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Abstract

The attentional blink (Raymond et  al 1992) refers to an apparent gap in perception observed when a second 

target  follows a first  within several hundred milliseconds.  Theoretical and computational work have provided 

explanations for early sets of blink data, but more recent  data have challenged these accounts by showing that the 

blink is attenuated when subjects encode strings of stimuli (Nieuwenstein & Potter, 2006, Olivers et al 2007, 

Kawahara et  al 2007), or are distracted (Olivers & Nieuwenhuis 2005) while viewing the RSVP stream.  We 

describe the Episodic Simultaneous Type Serial Token model (eSTST), a computational account of encoding 

visual stimuli into working memory which suggests that the attentional blink is a cognitive strategy rather than a 

resource limitation.   This model is composed of neurobiologically plausible elements and simulates the 

attentional blink with a competitive attentional mechanism that facilitates the formation of episodically distinct 

representations within working memory.  In addition to the blink, the model addresses the phenomena of 

repetition blindness and whole report superiority, producing predictions which are supported by experimental 

work.  

Introduction
Encoding information into working memory is a 

fundamental part  of our ability to interact  effectively 
with the world.  By temporarily buffering information 
in a working memory store, cognitive processes can 
continue to utilize stimuli that are no longer available 
in the environment.  However, there are limitations to 
the rate at  which we can sample visual stimuli for 
representation in working memory. One key 
limitation of this encoding process may be the rate at 
which discrete stimuli can be encoded into discrete 
representations.  When two visual displays are 
presented within less than 100 ms of each other, 
behavioral evidence suggests a a failure to encode the 
two stimuli as separate events (Shallice 1964; Allport 
1968; c.f. VanRullen & Koch 2003). However, at 
temporal separations of 100 to 400 ms, a different 
limitation is revealed; observers will often fail to 
report the second stimulus, an effect known as the 
attentional blink (AB; Raymond, Shapiro & Arnell, 
1992). 

According to a recently proposed computational 
model called the Simultaneous Type, Serial Token 
account (STST; Bowman & Wyble 2007), the 
attentional blink is a reflection of a mechanism 

intended to divide working memory representations 
into discrete tokens – i.e., episodic memory 
representations. In this view, forming a token for a 
first  target  suppresses the selection of new target 
stimuli so as to prevent  the latter targets from being 
integrated with the first target’s working memory 
representation. Crucially, however, several recent 
studies have provided evidence that  challenges this 
view by showing that  observers can accurately report 
the identities of several target items presented in 
direct succession, without suffering an attentional 
blink (Olivers, Van Der Stigchel & Hulleman 2007; 
Kawahara, Kumada & Di Lollo 2006; Nieuwenstein 
& Potter 2006). 

These results suggest  that attention must use a 
more flexible mechanism for mediating attentional 
deployment than that described by STST.  To 
accommodate these new findings, we propose the 
Episodic Simultaneous Type/Serial Token (or eSTST) 
model.  In the present study, we show that this revised 
model of temporal attention and working memory is 
capable of explaining the recent  findings that 
challenged STST, addressing both the attentional 
blink and prolonged sparing within the same model. 
In addition, the model provides new predictions 
which suggest  that  the ability to report the identities 
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of several consecutive target items should come at a 
cost  to episodic distinctiveness. The results from three 
experiments reported here show that  this cost  can be 
measured in increased repetition blindness, order 
errors and temporal conjunctions.  Finally, we take 
advantage of the neurally inspired implementation of 
eSTST  to predict neural activity which can be verified 
at  the single neuron level in primate working memory 
experiments.

Empirical Background 
Rapid Serial Visual Presentation (RSVP) has been 

used extensively to study the temporal properties of 
visual perception; Chun & Potter, 1995; Kanwisher, 
1987; Potter 1976; Raymond, Shapiro & Arnell, 1992; 
Reeves & Sperling 1986; Weichselgartner & Sperling 
1987).  In this paradigm, subjects view a sequence of 
rapidly presented  (e.g. 10/sec) stimuli, generally at 
the center of a display, with each item masking the 
one that came before it.  Because each item is rapidly 
masked, incoming information has to be encoded 
rapidly or it will be lost. The attentional blink arises 
in such presentation when observers have to detect  or 
identify two target items embedded in an RSVP 
sequence of distractor items (e.g., Broadbent  & 
Broadbent  1987; Raymond et  al., 1992). A common 
version of such a dual-target  paradigm is shown in 
Figure 1a. In this task, the observer has to report the 
identities of two letters embedded in an RSVP 
sequence of digits. The results from this type of task 
typically show that T2 performance is largely 
unimpaired if presented at lag-1 (i.e. when T2 
immediately follows T1), but is sharply impaired at 
lag 2 (i.e. with one intervening distractor) and 
recovers over the next several hundred milliseconds.

The STST Model
The Simultaneous Type/ Serial Token model is a 

neural network which describes the process of 
extracting and then encoding specific targets from a 
temporal stream of stimuli in a way that  preserves 
their temporal order.

Types and Tokens. STST is based on the premise 
that visual working memory uses both types and 
tokens (e.g. Kanwisher 1987, Mozer 1989) operating 
in two stages (Chun & Potter 1995, Chun 1997a).  
Token based memory systems provide an episodic 
context that  allows encoding of temporal order and 
repetitions, neither of which are easily realized in 
simpler buffer maintenance accounts (Deco, Rolls & 
Horwitz 2004; see Bowman & Wyble 2007 for a more 
extensive discussion).  

Types constitute a semantically organized 
representational workspace within which visual input 
is analyzed to extract features, objects and concepts.  
However, types cannot  represent  instance specific 
(episodic) memories.   In fact, types are not  directly 
stored in working memory at  all; these nodes are only 
active during encoding and retrieval.  This facet of the 
model is critical in permitting repetitions of an 
already stored item to be processed.

Tokens store episodic working memory 
representations.  A single stored token contains a 
pointer to a type, which can later be used to retrieve 
the content  of the memory by reactivating the type 
node.  This system inherently represents temporal 
order; any type bound to token 1 is considered to be 
encoded before a type bound to token 2. 

Temporal Attention. According to the STST  model 
(Bowman & Wyble, 2007), lag-1 sparing and 
enhanced processing of the T1 +1 item (Chua, Goh & 
Han, 2001) indexes a temporal window of attentional 
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Figure 1.  a. The letters-in-digits paradigm.  Time is represented from top to bottom in this diagram.  The lag between T1 and 
T2 is varied from 1 (no intervening distractors) to 8 (7 distractors).  Lag 2 is depicted here. b.  Detection of T2s on trials in 
which T1 was perceived exhibits an attentional blink in data from Chun and Potter (1995).



enhancement that is triggered upon detection of T1. 
This window of attentional enhancement  is 
considered to reflect  a similar mechanism as that 
involved in transient attention (Nakayama & 
Mackeben, 1989; Muller & Rabbitt  1989; Yeshurun & 
Carrasco 1999; see also Nieuwenhuis, Gilzenrat, 
Holmes & Cohen 2005, Shih 2007). The brief episode 
of attentional enhancement is reflected in the finding 
that detection and identification of a masked visual 
target  is substantially improved when the target 
appears within about 50-150 ms of the onset of a 
highly salient stimulus. Consistent  with this 
interpretation of sparing, Wyble, Bowman & Potter 
(submitted) showed that  identification of a 
categorically defined target that appears in a dynamic 
display of distractor items is improved if the target 
appears within a window of 200 ms or less from a 
preceding target. Further support  for this theory is 
suggested by the finding that  sparing occurs even 
when a distractor item is presented between two 
RSVP targets, provided that  the targets appear at  an 
SOA of about  100 ms or less (Bowman & Wyble 
2007; Potter, Staub & O’Connor 2002; Nieuwenhuis, 
Gilzenrat, Holmes & Cohen  2005). Thus, sparing 
appears to reflect  a spatio-temporally constrained 
window of attentional enhancement that is deployed 
in response to detection of a potentially relevant 
stimulus. 

The transition from sparing to the attentional blink 
results from the end of the initial transient attentional 
episode and the suppression of further attention until 
the T1 has been encoded.  In particular, STST 
assumes that working memory encoding suppresses 
transient  attention to new information in order to 
protect the ongoing processing of T1. Thus, transient 
attention elicited by T1 allows both T1 and any 
shortly following T2 (e.g. lag-1) to be selected and 
encoded into short-term memory. However, once 
working memory encoding of T1 is underway, the 
allocation of attention to new inputs is suppressed, 
giving rise to the attentional blink. 

A Shift in the Empirical Landscape
Although STST  explained many of the hallmark 

effects observed in studies of the attentional blink, 
recent  work has provided several new findings that 
seem problematic for the model. In particular, these 
studies identified a number of manipulations that 
attenuate the blink in ways not foreseen by STST, or 
most of the competing AB accounts. The common 
denominator of these manipulations is that encoding a 
target  presented during the attentional blink window 
is in fact  easy as long as that target  is directly 
preceded by an item that can assist it in triggering 
attention or allows the attentional response triggered 
by T1 to be sustained. Thus, a T2 presented during the 
attentional blink can be reported without  much 
difficulty if it is preceded by an item that  captures 
attention because it matches the target  template 
(Nieuwenstein 2006; Nieuwenstein, Chun, Hooge & 
Van der Lubbe 2005; Olivers et al. 2007). Similarly, 
there are findings indicating that  sustained attention 
can alleviate the attentional blink. In particular, 
Nieuwenstein & Potter (2006) reported that  a string of 
six consecutive items can be encoded without  an 
obvious blink. When the same stimulus string was 
viewed in partial report  condition (i.e. only reporting 
targets of a particular color), the standard blink effect 
was observed even though subjects were then asked 
to encode only two of the six targets. Subsequent 
work demonstrated that  this effect generalizes to any 
uninterrupted series of targets, even if presented 
amongst distractors (Figure 2).  This phenomenon has 
been called spreading the sparing, for the way in 
which lag-1 sparing seems to be extended across an 
arbitrarily long sequence of targets (Olivers, Van der 
Stigchel & Hulleman, 2007; Kawahara, Kamada & 
DiLollo 2006). 

