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Abstract. We introduce a strong notion of quasiconvexity in finitely generated groups,
which we call stability. Stability agrees with quasiconvexity in hyperbolic groups and is
preserved under quasi-isometry for finitely generated groups. We show that the stable
subgroups of mapping class groups are precisely the convex cocompact subgroups. This
generalizes a well-known result of Behrstock [Beh06] and is related to questions asked by
Farb-Mosher [FM02] and Farb [Far06].

1. Introduction

In order to understand the structure of a finitely generated group G, one often investigates
subgroups H ď G whose geometry reflects that of G. One successful application of this
approach is to the study of quasiconvex subgroups of hyperbolic groups. In this setting, H
is finitely generated and undistorted in G and these properties are preserved under quasi-
isometries of G. Quasiconvexity, however, is not as useful for arbitrary finitely generated
groups. Without hyperbolicity of G, quasiconvexity depends on a choice of generating set
for G and, in particular, is not preserved under quasi-isometry. To address this situation,
we introduce the stronger notion of stability, which agrees with quasiconvexity when G is
hyperbolic. Specifically, we define the following:

Definition 1. Let G be a finitely generated group. A subgroup H ď G is stable if H is
undistorted in G and for all L ě 0 there exists an R “ RpLq ě 0 satisfying the following:
for any pair of L-quasigeodesics of G that share common endpoints in H, each is contained
in the R-neighborhood of the other.

Our primary motivation for defining stable subgroups of a finitely generated group is
the mapping class group ModpSq of a connected, orientable surface S. In this note, we
relate stable subgroups of ModpSq to convex cocompact subgroups of the mapping class
group, introduced by Farb and Mosher in [FM02]. These are much studied subgroups of
ModpSq that have important connections to the geometry of Teichmüller space, the curve
graph, and surface group extensions. (See Section 2.3 for definitions.) Our main result can
be interpreted as a generalization of a theorem of Behrstock [Beh06] (also see [DMS10]).
Behrstock proves that the stable (or Morse) elements of ModpSq are exactly the pseudo-
Anosov mapping classes.

Our main theorem provides a purely group theoretic characterization of convex compact-
ness, which does not involve the geometry of either Teichmüller space or the curve graph.
This distinguishes our characterization of convex cocompact subgroups of mapping class
groups from those appearing in [FM02, KL08, Ham05]. We prove

Theorem 1.1. The subgroup G ď ModpSq is stable if and only if it is convex cocompact.
1
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Theorem 1.1 partially answers questions appearing in [FM02] and [Far06]. In particular,
Farb and Mosher ask how their notion of convex cocompactness (which they define as having
quasiconvex orbit in Teichmüller space) is related to quasiconvexity in the mapping class
group [FM02]. Also, in Problem 3.8 of [Far06], Farb asks what subgroups of mapping class
groups are quasiconvex with respect to fixed generating sets. Theorem 1.1 characterizes
the subgroups of the mapping class group that satisfy our strong notion of quasiconvexity
and implies that convex cocompact subgroups are quasiconvex in ModpSq with respect to
any generating set (Proposition 5.7). It is our hope that this notion of stability will also be
useful in other finitely generated groups.

2. Background

We keep this section brief and refer the reader to [BH09] for background on coarse
geometry and [FM12] for mapping class group basics. Throughout, we assume that the
reader has some familiarity with subsurface projections and hierarchies for the mapping
class group, as introduced in [MM00]. See [Min10, Beh06] for additional references.

2.1. Coarse geometry. Let pX, dXq and pY, dY q be metric spaces. Recall that f : X Ñ Y
is a K-quasi-isometric embedding if for all x1, x2 P X,

1

K
dXpx1, x2q ´K ď dY pfpx1q, fpx2qq ď KdXpx1, x2q `K.

We remark that what we have defined is usually called a pK,Kq-quasi-isometric embed-
ding in the literature, but our definition will reduce the number of constants appearing
throughout this note. If f : X Ñ Y has the additional property that every point in Y is
within K of the image fpXq, then f is a K-quasi-isometry and X and Y are quasi-isometric.

If I is a subinterval of either R or Z, then a K-quasi-isometric embedding f : I Ñ X
is called a K-quasigeodesic. We will often refer to f as a quasigeodesic and call K the
quasigeodesic constant for f . When f is an isometric embedding, it is called a geodesic.
The metric space X is called geodesic if for any x1, x2 P X there is a geodesic f : r0, N s Ñ X
with fp0q “ x1 and fpNq “ x2, i.e. there is a geodesic joining x1 to x2. We will sometimes
write rx1, x2s to denote an arbitrary geodesic joining x1 and x2. For any path γ : I Ñ X,
we will continue to use the symbol γ to denote the image of γ in X, as what is meant will
be clear from context.

Recall that a subset C of a geodesic metric space X is K -quasiconvex if for any c1, c2 P C
and any geodesic rc1, c2s in X, rc1, c2s Ă NKpCq. Here, NKpCq denotes the closed K-
neighborhood of C. For any ε ą 0, two subsets A and B of X have Hausdorff distance
no greater than ε if A Ă NεpBq and B Ă NεpAq. The infimum over all such ε is the
Hausdorff distance between A and B, denoted by dHauspXqpA,Bq. Throughout this note, we
reserve the notation dpA,Bq to denote the diameter of the union of A and B. In symbols,
dpA,Bq “ diampAYBq.

