
AIOOL 2005 Preliminary Version

Decision Procedures for Set-Valued Fields

Viktor Kuncak 1 Martin Rinard 2

MIT Computer Science and Artificial Intelligence Laboratory

Cambridge, Massachusetts, USA

Abstract

A central feature of current object-oriented languages is the ability to dynami-
cally instantiate user-defined container data structures such as lists, trees, and hash
tables. Implementations of these data structures typically use references to dynam-
ically allocated objects, which complicates reasoning about the resulting program.
Reasoning is simplified if data structure operations are specified in terms of abstract
sets of objects associated with each data structure. For example, an insertion into
a data structure in this approach becomes simply an insertion into a dynamically
changing set-valued field of an object, as opposed to a manipulation of a dynamically
linked structure attached to the object.

In this paper we explore reasoning techniques for programs that manipulate data
structures specified using set-valued abstract fields associated with container ob-
jects. We compare the expressive power and the complexity of specification lan-
guages based on 1) decidable prefix vocabulary classes of first-order logic, 2) two-
variable logic with counting, and 3) Nelson-Oppen combinations of multisorted
theories. Such specification logics can be used for verification of object-oriented
programs with supplied invariants. Moreover, by selecting an appropriate subset of
properties expressible in such logic, the decision procedures for these logics enable
automated computation of lattice operations in an abstract interpretation domain,
as well as automated computation of abstract program semantics.

Key words: Program verification, Data structures, Objects,
Decision procedures, Two-variable logic with counting, Classical
decision problem, Nelson-Oppen technique, Two-level syllogistic

1 Introduction
Analysis and verification of modern object-oriented programming languages
poses unique challenges [29, 18, 24, 11]. In this paper we study a central fea-
ture of current object-oriented languages: the ability to introduce user-defined
abstract data types, and create an unbounded number of instances of these
data types during program execution. Particular difficulties arise when each
data type instance is itself implemented using multiple dynamically allocated
objects that form a linked data structure. Our approach for analyzing such

1 Email: vkuncak@csail.mit.edu
2 Email: rinard@csail.mit.edu

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Kuncak, Rinard: Decision Procedures for Set-Valued Fields

programs is to use abstract set-valued fields as specification variables that de-
scribe operations of an abstract data type. We separate the analysis of the
program into 1) verifying the correctness of the implementation of the abstract
data type with respect to the set specification, and 2) verifying the correct-
ness of the rest of the program where the linked data structure is replaced by
abstract set-valued fields.

Hob project. One of the main design principles behind the Hob project
[17, 32] is that reasoning about programs with complex data structures be-
comes simpler if data structure operations are specified in terms of abstract
sets of objects associated with each data structure. For example, an inser-
tion into a data structure in this approach becomes simply an insertion into
a dynamically changing sets of objects, as opposed to a manipulation of a
dynamically linked data structure. Hob splits the verification of programs
with such data structures into two tasks: 1) using shape analysis (or some
other analysis or verification technique, including techniques as powerful and
heavyweight as interactive theorem proving) to verify that the data structure
implementation conforms to the specification given in terms of the abstract
set variables, and 2) using only the abstract set variables in the rest of the
program to reason about the behavior of the data structure. So far, we have
used Hob to verify implementations of global data structures, which are in-
stantiated at compile time into a finite number of instances (that may store
and manipulate a statically unbounded number of objects). The focus on
global data structures allowed us to use a static module mechanism to encap-
sulate object fields and prevent representation exposure, as well as to use the
decidable theory of Boolean algebras [13] to reason about the finite number
of abstract sets that specify data structures. One goal of this research is to
extend this approach for dynamically instantiated data structures as well.

Dynamic instantiation of linked data structures. Dynamic instantiation
of abstract data types is one of the central features of current object-oriented
programming languages. Dynamic instantiation is typically achieved by asso-
ciating each abstract data type instance with an object, using a field to attach
the underlying linked data structure to the object. This research explores
one way to extend Hob to verify programs that use linked data structures
that can be dynamically instantiated. In this approach, we specify a linked
data structure attached to an object using a finite number of set-valued object
fields. The result of abstracting the content using this technique is a program
that manipulates objects connected using relations. A relation in the resulting
program can be either a function (whose value for a given object is the object
referenced by an object-valued field), or a general relation (whose value for a
given object is the set of objects stored in the data structure associated with
the object).