Thus, it cannot be the case that the AB is the 
result of limited ability to encode multiple targets if 
observers can encode three targets in the same time as 
they would otherwise fail to encode two.  Accounts 
which describe the blink as a competition between T1 
and T2 (Dehaene, Sergent, &  Changeux 2003) or 
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Figure 2.  In the data of Olivers et al (2007), the attentional blink is observed for a second target that is separated from the 
first target by a distractor (i.e. the dark grey condition).   However if that intervening distractor is replaced by a target, 
subjects exhibit sparing of the last target (i.e. the light grey condition).  



describe more general notions of limited cognitive 
resources (Kranczioch, Debener, Maye & Engel 
2007) are difficult  to reconcile with findings of 
spreading of sparing and whole report  superiority.  
Furthermore, in the experiments described above, the 
subject does not know which type of trial (i.e. TTT  or 
TDT) was about to occur.  Consequently, explanations 
involving a pre-trial allocation of attention (e.g. the 
over investment  hypothesis described by Olivers & 
Nieuwenhuis 2006) cannot  be used to explain 
spreading of sparing because trials were presented in 
a mixed block.The critical question posed by these 
data is this: If subjects can encode sequences of 
successive targets without  suffering an attentional 
blink, why does the blink occur when they attempt to 
encode two temporally discrete targets separated by 
distractors?  The eSTST  model proposes that  our 
visual system is designed to flexibly mediate the 
allocation of attention; an uninterrupted sequence of 
targets can be encoded, but if there is a gap in the 
targets, attention is briefly switched off in order to 
divide the encoding process into two sequential 
episodes.   This behavior emerges dynamically 
through a regulatory circuit that we describe in this 
work.

What’s new in eSTST?
The model we describe is structurally similar to 

STST, consisting of types, tokens and a temporal 
attention mechanism.   However these three elements 
now interact  to produce a competitive regulation of 
attention.   The deployment  of attention at any point 
in time is controlled by competing inhibitory and 
excitatory connections from WM encoding and target 
input, respectively (Figure 3). This implementation 

allows each target in a string of consecutive targets to 
sustain a recurrent excitation of attention. However, if 
no new target  arrives at the input  layer during a period 
of 200 or more ms after the onset of the preceding 
target, the ongoing consolidation of preceding target 
information succeeds in suppressing attention.  When 
this occurs, a subsequent  target receives no 
amplification and is less able to reactivate attention.  
As a result, targets following a gap in a target string 
are frequently missed (Figure 4). 

A second important modification concerns the 
allocation of tokens. In STST, it was assumed that 
token binding is initiated in sequence, such that  a 
second token can only begin after the first had 
completed.  This mechanism attempted to allocate one 
type per token.  However two targets could bind to a 
single token in the particular case of lag-1 
presentation, with the consequent sacrifice of 
temporal order information about  which came first.   
Extending this implementation to sparing of four 
consecutive targets predicts that  no order information 
is preserved among them and this is not the case, as 
we will see below.  

In eSTST, tokens are more strictly defined; each 
token can bind to one target only, as described by the 
original definitions of a visual token (Mozer 1989, 
Kanwisher 1991).   If multiple targets arrive at the 
input  nodes more rapidly than they can be encoded, 
the system allows multiple tokens to be bound in a 
staged fashion, with token 1 completing first, token 2 
second and so on.  Thus, in eSTST, the tokens are 
serial in the order that their encoding is completed. 

Modeling methods
The model has five major components, as shown 

in figure 5: input nodes in which input  is presented, 
type nodes which represent the identities of targets as 
they are being encoded into working memory, binding 
pool and tokens which store episodic representations 
of targets in working memory, and finally the blaster, 
a node which mediates the deployment of attention.  
The description given here is simplified; all of these 
elements are formally described in the appendix.1  All 
nodes in the model are simple linear accumulators, 
with activity that  decays to zero over time according 
to equation 1.  

! 

a
(t ) = a

(t"1) * decay + input
(t )  (1)

In equation 1, a(t) represents the activation of a 
node at  a particular time, which is the sum of its 
previous activation a(t-1) multiplied by a decay rate, 
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1   MATLAB code for the model with a user interface are available for download at

http://www.bradwyble.com/research/models/eSTST/

Figure 3.   Competitive regulation of attention; bottom up 
target input attempts to trigger attention while encoding 
processes attempt to shut off attention. 



and a combination of excitatory and inhibitory input.  
Some nodes excite themselves and can sustain their 
own activation, which allows information to be stored 
in working memory.

Connections between nodes are excitatory or 
inhibitory, with the exception of the blaster’s 
attentional amplification.   All connections in the 
model are nonmodifiable; only the activation level of 
nodes can change.  A trial is simulated in time steps.  
Each step corresponds to 10 mlliseconds.  There are 
no random factors or noise; given the same 
parameters, every simulation produces the same 
output. 

Input: A Sequence of Targets and Distractors
Targets or distractors are presented at  each time 

step by activating one of the input nodes (for 
simplicity, all distractors are represented by a single 
node).   Target  inputs vary systematically in strength 
over a range of values, reflecting variation in the 
relative effectiveness of different combinations of 
targets and masks.   It  is this variance in strength that 
explains why some T2s are able to survive the blink, 

and why some T1’s are missed.   
When a given item is presented to the model, the 

corresponding input node is clamped to a designated 
value.  At  the end of the stimulus, this input node 
rapidly decays back to zero due to masking from the 
following item in the RSVP stream.   Items followed 
by a blank in the stream decay more slowly during the 
blank interval, representing persistence in iconic 
memory in the absence of a backwards mask. Figure 
6 illustrates the activation traces of target input nodes 
for different conditions.  

Task Demand: In eSTST, a task demand 
mechanism specifies the set of targets by inhibiting 
distractor nodes, preventing them from activating type 
nodes.   In this way, distractors provide masking of 
targets, but do not enter the encoding stage.  This 
aspect of the model has important  implications that 
will be brought out in the discussion.  

 
Output: Identity and Temporal Order of Targets

 The output  of the eSTST  model is measured at 
the end of a simulation to retrieve both the identity 
and order of items that are stored in working memory.   
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Figure 4.   Schematic demonstration of the competitive regulation of attention for a single letter target among a series of 
distractors, (top), three targets in a row (middle) and two targets separated by a distractor (bottom).   Attention begins at a 
baseline level and can be shifted upwards or downwards depending on whether excitation from targets or suppression from 
ongoing encoding is dominating the competition. For three targets in a row, the suppression elicited from the first target 
onwards is counteracted by the amplified excitation from T2 and T3.   However an intervening distractor provides sufficient 
time for attention to be suppressed, producing an attentional blink for the following target. 



For each token that has been encoded into working 
memory, the type node which is bound to that  token is 
retrieved.  If two tokens are bound to the same type, 
the model is considered to have encoded a repetition 
of that type. The order of reported items is determined 
by the order of the tokens that represent  them.  Token 
1 is reported first; token 2 reported second and so on. 

Temporal Attention: The Blaster 
The model is predicated on the idea of a rapid and 

transient  deployment  of attention in response to a 
target.  This attentional resource is nonspecific, 
meaning that  when active, it amplifies all input in a 
manner similar to neuromodulation (e.g. by 
norepinephrine as modeled by Nieuwenhuis, , 
Gilzenrat, Holmes & Cohen, 2005).  This is 
implemented by the so-called blaster; a single node, 
which receives excitatory input  from all of the target 
input  nodes and, in turn, provides attention to all input 
nodes. In addition, the blaster receives inhibitory 
input  from the token layer, and it is the competition 
between excitatory and inhibitory inputs which 
determines whether a target triggers the blaster. 

Working Memory Encoding
The goal of encoding, on each trial, is to encode 

all targets into working memory in the order in which 
they occur, including repetitions.  Encoding occurs by 

binding types to tokens. These bindings are stored by 
holding an attractor state in self-excitatory nodes. 
Such attractors have the advantage that they can store 
information without hebbian synaptic modification, 
which has not  been found to occur rapidly enough to 
support  encoding and subsequent retrieval in tasks 
such as this.  Storing information in attractors is a 
common approach in working memory models (e.g., 
Deco, et  al. 2004; Hasselmo & Stern, 2006) and is 
consistent with findings of sustained neural activity in 
monkeys performing working memory tasks (Miller, 
Erickson & Desimone 1996).

Binding a Type to a Token
To encode the occurrence of an item into working 

memory, such as the letter ‘J’ in an RSVP stream of 
digits, the activated type node corresponding to ‘J’ is 
bound to Token 1.   This binding represents the fact 
that ‘J’ was seen, and that  it  was the first target 
encountered in the stream. 

This encoding requires storing a link from a type 
to a token.  In the model, a population of nodes, 
referred to as the binding pool (Bowman & Wyble 
2007), stores these links by selectively activating 
nodes that correspond to specific combinations of 
type and token.  For example, in figure 7, the binding 
unit labeled J/1 stores a binding between type ‘J’ and 
token 1.2   At  the beginning of a trial, both tokens are 
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2 We address the scalability of this solution in the appendix.

Figure 5.  Schematics of the full eSTST  model.   Input from early visual areas excites input nodes and feedforward 
inhibition simulates backward masking.   Task demand represents the influence of task instructions in specifying the 
category of targets,  and acts by inhibiting distractor nodes, preventing them from entering working memory and triggering 
attention.  Inhibition between type nodes simulates weak interference between coactive type representations.  



available, but  the system selectively binds the first 
target to token 1. 

