The Standard Vector Library: a software framework
for coupling complex simulation and optimization

Anthony D. Padula, Shannon D. Scott and William W. Symes *

ABSTRACT

Object oriented design solves a fundamental programming problem arising in sim-
ulation driven optimization: the separation in code of multiple levels of abstraction
naturally appearing in solution algorithms for such problems. The Standard Vector
Library provides classes expressing core concepts (vector, function,...) of calculus in
Hilbert space with minimal implementation dependence, and standardized interfaces
behind which to hide application-dependent implementation details (data containers,
function objects). Important innovations introduced by this project and its predeces-
sor (the Hilbert Class Library) include vector space and function evaluation objects,
natural product structures, and extensive tool or wrapper classes to ease application
construction. The library features extensive use of ISO standard C++ support for
both object-oriented and generic programming models, a component-friendly struc-
ture for support of distributed computing via client-server frameworks, and systematic
extensibility of class capabilities through method-forwarding.

INTRODUCTION

Simulation driven optimization arises in a variety of scientific and engineering con-
texts, notably control, design, and parameter estimation. Specification of a simulator
involves geometric meshes or grids, functions on these, equations relating grid functions
and embodying (gridded versions of) physical laws, and iterative or recursive algorithms
which produce solutions of these equations. Optimization algorithms on the other hand
generally have no intrinsic interaction with geometry and physics, involving instead a
more abstract layer of mathematical constructs: vectors, functions, gradients,... This dis-
crepancy between levels of abstraction is the source of a software engineering problem: in
procedural programs to solve simulation driven optimization problems, the details of sim-
ulator structure invarably intrude on the optimization code, and vis-versa. Time-honored
software “tricks” used to hide these details within procedural code (common blocks, pa-
rameter arrays, “void *7 ...) lead to software that is difficult to debug and maintain and
nearly impossible to reuse outside of the originating context.

*Department of Computational and Applied Mathematics, Rice University, Houston TX 77251-1892
USA, email symes@caam.rice.edu




A canonical example of this difficulty is the treatment of out-of-core data. Disk-to-
disk processing is common in fields, such as reflection seismology and meteorological data
assimilation, in which data volumes often exceed conveniently available core memory
resources. Conventional Fortran or C library code written with the in-core array as
primary data structure cannot be used in an out-of-core application without significant
modification. Distributed data presents similar obstacles to re-use of procedural libraries.

Object oriented programming appears to offer a way out of this dilemna. Data abstrac-
tion permits the implementation details in one part of a program to be hidden completely
from other parts which do not intrinsically involve them. Polymorphism and inheritance
complement data abstraction and enable reuse of abstract code (for example optimiza-
tion algorithms) across many applications. A number of projects have realized various
parts of this OOP numerics program for optimization: see (Nichols et al., 1993; Dou-
glas et al.; 1994; Meza, 1994; Deng et al., 1996; ISIS Development Team, 1997; Tech-X,
2001; Tisdale, 1999; Veldhuizen, 1999; Karmesin, 2000; Benson et al., 2000; Langtangen,
1999; Gockenbach et al., 1999; Heroux et al., 2003; Kolda and Pawlowski, 2003; Bartlett,
2003).

This paper describes a prototype design for OO simulation-driven optimization li-
braries, which we call the Standard Vector Library (“SVL”). We set these design goals
for SVL: it should

e cnable the abstract expression in code of “abstract” (i.e. coordinate-independent)
algorithms for optimization and linear algebra, with minimal intrusion of low-level
implementation details such as memory management, data access and distribution,
parallel execution, etc.;

e also permit straightforward expression of coordinate-dependent algorithms, eg. those
dependent on dense or sparse matrix algebra, through specialization of interfaces;

e yield code as efficient as the best procedural implementations (i.e. Fortran) for large
problem sizes, in both serial and parallel environments, given appropriate specialized
implementations transparent at the level of abstract numerical algorithms.

Two less tangible goals, related to all of the above, are simplicity and naturalness.
When an implementation detail may be hidden behind an abstract interface which is
conceptually adequate to contain its full functionality, we hide the detail. As a result of
diligent adherence to this maxim of simplicity, SVL expressions of algorithms are usually
considerably less complex in appearance than analogous expressions using any of the
libraries mentioned above.

The concomitant goal of naturalness is achievable because of SVL’s focus on a single
conceptual domain. SVL classes resemble the Standard Library classes in that they im-
plement (or partially implement) well-defined concepts with clear interrelationships. SVL
classes are mostly considerably more than interfaces - as much implementation as possible
is provided, consistent with the scope of the ideas which they realize. Just as the design
of interfaces makes SVL classes simple to use, the naturalness of implementations makes



SVL classes simple to extend (subclass), as is inevitably necessary to accommodate the
data structures and functions of new problem domains.

While its authors can envision SVL as the basis for a standard set of abstract interfaces
(whence the name), the immediate aim of the project is much more modest: a delineation
of features that any effective design for a library of this type should have, demonstrated
in a fully functional C++ package. The basis for this delineation is a set of core mathe-
matical concepts which underly an important subset of algorithms for simulation-driven
optimization, namely relatives of Newton’s method, and the related concepts of linear
algebra. SVL realizes these concepts (vectors, functions,...) computationally in a set
of functional abstract classes, such as Vector and Operator. We have attempted to
make the relationships amongst these “calculus” interfaces as parallel as possible to those
amongst their mathematical counterparts. Critical to the success of this approach is the
provision of another collection of abstract “data management” interfaces (DataContainer
and FunctionObject in SVL), which offer uniform methods for hiding implementation
details.

SVL supersedes the Hilbert Class Library (“HCL”, (Gockenbach et al., 1999)), and
incorporates many of its innovations. SVL differs from HCL in several important respects:

e extensive use of [SO C++ features - class and function templates, exception han-
dling, namespaces, the standard template library - which were not widely and/or
robustly available from compiler vendors at the beginning of the HCL project in the
early 90’s;

e careful separation of the “calculus” and “data” layers, permitting both much more
reliable data encapsulation and natural extension to distributed computing via com-
ponent frameworks;

e extensive use of function forwarding, inspired by Roscoe Bartlett’s RTOp classes
(Bartlett et al., 2004), to provide a simple interface for flexible and efficient evalu-
ation of an essentially unlimited variety of functions;

e a radically simpler approach to memory management, for the most part obviating
any need for user interaction with reference counting, smart pointers, and the like,
particularly in the “calculus” layer.

The following pages discuss the design of “calculus” and “data management” types,
and their interaction; the basic structure of the SVL vector classes follows from this dis-
cussion. Optimization algorithms manipulate objects representing vector functions, and
SVL offers convenient representations for these. Most scientific data types of any signifi-
cant complexity are Cartesian products. SVL provides systematic means for dealing with
product data structures and functions defined on them. The description of the core SVL
classes reveals that SVL differs from some competing projects in its approach to several
important issues, such as memory management, exposure of global information about a
vector and provisions for support of parallel computation. We discuss the reasoning be-
hind SVL’s design decisions on these issues in some detail. To tie the discussion together,



we present simple data gridding application which illustrates the use of SVL in formulat-
ing and solving a typical scientific programming problem. We end with a discussion of
the relation of SVL to other OO numerics projects, existing and planned extensions and
applications of SVL, and with some comments on the general nature and promise of OO
numerics.

This purpose of this paper is the presentation of the SVL design and the reasoning
underlying it. Accordingly, we describe the SVL classes in only enough detail to illustrate
the principles of the design. We refer the reader to the SVL reference manual for a
comprehensive description of the classes and their usage (Symes and Padula, 2004).

GENERAL CONSIDERATIONS FOR THE DESIGN OF VECTOR
CLASSES

The central concept of calculus and linear algebra is that of vector, and the Vector
interface is its embodiment in SVL. A typical introduction of the concept, from a standard
text ((Hoffman and Kunze, 1961), p. 19), reads

... a vector space... consists of the following:

(1) a field F of scalars;

(2) a set V of objects, called vectors;

(3) a rule (or operation), called vector addition,...

(4) a rule (or operation), called scalar multiplication, ...

from which we see that

e the fundamental concept is actually that of wvector space - a vector is merely an
element of a vector space, gets its identity from the space to which it belongs, and
is meaningless except in the context of membership in its space;

e the linear combination operation (combining vector addition and scalar multiplica-
tion, and having each as a special case) is an attribute of the vector space, not of
its individual elements (vectors).

The mathematical importance of the vector space concept suggests that vector spaces
ought to be realized as a computational type. However, unlike its mathematical homolog,
the computational space does not (cannot!) call all of its members (vectors) into existence
as soon as it is instantiated. Instead, some mechanism must be provided for creation on
demand. Such creation parallels the mathematical commonplace “...let = [vector| be a
member of X [space]...”. In many algorithm formulations, sentences like these occur
in which X is a more-or-less arbitrary vector space: that is, creation of vectors must
be accomplished in a way that hides the detailed structure of the space. The software
engineering construct which constructs instances of another type, without revealing the
internal details of that type or of the construct itself, is the Abstract Factory (Gamma

et al., 1994). Computational spaces will thus be Abstract Factories, and will in addition

4



bind to their products (vectors) specific methods for carrying out the basic operations of
linear algebra, so making the products “behave like vectors”.

HCL introduced vector space as a type, and SVL adopts this innovation. The Space
class in SVL provides a method implementing linear combination

zZ — ax + by

for vectors z,x and y and scalars a and b. Echoing the typical parametrization of vector
spaces by fields of scalars, Space is a class template, rather than a class. The (only)
template parameter identifies the “field”, i.e. numeric type which serves as a proxy for
an actual field. Well-tested choices of this template parameter are float and double,
though other choices are in principle possible (a complex type, for example).

In view of the aim of SVL (i.e. to provide a computational framework for calculus in
Hilbert Space), Space also includes an inner product method

X,y — (X,y)

The interfaces defining these methods involve interaction with data, and will be discussed
later, after the data management layer of SVL is introduced.

Space is an abstract interface (pure virtual base class), and is the root of a tree of types.
A standard construction of child classes, implemented in the still-abstract StdSpace sub-
class, reduces the number of methods for which code must be supplied to the bare mini-
mum - nonetheless introduction of a new scientific data structure in an SVL application
usually involves the definition of a new Space subclass.

It is important to understand that a vector, both mathematically and computation-
ally, must be more than the array of scalar coefficients that specifies its identity with
respect to some arbitrary basis - a vector also knows how to add itself to another vec-
tor in its Space, and to return an inner product with another vector. This shows that,
quite apart from their unacceptably limited storage scope, intrinsic type arrays or STL
vectors are not adequate abstractions to realize a computational vector class. SVL views
vectors as Composite types, combining a Space (with its linear algebra operations) with
an appropriate data container - the Space “teaches the data container how to act like a
vector”. The next sections will describe an appropriate set of data container types for
this purpose, and the details of the Composite construction. For now, we merely note
that data containers will be allocated dynamically, so that the computational vector will
act as a handle.

SVL realizes these ideas in its Vector class. SVL: :Vector is concrete, and subclassing
it is seldom necessary or useful. A Vector owns a reference to its Space, and implements
its essential linear algebra methods by delegation to the corresponding methods of its
Space. A partial listing of the Vector class definition follows. The essential features of
the class are displayed here; comments (used in automated construction of the reference
manual) have been stripped out, along with a number of methods which will be discussed
later in this document.



template<class Scalar>
class Vector {

private:
const Space<Scalar> & sp;

public:
Vector(const Space<Scalar> & _sp, bool initZero = false);

const Space<Scalar> & getSpace() const { return sp; }
virtual Scalar inner(const Vector<Scalar> & y) const;
virtual void linComb(Scalar a, const Vector<Scalar> & x,

Scalar b, const Vector<Scalar> & y);
virtual void zero();

virtual void scale(Scalar c) {
try { linComb(c,*this,0,*this); }
catch (SVLException & e) {
e<<"\n*** called from Vector::scale(D\n"; throw e;
}
+

virtual ostream & write(ostream & str) const {
str<<"Vector Object\n";
str<<"member of space:\n";
sp.write(str);

}

virtual void write(SVLException & str) const;

};

This code fragment illustrates several features of Vector, as well as conventions found
throughout SVL:

e like Space, Vector is a class template parametrized by a scalar type. Scalar could in
principle be any type for which default construction, assignment, and the usual arith-
metic operations are defined. SVL currently makes no guarantees for any choices
other than float and double.

e the Space is stored as a (const) reference. This implies that the scope of the Space
object referenced by the Vector must strictly contain that of the Vector - i.e. the
Space exists externally to the Vector and that the Vector object depends on it. To
make a Vector, you have to make a Space first. This relationship of computational
objects mimics precisely the relationship of the corresponding mathematical objects.