The generalization to dynamic instantiation of data structures in Hob re-
quires extensions to both phases of verification: 1) verification that the linked
data structure conforms to the set interface given by values of object fields
and 2) verification of the resulting program that uses objects with set-valued
fields. To address the first phase, we are extending the existing technique

2

Kuncak, Rinard: Decision Procedures for Set-Valued Fields

in Hob with the techniques for specifying representations of individual ob-
jects [22, 6, 5, 2, 3]; these extensions are necessary to ensure that the analysis
of one instance remains valid in the presence of other instances in the heap.

The topic of this paper is the second problem: verification of programs that
manipulate objects with set-valued fields. Like [26], we are concerned with
verification of clients of abstract data types, but we focus on specifications ex-
pressed in terms of set-valued fields and derive a complete decision procedure
for the constraints in our class. Our approach uses assume/guarantee reason-
ing with user-supplied annotations to completely separate the analysis of the
implementation of the class from the analysis of the context; other approaches
attempt to automatically infer both the approximation of the context and the
approximation of class implementation [18], potentially using a global fixpoint
analysis.

Decision procedures for set-valued fields. To study the automation of
reasoning about programs with set-valued fields, we explore decision proce-
dures for constraints on such fields. Our constraints can express relationships
between sets associated with the same object, the aliasing between object ref-
erences, as well as the relationships between sets associated with different ob-
jects. By annotating programs with such constraints and using a verification-
condition generator [32], developers can verify a range of invariants of object-
oriented programs. By selecting an appropriate subset of properties express-
ible using such constraints, a decision procedure for these constraints enables
an analysis to automatically derive the lattice operations in the abstract in-
terpretation domain, and to compute abstract program semantics (transfer
functions).

Contributions and overview. To motivate the constraints studied in this
paper, we present an example in Section 2. We present our formal setup in
Section 3. As the main result of this paper, we explore reasoning techniques for
programs that use set-valued abstract fields. We compare the expressive power
and the complexity of specification languages based on decidable prefix classes
of first-order logic (Section 5), two-variable logic with counting (Section 6), and
Nelson-Oppen combinations of multisorted theories (Section 7). We observe
that both the decidable prefix class [∃∗∀∗]= and Nelson-Oppen combination
yield optimal NP algorithms for deciding an interesting class of constraints.
On the other hand, the use of two-variable logic with counting allows more
expressive constraints (such as the constraint that a field is never null), but
requires an NEXPTIME decision procedure in general. We present conclusions
in Section 8 and discuss related work throughout the paper.

2 Example
Figure 1 presents an example program fragment containing a precondition
(expressed using an assume statement), a loop invariant (expressed using [. . .]
brackets just before the condition of the while loop), and a postcondition
(expressed using an assert statement). The program fragment empties the set
x.c and copies its content into the set y.c (one could imagine some processing
of primitive fields of e being performed in each loop iteration, but this is of

3

Kuncak, Rinard: Decision Procedures for Set-Valued Fields

assume x 6= null ∧ x ∈ alloc;
oldxc := x.c;
new y;
while [x 6= null ∧ y 6= null ∧ x 6= y ∧ x.c ∪ y.c = oldxc]

(x.c 6= ∅)
{

e := removeFirst(x);
// process(e);
insert(y, e);

}
assert y.c = oldxc;

Fig. 1. An example program fragment that manipulates
set-valued fields. Here z.c denotes the value of the set
associated with object denoted by z

e := removeFirst(x) :
assert x.c 6= ∅;
havoc e;
assume e ∈ x.c;
x.c := x.c \ {e}

insert(y, e) :
y.c := y.c ∪ {e}

Fig. 2. Specifications
of procedure calls from
Figure 1

x 6= y ∧ x 6= null ∧ y 6= null ∧ x.c ∪ y.c = oldxc ⇒
e ∈ x.c⇒x 6= y ∧ (x.c \ {e}) ∪ (y.c ∪ {e}) = oldxc

Fig. 3. Verification condition for loop preservation of example in Figure 1

O ::= VO | null | O.fO

S ::= VS | S1 ∪ S2 | S1 ∩ S2 | S1 \ S2 | {O1, . . . , On} | O.fS

f ::= Vf | fO[O1 7→ O2] | fS [O 7→ S]
A ::= O1 = O2 | O ∈ S | S1 = S2 | card(S) ≤ k | f1 = f2

F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F

Fig. 4. Syntax of expressions and formulas

no relevance to our example). The property that we wish to verify is that
the content of the set y.c at the end of the program fragment is equal to
the original content of the set x.c, which is stored in the auxiliary set-valued
local variable oldxc. The property is true, because procedure call removeFirst

removes an element from x.c and returns it in e, and then insert inserts the
same element into y.c. Figure 2 shows guarded-command specifications of
procedure calls that we use to reason about the effects of procedures; our
system verifies separately that procedures conform to their specifications.