Binding occurs when a type node is sufficiently 
active to excite corresponding nodes in the binding 
pool (J/1 and J/2 in this example), which race to 
threshold.  The encoding system is configured such 
that input to J/1 has a slight advantage over input  to J/
2 and this ensures that  binding units corresponding to 
token 1 will reach threshold before those 
corresponding to token 2.  When any of these binding 
units reaches threshold, three things happen:  (a) the 
binding unit enters a self excitatory attractor, 
sustaining its own activation until retrieval, (b) it 
excites its corresponding token, serving as a pointer 
that an item is stored in working memory and (c) it 
inhibits other binding pool nodes corresponding to the 
same token, thereby preventing other items from 
binding to the same token for the duration of the 

entire trial.   As a result, the system will have bound 
the first target to the first token.  

Binding Multiple Types.  Multiple types can be in 
the binding process simultaneously, but one of the 
binding units will reach threshold first, encoding the 
winning type into token 1.  The remaining type(s) will 
continue binding to remaining tokens, with token 2 
completing next.   However, this race model of 
encoding is prone to order errors; a strongly activated 
T2 can beat a weaker T1 if they are presented closely 
in time.  This confounding of activation strength with 
perceived target  order in RSVP is similar to that 
proposed by Reeves & Sperling (1986).   If the 
system is to infallibly encode the order of two stimuli, 
it  is necessary that the second target begins encoding 
only after the first  target  is finished processing.  We 
argue that  the inhibition of the blaster (and therefore 
the attentional blink itself) exists precisely to impose 
this temporal segregation of target encoding.  

There is weak lateral inhibition between type 
nodes, which reflects the interference of processing 
multiple items at the same time.  This inhibition is not 
involved in the attentional dynamics that  result in the 
blink; however, this interference is important for 
simulating costs of encoding multiple items within the 
same attentional episode, such as the T1 impairment 
at lag-1 which we discuss below.   

Sustaining types during encoding. During 
encoding, the model sets up a temporary recurrent 
circuit between the binding pool and type nodes until 
encoding is completed. To implement  this recurrence, 
we add gate nodes to the binding pool units.   Thus, 
each binding unit is actually a gate/trace pair of 
nodes, as shown in Figure 8a (denoted G and T 
respectively).  During encoding, the gate node is 
active, passing activation from the type node to the 
trace node, but also provides recurrent activation 
back to the type node, producing a temporary attractor 
state.
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Figure 6.  The profile of input nodes for different configurations used in simulations, including a target presented at 100ms 
SOA, a target with the same SOA followed by a blank, and a target presented at 50ms SOA.  

Figure 7.  The binding pool contains nodes selective for 
conjunctions of types and tokens.   In this example, the type 
‘J’ is being bound to token 1.  When encoding is complete, 
self excitatory connections will sustain the activation in the 
binding pool and token 1.  



The temporal dynamics of encoding a single 
target  are shown in Figure 8b.  The type node is 
initially excited by target input with the help of the 
blaster.  The gate node is excited by the type node and 
recurrent  excitation between gate and type establishes 
a temporary attractor state.  The goal of encoding, 
however, is to store the item without committing the 
type node.   Therefore, the trace node slowly accrues 
activation until it crosses threshold, at which point it 
inhibits the gate, shutting off the attractor.   When this 
occurs, the type is no longer required, and without 
feedback from the gate mode, the type node’s 
activation rapidly decays back to baseline.  This is a 
point  of departure from the STST account  of Bowman 
& Wyble (2007) which used a different mechanism to 
sustain type nodes during for encoding. 

Types and repetitions 
A type node can only be used to process one 

instance of a target at  a time.  If a repetition of a target 
occurs while a prior instance of the same target is still 
being encoded, the new input  simply enhances the 
activation of the already active type node.  This 
facilitates encoding of the previous instance of the 
target, but does not  initiate encoding of a new token.  
Only if the previous encoding had been completed 
when the repetition arrives can the system encode a 
new instance of the target.   This property of the 
binding process gives rise to repetition blindness 
during RSVP.   

Delay of attentional deployment. 
All but  one parameter were fixed for all of the 

simulations described below.  The onset of the blaster 
is subject  to a delay parameter corresponding to the 
difficulty of target detection. For targets defined by 
category, such as letters in a digit  stream, this delay is 

set to 40 ms. For whole report, which requires no 
target discrimination, the delay is set to 10 ms.   

Data Addressed
The eSTST model is validated against  a spectrum 

of data from different experiments.  All of the 
following phenomena are replicated with the same 
model and parameter settings, except  in the case of 
whole report, which has unique task instructions.  

The Attentional Blink.  T2 accuracy is impaired 
for 200-400ms following accurate report  of a T1 with 
strong sparing of T2 at  lag-1 (Raymond et al 1992; 
Chun & Potter 1995). 

The role of post-target blanks. The blink is 
attenuated by blanks after either T1 (Chun & Potter 
1995, Seiffert & Di Lollo 1997) or T2 (Giesbrecht & 
DiLollo 1998). 

The Cost of lag-1 sparing.  T1 accuracy is 
impaired at lag-1 and swaps of temporal order are 
frequent at lag-1 (Chun & Potter 1995).    

Lag-2 Sparing at 20 item/sec.  Sparing is a 
function of the temporal separation between one item 
and the next.  For RSVP at  about 50 ms/item, sparing 
of T2 is evident at lag-2 (Bowman & Wyble 2007).   

Spreading of sparing.  When a string of three or 
four consecutive targets are presented, the entire 
sequence is spared, eliminating the blink and 
producing best  performance for the second target 
presented (Olivers et al. 2007, Kawahara et al. 2007).

Cueing.  During the blink, if two targets are 
presented in rapid succession, the second one has 
improved accuracy (Nieuwenstein 2006; Olivers et  al. 
2007).

Whole Report.  When there are no distractors in 
the RSVP stream there is a first  target  advantage, as 
opposed to a second target  advantage found in 
spreading of sparing (Nieuwenstein & Potter 2006).
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Figure 8.   a.  Encoding involves a temporary recurrent circuit between a type node and a gate node in the binding pool. b. The 
temporal dynamics of binding for a single target.   The elevated portion of activation for the type and gate nodes reflects the 
recurrent attractor state between them that is cut off abruptly when the token is bound (see appendix for more detail).



Encoding a target into working memory
When a type node is activated by bottom-up 

input, it  is encoded into working memory through the 
allocation of a token.  The dynamics of this process 
can be seen in Figure 9, in which a single target is 
presented for 100 ms, amidst  a stream of distractors, 
producing the following sequence of events.   (a) The 
input  node excites the type node and the blaster.  The 
blaster is rapidly triggered, which strongly amplifies 
further input  to the type node, (b) the type node 
initiates token allocation, entering a temporary 
attractor state with the token.  This attractor state 
sustains its activation while token activation increases 
over the following 200-400 ms.   During encoding, 
suppression of the blaster can be observed as a 
negative shift in its activation. (c) When one of the 
trace nodes crosses a self-sustaining threshold, the 
attractor state is terminated, and the type node decays 
back to baseline.  For the remainder of the trial, the 
token stays allocated and the target is successfully 
encoded into working memory as token 1. 

Encoding Multiple Targets
For tasks require report  of two targets in an 

RSVP sequence, the dynamics of the model’s function 
fall into one of three regimes depending on the 
elapsed time between T1 and T2, measured in 100 ms 
“lags”:  sparing (lag-1), blinking (lags-2-4), and post-
blink (lags-5-8).   Figure 10 illustrates the dynamics 
of the network at  lags 5, 3 and 1 for example trials at 
particular target strengths.

Post Blink. Presentation of the T2 at  lags 5-8 is 
sufficiently late that T1 encoding is complete.   
Therefore, the blaster is no longer suppressed and can 
respond rapidly when T2 is presented. In this case, the 
two targets are bound sequentially and are thus free of 
mutual interference as well as the possibility of order 
confusion.    

Blink. At lags 2-4, the T2 arrives while T1 
encoding is ongoing.  Top down suppression of the 
blaster makes it  difficult for T2 to trigger attention, 
and thus the T2 type node is only weakly activated.  
On a minority of trials (not  shown in Figure 10), the 
T2 is strong enough that it breaks through the blink.  

Sparing. T2s that arrive 100 ms after T1 (i.e. 
lag-1) are able to benefit from the attention deployed 
to the T1. An attended T2 sustains the activation of 
the blaster, despite the top down suppression, and 
strongly activates its type node. T1 and T2 are bound 
in parallel with order determined by their relative 
strength.  In this example trial, the targets are bound 
in the correct order.

By iterating simulations over many different 
values of T1 and T2 strength, the model simulates the 
attentional blink.  Figure 11 displays the output  of the 
model alongside matching human data for the basic 
blink condition, as well as the different  aspects of 
performance described immediately below.  The data 
are from Chun & Potter (1995), Experiments 1 and 3, 
and Giesbrecht & DiLollo (1998), Experiment 1. 

