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Abstract

Laser experiments with optically excited frozen gases entail the excitation of polar-
ization waves. In a continuum approximation the waves are dispersionless, but their
frequency depends on the direction of the propagation vector. An outline is given of
the theory of transient phenomena that involve the excitation of these waves by a
resonant dipole-dipole transfer process.

1. INTRODUCTION

If the energy associated with the translational temperature of a gas is low compared to the
relevant excitation energies and to the energy associated with the inverse observation time,
then the gas can be considered as “frozen” and is analogous to an amorphous solid, or a
glass. Such a frozen gas can be produced by laser cooling, and the atoms or molecules can be
selectively placed in certain excited states. When only a few states are involved, the system
is analogous to a spin glass and can support polarization waves (dipolar Frenkel excitons)
that are analogous to spin waves. In this paper, we introduce a basic example of such waves
and discuss their excitation.

In laser experiments, the frozen gas is set up in a non-equilibrium electronic state, and
the evolution of this state is measured after some elapsed time. Relaxation processes can
be neglected for the duration of the experiment. Thus, the electronic state evolves towards
dynamical equilibrium through the excitation of polarization waves in the random medium of
the frozen gas. The theory of this process must determine the spectrum of the polarization
waves as well as their excitation probability during the transient evolution to dynamical
equilibrium. The two aspects of the problem will often be intermingled. However, we have
chosen to work on a system where they can be separated to some extent.

The system under consideration is fully described in an earlier paper by J. S. Frasier, V.
Celli, and T. Blum,1 henceforth to be referred to as FCB. In the present paper, we develop
an improved theory of the particular case that is discussed in Sec. III of FCB, under the
heading “Sparse ss′ → pp′ in a bath of sp→ ps.” Simply put, we consider one atom initially
in state s′ that is immersed in a frozen gas of atoms in state s. The s′ state is connected to
a p′ state by a dipole matrix element µ′, and an s state is connected to a p state by a dipole
matrix element µ. The p and p′ states are singled out from all possible states, because the
ss′ → pp′ transition is resonant, i.e., ε′s + εs = ε′p + εp, and it is known that the transition
rate peaks sharply at resonance.2,3 Deviations from resonance are not considered in this
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paper. The resonance condition is achieved by the application of a static electric field. The
ss′ → pp′ process excites polarization waves described by sp → ps transitions in the gas
of s atoms. Typically, the number N of s atoms in the volume Ω is such that N/Ω ' 109

atoms/cm3. The s′ atoms are “sparse” if their number N ′ is such that N ′/N � 1, and in
that case the result for N ′ atoms can be obtained by computing the result for one s′ atom,
averaging over distributions of the s atoms, and then multiplying this result by N ′.

2. THE EQUATIONS OF TIME EVOLUTION

We begin with the set of coupled differential equations in Eq. (24) of FCB, Fourier trans-
formed in time:

ωa0 =
∑
l

Vlcl + i, (1a)

ωcl = Vla0 +
∑
m

Ulmcm. (1b)

As in FCB, a0 (t) is the amplitude of the state in which the atom at the origin is in state
s′ and all other atoms are in state s, while cl (t) is the amplitude of the state in which the
atom at the origin is in state p′, the atom at position rl is in state p, and all other atoms
are in state s. The quantity Vl is the interaction potential

V (r) =
µµ′

r3

(
1− 3 cos2 θr

)
= −2

µµ′

r3
P2 (cos θr) , (2)

evaluated at r = rl, and θr is the polar angle. Similarly, Ulm is

U (r) =
µ2

r3

(
1− 3 cos2 θr

)
= −2

µ2

r3
P2 (cos θr) , (3)

evaluated at r = rl − rm. The angular factor present in V and U has been chosen for
mathematical convenience: the actual angular factor is more complicated, as discussed in
Sec. 5. In FCB, all the results depend only on an angular average of V 2 and, as is shown
in the Appendix of that paper, one can work with the effective angle-averaged potential
V (r) =

