT CLASSIFICATION

Motor primitives are parameterized models of behavior. In
this section, we present two methods that use these models
to classify observed movement. The methods differ in their
inputs. The first operates on joint angle data, and is well suited
when motion capture data are available. The second method
operates on Cartesian data, which are typically more readily
obtained from machine vision.

A. Bayesian-based movement classification in intrinsic coor-
dinates

We use a set of exemplars to build a Bayesian classifier
which attempts to determine the probability that an observed
movement is an instance of a behavior, C. Put another way, it
calculates the probability of C, given a time series X of length
n, where Xi is a vector of joint angle values sampled at time
i:

P (C|X) = P (C|Xn, Xn−1, . . . , X1)

By applying Bayes rule we transform the left hand side:

P (C|X) =
P (X |C)P (C)

P (X |C)P (C) + P (X |C)P (C)

In the absence of a priori knowledge, it must be assumed
that a behavior is as likely to occur as not. Thus, the prior
probabilities P (C) and P (C) can be eliminated from the
above equation. Now we need to calculate the probability of
seeing behavior C given the time series and the probability of
not seeing C given the time series.

1) Determining the conditional distributions:
a) Determining P (X |C): We approximate P (X |C) with

a uniform distribution, because it is somewhat fair to assume
that the human or humanoid’s configuration can be arbitrary if
it is not executing primitive C. This distribution is evaluated,
with a small tolerance to allow for sensor malfunction, at X .
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Fig. 4. Plot of the mixture space (the area produced by varying p and τ
in f(p, τ)) for “joint 2” of a primitive. The exemplars are plotted with solid
lines. f(p, τ) assumes value -0.9 for τ ∈ [0.57, 1]

b) Determining P (X |C): Calculating P (X |C) is quite
difficult. The joint random variables of this distribution are
interdependent; the joints of the human or humanoid are tightly
coupled as is each point in the time series to its neighbor.
Therefore, the distribution cannot be factored into manageable
univariate distributions. There is also no basis to choose a
parametric distribution, which could simplify evaluation of
P (X |C) considerably. For the following discussion, assume
that f(p, τ) is a function with multidimensional outputs that
takes as inputs p, an interpolation parameter, and τ , a time
index that satisfies the property τ ∈ [0, 1]. f(p, τ) is the
functional form of C.

Our way to solve this problem is to factor P (X |C) into
manageable distributions that can be evaluated. Consider the
equation below:

P (Xt, X2|C) = P (X1|X2, C)P (X2|C) (1)

In Equation 1, a multivariate distribution is factored into
two univariate distributions. P (X2|C) is trivial to compute:
sampling from f(p, τ) yields a nonparametric distribution of
joint angles for C that is then evaluated at X . However,
P (X1|X2, C) is far more difficult to calculate, although C

makes this computation tractable.
Assume that X1 and X2 are observed data from joints 1 and

2 respectively, and that X2 = −0.9 radians. Figure 4 illustrates
the output of the primitive for joint 1; the output assumes the
value −0.9 radians during the time interval [0.57, 1] time units.
Thus, t ∈ [0.57, 1], because X1 and X2 are obtained from the
primitive at the same value of τ . We can now determine the
nonparametric distribution P (X1|X2, C) by sampling from
f(p, τ) over the interval [0.57, 1]; Figure 5 shows the mixture
space that from which samples are drawn. Note that only the
component of the samples that corresponds to joint 1 is used
in the resulting one-dimensional distribution. Figure 6 depicts
this distribution.

This technique for evaluating multivariate distributions has
been extended to observations with time-series data in the
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Fig. 5. Plot of the mixture space for “joint 1” of the same primitive as in
Figure 4. The exemplars are plotted with solid lines.
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Fig. 6. Histogram produced by sampling Figure 5 between [0.57, 1].

same manner. Properties of the primitives (e.g., τ ∈ [0, 1],
nondecreasing τ for executing trajectories, etc.) are used to
avoid computationally expensive multidimensional integration.

2) Complexity analysis: We require that the perceptual
system be fast so that it, like the actuation system, can be
used in a situated robot. Our algorithm exhibits a complexity
of Θ(n), where n is the number of data points to be classified.
This translates into a running time of approximately 20 ms
for a 12-joint primitive on a 2 Ghz Pentium 4 processor
when n = 2. This performance precludes real-time recognition
of multiple primitives, unless multiple, faster processors are
used. Alternatively, speed can be increased significantly at the
expense of accuracy by reducing sampling and interval search
granularities.