SVL makes extensive use of reference data to express such logical dependence, which
the semantics of C++ references then enforces. Dependence on an external object
introduces a serious danger, of course - the possibility that the reference might “dan-
gle” | or refer at some point to a nonexistent object. The conventional solution to
this problem is reference counting, usually combined with a so-called smart pointer
type. However SVL takes a different approach. C++ scope rules prevent external
references from dangling so long as the Space and Vector instances are allocated
on the stack. SVL is designed to make dynamic allocation of Space and Vector
instances unnecessary (in fact, impossible in most circumstances). This aspect of
SVL memory management is discussed further in the Implementation Details section
below.

a Vector knows which Space it belongs to, and exposes this information publicly
via getSpace().

initialization of the Vector’s data is optional - the only initialization with math-
ematical (invariant) meaning is initialization by zero, and that is the only option
offered as part of construction.

Space objects can be compared, via operator==. This comparison operator facili-
tates various forms of sanity testing (is this vector in the domain of this operator?
are these two vectors in the same space?).

the use of const is quite conventional in the “calculus” layer of SVL: essentially
every method, argument, and return value that conceivably ought to be const is so
declared. However const would be entirely redundant for the Scalar which inner
returns by value. The same is true of objects returned by reference, so long as their
types are well-encapsulated, i.e. offer the environment no opportunity to alter their
internal state. This is the case for example for getSpace() - this apparent breach
of encapsulation is actually harmless, as Space (and any well-designed children) are
well-encapsulated.

the linear combination method 1inComb is of course not const, as it is not “logically
const” (Stroustrup, 1995).

The only assignment interface is zero, as the zero vector is the only vector well-
defined without reference to coordinates.

We provide default implementations of a number of convenient vector manipulations,
like scale, in terms of 1linComb. This is efficient when linComb (or rather the
code in the Space subclass to which it delegates) is written so that no unnecessary
multiplications or additions are required when the constants take values 1.0 and
0.0. Such careful implementation turns out to be quite straightforward. Nonetheless
these methods are also declared virtual, so could be overridden.



e All method bodies making nontrivial calls are enclosed in try blocks; exceptions are
cast in the form of SVLException objects. SVLException subclasses std: :exception,
so SVLExceptions are caught by standard exception-catchers and have standard ex-
ception syntax.

e Every SVL object has two reporting methods, both named write, outputting infor-
mation to ostreams and SVLExceptions respectively.

e Vector is concrete: all of the methods listed above, along with other methods not
explicitly shown, are implemented in the base class.

Construction of a Vector must somehow involve allocation of storage for its data. Also,
if any nontrivial computations are to be supported, some mechanism must be provided
for interaction with the data owned by Vector. As the code fragment above suggests, the
Vector class itself does not expose its data - no indexing operator or method returning a
pointer to Scalar appears in the class declaration. Both creation of vectors and interac-
tion with their internal data involve the “data management” layer of SVL, to which we
now turn.

GENERAL CONSIDERATIONS FOR THE DESIGN OF DATA
MANAGEMENT CLASSES

SVL provides uniform data container interfaces to store Vector data: each Vector
owns a data container. A first inclination might be to define a base data container type
that exposes its data, enabling functions defined externally to the Vector class to alter the
internal state of Vectors. Indeed, the data containers in the standard C++ library do just
that, via either an indexing operator or a method returning a pointer. HCL’s HCL_Vector
interface combined a computational homolog of the mathematical concept, as described
in the last section, with a data container role, and offered direct access to data through
its Data() method (returning a pointer). We argue however that direct data access is
unacceptable in an abstract data container base class. [The standard library data contain-
ers, of course, are all concrete, so this argument does not criticize them.] For example, it
ought to be possible to treat a Cartesian product of data containers as a subtype of the
abstract data container type. However if the product data container is required to provide
both a global reference to data and to be constructed from existing factors, then either
data must be copied or operator[] must be overloaded. However a virtual operator[]
cannot be inlined, so either option leads to unacceptable inefficiency if designed into an
abstract data container base type. Even more obviously, mandating a global reference
to data in a distributed data container introduces a potentially bothersome amount of
network traffic. Thus inclusion of direct data access in an abstract data container base
class entails either serious performance penalties or declaration of class methods which
are not always implemented. Neither feature is acceptable in a well-structured library.

Of course data must be extracted from something in raw form, eventually, either
through a function call (operator[]) or in the form of a pointer - else nothing can be
done with it! Therefore SVL separates the data container concept into two levels:



e the LocalDataContainer base (sub)class - which provides direct access to raw data

e the DataContainer base class - does not reference data at all,

LocalDataContainers are the primary data storage structures in SVL. Of the two
options mentioned above for direct data access - indexing operator vs. pointer - the first
may appear preferable, as it permits a slightly greater level of abstraction in programming.
However if the LocalDataContainer type is to be an interface, rather than a concrete
type, the indexing operator must be virtual - but then it cannot be inlined. To avoid
introducing virtual function call overhead into inner loops, SVL chooses the second route:
the base LocalDataContainer interface declares a method returning a pointer to Scalar,
along with a length:

template<class Scalar>
class LocalDataContainer: public DataContainer {
public:

virtual int getSize() = 0;
virtual Scalar * getData() = 0;

};

Many simple scientific data structures are naturally LocalDataContainer subtypes.
The simplest of these is the usual array data structure:

template<class Scalar>
class RnArray: public LocalDataContainer<Scalar> {
private:

int n;

Scalar * a;

ﬁﬁArray() {

public:
RnArray(const RnArray<Scalar> & x)
: n(x.n), a(new Scalar([n]), ... { for (int i=0;i<n;i++) alil=x.ali];
RnArray(int _n)
: n(_n), a(NULL),... { // sanity check }

“RnArray() { if (a && ...) delete [] a; }
virtual DataContainer * clone() { return new RnArray<Scalar>(getSize());
int getSize() { return n; }
Scalar * getData() {
if (la) a = new Scalar[n];
return a;

}

b

by



};

Note that the underlying array memory gets allocated only when it is needed, i.e. the
first time getData is called on the object. This design for local data containers is an
important efficiency ingredient in the overall design of SVL: it permits construction of
high-level objects, which own instances of low-level data management types like RnArray,
while deferring storage allocation until it is actually needed. The deferral happens in the
data management layer, where it belongs. Other packages, such as HCL and TSFCore,
accomplish this goal via dynamic allocation of high-level objects, which entangles the
abstract expression of algorithms with low-level memory management issues.

An important caveat: the copy constructor implements a deep copy, so memory is
allocated on (copy) construction. However instantiation of RnArray instances in high-
level SVL objects typically occurs via the main constructor (the second listed above),
which defers memory allocation as described.

A slightly more complicated LocalDataContainer subtype stores gridded data. Its
implementation subclasses RnArray, adding a further attribute storing the grid informa-
tion. The An example: Data Gridding section describes two such subtypes.

More complex scientific data structures are often products, with many similar factors.
The factors are organized into a tree of DataContainers, the leaves (terminal nodes)
being LocalDataContainers. The implementation of these product DataContainers is
discussed below.

The primary purpose of SVL’s DataContainer interface is to provide a uniform
method for indirect interaction with data across a wide range of data structures. In-
teraction with the data contained in a DataContainer occurs only via evaluation of a
function object, an encapsulation of function which can have persistent state (Stroustrup,
1995). The function object concept also plays a large role in the standard library; the close
relationship of the SVL and standard library uses of this concept will become clearer in
the discussion of product structures below. SVL’s abstract base class for function objects
is FunctionObject.

The base class DataContainer offers a pure virtual evaluation method (with several
overloads - unary, binary, ternary,...), denoted eval, which accepts a FunctionObject
and zero or more data container references as arguments. The eval methods apply the
function represented by the function object internally, consistent with our decision not
to expose data in DataContainer classes. This approach to operator implementation
avoids breaking encapsulation, and yet permits the functions to be coded externally. The
only obvious drawback we can identify in this approach to operator implementation is its
strangeness, for those (everyone?) used to implementing functions whose interfaces work
directly with data in raw form, extracted from the objects on which they operate.

One of the chief roles of data containers is reproduction. Accordingly, DataContainer
also offers a clone method which returns a dynamically allocated DataContainer with
the same structure (i.e. the same type) as the DataContainer on which it is called. This

10



is not a virtual copy constructor - no guarantee is provided that the data in the returned
DataContainer is the same as that in its source object, or even that it is initialized at
all.

A near-complete listing of the base DataContainer declaration follows, missing only
trivial constructors and destructor, the reporting methods required of all SVL classes,
and a couple more overloads of eval:

class DataContainer: public DataObject {
public:

virtual DataContainer * clone() = O;

virtual void eval(FunctionObject & f) = 0;

virtual void eval(FunctionObject & f,
DataContainer & x) = O;

};

Note that, unlike LocalDataContainer, DataContainer is an actual class, rather than
a class template. Since there is no interaction with intrinsic-type data expressed in the
DataContainer interface, there is no need to specify such a type!

The function object concept is central to SVL: all interaction with data in SVL ap-
plications takes places through evaluation of FunctionObjects, and application develop-
ment tends to consist largely of writing FunctionObject subclasses. As the listing of
DataContainer source reveals, the base FunctionObject type is actually an instance of
the Visitor design pattern (Gamma et al., 1994), and so is characterized by the way in
which it is used, rather than by its actions (methods). Bartlett’s RTOp design is the direct
inspiration of our FunctionObject type (Bartlett et al., 2004). As Bartlett points out,
the concept implemented by RTOp (and SVL: :FunctionObject) is function forwarding,
which is also used for example in the Standard Library. In fact we took our name for
the concept from Stroustrup’s name for the similar construct in the Standard Library
(Stroustrup, 1995).

The Visitor character of FunctionObject makes a very simple base type attractive,
with essentially no methods other than reporting and assertions about its effect on the
DataContainer on which it is evaluated. Here is an essentially complete declaration for
the FunctionObjectbase class:

class FunctionObject: public DatalObject {

public:
virtual bool readsData(int i=0) { return true; }
virtual bool writesData(int i=0) { return true; }
virtual string name() = 0;
virtual void write(SVLException & e);
virtual ostream & write(ostream & str);

11



The readsData and writesData methods take an integer argument, because evaluation
of a FunctionObject may involve more than one DataContainer. The “anything goes”
defaults may have useful overrides - one nontrivial use of these functions is discussed
below, in the section on Functions and Operators.

The base class, exhibiting the Visitor character of the type, is really a placeholder
for one of several subclasses which define interaction with LocalDataContainers and so
provide uniform interfaces for computation. These must be class templates, since the
LocalDataContainers are templated. The unary case is

template<class Scalar>
class UnaryFunctionObject: public FunctionObject {
public:
virtual void operator () (LocalDataContainer<Scalar> &) = 0;

};

SVL currently defines similar binary, ternary and quaternary interfaces. A natural ex-
tension would accomodate vectors of LocalDataContainers of arbitrary length; no need
for such an interface has arisen so far.

This set of interfaces suffices for FunctionObjects, such as linear combination or as-
signment to constant, that produce no result other than possible effect on the operator ()
arguments. However others, for example implementation of an inner product, produce
some distinct result of a non-DataContainer type. The Reduction class provides access
to a result:

class Reduction {

protected:
RetType & result;

public:
Reduction( RetType & res) : result(res) {}
virtual “Reduction() {}
virtual void setResult() { result.reinitialize(); }
virtual void setResult(RetType & res) { result = res; }
virtual RetType & getResult() { return result; }

RetType is an abstract result return type, which supports assignment and has a dis-
tinguished value which can be recovered through RetType: :reinitialize. A subclass,
ScalarRetType, offers the features of a scalar, i.e. the usual arithmetic operations, and
the ability to return an object of the template Scalar type.