We make one further remark on notation. The expression A ă B is defined to mean
that there exists a K ě 1 so that A ď K ¨ B ` K. In different contexts the constant K
will depend on particular parameters but not on the numbers A and B directly. We define
A ą B similarly and write A — B if both A ă B and B ă A. When using this notation
below, we will be clear about the dependence of K.
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2.2. Hyperbolic geometry. A geodesic metric space X is δ-hyperbolic if for any x, y, z P
X and any geodesic segments rx, ys, ry, zs, rx, zs joining them, rx, zs Ă Nδprx, ys Y ry, zsq.
That is, X has δ-thin triangles. In this note, we will need a few well-known properties
about the nearest point retraction from a hyperbolic metric space X to a quasigeodesic γ
in X. See [BH09] for additional details.

Let γ : r0, N s Ñ X be a K-quasigeodesic. The nearest point retraction from X to γ is a
map n “ nγ : X Ñ impγq defined as follows: for x P X, npxq is any point in the image of
γ such that dXpx,npxqq “ miniPr0,Ns dXpx, γpiqq. In the case that X is δ-hyperbolic, there
is a p ě 0 depending only on K and δ such that if γpjq is a different point on γ minimizing
distance to x, then dXpnpxq, γpjqq ď p. Moreover, npγpiqq “ γpiq for any i P r0, N s and for
any x, y P X,

dXpnpxq,npyqq ď p ¨ dpx, yq ` p.

In Section 5, the nearest point retraction will be used to define a projection from the
space X to the domain interval of a quasigeodesic.

2.3. Curves, markings, and hierarchy paths. In this section, we recall the work of
Masur-Minsky on the curve and marking graphs. Fix a orientable surface S with genus
g ě 0 and p ě 0 punctures so that ωpSq “ 3g ´ 3` p ě 1; ωpSq is called the complexity of
S. The curve graph, denoted CpSq, is a locally infinite simplicial graph whose vertices are
isotopy classes of essential simple closed curves on S and two (isotopy classes of) curves are
joined by an edge if they can be realized disjointly on S. The curve graph is the 1-skeleton
of a simplicial complex introduced by Harvey in [Har81].

Remark 2.1. The above definition is for S with ωpSq ě 2. When ωpSq “ 1, the definition
is modified so that CpSq is the Farey graph. See Subsection 2.4 of [MM00] for when S is an
annulus, i.e. ωpSq “ ´1.

Endow CpSq with the graph metric. We frequently use the following foundational result
of Masur-Minsky [MM99]:

Theorem 2.2 ([MM99]). For any S, there is a δ ą 0 so that CpSq is δ-hyperbolic.

A (complete clean) marking, µ, on S is a pants decomposition called the base of µ,
basepµq, and, for each α P basepµq, a transversal tα P CpSq which intersects α and no other
base curve. The marking graph, MpSq, is a simplicial graph whose vertices are markings,
with two markings connected by an edge if they differ by a Dehn (half) twist around a base
curve pα, tαq ÞÑ pα, Tα ¨ tαq called a twist move, or a flip move, which switches a base curve
and its transversal, pα, tαq ÞÑ ptα, αq (see Section 2.5 of [MM00] for more details). Masur
and Minsky show:

Theorem 2.3 ([MM00]). ModpSq is ModpSq-equivariantly quasi-isometric to MpSq.

Often we want to compare two curves or markings on a subsurface. For any curve
α P CpSq and nonannular subsurface Y Ă S, the subsurface projection of α to Y is the
subset πY pαq Ă CpY q obtained by restricting α to Y and completing the resulting arcs
to curves along BY in a natural way (see Section 2.3 of [MM00] for more details and
the definition when Y is an annulus). In the case of a marking µ P MpSq, one projects
only the base, that is πY pµq “ πY pbasepµqq. For µ1, µ2 P MpSq, we write dY pµ1, µ2q “

diamCpY qpπY pµ1q Y πY pµ2qq.
One of the main constructions from [MM00] is the hierarchy machinery, from which we

need only a few features of the induced hierarchy paths (see Section 4 of [MM00]). Given
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two markings µ1, µ2 PMpSq, a hierarchy J between µ1 and µ2 is a collections of geodesics in
various subsurface curve graphs whose interrelations encode the combinatorial relationship
between µ1 and µ2.

For any A ě 0 we call a subsurface Y Ď S (possible Y “ S) an A-large link for µ1 and µ2

if dY pµ1, µ2q ě A. The following theorem says that the distance between any two markings
is coarsely determined by the large links between them:

Theorem 2.4 (The distance formula; Theorem 6.12 in [MM00]). There is a constant A0 ě

0, depending only on S, so that for all A ě A0 there exists K ě 1 such that for any pair of
markings µ1, µ2 PMpSq, we have

1

K
¨ dMpSqpµ1, µ2q ´K ď

ÿ

Y ĎS

rdY pµ1, µ2qsA ď K ¨ dMpSqpµ1, µ2q `K

where rXsA “ X if X ě A and 0 otherwise.

By contrast, we say that two markings µ1, µ2 PMpSq are E-cobounded if dY pµ1, µ2q ď E
for every proper subsurface Y Ř S. More generally, we say that a collection of markings
M ĂMpSq is E-cobounded is every pair of markings in M is E-cobounded. Coboundedness
is a strong condition and paths between cobounded markings have hyperbolic behavior, a
central idea in Section 5.

Though hierarchies are technical objects with many applications, for this note their utility
lies in their ability to be built into hierarchy paths. We collect some properties of hierarchy
paths in the following theorem:

Theorem 2.5. There are M,M1,M2 ě 0 depending only on S, such that for any µ1, µ2 P

MpSq, the following hold:

(1) There is a hierarchy path H : r0, N s ÑMpSq with Hp0q “ µ1 and HpNq “ µ2, and
every hierarchy path is an M -quasigeodesic.