Post-target Blanks
The attentional blink is sensitive to blanks placed 

after either T1 or T2; either manipulation will 
attenuate it.  Modeling the blink-attenuating effect  of 
T1+1 blanks is a particularly challenging aspect of 
this data, because, as the T1 becomes more salient, 
the T2 is easier to report  (Bowman, Wyble, Chennu & 
Craston In Press) 

The eSTST model, like the STST account 
(Bowman & Wyble 2007), demonstrates a reduced 
blink when blanks are inserted into the stream after 
T1 or T2.  Such blanks reduce backward masking of 
the target.  For a T2, unmasking increases the length 
of the T2 trace in iconic memory (e.g. at  the input 
layer), giving the T2 more opportunity to outlive the 
blink and be encoded.   A T1+1 blank increases the 
duration of the T1 trace in the input layer, thereby 
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Figure 9.   Schematic of encoding a single target from an 
RSVP stream.  From bottom to top: the input layer is first 
activated, triggering the blaster, which amplifies the input 
(visible as a stepwise increase in input strength).  The type 
node is initially excited by bottom up input and is 
sustained during encoding, represented abstractly with a 
grey bar at the top of the figure.   Note that the blaster is 
strongly suppressed by ongoing encoding and then 
recovers to baseline.  



increasing the excitation of the T1 type node.  With 
more strength, the encoding process is more rapid.  
Thus, on a T1+1 blank trial, the blink is so brief that  a 
T2 has a better chance of outliving the blink and 
being encoded. However, our model argues that  a 
muted blink should still be present  in these cases, an 
issue we return to in the general discussion.

The Costs of Lag-1 Sparing
In eSTST, T2 can be spared by binding T1 and 

T2 in parallel, but  this form of encoding has 
detrimental effects, two of which are revealed when 
T2 is presented one lag after T1.   In this case, T1 
accuracy is impaired because of competition with T2.  
Also, the order of the targets is often encoded 
incorrectly, because items being processed in parallel 
are in a race to complete the available token.   When 
T2 occurs at lag-1, T2 begins the race 100 ms after 
the T1, but  if T2 is exceptionally strong (i.e. due to 
the inherent  variation in target  input strength), it  may 
beat T1 in the race and be bound to Token 1, leaving 
the T1 to be bound to Token 2.   Note that this is a 
significant departure from the STST model (Bowman 
& Wyble 2007), in which sparing was the result  of 

binding T1 and T2 to the same token.  In eSTST, only 
one stimulus can ever be bound to one token.    Figure 
12 demonstrates how a strong T2 can beat a weak T1 
in the race to complete binding to token 1, forcing the 
T1 into token 2.  The result from this trial would be 
that both T1 and T2 would be reported, but in the 
wrong order (i.e. a swap).  

Sparing and Blinking are Temporally Delineated
In Bowman & Wyble (2007), experimental work 

demonstrates that if the presentation rate is doubled to 
20 items/sec (50 ms SOA), sparing is obtained at 
lag-2.  A similar point  is observed in the data of 
Potter, Staub & O’Conner (2002), Experiment 1.  This 
finding suggests that there is a temporal window of 
sparing following the first target.  

These data also suggest that the blink is a 
function of temporal lag.   When a T2 is presented 
200 ms after the T1, it is most  vulnerable to being 
blinked, whether it is the fourth item at 50 ms SOA or 
the second item at  100 ms SOA.  The eSTST  model 
demonstrates the same pattern, as shown in Figure 13.
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Figure 10.  Schematic depiction of the eSTST model processing two targets at lags of 1, 3 and 5.  Both targets are encoded at 
lag 1 and 5, but T2 is missed at lag 3.  



Spreading the Sparing
During RSVP, with input  of the form DTDTD 

(T1 and T2 targets separated by a distractor at an 
SOA of 100ms, and embedded in a sequence of 
distractors), report of the second target will be 
impaired.  This is the attentional blink.   However 
when the sequence presented is DTTTD (T1, T2 and 
T3 presented in succession at  100 ms SOA), all three 
targets are usually reported, a finding referred to as 
spreading the sparing (Olivers et al 2007). 

The eSTST model suggests that spreading the 
sparing is the result  of a sustained deployment of 
attention in response to a series of targets.  Each target 
boosts the activation of the blaster, which allows the 
following target  to be seen. This allows a sequence of 
two, three or four consecutive targets to sustain the 
activation of the blaster, effectively holding the 
attentional gate open (figure 14).   The model 
simulates the results of Olivers et al (2007) 
Experiment 1, as shown in figure 15. 

Cueing 
The interaction between top down suppression 

and bottom up input reproduces another critical 
feature of the dynamics of rapid visual encoding: 

cueing.  Nieuwenstein et al (2005; see also 
Nieuwenstein, 2006) demonstrated that  a target 
presented during the blink can be seen more readily if 
it  is preceded by another item containing a target 
specifying feature (e.g. color).  What these results 
suggest  is that  suppression of the blaster during the 
blink is not absolute.  A target  (or a stimulus 
resembling a target) can excite attention enough that  a 
following target  can benefit from the cueing effect. A 
similar finding arises in Olivers et al (2007) and 
Kawahara et  al (2007), who show that the string 
TDTT results in impaired accuracy for the second 
target, but improved accuracy for the third target  (i.e. 
compared to a target presented at  the same relative 
time in the configuration TDDT).  

Figure 15 illustrates how the model reproduces 
the data from conditions TDTT and TTDT of Olivers 
et  al (2007).  In the case of TDTT, the second target 
boosts the activation of the blaster, aiding the 
following target  in triggering attention more rapidly, 
and improving its accuracy compared to a target 
preceded by a distractor.      

Whole Report vs Sparing
Nieuwenstein & Potter (2006) demonstrated that 
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Figure 11.  Simulation results alongside empirical counterparts from subjects.  Shown are accuracy of T2 conditional on T1 and 
accuracy of T1 and the probability of reversing temporal order (i.e. P(swap)).    The model demonstrates a basic blink that is 
attenuated by blanks either at T1+1 or by placing T2 at the end of the stream (a).   It also demonstrates a reduction in T1 
performance that is exclusive to lag 1, as well as a large increase in swap errors (b).     All human data are taken from Chun 
and Potter (1995) except for the T2 end-of-stream data, which are from Giesbrecht and DiLollo (1998).



subjects fail to exhibit an attentional blink during 
whole report, a paradigm requiring subjects to report 
a string of consecutive items.    Whole report  is 
similar to the case of spreading the sparing, in that  a 
string of consecutive targets is to be encoded.   
Neither paradigm produces an attentional blink, 
suggesting that  a similar encoding process occurs 
whether the targets have to be selected from 
distractors, or are presented in isolation.  

There is a subtle but important  difference between 
the relative strength of the first  two targets between 
whole report  and target strings, as illustrated in Figure 
16.   When targets need to be identified amongst 
distractors, there is a delay in the deployment of 
attention that gives the second target  an advantage 
over the first.  When no target  identification has to be 
made, attention is deployed more rapidly, giving the 
first target an advantage over the second.  

Figure 17 shows a replication of the accuracy data 
for the first  four targets in the whole report condition 
of Experiment 1 in Nieuwenstein & Potter (2006) 
(SOA of 107ms) and the four target condition of 
Experiment 1 in Olivers et  al (2007) (SOA of 100 
ms).  For items presented in a whole report paradigm, 
the first target  is better perceived than the second.  
For a string of targets presented in a stream of 
distractors, the second target is better perceived than 
the first.  Potter, Staub & O’Connor (2002) also 
describes the second target  advantage for targets in a 
distractor stream at  short  SOAs.   The model 
reproduces this same difference. Thus, eSTST 
suggests that the second target  advantage in selective 
report RSVP paradigms can be explained as a 
processing delay in the deployment of attention. 

Behavioral Predictions: Identifying the Cost of 
Sparing

Having demonstrated the versatility of the eSTST 
model in reproducing a spectrum of data from 
different  experiments with a single set of parameters, 
we now turn to the critical question; why is the visual 
system designed to exhibit an attentional blink if it  is 
capable of sparing a sequence of targets?  Some of the 
aforementioned data suggest  that sparing comes with 
a cost.  For example, in the classic letter-digit 
attentional blink paradigm, lag-1 sparing of T2 
produces a reduction in T1 report, as well as temporal 
order errors when both targets are reported.  The 
eSTST model suggests that we can find more 
evidence of the cost of sparing by looking at 
repetition blindness, order errors within strings of 
three or four targets, and an increase in conjunction 
errors between parts of complex items.  

 Prediction I:  Repetition Blindness gets worse during 
sparing

Repetition Blindness (RB) is a well known 
phenomenon in visual working memory paradigms.  
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Figure 12.  For T1 and T2 presented at lag-1,  the encoding 
system can make a temporal order error, which occurs in 
this example.   T2 input is sufficiently stronger than T1 
that the T2 type node wins the race for token 1 and forces 
T1 to be encoded to token 2.

Figure 13. Model simulation and human data for 94ms and 
54ms SOA presentation rates, simulating the data published 
in Bowman & Wyble (2007).   For the 54 ms presentation 
rate, lags were 2,2,4,6,8,10,12,14,16, producing target 
onset asynchronies (TOA) similar to lags 1-8 for 94 ms 
SOA.   Critically, sparing is obtained for the lag-2 position 
(108 ms) in the 54ms SOA data, and the blink has the same 
time course.  The simulation used SOA’s of 50 and 100ms 
in the two conditions.  



When observers are asked to encode two instances of 
the same item within a very short period of time 
(often less than 500 ms), often only one of the two 
instances will be perceived.  Generally it  is thought 
that RB involves a loss of the second item, although it 
is possible to demonstrate a loss of the first instance 
(Neill, Neely, Hutchison, Kahan & VerWys 2002).  
Previous work has suggested that repetition blindness 
is attenuated if the second instance is made 
episodically distinct from the first (Chun 1997a) by 
changing its color.  The eSTST  model suggests that 
we can also affect  the episodic relationship of the two 
instances with the presence or absence of targets 
between the repeated items.