Reduction FunctionObjects multiply inherit from the FunctionObject and Reduction
interfaces. Since Reduction is concrete, no additional result manipulations need be
implemented. There is one reduction FunctionObject type for each base Function-
Object type:

12



template <class Scalar> class UnaryFunctionObjectRedn:
public UnaryFunctionObject<Scalar>, public Reduction { ... }

The virtue of an abstract return type lies in the inconvenience of the alternative, viz. to
make the return type of a reduction FunctionObject a template parameter. That method
of introducing the type of the result object forces the calling unit to know - explicitly, at
compile time - the type which the function returns. Occasions arise when this information
is not conveniently available, for example in distributed execution, when the return value
need not be accessed in a component that references the FunctionObject.

For convenience, a subclass UnaryFunctionObjectScalarRedn is provided (with the
usual binary, ternary, and quaternary overloads), based on ScalarRetType, with an addi-
tional Scalar getValue() method which decodes and returns the Scalar stored in the
ScalarRetType. This class provides immediate access to a Scalar function value, without
requiring the user to deal with RetType or its subclasses. The various universally applica-
ble FunctionObjects declared in functions.H, implementing standard scalar functions
(max, min, dot product,...), are subtypes of ...FunctionObjectScalarRedn.

In some circumstances (eg. parallel execution) it is necessary to aggregate a partial re-
sult, encoded in a RetType object, into the internal buffer of a reduction FunctionObject.
The Accumulation type provides a uniform abstract mixin interface for accumulation of
results. We refer the reader to the documentation for the standard functions mentioned
above, some of which inherit from and implement this interface.

For LocalDataContainers, eval methods inherited from DataContainer are imple-
mented in the base class: for example,

void LocalDataContainer<Scalar>::eval(FunctionObject & f) {

try {

UnaryFunctionObject<Scalar> & ufo =
dynamic_cast<UnaryFunctionObject<Scalar> &>(f);

ufo(*this);

}

catch (bad_cast) { ... }

catch (SVLException & e) {
e<<"\ncalled from LocalDataContainer::eval(unary)\n";
throw e;

b
+

Writing a traceback message to a trapped exception is standard throughout SVL.

The DataContainer: :clone() method necessarily remains virtual in the base
LocalDataContainer class.

13



STRUCTURE OF SVL VECTOR CLASSES

The basic relationships between the SVL vector and space classes are now easy to de-
scribe. The main attributes of Space are (i) a collection of operations on DataContainers,
which implement linear combination and inner product, (ii) a (virtual) constructor for
DataContainers, which returns dynamically allocated DataContainers for Vector data
storage. Thus Space is an example of the Abstract Factory pattern, with some addi-
tional methods. The important thing to note here is that both the factory and the ad-
ditional methods manipulate DataContainers, not Vectors. HCL, in contrast, furnished
its HCL_VectorSpace class with a virtual constructor for HCL_Vectors.

The declaration of Space, reproduced in stripped-down form here, realizes these ideas:

template<class Scalar> class Space {
public:

};

virtual DataContainer * buildDataContainer() const = O;
virtual bool operator ==(const Space<Scalar> & sp) const = 0;
virtual bool operator !=(const Space<Scalar> & sp) const {
try { return !operator==(sp); }
catch (SVLException & e) { ... }
}
virtual bool isCompatible(DataContainer & dc) const = 0;
virtual Scalar inner(DataContainer & x, DataContainer & y) const = 0;
virtual void zero(DataContainer & x) const = O;
virtual void linComb(DataContainer & z,
Scalar a, DataContainer & x,
Scalar b, DataContainer & y) const = 0;
virtual void write(SVLException & e) const = 0;
virtual ostream & write(ostream & str) const = O;

To implement a Space subclass directly under the base class, you must provide

e an implementation of buildDataContainer (), usually by passing the object data

of a DataContainer class to its constructor via operator new. The object data must
be passed to the constructor of the Space subclass (or computed from arguments
to the constructor) and stored. For example, an RnSpace takes just its dimension
as object data, as that’s all the RnArray constructor requires (see above).

the comparison operator==, using appropriate dynamic casts to expose whatever
part of the comparison Space object’s state is required to be the same for the
comparison to return true. Two RnSpaces are the same if they have the same
dimension, so checking the dimension is sufficient. On the other hand a Space
based on a grid structure would only be idenfied with an instance of a similar Space
if the grid data were identical.

14



e implementations of the linear algebra methods, usually by calling appropriate
FunctionObjects. SVL supplies a set of standard FunctionObjects, declared in
the functions.H header file, of which the linear combination and set-to-zero func-
tions may be regarded as universal. The inner product function in this collection is
the unscaled I inner product, which may be combined with a Gram matrix (imple-
mented via another, user-supplied FunctionObject) to produce an arbitrary inner
product.

To render this set of tasks slightly easier, SVL provides the StdSpace subclass, which
implements the required methods by delegation to

e a DataContainerFactory, which is the repository of the object data necessary to
build the correct type of DataContainer. This type is an instance of the Factory
design pattern (Gamma et al., 1994).

e a LinearAlgebraPackage, which can return references to the necessary three
FunctionObjects implementing linear combination, zero initialization, and inner
product. The header file functions.H also defines a standard SVLLinearAlgebra-
Package which returns canonical examples of these FunctionObjects.

StdSpace implements all of the Space methods by delegation to these two types, accesed
via a pair of virtual “get” methods returning references. This last renders StdSpace
abstract, of course, but provides flexibility: the DataContainerFactory and Linear-
AlgebraPackage references returned by the “get” methods may be initialized either in-
ternally, during construction of the StdSpace subclass instance, or by assignment from
externally initialized references passed to the subclass constructor. For more details see
the reference manual (Symes and Padula, 2004).

Space defines linear algebra, DataContainer stores the data, so what does Vector
do? In fact, Vector is a Composite design, combining a Space and a DataContainer:
the Space “tells the DataContainer how to act like a vector”. A slightly more complete
listing, including the code for the main Vector constructor, reveals that Vector is also a
handle (to a DataContainer):

template<class Scalar>
class Vector {

private:
const Space<Scalar> & sp;
DataContainer * d;
public:

Vector(const Space<Scalar> & _sp, bool initZero = false)
sp(_sp), d(sp.buildDataContainer()),... {

15



try { if (initZero) zero(); }
catch (...) {...}
}
virtual “Vector() { if (d) delete d; }

void eval(FunctionObject & f) const {

try { d->eval(f); }
catch (...) {...}
}

Scalar inner(Vector<Scalar> & y) {
if (sp !'= y.sp) {...} // throw exception ...
try { return sp.inner(*d,*(y.d));
catch (...) {...}

}

};

The listing shows how the Space reference and the DataContainer * data member interact
to implement Vector’s linear algebra operations and FunctionObject evaluations. The
linear algebra methods of Space are all that is required to implement coordinate-invariant
linear equation, nonlinear equation, and optimization algorithms, such as Krylov space
and quasi-Newton methods. Appropriate FunctionObjects can be evaluated to imple-
ment more coordinate-dependent operations, such as those appearing in currently popular
versions of interior point algorithms for convex programming.

The Space reference refers to an external object, whereas the Vector object manages
the DataContainer ’s storage. [There is actually one circumstance in which Vector does
not manage its DataContainer * data member - that exception will be discussed below.]
The handle role is clear - but Vector is what one might call a “closed” or intrusive handle
(Stroustrup, 1995): the dynamically allocated object which Vector handles is allocated
internally, not externally through the usual overloaded assignment operator. Because
the environment has no direct access at all to the DataContainer * data member, no
reference counting is necessary: the reference to the dynamically allocated data is not
shared with any other object. Partly for this reason, SVL does not employ a pervasive
reference-counting scheme (this will be discussed further below, in the Implementation
Details section). [In the exceptional case mentioned above, in which Vector does not
have exclusive access to the DataContainer to which its data member points, a simple ad
hoc form of reference counting suffices - access to the data member is severely restricted,
and the necessary reference counting is vastly simpler than that incorporated in the typical
smart pointer class ((Langtangen, 1999), for example).]

The chief impact of this hiding of virtual construction behind concrete construction
is that algorithms do not need to allocate Vector workspace dynamically - it can be

16



allocated on the stack, and this largely gets algorithm developers out of the memory
management business. Algorithms needing internal workspace (i.e. virtually all algo-
rithms) must construct appropriate temporary vectors. HCL’s HCL _Vector is abstract,
and therefore the only possible workspace allocation is via a virtual constructor, located
in HCL_VectorSpace, which returns control of a dynamically allocated object to the call-
ing unit, which must therefore manage it. In contrast, Vector manages its own memory.
Applications instantiate Vector objects by actual, rather than virtual, construction. Al-
gorithms needing only vector workspace are thus relieved altogether of the need to manage
dynamic memory.

Other core SVL “calculus” classes are also so structured that dynamic allocation is
unnecessary. This feature of SVL invites a simplified, stack-oriented programming style for
the “calculus” layer which achieves efficiency and safe memory management without the
apparatus of smart pointers and reference counting. The section Implementation Details
below further describes this stack-oriented style and its consequences for programming
optimization and iterative linear algebra algorithms.

FUNCTIONS, OPERATORS, AND EVALUATIONS

Of course in addition to the linear algebra and other vector operations, optimization
algorithms also require the evaluation of scalar- and vector-valued functions. Indeed the
very definition of the problems that these algorithms solve requires that these mathemat-
ical concepts be manifested in code. In turn, types for scalar- and vector-valued vector
functions provide natural interfaces for simulators and associated computations.

It is important to understand that FunctionObject is not an adequate abstraction for
this purpose. FunctionObject behaviour is both too flexible and too rigid to represent
the mathematical concept of function of a vector variable. FunctionObjects, for instance,
do not refer to Vectors, but to low-level data containers. Because FunctionQObjects have
persistent internal state, the effect of a FunctionObject evaluation on any of its arguments
may differ from call to call. This mutability is actually very useful, but is incompatible
with the intrinsic properties of a (mathematical) function. On the other hand, the way
in which a FunctionObject evaluates on a Cartesian product object, described in the
next section, is rigidly prescribed and is far more limited than the possibilities open to a
function.

SVL offers three base classes for functions of a vector variable:

e Linear0Op, for linear operators;
e Functional, for scalar-valued functions;

e Operator, for vector-valued functions.
Mathematically, all three of these possibilities are special cases of a general vector func-

tion type. However computationally it is not convenient to derive all three types from
a common parent. C++ distinguishes between intrinsic and object types (unlike Java,

17



say). Therefore identifying the scalars with vectors in a 1-D vector space, harmless math-
ematically, leads to annoying complications and inefficiencies in the definition of function
types. Consequently SVL distinguishes between scalar- and vector-valued functions, and
does not attempt to represent them as subtypes of a common parent. The general vector-
valued function type must offer access to a derivative as a linear-operator-valued function.
If linear operators are viewed as a subtype of the general vector-valued function type, it
is difficult to take advantage of the fact that derivatives are constant, and equal to their
parent operators. For these reasons, SVL offers three distinct types, with convenient ac-
cess to the features of each natural to their mathematical uses, rather than trying to fit
all three to a uniform parent interface.

In some cases the distinction is actually consistent with mathematical usage. For
instance, the vector-valued function interface must include, in some form, access to the
derivative as a linear map. However in Hilbert space optimization theory and practice,
the useful form of the derivative of a scalar-valued function is the gradient, i.e. the Riesz
representer of the derivative, rather than the derivative itself. SVL conforms to these
habits of thought, returning the derivative in the Operator type as a LinearQOp, in the
Functional type as a Vector.

Linear operators

LinearOp is the simplest interface of the three, for various reasons. A complete class
declaration, stripped of comments, trivial con/destructors, and the usual reporting func-
tions, is:

template <class Scalar> class LinearOp {
public:
virtual const Space<Scalar> & getDomain() const = 0;
virtual const Space<Scalar> & getRange() const = 0;
virtual void apply(const Vector<Scalar> & x, Vector<Scalar> & y) const = 0;
virtual void apply(Scalar alpha, const Vector<Scalar> x,
Scalar beta, const Vector<Scalar> vy,
Vector<Scalar> z);
virtual void applyAdj(const Vector<Scalar> & x, Vector<Scalar> & y) const = 0;
virtual void applyAdj(Scalar alpha, const Vector<Scalar> x,
Scalar beta, const Vector<Scalar> vy,
Vector<Scalar> z);
bool checkAdjointRelation(UnaryFunctionObject<Scalar> & randomize,
ostream & str, Scalar tolfac = 100.0) const;

+;
Several things to note:

e the operator identifies its domain and range. Typically these will be stored as const
Space & data members, and typical use is to generate workspace, eg.