(
4/3
√

3
)
µµ′/r3. In the treatment presented here, however, the angular dependence

plays a more important role.
The potentials of Eqs. (2) and (3) have particularly simple Fourier transforms. Defining

V (k) =
∫
d3r V (r) e−ik·r, (4)

we find, using the standard expansion of e−ik·r in spherical Bessel functions and spherical
harmonics,4

V (k) = −8πµµ′P2 (cos θk)
∫ ∞

0

dr

r
j2 (kr)

= −8π

3
µµ′P2 (cos θk) . (5)
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Similarly,

U (k) = −8π

3
µ2P2 (cos θk) . (6)

With these expressions we can obtain explicit solutions for the polarization waves in the
continuum approximation, and we can then use these approximate solutions to describe the
dynamics of a frozen gas state.

3. THE CONTINUUM MODEL

We change the sums in Eqs. (1) to integrations over space, so that the evolution equations
become

ωa0 =
N

Ω

∫
d3r V (r) c (r) + i, (7a)

ωc (r) = V (r) a0 +
N

Ω

∫
d3r′ U (r− r′) c (r′) , (7b)

where c (r) is now an averaged quantity. Fourier transforming, we obtain simply

ωa0 =
N

Ω

∫ d3k

(2π)3 V (k) c (k) + i (8a)

ωc (k) = V (k) a0 +
N

Ω
U (k) c (k) . (8b)

The last equation shows that the frequencies of the polarization waves are

ω (k) =
N

Ω
U (k) , (9)

independent of the magnitude of k, but dependent on the direction, according to Eq. (6).
This peculiar dispersion relation, which is analogous to well-known results in spin wave
theory, is a consequence of the long range nature of the dipole-dipole interaction. We expect
it to be useful for values of k up to the order of the inverse of the interatomic spacing.5 The
solution of Eqs. (8) gives

a0 (ω) =
i

ω −M (ω)
, (10)

where

M (ω) =
N

Ω

∫ d3k

(2π)3

V (k)2

ω − ω (k)
. (11)

Carrying out the angular integration, we find

M (ω) = − 4

3π
(µ′)

2

[∫ kc

0
dk k2

]
m (z) , (12)
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where, leaving for Sec. 4 a discussion of the effective cutoff kc,

m (z) = z +
z2

√
3 + 6z

log

1−
√

3
1+2z

1 +
√

3
1+2z

 , (13)

and z = ω/u0 with

u0 =
8π

3
µ2N

Ω
. (14)

A plot of Rem and Imm on the real axis is shown in Fig. 1. For large z,

m (z) ∼ − 1

5z
+ O

(
1

z2

)
. (15)

As expected, m (z) is an analytic function in the upper z-plane, with a cut extending
from z = −1/2 to z = 1. On the real axis outside the cut m (z) is real, and the spectral
density on the cut is given by

Im [m (z)] =
π√
6

z2√
z + 1

2

. (16)

4. CONTINUUM APPROXIMATION FOR THE RANDOM MEDIUM

To complete the evaluation of the self-energy M (ω) of Eq. (12), it is necessary to introduce
a cutoff in the k integral. We can do this in a way that makes the result applicable, at least
approximately, to a random medium.

We know from Sec. II of FCB that the solution of Eqs. (1) for U = 0 is of the form of
Eq. (10), with

M (ω)U=0 =
1

ω

∑
l

V 2
l , (17)

while in the continuum limit, using Eq. (5),6

M (ω)U=0 =
N

Ω

∫ d3k

(2π)3

V (k)2

ω

=
32

45

N

Ω

[∫ kc

0
dk k2

]
(µµ′)2

ω
. (18)