The full spectrum of theoretical and empirical 
work related to RB is beyond the scope of this article, 
but the eSTST model simulates the phenomenon.  
Within our model, if a second instance of a type is 
presented while the system is still encoding the first 
instance, the second instance is incapable of forming 
a separate tokenized representation. Tokenization 
failure as a cause of RB has been described 
previously (Kanwisher 1987, Anderson & Neill 
2002).
In our model, if the encoding stage is loaded with 
multiple targets in parallel (i.e. spreading the sparing 
or whole report), interference between three or four 
simultaneously active types prolongs the encoding of 

those targets (see figure 14 for an example of 
encoding four targets), and thus extends the temporal 
window of repetition blindness. Specifically, if the 
sequence TiTjTkTi  is shown to a subject, the second 
instance of item Ti will be strongly impaired, 
compared to the fourth item in the sequence TiTjTkTm.    
In contrast, the sequence TiDjDkTi allows more rapid 
encoding of the first instance of Ti due to the lack of 
competition from simultaneous targets, thus freeing 
up the i type node to process the repetition arriving 
300 ms later.  As we show below, the model is almost 
completely blind to repetitions in the TTTT case but 
not the TDDT case. 

   It is notable that whole report  (similar to the 
TTTT condition simulated here) is generally used in 
repetition blindness experiments.  Park & Kanwisher 
(1994) explored the role of non targets between 
repeated items and found an attenuation of RB just as 
predicted here.  However in their experiment, the two 
instances of the repeated letter were in different  cases.   
To properly evaluate the model’s prediction that RB 
can be nearly complete for same case repetitions, we 
tested the ability of subjects to encode a repetition 
during RSVP of all uppercase stimuli.  

Methods 
Participants. The fifteen participants were 

volunteers from the MIT  community of age 18-35 
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Figure 14.  Simulated spreading the sparing for four targets presented in sequence.  The blaster stays active despite top 
down inhibition, being sustained by continued target input.  



who were paid to participate in the experiment, which 
took approximately 30 minutes.  All reported 
corrected or normal vision.  

Apparatus and stimuli. The experiment  was 
p rogrammed us ing Mat lab 5 .2 .1 and the 
Psychological Toolbox extension (Brainard, 1997), 
and was run on a PowerMac G3. The Apple 17" 
monitor was set to a 1024 x 768 resolution with a 75 
Hz refresh rate.  An RSVP stream was presented 
centrally at  the location of a fixation cross.   SOA 
between items was 93 ms with no ISI.  

Black digits in 70 point Arial were used as 
distractors. The letters I, M, O, Q, S, T, W, X, Y and 
Z, as well as digits 1 and 0 were excluded.  Stimuli 
were approximately 1.3 by 2.1 degrees in angle at a 
viewing distance of 50 cm.
Procedure. Trial types occurred in a 2 x 3 design 
which defined what  sequence of target  items (letters) 
appeared amidst the long sequence of distractors 
(digits).  The first  factor defined whether the middle 
two positions of the four critical items were targets or 
distractors.  The second factor defined whether the 
stimulus in the final position was a new target, a 
repetition of the first  target, or a distractor to create a 
catch trial. Catch trials were included to avoid giving 
subjects the expectation of either two or four targets 
per trial. Thus, the six conditions specified the 
following sequences of four items in equal 

proportion:  TDDT, TDDD, TDDR, TTTT, TTTD, 
TTTR, in which T represents a random target chosen 
without  repetition, D represents a random distractor 
chosen without repetition and R represents a 
repetition of the first  target.  These target  sequences 
were positioned randomly within a stream of 
randomly chosen distractors with the first  target’s 
position chosen randomly from  the range 18 to 33 
and the last item was followed by at least 5 distractors 
with a total RSVP stream length of at least 30 items. 

Instructions presented at  the beginning of a trial 
told subjects to report all of the letters they could.  
Participants were warned that  there might be 
repetitions and to report  a letter twice if it was seen 
twice. 

 After each trial, participants were asked to “Enter 
all of the letters you saw, including repetitions”.  
Subjects were allowed to correct  their input  string 
with backspace while entering it, and were not given 
feedback.  Trials were considered correct if subjects 
reported the correct  identity, without  regard to correct 
order. 

Results and Discussion:
Results of both simulation and experimental data 

are presented in figure 18, showing conditional 
accuracy for the final target  presented in the four 
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Figure 15.  Simulated results and human data from 
Experiment 1 of Olivers, Hulleman & Van Der Stigchel 
(2007) for the main experimental conditions with three or 
four targets.   These results simulate spreading the sparing 
(TTTT), the onset of the blink after a distractor (TTDT), 
and cueing produced by two targets during the blink 
(TDTT).  

Figure 16.   The difference between selective report (a) and 
whole report (b) is simulated in the model by changing the 
delay between the triggering of the blaster, and the onset of 
the attentional effect from 40ms to 10 ms.   The result is a 
relative shift from a second target advantage to a first target 
advantage.



critical experimental conditions; blinking unrepeated 
(TDDT), blinking repeated (TDDR), sparing 
unrepeated (TTTT) and sparing repeated (TTTR).  
Accuracy values in the unrepeated conditions indicate 
the probability of reporting the final target given 
report of the first target.  In the repeated conditions, 
accuracy indicates the probability of reporting two 
instances of the repeated item, as a percentage of the 
number of trials in which at least one instance of the 
repeated item was reported.  Neither measure 
considers report order. In both sparing (TTTT  vs 
TTTR; paired t  = 9.9(14), p < .001, d = 3.5) and 
blinking (TDDT vs TDDR; paired t  = 4.48 (14), p < .
001, d = 1.38) cases, significant RB was observed.

Critically, the model predicts that  encoding a 
repetition in the sparing condition is nearly 
impossible while repetitions are successfully encoded 
for some of the blinking trials.  The data shows a very 
similar pattern, with lower ability to report the 
repeated item in the sparing than blinked trials (paired 
t = 3.43(14), p < .004, d = 1.13).  

Prediction II:  Order Report for Sparing Multiple 
Targets

AB data from Chun & Potter (1995) demonstrates 
that sparing of a single target is accompanied by a 
marked reduction in reporting the correct  order of the 

two targets.  Our model predicts that sparing of more 
targets is accompanied by even greater loss of 
temporal order accuracy. 

Report  order was examined for the set  of trials in 
which the model successfully encoded four targets in 
simulated whole report as described previously (i.e. 
the blaster delay is set at  10 ms, and SOA at  110 ms to 
simulate the 107ms SOA). These data were plotted as 
the frequency of reporting a given item in each of 
four possible report  positions in figure 19. The 
encoded order is the result of variation in target 
strength from trial to trial.   If a T2 is particularly 
weak, the T3 may outpace it in the race to bind to 
Token 2, forcing T2 into Token 3 or possibly even 
Token 4.  All four items are most  often reported at 
their correct  positions, but order accuracy is 
especially low for targets in the middle two positions, 
producing a pronounced U-shape to the accuracy 
curve.  

To test  this prediction, data from Nieuwenstein & 
Potter (2006) were analyzed for report order, 
considering all trials in which subjects reported at 
least the first four of the six items.    This criterion 
selected 321 trials from the 16 subjects.  Reports 
sometimes contained more than 4 items.  For clarity, 
reports of any of the first four items in position 5 and 
6 were collapsed together with position 4. 

The whole report  data above are consistent  with 
the model (Figure 19), particularly with respect to the 
U shape, favoring correct  order report  of the first and 
last target items.  However, in this experiment, 
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Figure 17.   Simulated results and human data (from 
Nieuwenstein & Potter 2006, and Olivers et al. 2007) for 
selective report and whole report.  The critical difference 
between the two is the relative advantage of the first and 
second targets.  

Figure 18.  Simulated results and human data for a 
repetition blindness experiment. Shown, the conditional 
probabilities of reporting the final target of the sequence 
given correct report of the first target.  Both the model and 
human subjects were almost completely blind to 
repetitions occurring in the TTTT case. 



subjects were reporting items from a six item 
sequence, which may have affected the order 
accuracy of the last  item, particularly after having 
collapsed report positions 4, 5 and 6 into position 4.  

To address this issue, the data from the repetition 
blindness experiment, which had three and four target 
trials (i. e. the TTTD and TTTT  conditions), were 
analyzed and compared with the model’s prediction 
for the same conditions.  In these simulations of four 
targets in a target  selection paradigm, the blaster delay 
was set to 40 ms, the SOA to 90 ms, and order 
accuracy was examined for conditions of four 
successfully retrieved targets. 

The resultant simulated order data are shown in 
figure 19 for four targets.  Note that the predicted 
pattern is similar in character to the whole report data; 
the same U shaped trend is found with T1 and T4 
most often in their correct positions, and poorly 
ordered report of T2 and T3.  The change in the 
blaster delay to 40 ms produces a second target 
advantage, which also increases the probability that 
T2 is reported as the first item.   Thus order report  is 
worse for the first target than with the whole report 
data.  

The human data provide a good qualitative match 
to the pattern observed in simulated order report, 
showing the same characteristic U shape.  Order 

accuracy is worse than in whole report, particularly 
for the first target.  The four target data are derived 
from 50 trials of a possible 600 trials in which the 15 
subjects reported all four of the targets.  

We also examined order accuracy for the trials in 
which three targets were presented and reported by 
subjects.  In this condition, again both the model and 
the human data show a U shape. T1 T2 and T3 are 
reported in the correct position 61, 44 and 65 percent 
of the time in simulation and 58, 43 and 56 percent of 
the time in the human data.   The order data are 
derived from 196 trials in which subjects reported all 
three targets correctly.  