18



Vector<Scalar> x(A.getDomain());

The alternative would be something like getVectorInDomain(), which would re-
spect data encapsulation but entail memory management and offer less flexibility.
Therefore SVL accepts the less-than-perfect encapsulation, using const in confor-
mance with the widespread but naive belief that it helps in such cases. In fact,
this exposure of internal data is completely harmless, but not because of the use
of const (which could always be cast away): the C++ reference semantics do not
allow the references themselves to be changed. Moreover, the Space class (and any
well-designed subclass) offers no methods exposing internal state, so exposure of a
Space data member is completely harmless.

the use of const is conventional, i.e. aggressive - every method that could be either
bitwise or logically const is so declared, likewise every argument and return value.

along with a method to apply the operator, a method is included to apply the ad-
joint. Unlike the mathematical homolog, a LinearQOp object does not automatically
have its adjoint defined when the operator itself is defined - a separate implementa-
tion must be supplied. Like the mathematical homolog, “adjoint” here means: with
respect to the inner products defined in range and domain, which as noted above
are attributes of the LinearOp object. Logically, then a LinearQp is really a pair of
linear operators, adjoint to each other. It’s usually convenient to build one of these
first, then then other. During the construction of the apply method, the applyAdj
method can be implemented to throw an exception, for instance. Rather than use
a flag, as does for example TSFCore, to indicate which of the adjoint pair is being
applied, SVL simply uses two distinct method names.

Overloads of the apply methods are supplied which include linear combination with
a vector, i.e.
z — aAx + By

and the analogue for the adjoint. These are provided default implementations in
terms of the basic apply methods (i.e. in terms of z «+— Az and linear combination)
but may be overridden to supply a degree of loop fusion. This device, popular
in other OO numerics libraries, is less useful than one might think; annoyingly
often, algorithms require access to Az as well as to the linear combination, so
nothing is gained. In fact the problem which this overload (sometimes) solves is an
instance of a very important open problem in computer science, that of cross-type
method optimization. A good solution seems to be some way off. In the meanwhile,
the preferred SVL solution is to write special nonlinear operators (of which the
apply overloads are actually instances) and provide their implementations with
appropriately fused loops.

the checkAdjointRelation method is an example of a built-in unit test, a de-
vice which SVL uses wherever possible (as did HCL - this test was an attribute of

19



HCL LinearOp as well). This test checks internal consistency between application of
the operator and its adjoint, by choosing random vectors in domain and range, call-
ing apply and applyAdj, computing inner products, and reporting the results on the
stream argument. The return value is false when the test succeeds, i.e. encounters
no problems, meaning that the obvious pair of inner products differ relatively by
less than tolfac times the machine epsilon for the scalar type. Failure of this test,
or any exception thrown during execution of the method, causes the return value
to be true (in particular, exceptions are trapped within checkAdjointRelation).
This structure leads to a very simple unit test driver template:

int main() {

SVLRandomize<double> rnd;

// initialize a linear op

if (op.checkAdjointRelation(rnd,cerr)) exit(1);
}

The top of the checkAdjointRelation implementation listing is instructive:

template<class Scalar> bool LinearOp<Scalar>::checkAdjointRelation
(UnaryFunctionObject<Scalar> & randomize,
ostream & str,
Scalar tolfac) const {
try {
Vector<Scalar> xin(getDomain());
Vector<Scalar> yin(getRange());
Vector<Scalar> xout(getDomain());
Vector<Scalar> yout(getRange());

xin.eval(randomize) ;
yin.eval(randomize) ;

apply(xin,yout);
applyAdj(yin,xout);

Note the use of the domain and range access methods together with the standard
Vector constructor to create workspace on the stack. This is a typical workspace
allocation in SVL algorithm code.

Note also that a function object is passed to the method call, whose function is
to randomly initialize the workspace. Random initialization is not a basic linear
algebra function, and has been excluded from the Vector interface. Therefore it
must be implemented as a FunctionObject. As a corollary, the linear operator
class does not guarantee correctness of this function object - it is external. The

20



contract between the algorithm writer (in this case also the class designer!) and
the user is this: if the user supplies a function object which randomly initializes
the components of a LocalDataContainer, then this method reveals whether the
implemented operator and its adjoint, applied to random vectors, produce results
which stand in the correct relation vis-a-vis the inner product. This sort of guarantee
is maximal.

Nonlinear functions and evaluation objects

The definitions of types for general scalar- and vector-valued functions is inevitably
more complicated: while the derivative of a linear map is itself, and higher derivatives
vanish, SVL must find some way to represent at least the first two derivatives of a general
function as operator-valued functions. An immediate complication is that computations
of the value of a function and of its derivatives tend to share intermediate results. For
example, a finite element simulator will need mesh generation, stiffness matrix assembly,
etc., and the derivatives (“sensitivities”) may well require precisely the same data. How-
ever not all of these values are necessarily needed at any one point in a program. For
example, a typical line search method will require a gradient for computation of a search
direction, but then undertake a line search which will require only function values. To
avoid (possibly) very expensive redundant computation, some means is needed to keep
consistent sets of intermediate results, depending on the evaluation point, between calls
for values. Since a function may be evaluated at many points, a single object representing
a function does not offer a convenient framework to meet this need.

HCL solved this problem through the introduction of Fvaluation types. An Evaluation
expresses the jet, i.e. the sequence of derivatives, of a function at a point. Since an
Evaluation is an object with persistent state, and depends on both an evaluation point
and on a function to be evaluated, all of the intermediate data can be stored without
fear of internal inconsistency. In our opinion, the introduction of Evaluation types was
one of HCL’s two main contributions to object oriented numerics, the other being the
recognition of the central role of vector space as a computational type.

Other groups have proposed similar solutions to the evaluation problem. For example,
the NOX project at Sandia National Laboratories uses a type very similar to Evaluation,
which they call a Group - an object which groups together a function, its value, and the
values of its derivatives at a point (Kolda and Pawlowski, 2003).

SVL Evaluation objects are an evolution of HCL’s, somewhat simpler in structure
and requiring less (and in some ways more natural) code from the application developer.
A (fully initialized) SVL Evaluation is a pair consisting of an (invariant) reference to a
Vector and an independent copy of the object representing the function (Operator or
Functional). All access to function values in SVL occurs through Evaluations.

SVL Evaluations are instances of the Composite pattern, reminiscent of Vector: they
are handles to function types, and use their Vector member to tell the function how
to behave (where to evaluate itself), just as Vector uses its Space reference to tell its
DataContainer how to behave like a vector.

21



SVL Evaluation classes manage the storage of function results: they retain values
in data members and return references to them. In order to avoid the dangling refer-
ence problems that would otherwise result, all data members exposed by reference are
allocated on the stack, i.e. their lifetimes are identical to those of the Evaluations that
own them. It might be objected that some results could contain significant data (eg. a
Vector such as a computed gradient), whence their allocation should be deferred until
possible use. Such a strategy would require dynamic allocation of the these results, and
ultimately reference counting. However, as pointed out previously, the preferred approach
to deferred allocation in SVL is to provide storage on demand at the lowest possible level,
not in high level constructs. For example, the LocalDataContainer components which
ultimately store the data of a Vector should defer dynamic allocation of their data arrays
until these are requested, as illustrated above in the implementation of RnArray. Thus
member initialization of a gradient Vector, for example, does not immediately allocate a
great deal of storage. This strategy accomplishes the desired goal - for example, if only
Functional values are required, memory for gradient data is never allocated - without
requiring dynamic allocation of high-level constructs like Vector or the attendant need
for bookkeeping of shared references.

An objection to this design should immediately occur to the reader: what is to guar-
antee that the referenced evaluation point remains consistent with the results managed by
the FunctionalEvaluation object? There is no way to use const to ensure this consis-
tency, as the relation is entirely run-time, rather than compile-time. Moreover, the evalu-
ation point is not necessarily constant during the lifetime of the FunctionalEvaluation
object. In essence, a FunctionalEvaluation is semantically akin to the expression f(z),
in its typical mathematical usage. The data contained in x may change within its math-
ematical scope, and with it the value f(z), but in f(z) these are dynamically linked.

SVL solves this problem by introducing a watch relationship between an Evaluation
object and its reference evaluation point Vector which is

e transparent to the application developer;
e (because it is) implemented in the base classes;

e a run-time relation between internal states, rather than a compile-time language
feature;

e secure, because the Vector methods implementing it are protected.

The watch relationship uses a simple version tracking scheme. Application to the evalu-
ation point Vector of any non-const linear algebra operation, or evaluation on it of an
FunctionObject which writes data, advances the version index (an int data member of
Vector). The Evaluation’s copy of the version index is then smaller. Calling any of the
access methods then causes all internal data to be recomputed, and the Evaluation’s copy
of the version index to be updated to match the evaluation point’s. This design makes
nontrivial use of the FunctionObject: :writesData method to detect modification of the

22



evaluation point. Since writesData returns true by default, only deliberate intervention
by the programmer can avoid recomputation of all internal Evaluation data.

Evaluation objects also expose some of their internal data via access methods re-
turning references. For example, FunctionalEvaluation owns data members storing
function value, gradient, and Hessian, and returns references to them for external use
in algorithms. For the scalar value, returned by value, and the Hessian, which is re-
turned as well-encapsulated HessianEvaluation object, this exposure poses no risk to
the respective internal states. However the Vector representing the gradient are in prin-
cipal susceptible to alteration. As only the Evaluation object itself can be permitted
to alter this data, some means of making it read-only is needed. All such access meth-
ods return const references, but in addition Vector provides a lock attribute which
FunctionalEvaluation sets on its gradient Vector data member, for example. A locked
vector throws an exception if a non-const linear algebra method or operator() of a
FunctionObject with writesData()==true is called on it.

Both watch and lock mechanisms are forms of reference counting. Unlike the typical
reference count used in smart pointer classes and the like, their function is to protect the
internal state of the watched or locked object, rather than regulate its lifetime. These
devices permit Evaluation objects to safely use references to evaluation points rather than
copies, enhancing efficiency. They also permit Evaluation objects to expose Vector results
without risking data corruption. All of this happens transparently to the user - unless
the user attempts to alter locked vectors!

Note that SVL Evaluation classes are concrete: all methods are implemented. The
application developer need only write the appropriate Functional or Operator classes,
and can simply use the corresponding Evaluations in algorithm implementations. This
is an important difference with HCL, whose Evaluation classes are abstract and must be
subclassed by the HCL user.

Functional and FunctionalEvaluation

The description of Evaluation as a composite handle to function implies the entire
design of both classes, at least approximately. We will describe the scalar-valued function
class Functional and its associated Evaluation, FunctionalEvaluation, in detail. The
structure of the corresponding classes for vector-valued functions is precisely parallel.

Since evaluation will take place within independent copies or clones of a function type
instance, one clone for each evaluation point, the function types are intended to store all
intermediate data needed in any evaluation, in principle as write-once, read-many data.
The base Functional class makes no attempt to specify the precise form of this storage,
of course: it simply provides pure virtual interfaces for evaluation of a function and some
of its derivatives. Since a Functional instance is intended to be cloned, an efficient
implementation will allocate storage for intermediate data dynamically, as needed. The
Functional: :apply (evaluation) methods need be accessible only to Evaluation objects,
as the latter provide the only access to values. Accordingly, the apply methods are
protected, and the FunctionalEvaluation class is a friend of Functional.

23



A difficult problem, not entirely resolved in scientific computation, is the description
of more or less arbitrary subsets of high dimensional spaces. Since the domain of an
arbitrary function can be such a set, we are faced directly with this problem. In view of
the intended use in optimization, HCL chose to adopt an implicit approach, including a
method in the function classes returning signed distance to the boundary of the domain
in a specified direction, from a specified point. SVL has also adopted this approach.