(2) For each Y Ď S, the projection of the hierarchy path H to CpY q via subsurface
projection is an unparameterized quasigeodesic with uniform constants.

(3) If dY pµ1, µ2q ě M1, then the set of markings in H whose bases contain BY is
a contiguous subpath denoted HY . Further, if αY and βY denote the initial and
terminal markings of HY , respectively, then

dY pαY , βY q ě dY pµ1, µ2q ´ 2M2.

(4) For any E ą 0 there is an E1 ą 0 depending only on E and S such that if µ1, µ2

are E-cobounded, H is a hierarchy path between them, and µ1
1, µ

1
2 P H, then µ1

1 and
µ1

2 are E1-cobounded.

Remark 2.6. The above theorem essentially follows from the work in [MM00], with (1)
being [Theorem 6.10, [MM00]], (2) following from the construction, and (3) a consequence
of [Lemma 5.16, [Min10]]. Part (4) follows from (2) and (3). These statements also appear
in [BMM11].

Remark 2.7 (Hierarchy paths between cobounded markings). If two markings µ1, µ2 P

MpSq are E-cobounded, then Theorem 2.4 implies that dMpSqpµ1, µ2q — dCpSqpµ1, µ2q. It
follows then from Theorem 2.5 (2) that the projection to CpSq of any hierarchy path between
µ1 and µ2 is a genuine quasigeodesic. See Section 5 below.
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2.4. Convex cocompactness in ModpSq. Convex cocompact subgroups of mapping class
groups were introduced by Farb and Mosher in [FM02]. A finitely generated G ď ModpSq
is convex cocompact if for some x P T pSq the orbit G ¨ x is quasiconvex with respect to the
Teichmüller metric on T pSq. Farb-Mosher verify that convex cocompactness is independent
of the chosen x P T pSq and relate convex cocompact subgroups of mapping class groups to
hyperbolic extensions of surfaces groups. See [FM02, Ham05] for details.

Kent-Leininger [KL08] and, independently, Hamenstädt [Ham05] gave a characterization
of convex cocompactness in terms of the curve graph CpSq:

Theorem 2.8 (Kent-Leininger, Hamenstädt). Let G ď ModpSq be finitely generated. Then
G is convex cocompact if and only if some (any) orbit map GÑ CpSq is a quasi-isometric
embedding.

Our main goal in this note is to provide a characterization of convex cocompactness in
ModpSq that uses only the geometry of ModpSq itself, and neither Teichmüller space nor
the curve graph. This geometric characterization leads us to define the notion of stability,
which is defined for arbitrary finitely generated groups.

3. Stability

In this section, we define stability and provide some basic properties. Informally, a quasi-
isometrically embedded subspace is stable if all quasigeodesics beginning and ending in the
space are forced to fellow travel. This strong notion of convexity forces hyperbolic-like
behavior around the subspace.

Definition 2. Let f : Y Ñ X be a quasi-isometric embedding between geodesic metric
spaces. We say Y is stable in X if for any L ě 0 there is a R “ RpLq ě 0 so that if
γ : ra, bs Ñ X and γ1 : ra1, b1s Ñ X are L-quasigeodesics with γpaq “ γ1pa1q P fpY q and
γpbq “ γ1pb1q P fpY q, then

dHauspγ, γ
1q ď R.

Note that when we say Y is stable in X we mean that Y is stable in X with respect
to a particular quasi-isometric embedding Y Ñ X. Such a quasi-isometric embedding will
always be clear from context, e.g., an undistorted subgroup H of a finitely generated group
G.

Remark 3.1. The condition that f : Y Ñ X is a K-quasi-isometric embedding for some
K ě 1 implies that if γ is an L-quasigeodesic that begins and ends on the image of Y then
it remains within an R1-neighborhood of fpY q where R1 “ RpmaxtK,Luq. In particular,
fppY q is quasiconvex in X. To see these statements, note that if we let σ be a geodesic in
Y whose end points map under f to the end points of γ, then fpσq is a K-quasigeodesic
and dHauspγ, σq ď R1.

It is well-known that when X is δ-hyperbolic, the preimage of a quasiconvex subspace
through a quasi-isometric embedding is itself quasiconvex. This property, however, fails
when the space X is not hyperbolic. An important property of stability is that it is preserved
under quasi-isometric embeddings. This will be especially important when characterizing
stable subgroups of mapping class groups.

Proposition 3.2. Suppose that X,Y, Z are geodesic metric spaces and X Ñ Y Ñ Z are
quasi-isometric embeddings. If X is stable in Z, then X is stable in Y .
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Proof. Let γ1 and γ2 be L-quasigeodesics in Y which share endpoints in X. If f : Y Ñ Z
is a K-quasi-isometric embedding, then fpγ1q, fpγ2q are L1-quasigeodesics in Z that share
endpoints in X, where L1 depends only on L and K. By stability of X in Z, these quasi-
geodesics remain within an R-neighborhood of one another, for R depending on L1. We
conclude that γ1 and γ2 have Hausdorff distance no greater than KpR `Kq. Since these
constants depend only on K and L, this completes the proof. �

Lemma 3.3. If Y is stable in X then Y is δ-hyperbolic for some δ ě 0.

Proof. This follows from well-known arguments, so we only provide a sketch. See Lemma
6.2 of [MM99] for details. Fix a K-quasi-isometric embedding f : Y Ñ X. Let x, y, z P Y
and consider geodesics rx, ys, ry, zs, rx, zs in Y joining these points. It suffices to show that
rx, ys is contained in the δ-neighborhood of the other two geodesics, for δ depending only
on K and the stability constants.