Given the precondition, loop invariant and the postcondition for the pro-
gram fragment in Figure 1, we can generate verification conditions that imply
that the program postconditions will hold. Figure 3 shows one of the verifica-
tion conditions for program in Figure 1. Note that the resulting constraints
require not only reasoning about the content of individual sets (as in the se-
mantics of insert), but also reasoning about aliasing of references to objects
(as in the conjunct x 6= y) and reasoning about the relations between sets
associated with distinct objects (as in the conjunct x.c∪ y.c = oldxc). In Sec-
tion 3 we define a class of such constraints on objects with set-valued fields;
in the rest of this paper we study the validity and the satisfiability problem
for constraints in this class.

4

Kuncak, Rinard: Decision Procedures for Set-Valued Fields

3 Specification Language
Figure 4 shows the syntax of our specification language for expressing con-
straints on objects with set-valued fields. Our specification language is typed
(multisorted); we are only concerned with well-typed formulas. The nontermi-
nal O denotes objects, which can be potentially null, S denotes sets of non-null
objects, and f denotes fields. Fields can map objects to objects (then they are
denoted fO) or they can map objects to sets (then they are denoted fS). We
use formulas (the non-terminal F) as part of assume and assert statements,
the conditions of while loops, and if statements. We use the object-valued and
set-valued terms of this language (the non-terminals O and S in Figure 4) on
the right-hand side of the assignment statements. The meaning of constructs
in this language is straightforward. Notation x.f denotes a dereference of a
field f of objects x, which can be thought of as a function application that
signals an error if the object x is null. Notation fO[o1 7→ o2] denotes an update
of an object-valued field fO so that o1.fO = o2 and the value of the same field
for all other objects is the same; such update operation corresponds to an
array update if we view the field f as an array of objects indexed by objects.
Set operations in our language have standard meaning. In the expression
card(S) ≤ k, notation card(S) denotes the number of elements (cardinality)
of the set S, and k denotes a non-negative integer constant. For complexity
considerations, note that we represent integer constants in unary notation, so
a constant k has the length k as opposed to log k.

This paper considers decision procedures for the validity of formulas whose
syntax is given by non-terminal F in Figure 4. The validity of such formu-
las can be used to show the validity of verification conditions in a program-
ming language. Deciding verification conditions allows verification of object-
oriented programs annotated with loop invariants. A decision procedure can
also be used to synthesize loop invariants by identifying a finite set of formu-
las that forms an abstract domain. If S is a finite set of predicates, let D(S)
denote the set of all disjunctions of formulas in S and let B(S) denote the
set of all Boolean combinations of formulas in S. If S is a finite set of closed
formulas in language of Figure 4, then the sets D(S) ∪ {true} and B(S) are
also formulas in language of Figure 4 and can be used as domains. Transfer
functions for such domains can be computed using predicate abstraction [1].
Let Qv1,...,vn

(S) = {∀v1, . . . , vn. F | F ∈ S} and let S be a set of quantifier-free
formulas with unary and binary function symbols. Then D(Qv1,...,vn

(B(S))) is
a domain of formulas that can be used for symbolic shape analysis [30]. Sat-
isfiability of formulas in class D(Qv1,...,vn

(B(S))) as well as B(Qv1,...,vn
(B(S)))

can decided using the [∃∗∀∗]= class of formulas used in Section 5.