These considerations completely specify the structure of the Functional class, a
stripped listing of which follows:

template<class Scalar> class Functional {
friend class FunctionalEvaluation<Scalar>;
protected:
virtual Functional<Scalar> * clone() = 0;
virtual void apply(const Vector<Scalar> & x,
Scalar & val) const = O;
virtual void applyGradient(const Vector<Scalar> & x,
Vector<Scalar> & g) const = 0;
virtual void applyHessian(const Vector<Scalar> & x,
const Vector<Scalar> & yin,
Vector<Scalar> & yout) const = 0;
public:

virtual const Space<Scalar> & getDomain() const = 0;
virtual Scalar getMaxStep(const Vector<Scalar> & x,
const Vector<Scalar> & dx) {
return numeric_limits<Scalar>::max();
}
bool checkGradient(const Vector<Scalar> & y,
const Vector<Scalar> & p,
ostream & str,
int n=10,
Scalar hmin=0.1,
Scalar hmax=1.0,
Scalar minrat=1.95);
bool checkHessian(const Vector<Scalar> & y,
const Vector<Scalar> & p,
ostream & str,
int n=10,
Scalar hmin=0.1,
Scalar hmax=1.0,
Scalar minrat=1.95);

24



The methods checkGradient and checkHessian are unit tests, and are implemented in
the base class. They estimate the convergence rate of a second order finite difference
approximation to the directional first, respectively second, derivative to that produced by
calls to the apply methods. These rates should converge to 2, and it is usually possible to
catch coding errors rather quickly by running these tests. Since the structure of the tests
is independent of the particular function, it is possible to code them in the base class and
so provide one-line access to the application developer.

We emphasize that Evaluation classes are concrete, and do not have to be re-implemented
by the SVL user.

A partial listing of FunctionalEvaluation displays the necessary data members, and
the way in which they are initialized and used:

template<class Scalar> class FunctionalEvaluation {
friend class HessianEvaluation<Scalar>;
private:
const Functional<Scalar> & fref;
mutable Functional<Scalar> * f;
WatchedVecRef<Scalar> wx;
Scalar val;
Vector<Scalar> grad;
HessianEvaluation<Scalar> h;
mutable bool applied;
mutable bool gapplied;
void reset() comnst {
try { if (f) delete f; f = fref.clone();
applied=false; gapplied=false; }
catch (SVLException & e) {...} }

public:
FunctionalEvaluation(const Functional<Scalar> & ff,
const Vector<Scalar> & x)
: fref(ff), f(fref.clone()), wx(x), grad(fref.getDomain()),
h(*this), applied(false), gapplied(false) { grad.setLock(); }

virtual const Space<Scalar> & getDomain() const
{ return fref.getDomain(); }
const Vector<Scalar> & getPoint() {
try { return wx.get(); }
catch (SVLException & e) {...} }
Scalar getValue() {
try {
if (wx.update()) reset();
if (lapplied) { f->apply(wx.get(),val); applied = true; }

25



return val; }

catch (SVLException & e) { ... } }
const Vector<Scalar> & getGradient() {
try {

if (wx.update()) reset();

if (!gapplied) {
grad.rellock();
f->applyGradient (wx.get () ,grad) ;
grad.setLock(); gapplied = true; }

return grad,

catch (SVLException & e) { ... } %}
const LinearOp<Scalar> & getHessian() { return hess; }

};

A const reference to the Functional is maintained, and a working copy returned by
Functional::clone (allocated dynamically) on construction and whenever the watch
mechanism detects an evaluation point update. The WatchedVecRef data member man-
ages the evaluation point versioning via (protected) methods of Vector. All references to
the evaluation point within the implementation of this class delegate to this WatchedVecRef
data member via its get () method; its update () method returns a boolean flag indicating
an update. The gradient workspace grad belongs to the FunctionalEvaluation object,
so a lock relationship is more appropriate than a watch relationship: no external entity
is permitted to modify the gradient during the lifetime of the FunctionalEvaluation
object. Data members (val, grad, hess) are uninitialized up to the point of use. Since
these variables own no intrinsic attribute indicating initialization, the class uses boolean
flags (applied etc.) to manage the required (re)computations. The Hessian is stored
in a HessianEvaluation object hess. HessianEvaluation is a subtype of Linear0Op;
its data consists only of a reference to the parent FunctionalEvaluation, to which it
delegates its apply... methods. The applyHessian method of FunctionalEvaluation
monitors the evaluation point reference for updates, so neither HessianEvaluation nor
FunctionalEvaluation: :getHessian need to.

The core code of a limited memory quasi-Newton (BFGS) implementation shows a
typical use of these classes. For a mathematical description of this algorithm, consult
(Nocedal and Wright, 1999). In this code, H is a BFGS inverse Hessian approximation,
and 1s is an object encapsulating a line search algorithm. The current point is x, for which
temporary storage xprev is also provided. The update of H requires both the current and
previous gradients, so another Vector, gprev, is also provided for gradient storage. The
search direction is dir, and fx is a FunctionalEvaluation object representing the 2-jet of
the function to be optimized. In our realization, H is a LinearOp, and 1s is an Algorithm
object (as is the object encapsulating the BFGS algorithm). The Algorithm package, an
offshoot of the SVL project described in more detail below, defines this Algorithm type:
the chief attribute of an Algorithm is that you can run it (Padula, 2004).

26



FunctionalEvaluation<Scalar> fx(f,x);

bool run() { try {
// compute current search direction
H.apply(fx.getGradient(), dir);
dir.negate();

// copy current iterate, gradient
xprev.copy (x) ;
gprev.copy (fx.getGradient ());

// Line Search
ls.set(xprev, x, dir, fx);
if( ! 1s.run() ) { ... } // throw exception

// update inverse Hessian approximation
H.update(xprev, x, gprev, fx.getGradient());

} catch (SVLException & e) { ... %}
return true,

by

The externally defined line search object 1s acquires references to the base point, search
direction, and function to be evaluated via its set method. A dynamic reference helper
class enables dynamic initialization of references, which C++ reference semantics forbids
in its straightforward form.

CARTESIAN PRODUCT STRUCTURES

As mentioned earlier, all scientific data structures other than the very simplest are
Cartesian products. SVL’s realization of Cartesian product data structure is the Product-
DataContainer interface. ProductDataContainer provides abstract access to compo-
nents of a Cartesian product DataContainer, and defines evaluation of FunctionObjects
by delegation to the components. This is very similar to the foreach mechanism of
the C++ standard library (see (Stroustrup, 1995)) and was inspired directly by Roscoe
Bartlett’s RTOp concept (Bartlett et al., 2004), used extensively in TSFCore (Bartlett
et al., 2003) and several other recently developed packages from Sandia National Labora-
tories (Heroux et al., 2003).

template<class Scalar>
class ProductDataContainer: public DataContainer<Scalar> {
public:

27



virtual int getSize() = 0;
virtual DataContainer<Scalar> & operator[](int i) = 0;

virtual void eval( BinaryFunctionObject<Scalar> & f,
DataContainer<Scalar> & x) {
try {
ProductDataContainer<Scalar> & xp
= dynamic_cast<ProductDataContainer<Scalar> &>(x);
if (xp.getSize() !'= getSize()) { // throw exception }
for (int i=0;i<getSize();i++) { (xthis) [i].eval(f,xpl[il); }
}
catch (bad_cast) { // throw exception }
catch (...) { // throw exception }
}

+;

Evaluation of a FunctionObject proceeds through delegation to the factor data contain-
ers, to which operator[] provides access. That is, the action of a FunctionObject on a
Cartesian product of DataContainers is formally block diagonal. Since FunctionObjects
have persistent internal state, in fact non-diagonal actions are possible, but the interface
is designed specifically to make block diagonal actions easy to implement.

A StdProductDataContainer child class implements this type in the obvious way (as
a wrapper around a std: :vector of DataContainers), but the base class leaves the key
methods getSize () and operator[] pure virtual. We have used this freedom to build
an out-of-core seismic data class, for example, which subclasses ProductDataContainer
in a natural but non-standard way (implementing so-called data gathers). Distributed
DataContainers may provide other examples of nonstandard ProductDataContainers.

The abstract base class ProductSpace represents the Cartesian product of vector
spaces. The base class leaves the factory method buildDataContainer virtual, and
adds a size method int getSize() and a component access method Space<Scalar>
& operator[] (int i). The other (linear algebra and comparison) methods of the Space
interface are implemented in terms of these latter two methods. Note particularly that
this implicitly diagonal implementation of the inner product is certainly not mandatory,
whereas there is little choice in the structure of the (say) the linear combination imple-
mentation. Non-diagonal Gram matrices may be implemented as overrides of the default
implementation.

There are no product Vectors, per se, only Vectors produced from ProductSpaces.
This is necessary, since Vector is concrete. To enable access to components of a product
vector, an independent Components class offers indexed access. The Vector is input
to the Components constructor, which uses protected Vector functions to access the
constituent Space and DataContainer. If these are products, the Components object
constructs a new Vector for each component and offers reference access to these through

28



the indexing operator[] - if not, then the number of components is 1 and operator[]
simply returns a reference to the data Vector. This device implicitly views Vectors
composed of nonproduct Space and DataContainer as product vectors of length 1, without
altering the formal class hierarchy - a useful feature in some settings.

The Components construction can be used recursively, i.e. the factors in a Product-
DataContainer, ProductSpace pair may themselves be Cartesian products.

A special Vector constructor is required: since the Space and DataContainer data
members of Vector are not normally accessible, converting the pair of Cartesian products
(represented by a ProductSpace and a ProductDataContainer) into a Cartesian product
of pairs (component Vectors) would otherwise be impossible. Vector offers a protected
constructor, which initializes the DataContainer * member by storing an externally sup-
plied address, and protected access methods exposing the Space and DataContainer.
With Components declared as a friend, component access becomes possible without
damage to data encapsulation.

The mechanics of component access are transparent to the user, who simply uses the
constructor and index operators:

ProductSpace<double> & sp = ...
Vector<double> x(sp);

Components<double> cx(x);
for (int i=0;i<cx.getSize();i++) { cx[i].eval(....); }

IMPLEMENTATION DETAILS

SVL’s approach to some important implementation choices differs from that taken by
other OO numerics projects. In this section we argue for

e a strictly stack-oriented programming style for the “calculus” layer of SVL;
e a component design for distributed execution;

e restrictive access to global vector attributes such as dimension.

Memory Management

Efficient manipulation of data practically demands that complex objects be passed by
reference, and that compound objects be built up out of data members which refer to
other objects. The necessity of data motion limits libraries which do not employ reference
sharing to computationally small problem domains. However reference sharing engenders
two notorious memory management problems:

e dangling references: an object owning a reference to another object has no assurance
that the referenced object exists at the point of use;

29



e ownership: if several objects share a reference, there is a priori no way to decide
which of the many reference owners should manage the referenced memory.

The conventional solution to these problems, reference counted smart pointers, is ex-
plained in many excellent articles and books, eg. (Stroustrup, 1995; Barton and Nackman,
1994). A nice introduction to these ideas in the context of scientific computing is (Lang-
tangen, 1999). HCL used reference counting, but not smart pointers. TSFCore uses
essentially HCL’s core classes in combination with a smart pointer implementation from
the Teuchos library. For example, instantiation of a vector vec in a space sp in TSFCore
is typically written

Teuchos: :RefCountedPtr<Vector<Scalar> > vec = sp.createMember();

(Bartlett et al., 2003). Note that TSFCore: :VectorSpace: : createMember () allocates a
TSFCore: :Vector on the heap, and the address is handed to the smart pointer through the
usual overloaded assignment operator mechanism. Thereafter the smart pointer manages
the memory it has been assigned.

While this solution is conventional, widely accepted, and well understood, we rejected
it for several reasons. First and foremost, SVL objects are handles, managing dynamically
allocated memory just as smart pointers do. Consider the SVL statement analogous to
the TSFCore vector instantiation above:

Vector<Scalar> vec(sp);

Both objects named vec in the two statements are allocated on the stack. The SVL state-
ment actually involves a virtual constructor analogous to createMember - it is build-
DataContainer. However the resulting dynamically allocated DataContainer is not ac-
cessible via the Vector interface, so cannot be further shared, so no reference counting
is required. Similarly Functional, LinearOp and Operator subclasses typically manage
internal data. These abstract classes, unlike the concrete Vector, do not specify the types
of internal storage - those specifications are left to concrete subclasses. They nonetheless
define interfaces for handle classes. Amongst core SVL “calculus” classes, only Space is
an exception - it is a Factory, rather than a handle.