Prediction 3:  Temporal Mispairings during Sparing
A final qualitative prediction proposes that, 

during sparing, encoding is prone to making temporal 
errors between components of multi-feature objects, 
similar to the notion of illusory conjunctions  
(Treisman & Schmidt  1982).  There is already 
evidence that temporal binding errors interact  with the 
blink (Chun 1997b, Popple & Levi 2007) and that  the 
blink produces a delay in temporal binding 
(Nieuwenstein et al. 2005, Vul, Nieuwenstein & 
Kanwisher, In Press).  Here we suggest that during 
sparing, a different  pattern of temporal binding error 
emerges; We propose that  the blink helps to reduce 
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Figure 19.   Simulated and actual temporal order information for four reported targets.  Whole report data are from a 
reanalysis of the data of Nieuwenstein & Potter (2006) while selective report data are from the RB experiment reported 
above.  In each graph are shown four lines, illustrating the frequency of reporting each target in each of the four possible 
positions.  



the occurrence of these temporal misbindings, but that 
during sparing, migration of individual elements 
between T1 and T2 targets occur frequently. 

To evaluate this hypothesis, we reanalyze a set  of 
data originally presented in Bowman & Wyble (2007) 
with the aim of testing the hypothesis that  temporal 
migrations between individual elements of complex 
targets co-occurred with lag-1 sparing. This 
experiment used an RSVP stream of digit  distractors 
containing two letter pairs, occurring at 110ms 
intervals (Figure 20a).  In this experiment, subjects 
were prompted to report the two letter pairs they saw.  
They were not  forced to guess, and were given two 
prompts, one for the T1 pair and the other for the T2 
pair.  This paradigm allows us to examine the 
frequency of mispairings of letters as the temporal 
interval between them is varied from lag 1 to lag 8. 

In the new analysis, T2 accuracy was scored as 
the average probability of reporting either letter (i.e. 
left  or right) of the target pair, revealing a classic 
attentional blink, including prominent lag-1 sparing 
(Figure 20b).  To assess the chance of mispairing 
parts of T1 and T2, we considered the set  of trials for 
which subjects encoded at least two of the four 
presented letters.   Each such trial was scored as a 
mispairing if two letters from one letter pair were 

reported as coming from separate pairs; if two letters 
from different pairs were reported together as a single 
pair; or if both pairs were reported but with their 
halves miscombined.  As can be seen in figure 20b, 
accurate pairing of two or more letters at  lag-1 was 
not appreciably different from chance (i.e. 50%) but 
fell abruptly at lag 2 and remained at  a nearly 
constant  baseline level for the remaining lags.  An 
ANOVA over the percentage of mispairings with lag 
as the single factor was significant, (F(7,70) = 33.85, 
p <.0001  !p

2 = .77) .  When lag-1 was excluded from 

the analysis, an ANOVA showed no main effect of 
lag, F(6,60) = 2.11, p > .06 !p

2 = .173), suggesting 
that there was no difference between the number of 
mispairings at  lags greater than 1.Neurophysiological 

correlates of tokenized target encoding
A particular strength of a temporally explicit 

model such as eSTST is that the timing of simulated 
processes can be directly compared with their putative 
analogs in human subjects using MEG and EEG 
recordings.  Furthermore, the simulated neuronal 
dynamics provide insight  for the interpretation of 
single cell recordings in monkeys performing 
working memory tasks.

  
Electrophysiological correlates of the time course of 
encoding. 

 In human EEG recordings, the P3 component, is 
thought  to reflect   the deployment  of processing 
resources responsible for encoding the item into 
working memory (Vogel, Luck & Shapiro 1998, 
Kranczioch, Debener, & Engel, 2003; Martens, 
Elmallah, London, & Johnson, 2006) and can last for 
several hundred milliseconds after a target is 
presented in RSVP.  We suggest  that this prolonged 
period of post-target processing reflects the activation 
of binding pool gate nodes and type nodes within both 
the STST (Bowman & Wyble 2007) and eSTST 
models (but  see Nieuwenhuis Aston-Jones & Cohen 
2005 for an alternative account). Accordingly, it  is 
possible to generate “virtual” ERP components from 
the activation dynamics of these models to test them 
against recorded ERP components, as shown in 
Craston, Wyble, Chennu & Bowman (In press).  
Virtual P3’s generated from eSTST, particularly their 
timing and duration, are similar to those produced by 
STST, since both models simulate the attentional 
blink as a reflection of working memory encoding. 
The similarity between these electrophysiological 
data and the activation dynamics of the model provide 
corroborative support for our theoretical positions that 
(a) registering a target as a reportable percept in 
working memory takes several hundred milliseconds 
beyond the stimulus presence, and (b) that  the 
attentional blink reflects this process (see also 
McArthur, Budd & Michie 1999).
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Figure 20.   a.  The paradigm used in the experiment 
reported in Bowman & Wyble (2007).  b. Accuracy at lags 
1-8.  Bars indicate the percentage of temporal mispairings at 
different lags.  The line indicates probability of T2 report at 
different lags.  



Predicted Binding mechanisms in prefrontal cortex.    
The STST  and eSTST  models predict putative 

activation profiles of single neurons in brain areas 
involved with encoding the temporal order of multiple 
stimuli.   Such predictions are speculative, but 
nonetheless provide theoretical inroads into large data 
sets produced by neurophysiology experiments that 
record from hundreds of neurons. 

The substrate of working memory storage within 
the model, corresponding to tokens and the binding 
pool, may reside in frontal areas of the brain.  These 
areas are thought to play a role in the memory of 
temporal order and frequency of multiple stimuli in 
humans (Milner, Petrides & Smith 1985).  The 
importance of frontal areas in temporal ordering tasks 
has also been demonstrated in monkeys, in which 
lesions of the mid-dorsal part  of lateral prefrontal 
cortex (DLPFC) produce severe and permanent 
deficits in working memory for the order of three 
objects, despite preserved ability to remember or 
recognize single items (Petrides 1995). A neural 
substrate for this capacity is suggested in recordings 
from monkey lateral prefrontal areas, where neurons 
with sustained delay activity were highly sensitive to 
the specific orderings of three stimuli (Ninokura, 
Mushiake & Tanji 2003) and the integration of 
stimulus and order information Ninokura, Mushiake 
& Tanji 2004). 

Assuming that these areas of the dorsolateral PFC 
represent the equivalent of token and binding pool 
activation, we can delineate classes of neural firing 
patterns that may be found in tasks involving multiple 
objects that are to be remembered in sequence.   
These predictions are particularly important for 
experimental paradigms that  allow stimuli to be 
repeated within a trial because repetitions make it 
possible to contrast  stimulus selectivity with temporal 
order representations.  The following discussion 
refers to the simulated activation dynamics of tokens 
and binding pool nodes as described above, and as 
depicted in figures 7 and 8. 

Binding Pool.  We predict that neurons allocated 
to representing an item in the binding pool will be 
most selective for one instance of an object  in a 
sequence but not further instances.   Some such 
neurons will be primarily active during encoding 
(gate nodes), and some will be primarily active during 
maintenance (trace nodes).  In this framework, a 
further class of neurons function as gate shutoff nodes 
(see Appendix A.1) to prevent spurious encoding of 
repetitions.  Such neurons would be activated at  the 
end of encoding, firing strongly until the end of a 
stimulus sequence, but  would not  persist  during the 
delay.  We can also predict  that neurons associated 
with encoding will outnumber those associated with 
maintenance, as several gate nodes in the binding 

pool are activated by a target, but only a single trace 
node sustains activation. 

Tokens. Neurons corresponding to token 
representations will be devoid of stimulus specific 
firing, but should respond primarily to the position of 
a stimulus in the encoding sequence (e.g. first, 
second, etc).  Some such neurons will be active 
selectively during encoding (token gate nodes) and 
others during maintenance (token trace nodes).  See 
Bowman & Wyble (2007) for further discussion of the 
dynamics of tokenized representations.  

Two Item  Memory. Warden & Miller (2007) 
recorded neurons in frontal areas of monkeys which 
exhibit changing patterns of selectively as first one, 
then a second object is added to working memory.    
This experiment is ideal for testing our predictions in 
that the stored sequence contains repetitions, and the 
task requires encoding the temporal order of the two 
stimuli.  The investigators describe an example 
neuron that responds strongly for several hundred 
milliseconds after the first presentation of its 
preferred stimulus, but  is less active during 
presentation of the second stimulus.  This profile is 
similar to the activation of a binding pool gate 
neuron; it  participates in encoding a first instance of a 
preferred item, but  is then suppressed by a trace node, 
which renders it  unavailable during further encoding.    
The paper also describes a regression analysis of 
firing patterns during the delay period after the 
second stimulus is encoded and find that  while the 
population of neurons as a whole loses its selectivity 
for the first  stimulus, some neurons remain positively 
correlated with the first  stimulus and others become 
anticorrelated.   Our model suggests that  selectivity is 
not lost; rather, some of the recorded neurons may be 
trace nodes (the positively correlated neurons), and 
others  gate nodes (the negatively correlated neurons) 
and the majority of stimulus selective neurons are not 
activated strongly enough to participate in the 
sustained working memory representation. 
General Discussion

In the present  study, we described the episodic 
Simultaneous Type / Serial Token (eSTST) model of 
the attentional blink. This model concerns a 
modification of the Simultaneous Type / Serial Token 
model (STST) previously proposed by Bowman and 
Wyble (2007). The new model was borne out of a 
need to accommodate recent findings that  posed a 
fundamental challenge to STST, most notably the fact 
that observers can encode sequences of successive 
target  items without suffering an attentional blink. 
The key modification of STST that  allows eSTST to 
accommodate this result is the notion that attention 
allocation is governed by competing inhibitory and 
excitatory inputs from working memory processing 
and newly encountered targets, respectively. This 
makes the model more flexible, as it allows for 
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attention to be sustained, or retriggered while a first 
target is being encoded into working memory. 
The model also suggests that this state of affairs 
comes at a cost: Although sustained attention may 
allow for accurate report  of the identities of several 
successive target items, the resulting memory 
representations lack episodic distinctiveness. 
Observers can thus report the identities of successive 
target  items, but  they have difficulty recalling them in 
the correct  order, different features of successive 
multi-part  objects tend to be mispaired, and the ability 
to encode repetitions is impaired. 
The episodic distinctiveness hypothesis

One implication of the model is that  visual 
encoding is designed to enhance the episodic structure 
of information encoded into working memory; stimuli 
that are presented in an uninterrupted sequence are 
encoded in parallel; stimuli that are interrupted by 
gaps are segregated into temporally isolated 
representations. Thus, we argue that  the attentional 
blink is not a malfunction or limitation of attentional 
control (as is assumed by the interference account of 
Shapiro, Raymond & Arnell, 1994; the refractory 
account of Nieuwenhuis, Gilzenrat, Holmes & Cohen 
2005; and the Temporary Loss of Control theory 
described by DiLollo, Kawahara, Ghorashi & Enns 
2005).   Rather, the blink reflects a cognitive strategy 
of enforcing the episodic distinction between 
separately presented targets. 