If z1 denotes a point on rx, ys nearest to z in Y , then both rz, z1sYrz1, xs and rz, z1sYrz1, ys
are 3-quasigeodesics, where rx, ys “ rx, z1s Y rz1, ys. The point is that the images of these
(quasi-) geodesics under f : Y Ñ X are quasigeodesics with uniform constants. Hence, there
is an R ě 0 depending only on these constants so that fprz, z1s Y rz1, xsq Ă NR pfprx, zsqq
and fprz, z1s Y rz1, ysq Ă NR pfpry, zsqq. Since f is a K-quasi-isometric embedding, this
implies that every point on rx, ys is within KpR`Kq of some point on either rx, zs or ry, zs.
This completes the proof. �

Although we have defined stability in a general setting, our focus will be the case of a
finitely generated group G. Fix a finite generating set S of G and let | ¨ |S be the associated
word metric. Recall that any two generating sets of G give quasi-isometric metrics and
that a finitely generated subgroup H ď G is called undistorted if the inclusion H Ñ G is a
quasi-isometric embedding for some (any) word metrics on H and G.

Definition 3. Let G be a finitely generated group with word metric | ¨ |S. Then H ď G
is stable if H is undistorted in G and H Ă pG, | ¨ |Sq is stable (as in Definition 2) for any
choice of word metric on H.

Note that in the definition of stability for H ď G, since H is undistorted in G one can
use any word metric on H when defining stability. The next lemma, whose proof follows
directly from Lemma 3.2, shows that the stability of H ď G is also independent of the word
metric on G.

Lemma 3.4. Let G be a finitely generated group. If H ď G is stable with respect to some
word metric | ¨ |S on G, then it is stable with respect to any word metric on G.

Remark 3.5. For a finitely generated group G, the property of stability of a subgroup H
is well studied in the case where H is cyclic. In this case, H “ xhy, the generating element
h is usually called either stable or Morse. See [DMS10] and the references found there.

4. The Masur-Minsky criteria for stability

To show that convex cocompact subgroups of mapping class groups are stable, we use
the criterion for hyperbolicity developed by Masur-Minsky in [MM99] which we adapt for
our purposes.

We say that a family of paths Γ in X is transitive for a subspace Y Ă X if any two points
in Y can be connected by a path in Γ.
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Definition 4. Let X be a metric space with subspace Y Ă X. Let Γ be a transitive family
of paths in X between points in Y with the following property: for each β : I Ñ X there
exists a map π : X Ñ I and constants a, b, c ą 0 such that

(1) For any t P I, diamXpβprt, πpβptqqsqq ď c.
(2) If dpx1, x2q ď 1, then diampβprπpxq, πpyqsq ď c.
(3) If dpx, βpπpxqqq ě a and dpx, x1q ď b ¨ dXpx, βpπpxqqq, then

diampβrπpxq, πpx1qsq ď c.

Then we call Γ a family of uniformly contracting paths for Y Ă X.

Remark 4.1. The projection βpπpxqq P impβq need not be a bounded distance from the
points on β which are closest to x.

Proposition 4.2 ([MM99]). Let Γ be a family of uniform contracting paths for Y Ă X.
Then for any L ě 0 there exists an R “ RpLq ě 0 with the following property: if γ is
a L-quasigeodesic that begins and ends on Y , then for any β P Γ with β having the same
endpoints of γ, we have dHauspγ, βq ď R.

Proof. This is proven in Lemma 6.1 of [MM99], which states that any space X with a family
of uniformly contracting paths for X has stability of quasigeodesics. The proof of Lemma
6.1 shows that any L-quasigeodesic α whose endpoints agree with a β P Γ is contained in an
R1-neighborhood of β, where R1 depending only on L and the uniform contracting constants
(a, b, c from Definition 4). This proves our proposition. �

The following consequence is now immediate:

Corollary 4.3. Suppose that f : Y Ñ X is a quasi-isometric embedding between geodesic
metric spaces and that fpY q Ă X has a family of uniform contracting paths. Then Y is
stable in X.

5. Convex cocompactness implies stability

Our starting point is the following characterization of convex cocompact subgroups of the
mapping class group, which follows easily from [KL08] or by combining results of [FM02]
and [Raf10]. We provide a few details using these references.

Recall that a collection of markings M ĂMpSq is called E-cobounded if for any µ, ν PM
and any proper subsurface Y Ĺ S, we have dY pµ, νq ď E.

Lemma 5.1. Let G be a finitely generated subgroup of ModpSq. If G is convex cocompact,
then, for any marking µ P MpSq, there is an E ě 0 so that the orbit G ¨ µ Ă MpSq is
E-cobounded. Conversely, if G is undistorted in ModpSq and there is a marking µ PMpSq
and an E ě 0 so that G ¨ µ is E-cobounded, then G is convex cocompact.

Proof. The first statement is contained in the proof of Theorem 7.4 of [KL08], where the
assumption on G is that the orbit map from G into CpSq is a quasi-isometric embedding.

Alternatively, we can see E-coboundedness of the orbit G ¨ µ using the fact that orbits
of G in T pSq are quasiconvex. Let x P T pSq be such that every curve in µ has bounded
length in x. If there exists subsurfaces Yi Ĺ S and gi P G with

dYipµ, gi ¨ µq Ñ 8

then the Teichmüller geodesics τi joining x and gi ¨ x become εi-thin for εi Ñ 0 [Theorem
5.5, [Raf10]]. (See also Theorem 4.1 of [RS09].) However, the orbit G ¨ x is in some fixed
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thick part of T pSq and so we must have that points along τ get arbitrary far from the orbit
G ¨ x. This contradicts orbit quasiconvexity of G in T pSq.