Therefore, we see that if we make the substitution

N

Ω

∫ kc

0
dk k2 → 45

8

∑
l

1

r6
l

[P2 (cos θrl)]
2 , (19)

then in the limit of U going to zero our continuum result will agree with the result of FCB.
Applying this substitution, we find that Eq. (12) becomes
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M (ω) = − 15

2π

Ω

N
(µ′)

2
m (z)

∑
l

1

r6
l

[P2 (cos θrl)]
2

= −5m (z)

u0

∑
l

V 2
l . (20)

We can now average over atom positions by the technique described in FCB, Eq. (9),
with the result that, for Im z > 0,

(a0)av =
∫ ∞

0
dβ exp

iβω− v
√
−5iβ

u0
m (z)


=
∫ ∞

0

dβ

u0
exp

(
iβz − v

u0

√
−5iβm(z)

)
, (21)

where, as in FCB Eq. (A2),

v =
16π3/2

9
√

3

N

Ω
µµ′, (22)

so that

v

u0
=

2
√

3π

9

µ′

µ
. (23)

The integral in Eq. (21) can be expressed in terms of the complementary error function.1

To develop approximations that automatically include a momentum cutoff we introduce
the Green’s function of Eq. (1b), which satisfies the equation

ωGln = δln +
∑
m

UlmGmn. (24)

Then the solution of Eqs. (1) is of the form of Eq. (10), with the exact self-energy given by

M (ω) =
∑
lm

VlGlmVm. (25)

Similarly, the on-site Green’s function, which clearly cannot be treated in the continuum
approximation, can be written as

Gnn =
1

ω −∑mp UnmGmp,[n]Upn
, (26)

while, for l 6= n,

Gln = Gll,[n]UlnGnn +
∑
m6=l

Glm,[n]UmnGnn, (27)

where Glm,[n] is the Green’s function for a medium where the n atom is absent. These
equations are exact, but we now replace all occurrences of Gnn on the right hand side by
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〈G〉, where 〈G〉 denotes the average value of Gnn, which does not depend on n. Averaging
and Fourier transforming the last equation and setting

〈Glm〉 =
∫ d3k

(2π)3G (k) exp [ik· (rl − rm)] (28)

we obtain

G(k) =
〈G〉2 U(k)

1− (N/Ω) 〈G〉U(k)
(29)

=
Ω

N

(
1

〈G〉−1 − (N/Ω)U(k)
− 〈G〉

)
.

Similarly, writing the approximate version of Eq. (26) in the form

Gnn =
1

i

∫ ∞
0

dβ exp

(
iβω− iβ

∑
m

U2
nm 〈G〉

)
(30)

× exp

−iβ ∑
m6=p

UnmGmp,[n]Upn

 ,
and expanding the second exponential, we obtain the self-consistent equation

〈G〉 =
1

i

∫ ∞
0

dβ exp
(
iβω + (−iβ 〈G〉)1/2 u

)
(31)

×
(

1− 2iβ
∫ d3k

(2π)3Ueff (k)2G (k) + . . .

)
,

where Ueff (k) is the Fourier transform of

Ueff (r) = U(r) exp
(
−iβ 〈G〉U2(r)

)
. (32)

This shows how a cutoff is automatically introduced into the theory. With these values of
〈G〉 and 〈Glm〉 we have approximately

M (ω) =
∑
l

V 2
l 〈G〉 +

∑
l 6=n

Vl 〈Gln〉Vn. (33)

The self-consistency equation (32) has been discussed extensively in the approximation
where the contribution of G (k) is neglected (i.e., where contents of the last set of parentheses
in Eq. (32) are replaced by unity).7 It is believed that this approximation is adequate when
the polarization waves are localized in the random medium.