B. Flowfield-based movement classification in extrinsic coor-
dinates

The presented Bayesian-based method is simple and fast
but relies on joint angle data as input, which are not always
available in robotics applications. Thus we also implemented
a flowfield-based classifier that operates on end-effector lo-
cations in Cartesian coordinates. We call this method of



TABLE I

CLASSIFICATION ACCURACY

Data Set n = 1 n = 2
Ares movements 96.61% 96.61%
Choreographed animations 99.94% 99.94%
Motion capture 99.97% 99.98%

classification trajectory encoding (Figure 7) because the result
is a single joint space trajectory comprised of subtrajectories
that predict best matching primitives. A trajectory encoding
classifier works by continually comparing predictions from
each primitive with observed future states from the input
movement. The current state in this context is the posture
at the instance of time after the last classification decision
was made. Each primitive produces a predicted trajectory
from the current state over a user-specified duration horizon.
Classification decisions are made based on the Euclidean
distance between observed and predicted end-effector loca-
tions at intervals defined by the user. The matching operator
provides a scalar value indicating the similarity between a
primitive’s prediction and the observed future state of the input
movement. Motion within the decision interval is classified
into the primitive with the greatest similarity value produced
from the matching operator. These classifications are winner-
take-all and do not account for motion that fails to match any
primitives. The encoded trajectory is formed by concatenating
the predicted trajectory of the classified primitive with the
previously encoded motion.

C. Evaluation

We evaluated the Bayesian classifier using three data sets
consisting of 209,188 data points, where each data point is a
vector of joint positions. The first data set contains movements
performed on Ares and is primarily composed of movements
generated by the motor primitives jab, hook, etc.; it also
contains movements for transitioning between primitives. The
second data set consists of over 50 animations (e.g., swim,
reach, swat bees, etc.) choreographed by Credo Interactive
[20]. All animations consist of many movements with sub-
stantial activity of the arm. The third data set is composed
of 500 motion capture files that represent behaviors such as
tennis, scrubbing, bowling, and walking; it and descriptions
of the included motions are available from Credo Interactive
[21]. We altered animations and motion capture data so that
the postures of the hands in the animations matched those of
the motor primitives. This alteration was made to handicap our
classifier; recognizing a movement as a negative instance of a
punch is considerably simplified if the hand is not clenched.

The classifier operates very well on all data sets, as shown
in Table I. It is apparent that few of the movements included
in the second or third data sets enter the mixture space of
either behavior. This is unfortunate because we are almost
entirely prevented from observing the additional classification
power gained by increasing n; considering previous joint data
is useful only in reducing false-positive classifications. The

additional power of greater n might prove to be unnecessary.
We synthesized only five behaviors, which are highly similar
semantically and structurally, but there is good separability
between them, as evidenced by the high accuracy in classify-
ing the first data set. Furthermore, there is almost complete
separability between these behaviors and those encoded in the
second and third data sets, even though they span much of the
same Cartesian space.

The trajectory encoding classifier was tested against selected
motions from the Credo motion capture set. The object of
the test was to classify the observed motion as the primi-
tive that, albeit subjectively, resembled the motion the most.
Classification was complicated by several factors, including
dissimilar kinematic structures and postures that differed be-
tween the start of the motion and the start of the primitive.
Each motion was applied to four different sets of primitives,
representing vertical waving (waving up and waving down),
punching (punching and returning to neutral), and dancing “the
twist” (twisting left and twisting right). Primitive-generated
trajectories were not exact replicas of the observed testing
motions, but rather coarse imitations that were synthesized
by the flowfield’s dynamical system. The classifier proved
successful for all motions categorized in this manner. Future
research will validate this method of classification on larger
data sets.

VI. CONCLUSIONS

We have described an exemplar-based representation repre-
sentation for motor primitives, a means for their realization as
temporal flowfields, two methods for movement classification,
and their use for control of humanoid robots. Our goal was
to demonstrate that primitives are a powerful substrate onto
which mechanisms for activity classification, prediction, and
control can be built. Our future work will apply primitives
towards facilitating interaction and imitation learning between
humans and humanoids.
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[1] M. Matarić, “Sensory-motor primitives as a basis for imitation: Linking
perception to action and biology to robotics,” in Imitation in Animals
and Artifiacts, K. Dautenhaun and C. Nehaniv, Eds. MIT Press, 2002,
pp. 391–422.

[2] M. Riley and C. Atkeson, “Robot catching: Towards engaging human-
humanoid interaction,” Autonomous Robots, vol. 12, pp. 119–128, 2002.

[3] J. Hodgins and W. Wooten, “Animating human athletes,” in Robotics
Research: The Eighth Int. Symposium, Y. Shirai and S. Hirose, Eds.
Berlin: Springer-Verlag, 1998, pp. 356–367.

[4] C. Atkeson, J. Hale, M. Kawato, S. Kotosaka, F. Pollick, M. Riley,
S. Schaal, S. Shibata, G. Tevatia, and A. Ude, “Using humanoid robots
to study human behavior,” IEEE Intelligent Systems, vol. 15, pp. 46–56,
July 2000.
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