The obvious difference between SVL handle classes and those provided, say, by Teuchos
or DiffPack is that the SVL handles are intrusive or closed. They do not share access
to their dynamically allocated data members, and each is designed to encapsulate some
particular type or types to yield a specific behavior mimicking a mathematical concept.
This design is actually very familiar: std::string is an example. SVL can get away
with such carefully tailored handle designs because the number of abstract mathematical
types proper to calculus in Hilbert space is small and fixed: spaces, vectors in them,
functions on them, and combinations of these - Cartesian products, linear combinations,
compositions. Computationally, the fundamental types correspond to the interfaces and
handle types supplied by SVL. SVL also supplies some of the combinations, and others can
be constructed type- and memory-safely out of the base classes, following the principles

30



laid down here and exemplified by the library classes. The essential relations between
the mathematical types are expressed rather precisely by the public methods of the base
interfaces.

A natural byproduct of this restricted handle design is simplicity of use: the SVL
: :Vector object vec in the example above is actually the object whose behavior is speci-
fied by the SVL design, not another object owning a reference to it. There is no need for
another layer of indirection. The resulting simplification helped us meet one of the design
goals of SVL: to ban low-level details such as memory management from abstract numeri-
cal algorithm formulation. The checkAdjointRelation unit test kernel, described in the
Functions and Operators section, and the conjugate gradient implementation described
below show how straightforward the formulation of abstract algorithms becomes. We
strongly recommend comparison with code fragments from other libraries, eg. (Bartlett
et al., 2003), p. 41, to clarify the implications of these choices.

We have still to explain how SVL solves the dangling-reference and ownership problems
mentioned above. The principles behind the solution (which applies only in the “calculus”
layer, see below) are:

e types for which references are shared between type hierarchies are allocated only on
the stack, and sharing occurs via passing (C++) references (as opposed to pointers);

e references to objects allocated dynamically are not (directly) shared.

The types for which references may be shared are Space, Vector, LinearQOp, Operator,
OperatorEvaluation, Functional, FunctionalEvaluation and their children - i.e. the
core “calculus” classes in terms of which it is possible to write essentially all abstract
algorithms. For these types, operator new is overloaded as a protected method, hence
is rendered unavailable to the application developer: these objects can be allocated only
on the stack (in a general context - a child or friend class can of course use the protected
operator new overloads). Since the lifetime of a stack-allocated object is the scope in
which it is defined, and since a reference must be initialized to refer to an existing object,
reference data members of these types must refer to already-constructed objects. The
scope of an object referring to a second object must be strictly contained in the that of
the second, provided that both are allocated on the stack. Thus there is no possibility
that the referenced object will be destroyed while the reference is needed - that can only
occur if the referenced object goes out of scope, which cannot happen before the referring
object goes out of scope. Finally, reference semantics leave memory management firmly
in control of the (stack-allocated) referenced object, so the ownership problem is solved
as well. These principles form a viable basis for abstract algorithm expression because the
scope relations between automatically allocated objects mimic the dependencies amongst
mathematical objects.

Several aspects of these rules and their consequences deserve mention:

e they pertain to “user” applications of SVL using the “calculus” classes; internally,
some SVL classes do share references to dynamically allocated data across hierar-
chies (eg. Vector and Components). All such references are protected by an ad-hoc

31



reference count. These are internal implementation details of the SVL classes, hid-
den at the abstract algorithm level. No need exists for similar constructions in
abstract numerical code built out of the SVL calculus classes.

e the “data management” layer involves somewhat more extensive use of dynamic
memory, and reference counted smart pointers might be used to some advantage
there. However we have found that aggressive reliance on the stack in preference
to the heap, of member initialization in preference to dynamic allocation of data
members, and application whenever possible of the two rules above, eliminate almost
all memory management issues in this layer as well.

e while we have made operator new publicly unavailable for some types, there are
plenty of ways in which it’s possible to abuse dynamic memory with this library
- simply don’t follow the rules stated above for managing “calculus” objects. The
same is true of the other libraries mentioned in the introduction: no one can force
you to follow programming practices appropriate to the structure of each library.
Our object is to make inadvertent, rather than malicious, memory mismanagement
difficult by developing a set of clear-cut use patterns for these classes.

Parallelism

The discussion so far does not address distributed implementation, for example of
optimization algorithms. One approach is to parallelize the optimization code, eg. running
the same application in all processes in an SPMD design. This is the approach take by
TAO and by PETSc (Benson et al., 2000; Balay et al., 2001). We also intended to take this
route in parallelizing HCL, at first. However we realized quickly that the necessary code
modifications would be pervasive: we would end up with two versions of HCL, parallel and
serial, and moreover the parallel version would be tied to a particular distribution library
(presumably MPI). The resulting compromise in software integrity was unacceptable to
us.

In fact, integrating data distribution information with the abstract code layer used in
implementing an optimization algorithm is a grave design error. The notion that parallel
performance should be achieved that way has led to conceptual abominations such as
“parallel optimization”, which was actually the topic of conference sessions not too many
years ago. Even so-called parallel optimization algorithms, such as Torczon’s PDS (Hough
et al., 2001), are not really parallel, of course: they simply require at some stage multiple
function evaluations or search directions or whatever, then do something with them. How
these multiple items are acquired in computer execution of the algorithm - one after
another in a serial implementation, in parallel on an SMP or a cluster, from the Sears
catalog, or by divine inspiration - has absolutely nothing to do with the algorithm, which
is a mathematical entity entirely divorced from its low level implementation details. As
Stroustrup says, “Independent concepts should be independently represented and should
be combined only when needed” (Stroustrup, 1995).

Component design provides a method - in fact, essentially the only method - to insu-
late optimization algorithm implementations from low-level but pervasive system details

32



like data distribution. The actual details of a component framework are irrelevant: the
essential feature is the integration of various levels of abstraction in various components
(usually processes), and the provision of communication between layers of the components
at a common level of abstraction.

SVL’s design facilitates this compartmentalization of communication into well-defined
abstraction layers. The “calculus” layer of SVL has no need to interact with any dis-
tributed execution details, and is naturally confined to one or more serial processes. The
“data management” layer on the other hand is open to various distribution schemes.
It is natural to write server application using only the data management classes, and
implement “calculus” algorithms such as optimization as clients.

We have carried out a simple version of this client-server design using both HCL and
SVL. The HCL-based client-server application used CORBA as its communications layer,
and parallelized the server using MPI. This design confined all MPI code to the server, but
the structure of HCL required that communications layer artifacts be inserted in virtually
all of the concrete classes and that essentially the entire package be installed on both
client and server platforms. The design did keep references to low-level communication
issues out of the base classes and the optimization algorithms implemented in terms of the
base classes (Scott, 2001) - these did not change between serial and client-server /parallel
applications.

SVL’s separation of “calculus” and “data management” layers permits all interaction
with component framework and distributed execution software to be confined to Data-
Container and FunctionObject classes, with no inclusion of communications code in
the “calculus” layer at all. A Streamable type and judicious use of multiple inheritance
produces remote execution pairs of Function0Objects, the remote parts of which can be
implemented in parallel (and independently of the component framework). Distributed
servers rely on parallel LocalDataContainer classes, which return the memory segments
assigned to each process in the distributed framework via the same getData() interface
used in the serial implementation. The basic design of this Remote extension of SVL is
described in (Dajani, 2003; Symes et al., 2004a).

Why Space: :Dim() is a bad idea

Virtually all proposed vector class interfaces provide a method which returns the
dimension or number of components of a vector (such as ESI’s ESI Vector: :getGlobal-
Size(...), (ESI Working Group, 2001)). In our design, this method would naturally
belong to the Space class; The current HCL release calls it HCL_VectorSpace: :Dim(). In
this section we argue that it has no business being there.

An obvious objection to requiring the dimension to be part of the base class interface
is that it’s unnecessary. Nothing else depends on it: if anything important did, by impli-
cation that feature would break data encapsulation. For example, imagine an out-of-core
vector class which instantiates vector objects using filenames. A constructor for such a
thing should associate the object with the file, by opening the file, presumeably. However
there is no need a prior: for dimension of the data to be known at construction: that

33



requires reading the file, and there is no need to do that until something is done with the
data. In other words, there is no reason not to defer the file access - however a Dim()
function would require immediate access to the file, ie. another pass through the data,
for no obvious immediate use.

This efficiency objection might seem somewhat frivolous. However consider the pos-
sibility of an adaptive grid vector class, which is very likely useful in many PDE-related
settings. One could imagine an addition rule for such a class which permits the addition
of two grid functions defined on different grids through union of the grids and interpola-
tion. In effect, one is actually working with functions and adjusting the representation as
required to carry out vector arithmetic. Operators (like grid refinement) which change the
number of gridpoints would also have a natural role. Note what has happened: the num-
ber of degrees of freedom characterizing a vector is not constant during execution for such
a class. This concept is reminiscent of infinite-precision floating point arithmetic systems,
and implementation is entirely feasible. But now the notion of dimension is meaningless.
In fact, such a class provides a computational realization of infinite dimensional spaces,
i.e. spaces which do not have dimensions, because they do not have (finite) bases. At any
point in the execution of a program using such classes, the functions involved would all
be members of finite-dimensional subspaces, but the subspaces occuring in the execution
would vary dynamically, with no a priori limit on dimensionality.

Since we strongly object to including functions in abstract interfaces which cannot
always be implemented, this example seems to us to present an unanswerable objection
to Dim().

AN EXAMPLE: LEAST SQUARES DATA GRIDDING

The gridding problem - defining data on a regular grid which captures information
measured at a arbitrary set of points - serves to illustrate how SVL may be used in
the solution of a simple but nontrivial scientific computation problem. We formulate
this problem as an optimization: find the regular grid data which interpolate (piecewise
bilinearly) onto the irregularly spaced sample points, with least mean square error. This
least squares formulation is hardly the only, or even the best, approach to the gridding
problem - for example, a least absolute sum formulation would be less susceptible to bias
from a few badly erroneous samples (Guitton and Claerbout, 2004). Other formulations
could be cast into code in a similar way. Least squares has the advantage that the first
order conditions for optimality are both necessary and sufficient, and are equivalent to a
positive (semi)definite symmetric linear system. We shall solve a version of this problem
which is too large for dense linear algebra methods on most contemporary computers
(133,000 equations in 40,000 unknowns), so we will use an iterative method instead. The
conjugate gradient method is a natural choice; our implementation combines SVL and
the Algorithm package (Padula, 2004), an independent library which expresses iterative
algorithms.

34



Problem setup - data structures

The first task in any such project is to define the key data structures, as Data-
Container subclasses. Since computations of the target size can be handled in core
on contemporary workstations, we make these DataContainers local. Both types of
data (regularly and irregularly gridded) combine geometric information with an array of
samples. The data abstraction capability of object orientation makes this combination
natural.

For regular grid data, the geometric aspect is abstracted in a Grid class. A Grid
instance specifies the number of axes naxes and, for each axis a (=1, 2, 3,...) the number
of gridpoints along that axis na, the step between points along that axis da, and the
coordinate of the first point oa. The Grid interface provides access to these numbers, as
well as to the total number of gridpoints, the volume of the grid cell, and several other
useful quantities.

A GridData object refers to a Grid object and is an RnArray (for definition, see
General Considerations on the Design of Data Container Classes, above):

template<class Scalar> class GridData: public RnArray<Scalar> {
private:
Grid<Scalar> & g;

public:
GridData(Grid<Scalar> & gg): RnArray<Scalar>(gg.getSize()), g(gg) {}

A GridSpace refers to a Grid and builds GridData objects dynamically using operator
new and the constructor just described.

For archival storage of gridded data, we have chosen the file format pioneered by the
Stanford Exploration Project (Claerbout, 2003). This format stores the data in two parts:
an ASCII file containing the grid geometry in the form of “key=value” pairs, together
with a line which specifies the name of another file; this second file is a binary flat file
containing the data samples. The Grid class has a constructor which takes the ASCII
filename and initializes the required data from the file.

To initialize a Vector in a GridSpace from disk data in this format, one instantiates a
Grid from disk (usually using the same file name), a GridSpace from the Grid, a Vector
in the GridSpace, a GridLoad FunctionObject by handing the ASCII file name to the
constructor. Then one evaluates this FunctionObject on the target Vector object:

string fname = "stuff.sep";
Grid<float> gr(fname);
GridSpace<float> gsp(gr);
Vector<float> v(gsp);

35



GridLoad<float> gl(fname);
v.eval(gl);

GridSave functions the same way to archive gridded data to a disk file in SEP format.