The second statement follows from the Masur-Minsky distance formula (Theorem 2.4).
Since G is undistorted, we may coarsely measure distance in G by distance in the orbit
G ¨ µ ĂMpSq. That is, for any g1, g2 P G

dGpg1, g1q — dMpSqpg1 ¨ µ, g2 ¨ µq — dSpg1 ¨ µ, g2 ¨ µq `
ÿ

Y ĹS

rdY pg1 ¨ µ, g2 ¨ µqsA,(1)

where the symbol — depends only on the surface S and the quasi-isometry constant of the
orbit map G Ñ MpSq. Choosing the threshold A in the distance formula (Theorem 2.4)
to be larger than E shows that distance in G is coarsely distance in its curve graph orbit.
Hence, the orbit map GÑ CpSq, given by g ÞÑ g ¨ µ, is a quasi-isometric embedding and so
G is convex cocompact by Theorem 2.8. This completes the proof. �

For the remained of this section suppose that G ď ModpSq is convex cocompact. In
order to show that G is stable in ModpSq, it suffices to show that G ¨ µ is stable in MpSq.
This follows from the fact that ModpSq is quasi-isometric to MpSq and G is undistorted in
ModpSq. By Lemma 5.1, G ¨ µ is sE-cobounded for some sE ě 0. We proceed by showing
that hierarchy paths form a family of uniform contracting paths for G ¨ µ ĂMpSq.

Our use of hierarchy paths is motivated by the Slice Comparison Lemma [Lemma 6.7,
[MM00]], Behrstock’s work on the asymptotic cone of ModpSq [Beh06], and more recent
work of Sisto [Sis11]. To provide the most direct proof of Theorem 5.6, we have chosen to
use a theorem of Duchin-Rafi [DR09] (stated as Theorem 5.3 below), which is compatible
with the sort of projection from Definition 4. The strong contraction property of hier-
archy paths between cobounded pants decompositions was also proven in Theorem 4.4 of
[BMM11] in their work on the Weil-Petersson geometry of T pSq. We have included a proof
of Proposition 5.5 here for completeness and as an application of the Masur-Minsky criteria
(Theorem 4.2).

Let p : MpSq Ñ CpSq be the map which associates to a marking µ the collection of curves
which appear in the base of µ, i.e a P ppµq if and only if a P basepµq. This map, called the
shadow map, is coarsely 4-Lipschitz [Lemma 2.5, [MM00]]. For any markings µ, ν PMpSq,
let

H “ Hpµ, νq : r0, N s ÑMpSq

be a hierarchy path with Hp0q “ µ and HpNq “ ν. Recall that H is a M -quasigeodesic
in MpSq, where M depends only on the topology of S (Theorem 2.5 p1q). If µ and ν are
sE-cobounded, then all the markings that appear in H are E-cobounded, for some E ě 0
that depends only sE and the surface S (Theorem 2.5 p4q). By the argument in Lemma 5.1,
h “ p ˝H : r0, N s Ñ CpSq is a quasigeodesic in CpSq from ppµq to ppνq whose quasigeodesic
constant depends only on E. More precisely, if we choose the cut off A in the distance
formula (Theorem 2.4) to be larger than E, then for any i, j P r0, N s

|i´ j| ď M ¨ dMpSqpHpiq, Hpjqq `M

ď MK ¨ dSphpiq, hpjqq `MK2 `M,

where K depends only on E and S. Hence, h “ p ˝H is a KE-quasigeodesic in CpSq, where
KE “ K2M .

As h : r0, N s Ñ CpSq is a KE-quasigeodesic into the δ- hyperbolic space CpSq, there is a
nearest point retraction nh : CpSq Ñ h as discussed in Subsection 2.2. Define the projection
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projh : CpSq Ñ r0, N s to the domain of the path h so that for c P C0pSq,

hpprojhpcqq “ nhpcq.

That is, projhpcq is a parameter i P r0, N s so that the distance from c to the image of h is
minimized at hpiq. By the properties of nh stated in Subsection 2.2, it is immediate that
there is an L (depending only on E) so that this projection is both L-coarsely well-defined
and coarsely L-Lipschitz. We emphasize that this uses only the facts that CpSq is hyperbolic
and h : r0, N s Ñ CpSq is a quasigeodesic.

The projection projh : r0, N s Ñ CpSq induces a corresponding map from MpSq to r0, N s.
Let

ProjH : MpSq Ñ r0, N s

be defined as follows: for any α PMpSq, set ProjHpαq “ projhpaq, for some choice of curve
a P ppαq Ă CpSq. Note that for different choices of curves a, a1 P ppαq we have dSpa, a

1q ď 4
and so |projhpaq ´ projhpa

1q| ď 4L.

Remark 5.2. It may seem slightly unnatural to define the projection ProjH to the domain
of the path H, rather than to its image in MpSq. We have done so for two reasons. First,
this allows for a direct application of Theorem 4.2, which verifies that quasigeodesics fellow
travel in a uniform way. Indeed, projecting to the domain of a path is the approach of
Masur-Minsky in [MM99]. Second, it seems that such a projection of a marking µ to a
hierarchy path H need not be a uniformly bounded distance from the closet point to µ on
H. Using Theorem 4.2 avoids this subtlety.