4 Preliminary Observations
We first make several observations on deciding the validity of formulas in the
language of Figure 4. Note that the language is closed under all boolean
operations, so we only consider the satisfiability problem. Our constraints
are quantifier-free, so we can view the satisfiability algorithm as a non-
deterministic procedure that selects a satisfying assignment to atoms of the
quantifier-free formula, and checks that the satisfying assignment corresponds

5

Kuncak, Rinard: Decision Procedures for Set-Valued Fields

to a satisfiable conjunction of literals [8]. In this way we reduce satisfiability of
constraints to satisfiability of conjunctions of literals. Note finally that we can
transform every conjunction of literals into an equisatisfiable conjunction that
contains no nested terms. We transform a formula into such unnested form by
introducing fresh variables; these fresh variables become existentially quanti-
fied, because we are looking at satisfiability. In the resulting unnested form,
each atomic formula is of one of the following syntactic forms: V 1

O = V 2
O.fO,

VS = V 1
S ∪ V 2

S , VS = V 1
S ∩ V 2

S , VS = V 1
S \ V 2

S , VS = {V 1
O, . . . , V n

O}, VS = VO.fS,
V 1

f = V 2
f [V 1

O 7→ V 2
O], V 1

f = V 2
f [VO 7→ VS], V 1

O = V 2
O, VO ∈ VS, V 1

S = V 2
S ,

card(VS) ≤ k, V 1
f = V 2

f . In the sequel we outline decidability of conjunctions
of such unnested formulas and their negations. We consider three different
methods. We pay most attention to the first method (Section 5).

5 A Classical Prefix-Vocabulary Class
In this section we outline our first technique for checking satisfiability of con-
junctions of unnested literals. This technique is based on the class of universal
formulas in first-order logic with a relational signature, without function sym-
bols of non-zero arity. We translate conjunctions of literals into equisatisfiable
formulas in this class while introducing a bounded number of universal quan-
tifiers (namely, at most three).

The class [∃∗∀∗]=. Define the class [∃∗∀q]= as the set of all formulas of the
form ∃x1, . . . , xp. ∀y1, . . . , yq.F where p ≥ 0 and F is quantifier-free formula
of first-order logic with equality without function symbols. Let [∃∗∀∗]= be the
set of formulas

⋃
q≥0[∃

∗∀q]=. We then have the following [4, Page 258].

Fact 5.1 For any fixed q, satisfiability for [∃∗∀q]= is in NP.

Fact 5.2 The satisfiability for [∃∗∀∗]= is in NEXPTIME.

The idea of the translation. The translation of the language in Figure 4
into [∃∗∀∗]= class can be summarized as follows: 1) use unary relations to
represent sets, 2) use binary relations to represent object-valued and set-valued
fields, and 3) use universal quantifiers to represent set operations. To make
this approach work, we need to properly represent null references, eliminate
array updates by case analysis, and carefully translate cardinality constraints
to avoid introducing an unbounded number of ∀ quantifiers. To ensure that
object-valued fields are not assigned multiple values simultaneously, for each
object-valued field fO we introduce a conjunct

∀x, y, z. fO(x, y) ∧ fO(x, z)⇒ y = z(1)

We would like to consider only models where fields are total functions that
potentially have the value null. The [∃∗∀∗]= fragment cannot ensure this in-
variant, but we can transform formula into a form such that the existence of
a model that does not satisfy this invariant implies the existence of a model
that satisfies the invariant (see [16] for details). The main rules for the trans-
lation of positive literals are in Figure 5. To translate a negative literal,
negate the translation of the underlying atomic formula as in Figure 5, replac-
ing universal quantifiers with existential quantifiers, and then drop existential
quantifiers while making sure that the newly introduced variables are fresh.

6

Kuncak, Rinard: Decision Procedures for Set-Valued Fields

F [[F]]
V 2

O = V 1
O.fO fO(V 1

O, V 2
O)

VS = V 1
S ∪ V 2

S ∀+x. VS(x) ⇐⇒ V 1
S (x) ∨ V 2

S (x)
VS = V 1

S ∩ V 2
S ∀+x. VS(x) ⇐⇒ V 1

S (x) ∧ V 2
S (x)

VS = V 1
S \ V 2

S ∀+x. VS(x) ⇐⇒ V 1
S (x) ∧ ¬V 2

S (x)
VS = {V 1

O, . . . , V n
O} ∀+x. VS(x) ⇐⇒ x = V 1

O ∨ . . . ∨ x = V n
O

VS = VO.fS ∀+x. VS(x) ⇐⇒ fS(VO, x)
V 1

O = V 2
O V 1

O = V 2
O

VO ∈ VS VS(VO)
V 1

S = V 2
S ∀+x. V 1

S (x) ⇐⇒ V 2
S (x)