Irregular grids are simply lists of coordinate pairs (in this example, we restrict ourselves
to the 2D case). A UMesh object stores such a list, together with its length, and defines
the geometry of unstructured mesh data just as Grid defines the geometry of regularly
gridded data. UMeshData is the corresponding DataContainer subclass, also derived
from RnArray, and UMeshSpace the space class. A simple ASCII file format simply lists
the coordinate pairs, or triples if data is included, one to a line. UMeshReader and
UMeshWriter function objects read data from, respectively write data to, files in this
format. The UMesh class is provided with a constructor reading coordinates from a file,
analogously to Grid.

Problem setup - functions

Having defined the data structures and corresponding vector spaces, we turn to the
defining functions of the problem - in this case there is just one, the bilinear interpolation
operator. Since piecewise (bi)linear interpolation is a linear map, it is natural to realize
this operator as a subclass Interp2D0p of LinearOp<float>. We implemented the apply
methods via calls to Fortran subroutines. This is a typical SVL design: the numeric
kernels are coded in procedural style, and address large blocks of intrinsic type data. We
have found that in such implementations, as soon as problem size becomes sufficiently
large, the overhead of virtual function calls and other object-oriented apparatus becomes
negligible: codes structured as we have indicated here are as fast as purely procedural
implementations, and are much easier to maintain.

To make interpolation efficient, the Interp2D0p class stores the interpolation coeffi-
cients and upper - left - hand - corner indices for each interpolation output point as private
data of a Interp2D0bjectData object. This object merely requires for its construction the
input Grid and output UMesh, i.e. the geometric description of the interpolation problem.
The Interp2D0p constructor takes GridSpace and UMeshSpace references specifying do-
main and range, and constructs its Interp2D0bjectData data by member initialization.
Mostly to illustrate the use of FunctionObjects in implementing function types, we chose
to build the apply methods out of FunctionObjects which compute that interpolation
operation and its adjoint. The critical block of code is simply

void Interp2D0p::apply(const Vector<float> & x,Vector<float> & y) const {
try { y.eval(fwd,x); }
catch (SVLException & e) { ... }

+

Here fwd is a Interp2DFwd instance (a data member of Interp2D0p), a binary Function-
Object whose operator () method is implemented as follows:

36



void Interp2DFwd::operator() (LocalDataContainer<float> & output,
LocalDataContainer<float> & input) { try {
Grid<float> & g = od.getGrid();
UMesh & um = od.getUMesh();
if (input.getSize() != g.getSize()) {
/* some sanity checking... */
}
// initialize parameters needed by Fortran
int ier=0; int idbg=0; int ipdmp=7;
int n1 = g.get_n(0); int n2 = g.get_n(1);
int n = um.getSize(); float vol = g.getVol();
float rvol = 1.0; float one = 1.0;
if (ProtectedDivision<float>(one,vol,rvol)) {
SVLException e;
e<<"Error: Interp2DFwd::operator()\n";
e<<"zerodivide by cell volume\n";
throw e;
}
// call Fortran interpolation routine
interp2df_(nl,n2, input.getData(),
n, output.getData(),
od.getInd(), od.getCoeff(),
rvol,idbg,ipdmp,ier);
if (ier) { /* throw exception */ }
}
catch (SVLException & e) { ... }
}

This code fragment illustrates

e the use of ProtectedDivision, a utility supplied with SVL which sanity - checks
floating point division. This function is quite expensive, so it should be kept out
of inner loops. However it allows the exception handler rather than the run-time
system to trap zerodivides.

e the interaction with procedural code - particularly in the case of Fortran 77, all
arguments are implicitly mutable and must be of intrinsic type. Types like Interp-
2D0bjectData, functioning as containers of data to be passed to such an interface
must expose their data, so one is thrown back on traditional procedural program-
ming practice as the only defense against memory management errors. It is for this
reason that we have left memory management flexible in the “data management”
layer of SVL, which will often be called upon to interact with procedural code as in
this example.

The adjoint application (applyAdj) is coded similarly.

37



Solution Algorithms - AlgPack

With the data structures encapsulated in vector spaces, and the appropriate functions
defined, the least squares formulation of the gridding problem is completely specified. To
solve it, we use the conjugate gradient method to solve the normal equations (“CGNE”).
In a related project (Padula, 2004), we have proposed a class library for encapsulating
iterative algorithms such as CGNE. This AlgPack library is independent of SVL, but
uses compatible design principles and is easily combined with SVL to implement matrix-
free algorithms such as CG. Matrix-dependent algorithms (such as active set methods
for constrained optimization) are also available, but depend on specialized interfaces and
FunctionObjects not provided in the SVL base classes.

In this subsection we briefly describe AlgPack in general and its implementation of
CGNE in particular. We emphasize that, in contrast to the work described in the last two
subsections, the code described in this section is already implemented, and is not part of
the problem setup. The CGNE algorithm used here is provided with AlgPack, along with a
number of other useful optimization and linear algebra algorithms. AlgPack is intended to
provide a framework for implementation of many algorithm classes beyond those included
with the package, but we regard authoring of these algorithms and applying them to
scientific problems as distinct activities. Indeed, a core purpose of the SVL project (and
of similar OO numerics projects) is to make this division of labor possible!

Algorithms are simply Turing machines that terminate. Thus AlgPack provides an
abstract base class for algorithms, Alg, which has a single nontrivial virtual method,
namely bool Alg::run() (algorithms run successfully or not, hence the boolean return).
In most cases access to the state of an algorithm is also essential. StateAlg is a subclass of
Alg abstracting algorithms which can externalize their state. The state type is a template
parameter of StateAlg.

One of the main operational principles of AlgPack is that single steps of iterative
algorithms are themselves algorithms, and more complex algorithms are built up out of
less complex algorithms and stopping criteria using a few simple patterns. The AlgPack
implementation of CGNE is a straightforward example. A single step of CGNE is en-
capsulated in CGNEStep, which subclasses StateAlg. The usual initializations of the CG
loop occur in the constructor of CGNEStep. Stripped of comments and sanity tests and
rewritten as concisely as possible, it illustrates well the stack-oriented programming style
which SVL’s design promotes:

template <class Scalar>
class CGNEStep : public StateAlg<Vector<Scalar> >{
private:

// external inputs

Linear(Op<Scalar> & A;

Vector<Scalar> & x, b;

// work space

Vector<Scalar> r, s, z, p;

Scalar resO, res,sts, nresO, nres;

38



public:
CGNEStep(LinearOp<Scalar> & AA,

Vector<Scalar> & xx,
Vector<Scalar> & bb)

: ACADA), x(xx), b(bb), r(A.getRange()), s(A.getDomain()),

}

z(A.getRange()), p(A.getDomain()) {
A apply(x,z);
r.1linComb(1.0,b,-1.0,2z);
resO=sqrt(r.inner(r));

res=res0;

A.applyAdj(r,s);

p.copy(s);

sts = s.inner(s);

nres0 = sqrt(sts);

nres nresO;

Since conjugate gradient iteration involves only operations intrinsic to linear algebra in
Hilbert space, the entire CGNEStep: :run method uses only methods of the abstract SVL
base classes:

bool run() { try {

}

A.apply(p,z);

Scalar ztz = z.inner(z);

Scalar alpha;

if (ProtectedDivision<Scalar>(sts,ztz,alpha)) { ... }
x.1inComb(1.0,x,alpha,p);
r.linComb(1.0,r,-alpha,z);

A.applyAdj(r,s);

Scalar stsl = s.inner(s);

Scalar beta;

if (ProtectedDivision<Scalar>(stsl,sts,beta)) {...}
p.linComb(beta,p,1.0,s);

sts=stsi;

res=sqrt(r.inner(r));

nres=sqrt(sts);

catch (SVLException & e) {...}

3

Because the step has been implemented as an algorithm object, it has (or can have)
internal state. Therefore the run method can be called repeatedly in a loop to implement
the CGNE iteration. AlgPack provides a suite of tools for combining algorithmic steps
with termination criteria, instances of the Terminator base class, to produce complete

39



algorithms. The LoopAlg type is appropriate for a simple loop like CG iteration. A
LoopAlg refers to an Alg and a Terminator; it runs the Alg until the Terminator returns
true.

A standard CG implementation combines a CGNEStep instance with a Counting-
ThresholdIterationTable terminator, a logical combination of simpler Terminators
which limits the number of iterations and also exits if a function of the iteration state falls
below a threshold, also prints a summary table of the history of this function. Alg subtypes
provide public reference access to various functions of state, so it is merely necessary to
pass a method invocation as an argument to the Terminator constructor. In particular
a method of CGNEStep returns a reference to the residual norm. Passing this reference
to the CountingThresholdIterationTable constructor causes the terminator to return
true when the residual norm falls below a threshold (also a constructor argument).

AlgPack actually packages the choices we’ve just outline as the CGNE class. However
to display more clearly the way in which AlgPack synthesizes complex algorithms from
simpler pieces, we've chosen to use CGNEStep and CountingThresholdIterationTable
directly.

Drivers and Example

Our solution of the gridding problem proceeds as follows:

construct the irregular mesh of data samples by reading data from a file;

deduce from this data a regular grid of suitable extent;
e initialize a data vector from the data samples;
e initialize a solution vector from the regular grid information;

e construct an interpolation operator (adjoint pair) interpolating regular grid onto
irregular mesh data;

e iteratively update the solution vector to produce a best fit interpolation to the
irregular mesh data, using the CGNE algorithm.

The driver program which one might write for this application simply restates these steps
in code, using the UMesh, Grid, Interp2D0p and related classes explained above, and the
AlgPack implementation of CGNE. The essential lines in the driver procedure are

UMesh um(datafile);
UMeshSpace rng(um) ;
UMeshReader umr(datafile);
Vector<float> b(rng);
b.eval (umr) ;

/] ...

40



// some code to compute a grid box containing all sample points,
// using the UMesh access functions, then a Grid of 201 points on
// a side filling this box. Call this Grid gr.
/...
GridSpace<float> dom(gr);
Vector<float> x(dom) ;
x.zero();
Interp2D0p op(dom,rng);
CGNEStep<float> cgstep(op,x,b);
int maxit=20;
float tol = 1.e-2;
string s = "Norm of Resid";
CountingThresholdIterationTable<float>
term(maxit, cgstep.getNormResidual(),tol, s);
LoopAlg cg(cgstep,term);
cg.run();

We have used this driver to grid a data set of depth soundings from the Sea of Galilee
(Guitton and Claerbout, 2004). This bathymetric data set consists of roughtly 133,000
data points (x,y,z pairs), which are to be mapped onto a 201 x 201 grid. There are thus
133,000 equations in 40,000 unknowns (roughly) to be solved. This gridding problem
does not appear to be particularly ill-posed: 40 conjugate gradient iterations reduced the
residual (unweighted %) norm from 2.3 x 10° to less than 1 x 103. Execution time on a
Mac Powerbook G4 1 GHz machine was 24 seconds, approximately 21 seconds of which
were devoted to reading the ASCII data file twice.

DISCUSSION

We have described in great detail the design approach and decisions that have shaped
SVL. It remains to describe the relationship of SVL to other OO numerics projects, various
extensions and applications of SVL currently underway or completed, and the role which
the authors foresee for this approach to scientific computation.

Relation to TSFCore and other packages

The goals of the SVL project are similar to those that have shaped a number of other
OO numerics projects. To Illuminate the consequences of the SVL design, comparison
with other similar libraries is useful. As mentioned in the introduction, SVL is the direct
descendent of HCL, and many similarities and differences in design principles between
these two libraries, and consequences of these, have already be identified. The closest
contemporary project in goals and principles to SVL is Sandia National Laboratory’s
TSFCore - unsurprisingly, as TSFCore borrowed features from HCL also inherited by
SVL, and SVL borrowed key ideas from TSFCore and its predecessors.