Our goal for the rest of this section, achieved in Proposition 5.5 below, is to show that
the collection of hierarchy paths between markings in a fixed orbit of a convex cocompact
subgroup G is a family of uniform contracting paths for the orbit in MpSq. That convex
cocompact subgroups are stable, Theorem 5 below, follows quickly from Proposition 5.5 and
Corollary 4.3. The proof of the contracting property uses the following theorem of Duchin
and Rafi [DR09] (see also Theorem 4.3 of [BMM11]):

Theorem 5.3 (Theorem 4.2, [DR09]). Given E there exist B1 and B2 so that if H is a
hierarchy path in MpSq between E-cobounded markings µ and ν, then for any α P MpSq
with dpα,Hq ě B1 and R “ dpα,Hq{B1, we have

diamCpSqphpProjHpBRpαqqqq ď B2,

where BR denote the R-ball in MpSq.

Remark 5.4. In the statement of Theorem 5.3 in [DR09], the authors allow any quasi-
geodesic in MpSq all of whose markings are uniformly cobounded. This is automatically
satisfied by the hierarchy path H (Theorem 2.5 p4q).

Proposition 5.5. Let M Ă MpSq be a collection of E-cobounded markings. The set of
all hierarchy paths between markings in M is a family of uniformly contracting paths for
M ĂMpSq.

Proof. Let µ, ν P M be arbitrary and let H : r0, N s Ñ MpSq be an hierarchy path with
Hp0q “ µ and HpNq “ ν. We show that the conditions from Proposition 4.2 are satisfied
for the projections ProjH defined above, with constants a, b, c depending only on E. For
p1q, we must show that for any i P I,

diamMpSqHpri,ProjHpHpiqqsq
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is bounded by a constant depending only on KE . As H is an M -quasigeodesic, this quantity
is bounded by M |i ´ ProjHpHpiqq| `M . Since hpiq “ ppHpiqq, for any curve a P ppHpiqq
the difference |projhpaq ´ i| is bounded by L. Hence,

M |i´ ProjHpHpiqq| `M ďM |i´ Projhpaq| `M ďM ¨ L`M,

as required.
For p2q, we show that for any α, β PMpSq with dMpSqpα, βq ď 1

diamMpSqpHprProjHpαq,ProjHpβqsqq

is bounded by a constant depending only on E. This is similar to p1q, since again it suffices
to bound |ProjHpαq ´ ProjHpβq|. Let a P ppαq and b P ppβq, then dSpa, bq ď 8 (p is
4-Lipschitz) and so |projhpaq ´ projhpbq| ď 8L. Hence,

|ProjHpαq ´ ProjHpβq| ď |projhpaq ´ projhpbq| ď 8L.

For p3q, we will apply Theorem 5.3. Before doing so, we must first show that there is a
B3 ě 0 so that for any α PMpSq,

dMpSqpα,HpProjHpαqq ď B3 ¨ dMpSqpα,Hq,

whenever dMpSqpα,Hq is sufficiently large. Here, as in Theorem 5.3, dMpSqpα,Hq is the
minimum distance from α to any marking in the image of H.

Let npαq be a marking on H that is closest to α and set ᾱ “ HpProjHpαqq. By construc-
tion, dSpα, ᾱq ď dSpα, npαqq. For a proper subsurface Y Ĺ S,

dY pα, ᾱq ď dY pα, npαqq ` dY pnpαq, ᾱq ď dY pα, npαqq ` E(2)

Plugging the above inequality (2) into the distance formula (Theorem 2.4) with threshold
A ě 2E gives

dMpSqpα, ᾱq ď B3 ¨ dMpSqpα, npαqq,

for some B3 ě 0. Note that to eliminate the additive constant in the distance formula, we
have used that dMpSqpα, npαqq ‰ 0.

Now set a “ B1B3, b “
1

B1B3
, and c “MpKE ¨B2 `KE ` 1q, where B1 and B2 are as in

Theorem 5.3 and B3 was determined above. Let α PMpSq with dMpSqpα,HpProjHpαqqq ě a
and β PMpSq with dMpSqpα, βq ď b ¨ dMpSqpα,HpProjHpαqqq. Then

dMpSqpα,Hq ě 1{B3 ¨ dMpSqpα,HpProjHpαqqq ě a{B3 “ B1

and

dMpSqpα, βq ď b ¨ dMpSqpα,HpProjHpαqqq

ď
1

B1B3
¨ dMpSqpα,HpProjHpαqqq

ď
1

B1
¨ dMpSqpα,Hq.

Hence, β P BRpαq for R “ 1
B1
dMpSqpα,Hq, and so by Theorem 5.3

dCpSqphpProjHpαqq, hpProjHpβqqq ď B2.

Since h is a KE-quasigeodesic, |ProjHpαq´ProjHpβq| ď KE ¨B2`KE , and so we conclude
that

diamMpSqpHprProjHpαq,ProjHpβqsq ďMpKE ¨B2 `KEq `M “ c.
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This completes the proof of condition p3q, and shows that the collection of hierarchy paths
between markings in M is a family of uniformly contracting paths for M in MpSq. �

Theorem 5.6. If G ď ModpSq is convex cocompact, then G is stable.