V 1
f = V 2

f ∀+x, y. V 1
f (x, y) ⇐⇒ V 2

f (x, y)
V 1

f = V 2
f [V 1

O 7→ V 2
O] ∀+x, y. V 1

f (x, y) ⇐⇒ ((x = V 1
O ∧ y = V 2

O) ∨
(x 6= V 1

O ∧ V 2
f (x, y)))

V 1
f = V 2

f [VO 7→ VS] ∀+x, y. V 1
f (x, y) ⇐⇒ ((x = VO ∧ VS(y)) ∨

(x 6= VO ∧ VS(x, y)))

Fig. 5. Rules for transforming positive literals into [∃∗∀∗]= fragment

We translate positive cardinality constraint card(VS) ≤ k by introducing k
fresh constants a1, . . . , ak, replacing the constraint with VS = {a1, . . . , ak},
and then translating the result as in Figure 5. We translate the negative car-
dinality constraint ¬(card(VS) ≤ k), which is equivalent to card(VS) ≥ k + 1,
by introducing fresh constants a1, . . . , ak, ak+1, and replacing the constraint
with

∧
1≤i≤k+1 VS(ai) ∧

∧
1≤i<j≤k+1 ai 6= aj .

Complexity. We next show that satisfiability of formulas in Figure 4 is NP
complete. We have carefully constructed our translation so that it introduces
a bounded number of quantifiers. Indeed, each conjunct introduces at most
three universal quantifiers (three quantifiers are needed for (1)). By moving
these quantifiers to prenex position we can write the formula in form [∃∗∀3]=.
Because the size of the generated formula is polynomial in the size of the
original formula and the time to generate it is polynomial, by Fact 5.1 we
conclude that checking the satisfiability of one assignment to unnested atomic
formulas is in NP. Unnested form is polynomial in the size of conjunction
of literals that specifies an assignment to atomic formulas of a formula F in
Figure 4, and picking an assignment to atomic formulas can be done in NP.
By composing these two non-deterministic choices, we obtain an NP decision
procedure for satisfiability of expressions. NP-hardness follows because our
language subsumes propositional logic. We conclude that the satisfiability of
formulas in Figure 4 is NP-complete.

Remarks on related work. Fragments of first-order logics based on quan-
tifier prefixes are systematized in [4, 9] where the [∃∗∀∗]= class is described
as Bernays-Schönfinkel-Ramsey class. Finite model finding tools such as Al-
loy [12] can therefore be used to check satisfiability of such formulas. Resolu-
tion techniques [27] are also complete for this class because the term model is
finite.

7

Kuncak, Rinard: Decision Procedures for Set-Valued Fields

6 Two-Variable Logics

In this section we show that two-variable logic with counting, denoted C2,
can be used to decide constraints in Figure 4, as well as some useful exten-
sions of these constraints. We consider the satisfiability problem and use a
language containing any number of constants, unary relation symbols, and
binary relation symbols.

Two-variable logics. The logic C2 is a first-order logic 1) extended with
counting quantifiers ∃≥kx.F (x), saying that there are at least k elements x
satisfying formula F (x) for some constant k, and 2) restricted to allow only
two variable names x, y in formulas. Note that the variables x and y may be
reused via quantifier nesting, and that formulas of the form ∃=kx. F (x) and
∃≤kx. F (x) are expressible as boolean combination of formulas of the form
∃≥kx. F (x). The logic C2 was shown decidable in [10] and the complexity
for the C2

1 fragment of C2 was established in [23, 25]. The two-variable logic
without counting L2 has finite model property [19]; this is not the case for
two-variable logic with counting [10]. The usefulness of two-variable logic
with counting for reasoning about relations between objects in imperative
programs was identified in [14, 15].

Encoding into two-variable logic with counting. Consider the problem
of encoding the constraints in Figure 4 into two-variable logic with counting.
It turns out that most of the ideas of the encoding in Section 5 apply to encod-
ing using two-variable logic as well, because we only use at most two universal
quantifiers in Figure 5, and the existentially quantified variables simply be-
come constants in the language. To avoid using three variables to express the
fact that some relations are functions, we replace (1) with ∀x.∃≤1y.f(x, y).
We can express the cardinality constraints directly by replacing card(S) ≤ k

with ∃≤kx.S(x).

