
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-6, January 2013

189

SQL INJECTION Attacks in Web Application

Mihir Gandhi, JwalantBaria

Abstract: Databases are the first target of the attackers in Web

Application Once your ID and PASSWORD are out there may

be several misuse of it. These paper discuss about Advance SQL

Injection (ASQLIA) first of all it identifies which type of attacks

according to that prevention measures are suggested .Some New

features are added to it Web Crawling ,Web Services and

Advance SQL Injection (ASQLA)which will emphases more

Security of Web Application. In short enhancing database

security with the aspect of web developer is main aim of my

paper.

Keywords— Cybercrime, hash function, encryption

algorithm.SQL Injection, Tautology, SQLIA, Blind injection,

piggy backing, PSIAW.

I. INTRODUCTION

Since web applications have become one of the most

important communication channels between service

providers and clients, more script kiddies and sophisticated

hackers target victims either for fun, commercial reasons or

personal gain. The increasing frequency and complexity of

web based attacks has raised awareness of web application

administrators of the need to effectively protect their web

applications. The OWASP 2010 report places Injection

Attacks, including SQLIAs, as the most likely and damaging

. SQLIAs are caused by attackers inserting a malicious SQL

query into the web application to manipulate data, or even to

gain access to the back-end database[1]. The number of

SQLIA‟s reported in the past few years has been showing a

steadily increasing trend and so is the scale of the attacks. It

is, therefore, of paramount importance to prevent such types

of attacks, and SQLIA prevention has become one of the

most active topics of research in the industry and academia.

There has been significant progress in the field and a

number of models have been proposed and developed to

counter SQLIA‟s, but none have been able to guarantee an

absolute level of security in web applications, mainly due to

the diversity and scope of SQLIA‟s. One common

programming practice in today‟s times to avoid SQLIA‟s is

to use database stored procedures instead of direct SQL

statements to interact with underlying databases in a web

application, since these are known to use parameterized

queries and hence are not prone to the basic types of

SLQIA‟s.

II. WHAT is SQL INJECTION ATTACK?

SQL Injection is a type of web application security

vulnerability in which an attacker is able to submit a

database SQL command, which is executed by a web

application, exposing the back-end database. SQL Injection

attacks can occur when a web application utilizes user-

supplied data without proper validation or encoding as part

of a command or query.

Manuscript received on January, 2013.

Mihir Gandhi, ME Student of Information Technology Parul Institute
of Engg. & Tech. At.Baroda, Gujrat, India

JwalantBaria, ME Computer Science and Engineering Parul Institute of

Engg. & Tech. At.Baroda, Gujrat, India.

The specially crafted user data tricks the application into

executing unintended commands or changing data. SQL

Injection allows an attacker to create, read, update, alter, or

delete data stored in the back-end database. In its most

common form, SQL Injection allows attackers to access

sensitive information such as social security numbers, credit

card number or other financial data. According to

Veracode‟s State of Software Security Report SQL Injection

is one of the most prevalent types of web application

security vulnerability.[2].

Key Concepts of SQL Injection

 SQL injection is a software vulnerability that occurs

when data entered by users is sent to the SQL

interpreter as a part of an SQL query

Figure : SQL Injection

 Attackers provide specially crafted input data to the

SQL interpreter and trick the interpreter to execute

unintended commands [2]

 Attackers utilize this vulnerability by providing

specially crafted input data to the SQL interpreter in

such a manner that the interpreter is not able to

distinguish between the intended commands and the

attacker‟s specially crafted data. The interpreter is

tricked into executing unintended commands

 SQL injection exploits security vulnerabilities at the

database layer. By exploiting the SQL injection flaw,

attackers can create, read, modify, or delete sensitive

data [2].

Types Of Sql Injection Attack: There are different methods

of attacks that depending on the goal of attacker are

performed together or sequentially. For a successful SQLIA

the attacker should append a syntactically correct command

to the original SQL query. Now the following classification

of SQLIAs in accordance to be presented[1].

Tautologies: This type of attack injects SQL tokens to the

conditional query statement to be evaluated always true.This

type of attack used to bypass authentication control and

access to data by exploiting vulnerable input field which use

WHERE clause."SELECT * FROM employee WHERE

userid = '112' and password ='aaa' OR '1'='1'" As the

tautology statement (1=1) has been added tothequery

statement so it is always true.