On first inspection, obvious differences emerge in programming style and aesthetics.
Both packages make extensive use of handle classes to hide memory management details,

41



but TSFCore uses a general purpose reference counted pointer class, whereas SVL base
classes are intrusive handles (or abstract “prehandles”). SVL often (though not always)
follows the pattern of “simultaneous instantiation and initialization” whereas TSFCore
classes systematically separate these steps (see (Meyers, 1996) for a good discussion of
these options). The Multivector concept is central to TSFCore (and to a number of other
packages in the same family), whereas SVL offers similar but more general functional be-
haviour as a special case of its ProductLocalDataContainer interface. The RTOp classes
play a role in TSFCore similar to that of FunctionObjects in SVL, but are restricted
for efficiency reasons to diagonal operators; these efficiency considerations are implic-
itly regarded as implementation details of SVL: :FunctionObject subtypes, and are not
legislated.

Two fundamental differences between the packages actually organize this welter of
apparently stylistic variance. The first critical difference is in the level of abstraction
attained: SVL::Vector for example has no explicit analog in TSFCore. The TSFCore-
: :Vector type is actually a functional near-isomorph of SVL: :DataContainer, with some
functionality of SVL::LocalDataContainer mixed in. Similarly, TSFCore: :LinearQOp is
most closely mimicked by a special subtype of SVL::FunctionObject, rather than by
SVL: :LinearQOp. Seen through this lens, most of the contrasts mentioned in the preceding
paragraph reveal themselves as essentially syntactic. Because of the close correspondence
between TSFCore and the part of SVL below the calculus layer, it is possible to interoper-
ate the two packages quite efficiently, by means of fairly straightforward adaptor classes,
as envisioned by the authors of TSFCore (Bartlett et al., 2003). This adaptation, together
with a nontrivial application interoperating the two packages and others, is described in
detail in (Padula, 2003).

The second critical difference lies in the problem domains around which the two classes
were designed: TSFCore focusses (at least in its current incarnation) exclusively on ex-
pression of linear algebra algorithms, whereas SVL attempts to provide a platform for
calculus in Hilbert Space (as did HCL). Thus TSFCore offers no analogues of the nonlin-
ear vector function types SVL: :Functional, SVL::0Operator, and has no need to realize
the Evaluation concept. Optimization packages directly compatible with TSFCore (for ex-
ample MOOCHO, (Bartlett, 2003)) realize nonlinear functions in various ways. Amongst
the current Trilinos packages (Heroux et al., 2003), NOX (Kolda and Pawlowski, 2003)
offers the most complete suite of abstract types for expression of nonlinear optimization
algorithms, including a realization of the Evaluation concept. However at present only
SVL actually integrates both linear and nonlinear functionality in one package.

Virtually all of the other OO numerics libraries mentioned in the introduction corre-
spond conceptually to the FunctionObject - LocalDataContainer layer of SVL.

Extensions, Applications of SVL

SVL plays a key role in several follow-on projects, some already mentioned:

e asimple SVL-compatible component framework, along with corresponding “remote”

42



variants of SVL classes, enabling distributed execution of SVL applications in a
heterogeneous network (Dajani, 2003; Symes et al., 2004a);

e a time-stepping simulation library TSOpt, incorporating sensitivity and adjoint sen-
sitivity computations (the latter with optimal checkpointing) in a system of SVL-
based classes (Symes et al., 2004b);

e an independent collection of interfaces for iterative algorithms, providing a uniform
implementation framework for both SVL-based Newton-related optimization algo-
rithms and for solution of problem classes beyond the scope of SVL, such as mixed
integer-continuous programming problems (Padula, 2004);

e an abstract trust region interior point SQP implementation, accommodating a va-
riety of linear algebra approaches (dense, sparse, iterative);

e a collection of adaptor classes used to interoperate SVL and applications (in partic-
ular TSOpt) with Trilinos packages (TSFCore, MOOCHO) (Padula, 2003), and to
delineate the features of OO numerics packages which enhance or inhibit interoper-
ation.

All of these packages are under development, having achieved initial demonstration—of—
concept implementations. An Epetra (Heroux, 2002) based parallel server class is under
construction, as are several other applications in control and parameter identification.
A longer term project just beginning is extension of the SVL conceptual base to the
discrete domain, to encompass integer and categorical variables and problem formulations
in discrete variable modeling languages such as AMPL (Fourer et al., 2002).

The role of OO Numerics

The promise of OO numerics lies in the introduction of abstract types which realize the
behavior of numerical mathematics concepts. These abstract types hide details of data
storage and manipulation, and so permit the abstract expression of algorithms, which
may be (re)used across the full variety of applications expressible via the abstract types.
The critical step in building a library of such abstract types is the identification of the
key concepts and their behaviors, disentangled from representation details. Since most
of these concepts have familiar procedural implementations which thoroughly entangle
the mathematics with low-level computational details, this step in package design is often
difficult. Once the key abstractions are identified, interfaces must be constructed which
realize their structure while permitting efficient and flexible implementation.

All of the packages mentioned in the preceding pages carry out this program to some
extent. SVL differs from all of the others in the level of abstraction which it achieves.
The central contention of our project, as stated in the introduction to this paper, is that
the abstract “calculus” layer, with its simplicity and naturalness as a vehicle to express
abstract numerical algorithms, permits a greater degree of reusability and maintainability
in implementations of such algorithms than can possibly be achieved using types which

43



are more entangled in data representation details. In conjunction with the “data manage-
ment” layer which provides uniform interfaces for interaction with data, the “calculus”
layer permits coupling of abstractly formulated linear algebra and optimization algorithms
with simulators of essentially arbitrary complexity, with near optimal performance on se-
rial and parallel platforms.

Acknowledgements

This work was supported in part by National Science Foundation grants DMS-9973423,
DMS-9973308, and EAR-9977697, by the Los Alamos National Laboratory Computer Sci-
ence Institute (LACSI) through LANL contract number 03891-99-23, by the Department
of Energy EMSP grant DE-FGO07-97 ER14827, by ExxonMobil Upstream Research Co.,
and by The Rice Inversion Project (TRIP). TRIP sponsors for 2003 were Amerada Hess
Corp., Conoco Inc., Landmark Graphics Corp., Sensorwise Inc., Shell International Re-
search, and Western Geco.

REFERENCES

Balay, S., Buschelman, K., Gropp, W. D.; Kaushik, D., Curfman McInnes, L., and Smith,
B. F. (2001). PETSc home page. www-fp.mcs.anl.gov/petsc.

Bartlett, R. A. (2003). MOOCHO: Multifunctional Object-Oriented arCHitecture for
Optimization, User’s Guide. Technical report, Sandia National Laboratory, Albu-
querque, NM.

Bartlett, R. A., Heroux, M. A., and Long, K. R. (2003). TSFCore 1.0: A package of
light-weight object-oriented abstractions for the development of abstract numerical
algorithms and interfacing to linear algebra libraries and applications. Technical
report, Sandia National Laboratories, Albuquerque, NM.

Bartlett, R. A., Van Bloemen Waanders, B. G., and Heroux, M. A. (2004). Vector
reduction/transformation operators. ACM Transactions on Mathematical Software,
30(1):62-85.

Barton, J. G. and Nackman, L. R. (1994). Scientific and Engineering C++: An Intro-
duction with Advanced Techniques and Examples. Addison-Wesley, New York.

Benson, S., Mclnnes, L. C., and Moré, J. (2000). TAO: Toolkit for advanced optimization.
Technical report, Argonne National Laboratory, www—fp.mcs.anl.gov/tao/.

Claerbout, J. (2003). SEPIlib. Technical report, Stanford Exploration Project, Stanford
University, Stanford, California, USA.

Dajani, H. (2003). Client-Server Component Architecture for Scientific Computing. Tech-
nical Report 03-07, Department of Computational and Applied Mathematics, Rice
University, Houston, Texas, USA.

Deng, L., Gouveia, W., and Scales, J. (1996). The CWP object-oriented optimization
library. The Leading Edge, 15(5):365-369.

44



Douglas, C., George, D., and Henderson, M. (1994). Object classes for numerical analysis.
In OON-SKI ’94, pages 32-49. Proceedings of the Second Annual Object-Oriented

Numerics Conference.

ESI  Working Group (2001). Equation Solver Interface home page.
z.ca.sandia.gov/esi/.

Fourer, R., Gay, D. M., and Kernighan, B. W. (2002). AMPL: A Modeling Language for
Mathematical Programming. Duxbury Press, New York.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, New York.

Gockenbach, M. S., Petro, M. J.; and Symes, W. W. (1999). C++ classes for linking op-
timization with complex simulations. ACM Transactions on Mathematical Software,
25:191-212.

Guitton, A. and Claerbout, J. (2004). Interpolation of bathymetry data from the Sea of
Galilee: A noise attenuation problem. Geophysics, 69:608-616.

Heroux, M. A. (2002). Epetra:Concrete C++ linear algebra classes for parallel linear
algebra. Technical report, Sandia National Laboratories, Albuquerque, NM.

Heroux, M. A., Barth, T., Day, D., Hoekstra, R., Lehoucq, R., Long, K., Pawlowski, R.,
Tuminaro, R., and Williams, A. (2003). Trilinos: object-oriented, high-performance
parallel solver ligraries for the solution of large-scale complex multi-physics engi-
neering and scientific applications. Technical report, Sandia National Laboratories,

Albuquerque, NM.

Hoffman, K. and Kunze, R. (1961). Linear Algebra. Prentice-Hall, Inc., Englewood Cliffs,
N. J.

Hough, P., Kolda, T., and Torczon, V. (2001). Asynchronous parallel pattern search for
nonlinear optimization. SIAM Journal on Scientific Computing, 23:134—-156.

ISIS Development Team (1997). ISIS++: Iterative scalable implicit solver (in C++).
Technical report, Sandia National Laboratories, z.ca.sandia.gov/isis/.

Karmesin, S. (2000). POOMA: Parallel object oriented methods and applications. Tech-
nical report, Los Alamos National Laboratory, www.acl.lanl.gov/pooma/.

Kolda, T. and Pawlowski, R. (2003). NOX: An object-oriented, nonlinear solver package.
Technical report, Sandia National Laboratories, Livermore, CA.

Langtangen, H. P. (1999). Computational Partial Differential Equations: numerical meth-
ods and Diffpack programming. Springer-Velag, New York, Berlin, Heidelberg.

Meyers, S. (1996). More Effective C++. Addison-Wesley, New York.

Meza, J. (1994). OPT++: An object-oriented class library for nonlinear optimization.
Technical Report 94-8225, Sandia National Laboratories, Sandia National Laborato-
ries, Livermore, CA.

Nichols, D., Dunbar, G., and Claerbout, J. (1993). The C++ language in physical science.
In OON-SKI ’93, pages 339-353. Proceedings of the First Annual Object-Oriented

Numerics Conference.

45



Nocedal, J. and Wright, S. (1999). Numerical Optimization. Springer Verlag, New York.

Padula, A. D. (2003). Interoperation of SVL and TSFCore. Technical Report 03-XX,
Department of Computational and Applied Mathematics, Rice University, Houston,
Texas, USA.

Padula, A. D. (2004). Object—oriented algorithm design for scientific computing. Tech-
nical Report 04-XX, Department of Computational and Applied Mathematics, Rice
University, Houston, Texas, USA.

Scott, S. D. (2001). Software components for simulation and optimization. Technical Re-
port 01-06, Department of Computational and Applied Mathematics, Rice University,
www.caam.rice.edu/caam/caam-techrep.html. (MA Thesis).

Stroustrup, B. (1995). The C++ Programming Language. Addison-Wesley, Reading, MA,
third edition.

Symes, W. W., Dajani, H., and Padula, A. D. (2004a). Remote: a simple component
architecture for scientific computing. Technical Report 04-XX, Department of Com-
putational and Applied Mathematics, Rice University, Houston, Texas, USA.

Symes, W. W., Dussaud, E., Dajani, H., and Padula, A. D. (2004b). A time-stepping
library for simulation-driven optimization. Technical Report 04-XX, Department of
Computational and Applied Mathematics, Rice University, Houston, Texas, USA.

Symes, W. W. and Padula, A. D. (2004). SVL user’s guide. Technical Report 04-XX,
Department of Computational and Applied Mathematics, Rice University, Houston,
Texas, USA.

Tech-X  (2001). OptSolve++. Technical report, Tech-X Corporation,
www . techxhome . com/products/optsolve/index.html.

Tisdale, E. R. (1999). The C++ scalar, vector, matrix, and tensor class library standard
page. www.netwood.net/ edwin/svmt/.

Veldhuizen, T. L. (1999). Blitz++ home page. www.oonumerics/blitz++.

46