Proof. Since G is convex cocompact, it is undistorted in ModpSq. Fix µ PMpSq and recall
that the orbit map ModpSq Ñ MpSq, given by g ÞÑ g ¨ µ, is a quasi-isometry. Hence, by
Proposition 3.2, it suffices to show that G Ñ MpSq is stable. By Theorem 5.1, the orbit
G ¨ µ is E-cobounded for some E ě 0. Proposition 5.5 then implies that the set of all
hierarchy paths between vertices in the orbit G ¨ µ is a family of uniform contracting paths
for G ¨ µ in MpSq. By Corollary 4.3, this implies that G Ñ G ¨ µ ĂMpSq is stable. Thus
G is a stable subgroup of ModpSq. �

The following corollary is now immediate.

Corollary 5.7. Let G ď ModpSq be convex cocompact. Then G is quasiconvex in ModpSq
with respect to any (finite) generating set.

6. Stability implies convex cocompactness

The proof of the converse to Theorem 5.6 is a straightforward contradiction argument
using the structure of hierarchy paths and the marking complex (see Section 2.3). Before
we proceed with the proof, we recall some notions from [BM08] about the product regions
of MpSq associated to simplices of CpSq. By a simplex of CpSq, we mean a collection of
pairwise adjacent vertices of CpSq.

Let ∆ Ă CpSq be a simplex, and let Qp∆q Ă MpSq be the set of markings whose bases
contain ∆. We note that Qp∆q is quasi-isometric to StabModpSqp∆q, the stabilizer of ∆ in
ModpSq. Let σp∆q Ă S be the components of Sz∆ which are not pairs of pants, including
the annuli about the curves of ∆. There is a map

Qp∆q Ñ
ź

Y Pσp∆q

MpY q

where MpY q “ CpY q if Y is an annulus. The map is given by restricting (or projecting) a
marking µ P Qp∆q to markings on the subsurfaces in σp∆q and, for each α P ∆, associating
the transversal to α in µ to a corresponding point in Cpαq. The following lemma is essentially
an application of the distance formula (Theorem 2.4):

Lemma 6.1 (Lemma 2.1, [BM08]). The correspondence

Qp∆q Ñ
ź

Y Pσp∆q

MpY q

is a P -quasi-isometry, where P ě 0 depends only on the surface S.

We can now give the idea of the proof of Theorem 6.3. If a group G ď ModpSq is sta-
ble but not convex cocompact, then Lemma 5.1 implies that the G-orbit of some marking
µ PMpSq does not have bounded subsurface projections. Thus, for any E ą 0, we can find
a marking ν P G ¨ µ such that dY pµ, νq ą E for some proper subsurface Y Ĺ S. Theorem
2.5 implies that there is a hierarchy path H from µ to ν and a subsegment HY Ă H with
HY Ă QpBY q so that |HY | ą E. If αY , βY P HY are the initial and terminal markings of
HY , respectively, then stability of G implies that there are markings µ1, µ2 P G ¨µ such that
µ1 and µ2 are within some uniform distance of αY and βY . Using the product structure in
Lemma 6.1, we can use HY to build two quasigeodesics between µ1 and µ2 with constants
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depending only on S, whose Hausdorff distance is coarsely at least E. Since E ą 0 was
chosen arbitrarily, this contradicts the stability assumption for G ¨ µ.

In this last step, we are taking advantage of the well-known fact that quasigeodesics in
product spaces need not fellow-travel, a variation of which we record in the following lemma:

Lemma 6.2. Let X and Y be connected, infinite-diameter graphs and let Z be the 1-skeleton
of X ˆ Y, endowed with the graph metric. For any vertices z1 “ px1, y1q and z2 “ px2, y2q

of Z, there are 3-quasigeodesics γa, γb each from z1 to z2 so that

dHauspγa, γbq ě maxtdXpx1, x2q, dY py1, y2qu.

Figure 1. The path γa “ pσX , y1q ¨ px2, σYq is far from the path γb “
px1, τYq ¨ pσX , y3q ¨ px2, ωYq.

Proof. The proof is easily seen with Figure 1, but we provide the written details here. Since
we are working only with graphs, all paths will be considered as sequences of adjacent
vertices indexed by intervals of integers. Hence, for a path γ : r0, N s Ñ Z, we have
`pγ|ri,jsq “ |j ´ i|, where the length of such a path is the number of edges it traverses. In
this case, to show that γ is a 3-quasigeodesic, it suffice to show that for any i ď j,

`pγ|ri,jsq ď 3 ¨ dZpγpiq, γpjqq.

Also, recall that for any two vertices z1 “ px1, y1q and z2 “ px2, y2q of Z, the graph metric
is

dZpz1, z2q “ dX px1, x2q ` dYpy1, y2q.(3)

Now, suppose that d :“ dX px1, x2q ě dYpy1, y2q and let σX be a geodesic path in X that
joins x1 to x2. Similarly, let σY be a geodesic path in Y that joins y1 to y2. For any y P Y,
we denote by pσX , yq the corresponding geodesic path in Z whose first coordinate entries
are the vertices of σX and whose second coordinate is y. With this notation, let γa be the
path in Z that is a the concatenation (read from left to right)

γa “ pσX , y1q ¨ px2, σYq.
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It is clear that γa is an path of adjacent vertices of Z which joins z1 to z2. Moreover, γa is a
geodesic path. This follows from Equation 3 and the observation that γa does not backtrack
in either coordinate.

We now construct a 3-quasigeodesic γb which also joins z1 to z2 but travels far from γa.
Let y3 be a vertex of Y with the property that dYpy1, y3q “ dX px1, x2q “ d. Let τY be a
geodesic path in Y between y1 and y3 and let ωY be a geodesic path in Y between y3 and
y2. Now define γb to be the path of adjacent vertices of Z given by

γb “ px1, τYq ¨ pσX , y3q ¨ px2, ωYq.