Functionally, this is the result of a temporary 
inhibition of attention, which attempts to delay new 
targets from entering the encoding stage if there has 
been a gap in the target sequence.  However, 
presenting targets without interruption reveals the 
flexibility of this mechanism in the form of sparing. 
We propose that when sparing occurs, multiple targets 
enter the encoding stage at the same time.  The 
system can encode all of them, but  without ensuring 
that they are episodically distinct. 

Sparing represents a tradeoff between the benefit 
of encoding multiple items in parallel, and the 
d e t r i m e n t  i n m a i n t a i n i n g t h e i r e p i s o d i c 
distinctiveness.  This cost is manifest  in a variety of 
deficits, including interference between items (i.e. 
loss of T1 at  lag 1), loss of temporal order, 
conjunctions between parts of complex items, and 
increased repetition blindness.

The Limited Role of Distractors In Producing the 
Blink 

A point of serious theoretical contention between 
competing accounts of the blink is the role of 
distractors in an RSVP stream. Many theoretical 
accounts describe a direct role for distractors in 
causing the blink. In the case of the DiLollo et  al. 
(2005) TLC account, the T1+1 distractor forces a 
reset  of input  filters to the distractor category, such 

that a following T2 fails to be encoded as a target. In 
interference theory, the T1+1 distractor enters 
working memory with T1 and produces interference. 
Another theory is described by Raymond et al. 
(1992), which proposes that  an attentional gate is 
shut-and-locked in response to the T1+1 distractor.   
A variant  of this idea proposes that an inhibitory 
process is initiated reactively by a distractor that 
immediately follows a target  (Raymond, Arnell & 
Shapiro, 1992; Olivers 2007; Olivers & Meeter In 
Press). 

The eSTST  model proposes something quite 
different; the blink is caused entirely by target 
processing.  Mechanistically, the inhibitory 
connection from the binding pool to the blaster causes 
the blink during encoding of a target.   Distractors are 
inhibited at the type layer and are incapable of 
directly affecting the binding process.  Their effect on 
the AB is indirect in that they mask the targets and 
thus lengthen the duration of encoding T1 and reduce 
the reportability of T2.  

One line of evidence supporting this idea stems 
from the following studies, which point  to the fact 
that it  is primarily the masking properties of 
distractors which defines their role in the attentional 
blink.  Maki, et al (2003) demonstrate that  the pixel 
density of distractors is more important  than their 
conceptual familiarity to subjects.  Their work, as 
well as the experiments of Olivers et  al (2007), show 
that false fonts are similarly effective distractors as 
familiar characters, such as digits.  For word targets, 
Maki, Couture, Frigen & Lien (1997) found that  word 
and nonword distractors produce similar blink effects. 
Along similar lines, McAuliffe & Knowlton (2000) 
demonstrate that  manipulating the conceptual 
difference between T1 (a letter) and its mask (‘V’ vs 
inverted ‘V’) had no effect  on the blink magnitude. 
Grandison, Ghiradelli & Egeth (1997) also published 
a series of studies that  replaced the T1+1 item with 
simple stimuli, including a white square, a white 
screen flash, and a metacontrast  box and found blinks 
in each case.  

A more direct  prediction of the idea that  target 
processing causes the blink is that  the effect  should be 
observable in the absence of post T1 distractors.   
Experiments by Visser (2007) and Ouimet & 
Jolicouer (2006) have found exactly this result.  In 
some of the reported experiments, the interval 
between T1 and T2 is a blank display, and yet 
prominent blinks are reported for difficult T1 tasks. 
Nieuwenstein, Potter & Theeuwes (In Press) 
demonstrate that even for relatively easy T1 tasks 
(e.g. an unmasked letter at  100 ms SOA), a prominent 
blink can be observed if the T2 task is sufficiently 
difficult.    These findings are difficult to reconcile 
with the idea that the blink is induced by distractors, 
as described by Olivers (2007), but they fit  well with 
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the theory of competitive regulation of attention as 
described here.  

Conclusion
In the present s tudy, we proposed a 

computational model of the attentional blink which 
explains this effect in terms of the interactions 
between working memory encoding and mechanisms 
of attention allocation.  Central to this account is the 
notion that  working memory encoding of a first target 
event  suppresses the allocation of attention to new 
perceptual inputs so as to prevent these inputs from 
being integrated with the episodic memory of the first 
target. To accommodate the fact that  observers can 
encode sequences of successive targets without 
suffering an attentional blink, the model assumes that 
that this suppressive effect  is counteracted by the 
excitation of attention by newly presented targets. 
Consequently, the deployment of attention may be 
prolonged across several successive target items, 
resulting in accurate report  of the target  identities. 
Crucially, however, this ability to attend and encode 
successive targets occurs at the expense of episodic 
information; items are often recalled in an incorrect 
order, the ability to detect  repetitions is markedly 
reduced, and there is an increase in binding errors for 
multi-part objects.

This model suggests that  the attentional blink 
reflects a self imposed limitation on the encoding of 
visual information.  In particular, it  proposes an 
antagonistic relationship between engagement  of 
working memory encoding, and the deployment  of 
attention.  We suggest  further that there could be a 
link between the attentional blink and paradigms 
which measure an impairment  in the report  of stimuli 
that are present for considerable periods of time.  For 
example, inattentional blindness is observed when 
subjects are cognitively engaged; they fail to notice 
the onset  or arrival of novel or otherwise arresting 
stimuli  (Simons & Chabris 1992, Fougnie & Marois 
2007).   In such tasks, engagement of central 
mechanisms may maintain a sustained suppression of 
the reflexive deployment  of attention by the visual 
system.   

One implication of this idea is that there should 
be a connection between the attentional blink, and 
cognitive load, although more data is necessary 
before a computationally explicit account of cognitive 
load can be described.    Specifically, it is necessary to 
investigate how the strength of the suppression which 
causes the blink is affected by cognitive load.  
Preliminary efforts in this direction (Olivers & 
Nieuwenhuis 2005) suggest that  this suppression is 
relaxed by distracting subjects with an additional task, 
resulting in an attenuated blink effect. Likewise, the 
attentional blink may also be be attenuated by 

engaging motion processing mechanisms, as 
suggested by the results of Arend, Johnston & Shapiro 
(2006).  Further experimental work along these lines 
are needed to understand the link between the 
attentional blink, and cognitive load effects which 
produce phenomena such as inattentional blindness. 
Such results will allow models of the blink to be 
refined and thereby applied to cognitively demanding 
tasks that people face in more natural settings. 
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Appendix A.1:  Modeling Methods
Input

 Each accuracy curve is created by running the model repeatedly as target  input strengths are iterated over 
specified ranges.   The range of values used for T1 and T2 were [.31, 1.39] in steps of .09.   Encoding of T1 and 
T2 identity and the probability of reporting the wrong order (i.e. P(swap)) are evaluated at each of the 8 lags for 
each pairwise combination of the 13 T1 and T2 values (i.e. 169 trials).  In three or four target  sequences, targets 
are iterated over the same range in nine steps of .135, resulting in 3^9 or 4^9 simulated trials in three or four target 
conditions.

Time steps correspond to 10 ms.  Target  presentation times are scheduled to occur at  appropriate times for 
each condition to simulate the chosen pattern of targets and distractors depending on the SOA.  Input  node 
activation continues for a very brief period after the end of presentation of a target, reflecting rapidly decaying 
information in early sensory areas.  Thus, during input of a target, inputj(t) is held at  the corresponding value 
chosen from the range above for 12 timesteps for 100 ms SOA stimuli, 7 steps for 50ms and 13 steps for 110ms, 
followed by a linear decline to 0.0 in increments of .12 per time step if that item is followed by another item (i.e. 
it  is masked), or .01 during a blank interval.   This enhanced decay of targets followed by other items reflects the 
effect of backward masking. 

Type Activation.
Activation of type nodes has the following dynamics.

! 

typei( t ) = typei( t"1) * decay( ) + inputi( t ) * (1+ typeamp*{blaster
( t"bdelay )}bthresh )( )   (2)

      

! 

"inhib
(t ) + gatefeedbacki( t )

       

! 

{x}
a
=      1.0 if x >= a

         0.0 if x < a

  
In this activation equation, typei(t) is the activation of type i at  time t, inputi(t) is the input to that type, decay is 

the decay rate (.7).  At each time step the input to a type is amplified if the blaster was above threshold (bthresh = 
1.7) bdelay time steps prior to time t.  The amplification has value typeamp, set at 2.5. The parameter bdelay is 4 
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for partial report (a 40 ms delay) and 1 for whole report simulation. The term inhib(t) is the weak interference 
between co-active targets and is computed as the bounded sum of type activation in equation 2. 