If 〈G〉 is known as a function of ω, one can obtain 〈a0〉 directly. Comparing Eq. (26)
with

a0 (ω) =
i

ω −∑lm VlGlmVm
, (34)

we see that for an infinite medium
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〈a0 (ω)〉 = i

(
µ

µ′

)2 〈
G

ω ( µ
µ′

)2
〉 . (35)

It is also possible, in principle, to compute the average of |a0 (t)|2 for the frozen gas.
The result for a0 (ω) with the M (ω) of Eq. (20) can be inverse Fourier transformed and
squared, and then the result must be averaged over all r. We have already discussed the
cut of m (z) in Sec. 3, and one can see from Eq. (10) and the plots of Fig. 1 that a0 (t)
will have a pole at some z < −1/2, a pole at z = 0, and a pole at some z > 1. Therefore
the inverse Fourier transform can be computed by summing the residues of these poles and
integrating around the cut, a process which is amenable to numerical techniques. However,
the result is unreliable because the pole at z = 0 is not really present in a random medium.
(In the continuum approximation, waves of zero frequency travel in the direction where
P2 (cos θ) = 0 and are not excited by the coupling V , which vanishes at this angle.) A
similar calculation using the result of Eq. (33) is very cumbersome. In practice, we have
found it preferable to solve the equations (1) numerically for a given configuration of a few
hundred atoms, and then average over an ensemble of configurations. These results will be
reported in a separate publication.

5. DISCUSSION AND CONCLUSIONS

In the course of our theoretical investigation of the transient behavior of an optically excited
gas, we have come across a particular class of polarization waves. They are Frenkel dipolar
excitons, with the difference that the degeneracies of the s and p states have been lifted by the
application of a static magnetic field. First, we note that the spin-orbit coupling separates
the p1/2 states from the p3/2 states. Then, considering the p1/2 states, we see that the

interaction between the |s, ↑〉 and
∣∣∣p1/2, mJ = 1

2

〉
states is indeed proportional to P2 (cos θ),

where θ is the angle between the interatomic vector and the applied magnetic field. In the
actual experiments,2,3 there is a spatially varying magnetic field in the magneto-optical trap,
and the full analysis is much more complicated.

In the simplest case these waves are dispersionless and their frequency, given in Eqs. (6)
and (9), depends on the angle θk between the propagation vector and the field’s direction
according to 1 − 3 cos2 θk = −2P2 (cos θk). These waves have not (to our knowledge) been
previously recognized, perhaps because their occurrence is confined to systems that can be
described by the highly simplified Eq. (1a), which additionally is treated in the continuum
approximation.

We remark that the continuum approximation becomes exact in the long wavelength
limit and is expected to have a wide range of validity because the dipole-dipole interaction
is long-ranged. The polarization waves also exist on a regular lattice, with a dispersion
relation that can be calculated.5,7 In a frozen gas the excitation spectrum will spread out,
but localization effects are probably small, again because of the long-range nature of the
dipole-dipole interaction.

Although in our model system almost all atoms are in an excited s state, they could just
as well be in the ground state. What is important to the model is that this state couples
effectively to a single p state. This is a good approximation for the Rydberg atoms of the
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system we are modeling,2,3 but it is not a good approximation in general. Also, the size of
the dipole matrix element µ is particularly large for Rydberg atoms.

Finally, we mention that the 1/r3 dipole-dipole interaction does not include retardation
effects. However, these are expected to influence the results only by inducing some dispersion
at very long wavelengths.

In this paper we consider a particular mechanism of excitation of the polarization waves,
namely, we allow the resonant transfer ss′ → pp′ to create the initial p state that then
interacts with the s states.3 However, other mechanisms of creation of the p state would
work just as well as long as a single p state is created. We have also assumed that if only
a few p atoms are created, then each can be treated independently in accordance with the
sparse limit.

We outline (but do not carry out in detail in this paper) the calculation of the transient
behavior involving the excitation of the newly-found polarization waves in a frozen gas.
While this allows us to establish contact with existing or currently planned experiments,
one should perhaps think instead of more direct ways of observing the polarization waves.
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Fig. 1. The real part (solid line) and imaginary part (dashed line) of the function m (z) for z
just above the real axis.
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