7 Nelson-Oppen Combination

We next note that satisfiability of formulas in Figure 4 can be decided using
a multi-sorted version of the Nelson-Oppen decision procedure that combines
three individual decision procedures: 1) theory for reasoning about sets ex-
pressed as a component Nelson-Oppen procedure, similarly to [31], but with
addition of finite cardinalities (represented using ideas from Section 5); 2)
uninterpreted function symbols [21] in multisorted language with function
symbols whose result sort can be a set sort; and 3) extensional theory of ar-
rays [20,28]. Because an equivalence class on shared variables in Nelson-Oppen
decision procedure can be guessed using an NP algorithm, and each individual
decision procedure is in NP, we conclude that a Nelson-Oppen combination
decision procedure for our language is also in NP. While [31] already observes
that reasoning about elements can be combined with reasoning about sets
of elements using Nelson-Oppen procedure, we here observe the usefulness of
combining the resulting procedure with uninterpreted function symbols and
arrays, obtaining a decision procedure for reasoning about set-valued fields of
objects.

8

Kuncak, Rinard: Decision Procedures for Set-Valued Fields

8 Discussion and Concluding Remarks
We have outlined three techniques for solving constraints on set-valued fields:
reduction to [∃∗∀∗]= class of first-order logic, reduction to two-variable logic
with counting, and the use of Nelson-Oppen combination for multi-sorted
theories. If the goal is only to decide the language in Figure 4, then both
[∃∗∀∗]= class and Nelson-Oppen combination yield optimal decision proce-
dure. Two-variable logic has more complex decision procedure, but also has
the additional expressive power that enables expressing the constructs of the
form ∀x.∃y.f(x, y). Such constructs allow us to state non-null properties
of objects, which are important for reasoning about initialization of objects
in object-oriented programming languages [7]. Moreover, counting quanti-
fiers can naturally express high-level application constraints identified in the
database community and object-oriented modelling community as referential
integrity and cardinality constraints, as well as role constraints [15]. Note
that [∃∗∀∗]= fragment is also more expressive than the language in Figure 4,
allowing the statement of properties such as ∀x, y.A(x)⇒(f(x, y)⇔ g(y, x))
while retaining the bounded number of quantifiers and therefore an NP deci-
sion procedure. The approach based on decomposing the language of Figure 4
into smaller Nelson-Oppen theories as in Section 7 has the advantage of using
previously understood and efficient decision procedures that may be useful
in other contexts. Moreover, no special encodings are necessary because the
use of sorts naturally decomposes constraints into the constraints of individ-
ual decidable theories. Our observations imply that each of the individual
theories in Nelson-Oppen combination can be showed decidable using the re-
sult of Section 5. Finally, we can use the idea of Nelson-Oppen combination
in conjunction with the techniques presented in Section 5 and Section 6, be-
cause Nelson-Oppen method allows quantifier-free combinations of formulas
that themselves need not be quantifier-free. For example, we can use Nelson-
Oppen technique to decide quantifier-free combinations of two-variable logic
with counting, [∃∗∀∗]= formulas, and linear arithmetic, thus combining the
ideas from all three approaches.

Acknowledgements. We thank Darko Marinov for useful comments on
an earlier version of this paper and useful discussions about the use of sets
in symbolic execution. We thank Nguyen Huu Hai for useful remarks on an
earlier version of this paper. We thank AIOOL’04 referees for useful feedback.

References

[1] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate abstraction of C
programs. In Proc. ACM PLDI, 2001.

[2] M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte. Verification of object-oriented
programs with invariants. Journal of Object Technology, 3(6):27–56, 2004.

[3] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An overview. In CASSIS
2004: International Workshop on Construction and Analysis of Safe, Secure and Interoperable Smart
devices, March 2004.

[4] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Springer-Verlag, 1997.

9

Kuncak, Rinard: Decision Procedures for Set-Valued Fields

[5] C. Boyapati, R. Lee, and M. C. Rinard. A type system for preventing data races and deadlocks.
In Proc. 17th Annual ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications, 2002.

[6] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias protection. In Proc. 13th
Annual ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications,
1998.

[7] M. Fähndrich and K. R. M. Leino. Declaring and checking non-null types in an object-oriented language.
In OOPSLA’03, 2003.

[8] C. Flanagan, R. Joshi, X. Ou, and J. B. Saxe. Theorem proving using lazy proof explication. In CAV,
pages 355–367, 2003.