       (3)

  b, if x >= b

      x, if x >= a & x < b

      a, if x < a

The term irate is a constant, set  at .045.  The term gatefeedbacki(t) is the recurrent excitation from gates j = 1:4 
in the binding pool to type i  which can sustain that type during binding.

    (4)

The parameter feedbackrate is set  at  .42.   MAX represents a function which takes the maximum value over 
the gate nodes (see Yu, Giese & Poggio (2002) for discussion of the utility and biological plausibility of max 
functions in neural networks).  

The Binding Pool
The binding pool is an arrangement of nodes that allows the model to store a link between a type and a token by 
holding an attractor state in a self-excitatory node. The pool is populated by binding units, one per combination of 
type i = [1, 4] and token j =[1, 4].  Each binding unit  consists of one gate and one trace node.  Gate nodes are 
excited by type nodes and receive an ordered pattern of bias so that  binding units for token 1 are bound more 
rapidly than units for token 2 and so on.  

 (5)

  

! 

" [gateshutoffi( t ) " gsthresh]0
1

+ [traceij(t ) " tracethresh]0
1

i=1:4

#
$ 

% 
& 

' 

( 
) * gateinhib

Parameter typeweight is set  to 0.25, typethresh  to 2.0, gdecay  is 0.93 and binderbiasj is [-.005,-.01, -.015, -.
02] for tokens j = [1,2,3,4].   Variable gateshutoffi(t) represents the activation of a node, defined below in equation 
7.  When above threshold gsthresh (value 1.2), this node temporarily inactivates the gates for type i after it  has 
been bound, and keeps them inactive until type i is inactive.  This mechanism prevents the system from encoding 
spurious repetitions of a single, uninterrupted presentation of a stimulus. The final term inhibits all gate nodes for 
token j once it has been bound (i.e. a trace node crosses threshold tracethresh of value 10.0) to prevent  that token 
from binding a second time.  Parameter gateinhib is set  at any arbitrarily large number to ensure that gateij(t) is 
rendered inactive by any suprathreshold activity from gateshutoff or trace nodes that inhibit it.  

Trace nodes accumulate input from gate nodes without decay.  
            

! 

traceij(t ) = traceij(t"1)[ ]
0

100

+ gateij(t )[ ]
0

#

* gateweight( )       (6)

    

! 

+ traceij( t"1) " tracethresh[ ]
0

.001

* traceself( )
When a trace node traceij crosses threshold tracethresh, it becomes strongly self excitatory (e.g. traceself is 

set at 10,000) and thus is self sustained at  a ceiling value of 100.  Restricting the value of the difference traceij(t)-
tracethresh to the range [0 - .001] and then multiplying by a large value implements an all-or-none attractor 
dynamic, which is necessary due to the coarse time-step.  Parameter gateweight is 0.014.

 When any trace node j has entered its attractor state, the corresponding token j is then considered bound to 
type i (it is not necessary to simulate tokens explicitly in this abstract  representation).  Because the time steps of 
our simulation are coarse we implement  hard winner take all behavior between the trace nodes for a single token, 
rather than simulating it  through lateral inhibition.  Thus, as soon as traceij(t) crosses threshold, all other trace 
nodes for the token j are immediately suppressed on that time step.   

To ensure that a single type presentation is bound to only a single token, all gates for type i are suppressed 
until that  type node becomes nearly inactive.  This is implemented through a set  of self excitatory nodes 
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controlled by the following activation equation.  
           

 

! 

gateshutoffi( t ) = gateshutoffi( t"1) * gsleak( ) + gateshutoffi( t"1) " gsthresh[ ]
0

.001

* gsweight( )
 

! 

+tboundi( t ) + typei( t ) " gstypethresh[ ]
0

0.01

* gssustain( )
   

(7)

When a token j is bound to type i (i.e. traceij exceeds tracethreshold), the gateshutoff node for type i receives 
a brief pulse of input  to push it  into an attractor state (tboundi(t) = 1.0 for one step).  This gateshutoff node 
suppresses gates for type i.  As long as the type node i remains above gstypethresh, gateshutoffi(t) receives 
sufficient input  (both from itself, and the type node) to stay in an attractor.  Parameter gssustain is set at  30.  As 
soon as the type node dips below gstypethresh = 4 the attractor state collapses and the system becomes ready to 
encode a second instance of type i.   This circuit  ensures that the system generally behaves sensibly during RSVP 
with respect  to repetitions; an unbroken presentation of a target produces only a single tokenized representation of 
that item.  The visual input  driving the type node has to switch off at  the input  layer if the system is to encode a 
second tokenized representation of the same item.  Parameter gsleak is .7, gsthresh is 1.2 and gsweight is 100.

The complete connectivity of nodes within the binding pool is shown in figure 21, separated into two parts for 
clarity.  Figure 21a depicts the interconnectivity for binding units for two types and one token. Figure 21b depicts 
binding units for one type and two tokens. 

Tokens
In this implementation, trace nodes in the binding pool effectively represent tokens, because only a single 

feature (i.e. letter identity) is bound to a token.  For more complex implementations (e.g. requiring a conjunction 
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Figure 21.  The complete connectivity of the binding pool, illustrating how two types compete for a single token (a) and 
how a type that has been encoded is prevented from being encoded a second time until it has ceased to be active (b).  Also 
shown in the lower figure is the pattern of bias inputs to the token gates that force token 1 to complete binding prior to 
token 2, provided that token 1 has not already been bound.  The node at the bottom of (b) implements this behavior, 
triggered by successful completion of token 1, it becomes active and stays so until the type node ‘F’  is no longer active.  
While active, it prevents gate nodes from becoming active so that ‘F’  cannot be spuriously encoded twice from a single 
presentation.  This mechanism comes with a cost of repetition blindness.    It is not shown here, but this same inhibitory 
node acts across the entire set of four tokens.  



of features bound to a single token), an explicit implementation of tokens would be required.  
Blaster 

The blaster is a single thresholded node that amplifies input when above threshold. 

           

! 

blaster
( t ) = blaster

(t"1) *bleak( ) + inputi( t ) * (1+ blasteramp*{blaster
( t"bdelay )}bthresh )

i

#
$ 

% 
& 

' 

( 
) " binhib(t )

(8)
           

The term bleak is .85.  Crucial to the competitive regulation of attention, the blaster amplifies its own input when 
above threshold (see equation 2) The term blasteramp is 0.75. 

The term binhib(t)  represents the top down inhibition from active gate nodes.  To compute this term, the 
activation of all gates is summed, multiplied by slope = .04, and divided by the same value  +1, to scale the values 
to the range [0, 1].

     (9)

Parameter binhibweight is 1.5.

Retrieval
Performance is evaluated at  the end of each trial by taking inventory of the tokens which are bound (i.e. active 

trace nodes in the binding pool).  Each instance of a token corresponds to one report  of the type to which it  is 
bound.  Order is determined by the order of the tokens.  

Critical Parameters
There are several critical parameters that were used to tune the model to fit the data set.  (1) The strength of 

target  input  is specified by two parameters defining upper and lower bounds on a uniform distribution which 
determines baseline accuracy of single target  report. (2) The rate of encoding is determined by the magnitude of 
the gate->trace weight: gateweight.  This parameter determines the length (and to some degree depth; length and 
depth are not independent) of the blink.  (3) The strength of the inhibitory projection to the blaster from gates: 
binhibweight determines, primarily, the depth of the blink.  (4) The weak inhibition between type nodes: irate 
determines the degree to which T1 performance suffers during lag-1 sparing. (5) The delay of attentional 
deployment: bdelay is varied to fit  the magnitude of lag-1 sparing, with a longer delay leading to higher sparing.  
These parameters were varied to fit  the T1 and T2|T1 accuracy data in the attentional blink (Figure 11).  Once 
these parameters are set, other simulation outputs, such as the propensity to produce swap errors, to be blind to 
repetition, or to successfully encode a string of targets, are emergent properties of the SOA and sequence of 
targets. 

Appendix A.2  The binding pool and the binding problem

The type/token binding pool that  we have implemented here requires MxN nodes where M is the number of 
types and N is the number of tokens.   The size of this pool is an important  issue that  requires discussion of two 
points. 

MxN is not the Combinatorial Explosion
The MxN factor is not the same as the combinatorial explosion commonly referred to in discussion of the 

binding problem.  In that context, binding any of M types to any other type using conjunctive representations 
requires M2 nodes (e.g. binding red to square requires having a red-square node).   Binding 3 types into one object 
(e.g. a red and green colored square requires three types) requires M3 nodes to represent each possible instance of 
an item.   In comparison, the binding pool uses MxN nodes to encode N representations in working memory (i.e. 
usually five or fewer) of items of arbitrary complexity  (i.e. any combination of the M types can be combined into 
each representation). 
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Distributed Representation
The MxN solution described here is exhaustive and inefficient  in the sense that each combination of type and 

token is uniquely represented by a conjunctive node.  This implementation is intended as a simplification of what 
can be implemented as a distributed representation (O’Reilly, Busby & Soto 2003).  Preliminary modeling work 
has demonstrated that  a binding pool with distributed representations can be quite compact. Initial exploration of 
this issue, described in Wyble & Bowman (2006), prescribes a distributed implementation of the binding pool 
containing just 500 nodes that  can store distinct bindings between three tokens and three arbitrary types from a 
population of 5000 type nodes without significant interference.   Thus, the binding pool of 500 nodes stores 
arbitrary bindings between three tokens and three of 5000 types.  Therefore, the distributed solution to this 
problem scales well to large scale representational implementations, and the binding pool can be much smaller 
than the population of type nodes it indexes.    With such an asymmetry between the size of binding pool and type 
nodes, a compact population of binding neurons in frontal areas could store information from a much larger area 
of cortex (e.g. posterior sensory areas of the brain). 
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