SQL INJECTION Attacks in Web Application

190

llegal/Logically Incorrect Queries: when a query is

rejected , an error message is returned from the database

including useful debugging information. This error

messages help attacker to find vulnerable parameters in the

application and consequently database of the application. In

fact attacker injects junk input or SQL tokens in query to

producesyntax error, type mismatches, or logical errors by

purpose. In this example attacker makes a type mismatch

error by injecting the following text into the pin input

field:[3]

1) Original

 URL:http://www.arch.polimi.it/eventi/?id_nav=886

2) SQL Injection:

 http://www.arch.polimi.it/eventi/?id_nav=8864'

3) Error message showed:

SELECT name FROM Employee WHERE id =8864\'

From the message error we can find out name of table and

fields: name; Employee; id. By the gained information

attacker can organize more strict attacks[3].

Union Query: By this technique, attackers join injected

query to the safe query by the word UNION and then canget

data about other tables from the application.Suppose for our

examples that the query executed from the server is the

following:

SELECT Name, Phone FROM Users WHERE Id=$id

By injecting the following Id value:

$id=1 UNION ALL SELECT creditCardNumber,1 FROM

CreditCarTable

We will have the following query:

SELECT Name, Phone FROM Users WHERE Id=1 UNION

ALL SELECT creditCardNumber,1 FROM CreditCarTable

which will join the result of the original query with all the

credit card users.

Piggy-backed Queries: In this type of attack, intruders

exploit database by the query delimiter, such as ";", to

append extra query to the original query. With a successful

attack database receives and execute a multiple distinct

queries. Normally the first query is legitimate query,

whereas following queries could be illegitimate. So attacker

can inject any SQL command to the database. In the

following example, attacker inject " 0; drop table user " into

the pin input field instead of logical value. Then the

application would produce the query: SELECT info FROM

users WHERE login='doe' ANDpin=0; drop table users

Because of ";" character, database accepts both queries

and executes them. The second query is illegitimate and can

drop users table from the database. It is noticeable that some

databases do not need special separation character in

multiple distinct queries, so for detecting this type of attack,

scanning for a special character is not impressive solution.

Stored Procedure: Stored procedure is a part of database

that programmer could set an extra abstraction layer on the

database. As stored procedure could be coded by

programmer, so, this part is as inject able as web application

forms. Depend on specific stored procedure on the database

there are different ways to attack. In the following

example,attacker exploits parameterized stored procedure.

CREATE PROCEDURE DBO.isAuthenticated

@userName varchar2, @pass varchar2, @pin int AS

EXEC("SELECT accounts FROM users

WHERE login=’" +@userName+ "’ and pass=’"

+@password+

"’ and pin=" +@pin);

GO[3].

Inference: By this type of attack, intruders change the

behaviour of a database or application. There are two well

known attack techniques that are based on inference: blind

injection and timing attacks. Blind Injection: Sometimes

developers hide the error details which help attackers to

compromise the database. In this situation attacker face to a

generic page provided by developer, instead of an error

message. So the SQLIA would be more difficult but not

impossible. An attacker can still steal data by asking a series

of True/False questions through SQL statements. Consider

two possible injections into the login field:

SELECT accounts FROM users WHERE login= 'doe' and

1 =0 -- AND pass = AND pin=O

SELECT accounts FROM users WHERE login= 'doe' and

1 = 1 -- AND pass = AND pin=O

If the application is secured, both queries would be

unsuccessful, because of input validation. But if there is no

input validation, the attacker can try the chance. First the

attacker submits the first query and receives an error

message because of "1 =0 ". So the attacker does not

understand the error is for input validation or for logical

error in query. Then the attacker submits the second query

which always true. If there is no login error message, then

the attacker finds the login field vulnerable to injection[2].

Timing Attacks: A timing attack lets an attacker gather

information from a database by observing timing delays in

the database's responses. This technique by using if-then

statement cause the SQL engine to execute a long running

query or a time delay statement depending on the logic

injected. This attack is similar to blind injection and attacker

can then measure the time the page takes to load to

determine if the injected statement is true. This technique

uses an if-then statement for injecting queries. W AITFOR

is a keyword along the branches, which causes the database

to delay its response by a specified time. For example, in the

following query: declare @ varchar(8000) select @ =

db_nameO if (ascii(substring(@, 1, 1)) & (power(2, 0))) > 0

waitfor delay '0:0:5'

Database will pause for five seconds if the first bit of the

first byte of the name of the current database is 1. Then code

is then injected to generate a delay in response time when

the condition is true. Also, attacker can ask a series of other

questions about this character. As these examples show, the

information is extracted from the database using a

vulnerable parameter.[2]

Proposed Technique: Our research work proposes the

technique, Preventing SQL Injection Attack in Web

Application (PSIAW)[1]. In a Login Table, two columns

are created by DBA. One for username and other is used for

password. Our methodology requires two more columns.