As before, γb is a path from z1 to z2. Also, since γb contains the point px1, y3q, the Hausdorff
distance from γb to γa is no less than the distance from px1, y3q to γa. Since,

dZppx1, y3q, γaq “ mintdZppx1, y3q, pσX , y1qq, dZppx1, y3q, px2, σYqu

ě mintdZppx1, y3q, px1, y1qq, dZppx1, y3q, px2, y3qqu

“ mintdYpy3, y1q, dX px1, x2qu “ d,

we have dHauspZqpγa, γbq ě d “ dX px1, x2q. It remains to show that γb is a 3-quasigeodesic.
As in the construction of γa, both px1, τYq ¨ pσX , y3q and pσX , y3q ¨ px2, ωYq are geodesic

subpaths of γb. Hence, let zi P px1, τYq and let zj P px2, ωYq and note that dZpzi, zjq ě
dX px1, x2q. Denote by γb|rzi, zjs the portion of γb between zi and zj . We compute

`pγb|rzi, zjsq “ dZpzi, px1, y3qq ` dZppx1, y3q, px2, y3qq ` dZppx2, y3q, zjq

ď 3 ¨ dX px1, x2q

ď 3 ¨ dZpzi, zjq.

By our remark in the first paragraph of this proof, we are done. �

The following theorem completes the proof of Theorem 1.1.

Theorem 6.3. Suppose that G ď ModpSq is stable. Then G is convex cocompact.

Proof. Assume towards a contradiction that G ď ModpSq is stable but not convex co-
compact. For a fixed µ P MpSq, the orbit map G Ñ MpSq given by g ÞÑ g ¨ µ is a
K-quasi-isometric embedding for some K ě 1. By Proposition 3.2, we have that G ¨ µ is
stable in MpSq.

Let L “ maxtK,Mu, where M is the quasigeodesic constant for a hierarchy path (The-
orem 2.5 (1)), and set A1 “ RpLq, the stability constant for L-quasigeodesics in MpSq
which begin and end on G ¨ µ. Since any two markings in the orbit G ¨ µ are joined by
both hierarchy paths and K-quasigeodesics which are contained in G ¨µ, any hierarchy path
between markings in G ¨ µ is contained in the A1-neighborhood of G ¨ µ (see Remark 3.1).
Finally, set A2 “ Rp3P 2 ` 2A1q, where P is as in Theorem 6.1.

Since G is undistorted but not convex cocompact, Proposition 5.1 implies that for any
E ě 0 there is a g P G and a proper subsurface Y Ă S such that

dY pµ, g ¨ µq ě E.

For E ě M1, Theorem 2.5 (3) implies that any hierarchy path H : r0, N s Ñ MpSq with
Hp0q “ µ and HpNq “ g ¨ µ contains a subpath HY such that BY Ă basepµq for each
µ P HY , i.e. HY Ă QpBY q. If we denote the initial marking and terminal markings of HY

by αY and βY , respectively, then

dMpY qpαY , βY q ě
1

4
dY pαY , βY q “

1

4
pE ´ 2M2q(4)
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with the last equality in (4) following from Theorem 2.5 (3). Set E1 “ 1
4pE ´ 2M2q.

By Lemma 6.1, QpBY q is P -quasi-isometric to
ś

XĂσpBY q MpXq. To apply Lemma 6.2,

set Y “MpY q and X “
ś

XĂσpBY qztY u MpXq. Then

Z “ X ˆ Y “
ź

XĂσpBY q

MpXq.

Since αY , βY P QpBY q, we may use the correspondence of Lemma 6.1 to view αY and
βY in the product space Z. Equation (4) implies that dYpαY , βY q ě E1, where dYpαY , βY q
is just the distance between αY and βY in MpY q. Lemma 6.2 implies that there exists 3-
quasigeodesics γ1 and γ2 in Z that join the markings αY and βY in Z and whose Hausdorff
distance in Z is greater than or equal to E1.

Using the P -quasi-isometry in Theorem 6.1, we may view γ1 and γ2 as 3P 2-quasigeodesics
in MpSq that join the markings αY and βY . Measuring Hausdorff distance in MpSq, we
have

dHauspMpSqqpγ
1, γ2q ě

E1 ´ P

P
.(5)

Since the original hierarchy path H joins markings in G ¨ µ, it is contained in an A1-
neighborhood of the orbit G ¨ µ. Hence, there are markings µ1, µ2 P G ¨ µ so that

dMpSqpαY , µ1q ď A1 and dMpSqpβY , µ2q ď A1,(6)

where A1 depends only on S, as above. By appending initial and terminal geodesic segments
of length no more than A1 to γ1 and γ2, we may consider these paths as p3P 2 ` 2A1q-
quasigeodesics in MpSq that join the orbit points µ1, µ2 P G ¨ µ. By our choice of A2 “

Rp3P 2 ` 2A1q, the stability constant for p3P 2 ` 2A1q, any two p3P 2 ` 2A1q-quasigeodesics
between markings in G ¨ µ have Hausdorff distance no greater than A2.

Since E ě 0 was arbitrary, we may choose E ą 4pPA2 ` P q ` 2M2 so that

E1 “
1

4
pE ´ 2M2q ą PA2 ` P.

Then by Equation 5

dHauspMpSqqpγ
1, γ2q ě

E1 ´ P

P
ą A2.

This contradicts the assertion that the p3P 2 ` 2A1q-quasigeodesics γ1 and γ2 between
µ1, µ2 P G ¨ µ must be A2-Hausdorff close. We conclude that stable subgroups of ModpSq
are convex compact, as required. �
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