[9] E. Grädel. Decidable fragments of first-order and fixed-point logic. From prefix-vocabulary classes to
guarded logics. In Proceedings of Kalmár Workshop on Logic and Computer Science, Szeged, 2003.

[10] E. Grädel, M. Otto, and E. Rosen. Two-variable logic with counting is decidable. In Proceedings of
12th IEEE Symposium on Logic in Computer Science LICS ‘97, Warschau, 1997.

[11] M. Hirzel, A. Diwan, and M. Hind. Pointer analysis in the presence of dynamic class loading. In
ECOOP, 2004.

[12] D. Jackson. Alloy: a lightweight object modelling notation. ACM TOSEM, 11(2):256–290, 2002.

[13] D. Kozen. Complexity of boolean algebras. Theoretical Computer Science, 10:221–247, 1980.

[14] V. Kuncak and M. Rinard. On role logic. Technical Report 925, MIT CSAIL, 2003.

[15] V. Kuncak and M. Rinard. Generalized records and spatial conjunction in role logic. In 11th Annual
International Static Analysis Symposium (SAS’04), Verona, Italy, August 26–28 2004.

[16] V. Kuncak and M. Rinard. On the decision procedure for set-valued fields. Technical report, MIT
CSAIL, November 2004.

[17] P. Lam, V. Kuncak, and M. Rinard. Generalized typestate checking for data structure consistency. In
6th International Conference on Verification, Model Checking and Abstract Interpretation, 2005.

[18] F. Logozzo. Separate compositional analysis of class-based object-oriented languages. In Proceedings of
the 10th International Conference on Algebraic Methodology And Software Technology (AMAST’2004),
volume 3116 of Lectures Notes in Computer Science, pages 332–346. Springer-Verlag, July 2004.

[19] M. Mortimer. On languages with two variables. Zeitschr. für math. Logik und Grundlagen der Math.,
21:135–140, 1975.

[20] G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures. ACM Trans. Program.
Lang. Syst., 1(2):245–257, 1979.

[21] G. Nelson and D. C. Oppen. Fast decision procedures based on congruence closure. Journal of the
ACM (JACM), 27(2):356–364, 1980.

[22] J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In Proc. 12th ECOOP, 1998.

[23] L. Pacholski, W. Szwast, and L. Tendera. Complexity results for first-order two-variable logic with
counting. SIAM J. on Computing, 29(4):1083–1117, 2000.

[24] I. Pollet, B. L. Charlier, and A. Cortesi. Distinctness and sharing domains for static analysis of java
programs. In ECOOP, 2001.

[25] I. Pratt-Hartmann. Complexity of the two-variable fragment with (binary-coded) counting quantifiers.
CoRR, cs.LO/0411031, 2004.

[26] G. Ramalingam, A. Warshavsky, J. Field, D. Goyal, and M. Sagiv. Deriving specialized program
analyses for certifying component-client conformance. In Proceeding of the ACM SIGPLAN 2002
Conference on Programming language design and implementation, pages 83–94. ACM Press, 2002.

[27] A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning (Volume 1). Elsevier and
The MIT Press, 2001.

[28] A. Stump, C. W. Barrett, D. L. Dill, and J. R. Levitt. A decision procedure for an extensional theory
of arrays. In LICS, pages 29–37, 2001.

[29] F. Tip and J. Palsberg. Scalable propagation-based call graph construction algorithms. In Proc. 15th
Annual ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications,
pages 281–293, 2000.

[30] T. Wies. Symbolic shape analysis. Master’s thesis, Max-Planck Instutut für Informatik, Sep 2004.

[31] C. G. Zarba. Combining sets with elements. In N. Dershowitz, editor, Verification: Theory and Practice,
volume 2772 of Lecture Notes in Computer Science, pages 762–782. Springer, 2004.

[32] K. Zee, P. Lam, V. Kuncak, and M. Rinard. Combining theorem proving with static analysis for data
structure consistency. In International Workshop on Software Verification and Validation (SVV 2004),
Seattle, November 2004.

10

	Introduction
	Example
	Specification Language
	Preliminary Observations
	A Classical Prefix-Vocabulary Class
	Two-Variable Logics
	Nelson-Oppen Combination
	Discussion and Concluding Remarks
	References