One for the hash value of the username and other is used for

hash value of password. The hash values of username and

password are calculated and stored in Login Table when the

user‟s account is first time created with the web application.

Whenever user wants to login to database his/her identity is

checked using username, password and hash values. These

hash values are calculated at runtime using stored procedure

when user wants to login into the database. If only username

and password are used for authentication, and the attacker

enters Username = „ OR 1=1 – – and Password = pwd; The

query becomes like this SQL_Server = Select * from Login

where Username = „' OR 1=1 – –‟ and Password = „pwd‟;

Figure 5.1 Query without using hash values But, using

PSIAW approach, the query for authentication will become

like this SQL_Server = Select * from Login where

Hash_value_user = „hash_user‟ and Hash_value_pwd =

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-6, January 2013

191

„hash_pwd‟ and Username = „' OR 1=1 – –‘ and Password =

„pwd‟; Figure 5.2 Query using hash values .Thus using hash

values for password and username, the hacker cannot bypass

authentication as attacker does not know the hash values of

username and password and hence access the database of the

web application. Thus, web application is secured. The error

messages generated by application should not show that any

hash values are calculated at the back end and it‟s getting

matched with the entered one. This prevents the attacker

from accessing database as he is not aware of any hash

values used and does not know the hash values of username

and password as hash values are calculated at runtime. Only

two text boxes are provided at the interface for entering

username and password, he will not be able to enter hash

values from anywhere. Hence, the attacker will not be able

to attack database and web application is secured.When user

changes password, hash value of old password supplied as

well as new password is calculated. Hash value of old

password is matched with the stored hash value and new

hash value is stored with the new password in the Login

Table. Every time database is accessed, hash value of

supplied parameter is calculated and matched with the

stored one. Whenever it does not match it simple generates

the message, username and password do not match. So the

attacker does not get to know about the hash values

concept[1].

III. ARCHITECTURE

Architecture of Preventing SQL Injection Attack in Web

Application (PSIAW) technique consists of three

components: User Login Interface, SQL Query Component

and User Account Table.[1]

Architecture of Preventing SQL Injection Attack in

Web Application.

Here, user login interface is just the user entry form

containing two columns for username and password. Main

component of PSIAW is SQL Query Component. SQL

Query component is the component where hash value of

username and password is calculated. These values are then

combined with username and password using AND

operator. Every time the user enters username and password,

their hash values are calculated. The query formed is then

sent to database. Subcomponents of SQL Query component

are username hash value, username and password and

password hash value. User account table is the component

where username, password, hash values for user and

passwords are stored here[1].

IV. CONCLUSION

Most web applications employ a middleware technology

designed to request from a relational database in SQL

parlance. SQL Injection is a common technique hackers

employ to attack these web based applications. These

attacks reshape the SQL queries, thus altering the behaviour

of the program for the benefit of the hacker. In our research

work, we have presented a technique for protecting

authentication against SQL Injection. This technique

presents the need for adding two additional columns in login

table. These columns store hash values of username and

password. When the user gets itself registered with a web

application, it selects its username and password. At the

same time, hash value of username and password is

computed at the coding side and stored in the login table

with username and password. When user logs in to the web

application, hash value of username and password are

matched at the backend and user is allowed to access the

data. If SQL Injection attack.string is entered for logging

into the database, its hash value does not match with the

hash values stored in the table and hence attacker can not

access the database.[1]

Future Work: This technique can only protect

authentication mechanism. Rest of the SQL Injection

techniques can‟t be prevented using this technique. So, in

future, we will try to improve the technique by making it

efficient for other types of SQL Injection Attacks also.

Then, this technique will be able to prevent SQL Injection

Attack completely.

V. REFERENCES

[1] By1Prasant Singh Yadav, 2 Dr pankajYadav, 3Dr. K.P.Yadav “A

Modern Mechanism to Avoid SQL Injection Attacks in Web

Applications”,IJRREST: International Journal of Research Review in
Engineering Science and Technology ,Volume-1 Issue-1, June 2012.

[2] By MayankNamdev *, FehreenHasan, GauravShrivastav “Review of

SQL Injection Attack and Proposed Method for Detection and
Prevention of SQLIA”Volume 2, Issue 7, July 2012.

[3] By AtefehTajpour ,Suhaimi Ibrahim, Mohammad SharifiWeb

Application Security by SQL Injection DetectionTools.IJCSI
International Journal of Computer Science Issues, Vol. 9, Issue 2, No

3, March 2012

