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Abstract
Wireless sensor networks are attracting increased interest for a
wide range of applications, such as environmental monitoring
and vehicle tracking. However, developing sensor network ap-
plications is notoriously difficult, due to extreme resource limi-
tations of nodes, the unreliability of radio communication, and
the necessity of low power operation. Our goal is to simplify
application design by providing a set of programming primi-
tives for sensor networks that abstract the details of low-level
communication, data sharing, and collective operations.

We presentabstract regions, a family of spatial operators
that capture local communication within regions of the net-
work, which may be defined in terms of radio connectivity,
geographic location, or other properties of nodes. Regions
provide interfaces for identifying neighboring nodes, sharing
data among neighbors, and performing efficient reductions on
shared variables. In addition, abstract regions expose the trade-
off between the accuracy and resource usage of communication
operations. Applications can adapt to changing network condi-
tions by tuning the energy and bandwidth usage of the underly-
ing communication substrate. We present the implementation
of abstract regions in the TinyOS programming environment,
as well as results demonstrating their use for building adaptive
sensor network applications.

1 Introduction
Sensor networks are an emerging computing platform
consisting of large numbers of small, low-powered, wire-
less “motes” each with limited computation, sensing, and
communication abilities. Sensor networks are being in-
vestigated for applications such as environmental moni-
toring [8, 27], seismic analysis of structures [7, 20], and
tracking moving vehicles [29]. Still, sensor network pro-
gramming is incredibly difficult, due to the limited capa-
bilities and energy resources of each node as well as the
unreliability of the radio channel.

As a result, application designers must make many
complex, low-level choices, and build up a great deal
of machinery to perform routing, time synchronization,
node localization, and data aggregation. To date, little of
this machinery has carried over directly from one appli-
cation to the next, as it encapsulates application-specific
tradeoffs in terms of complexity, resource usage, and
communication patterns. In this paper, we investigate
a suite of general-purpose communication primitives for
sensor networks that provide addressing, data sharing,
and reduction within local regions of the network. These

primitives, which we callabstract regions, expose con-
trol over the resource consumption of communication,
and provide feedback to applications on the accuracy and
completeness of collective operations.

A key goal of sensor network programming is to save
energy and increase the lifetime of the system by trad-
ing increased computation for reduced radio communi-
cation (which is relatively expensive in terms of energy
cost [17]). Rather than collect samples centrally, it is
generally desirable to perform local compression, aggre-
gation, or summarization within the sensor network to
reduce overall communication overheads. As a simple
example, consider determining the boundary of a region
of interest in the network. While this is straightforward
to implement centrally if all sensor data is known, a lo-
calized version would operate by exchanging data be-
tween nearby sensors. Communicating only the bound-
ary threshold to the base station yields significant com-
munication and energy savings.

The core difficulty with building sensor network ap-
plications is that high-level, global behavior must be ex-
pressed in terms of complex, local actions taken at each
node. In the boundary finding example, instead of run-
ning standard edge-detection algorithms on the complete
set of sensor data, it is necessary to implement techniques
that rely chiefly on local data and limited communication
between nearby nodes. This challenge is amplified by the
limitations of sensor hardware, making traditional paral-
lel algorithms unattractive: such decomposition gener-
ally assumes the existence of efficient, any-to-any com-
munication between processors.

In contrast, sensor applications focus on local com-
munication within the network, allowing nodes to co-
ordinate activity with few radio messages. For exam-
ple, if nodes are able to perform boundary detection by
communicating only with other nodes within single-hop
(broadcast) radio range, no routing is required, simpli-
fying protocol design and saving energy. This form of
local, spatial processing is a powerful paradigm for in-
network processing, and is found in a number of exist-
ing applications. Currently, developers are required to
build up their own mechanisms for such local coordina-
tion. Our goal is to simplify application design by identi-
fying a set of reusable, general-purpose communication



primitives based on local regions.
Given such extreme resource limitations, it is critical

that any communication abstraction for sensor networks
allow the application some measure of control over re-
source consumption. Unlike more traditional environ-
ments, where the primary goal is performance, manag-
ing communication overheads is essential for meeting
energy and bandwidth goals. Moreover, given the reac-
tive nature of sensor networks, there is the opportunity to
design applications that can adapt to changing network
or environmental conditions, tuning the bandwidth or en-
ergy usage of the communication model to achieve given
targets of latency, accuracy, or lifetime.

In this paper, we describeabstract regions, a fam-
ily of spatial operators that capture local communication
within regions of the network, which may be defined in
terms of radio connectivity, geographic location, or other
properties of nodes. In addition to providing a flexible
means of node addressing, abstract regions support data
sharing using a tuple-space-like programming model, as
well as efficient aggregation operations. In addition, ab-
stract regions expose the tradeoff between the accuracy
and resource usage of communication operations. Ap-
plications can adapt to changing network conditions by
tuning the energy and bandwidth usage of the underly-
ing communication substrate. Abstract regions provide
feedback on the accuracy of collective operations as well
as an interface for controlling resource usage. An earlier
position paper [33] introduced the abstract regions inter-
face and its use for tuning energy/accuracy tradeoffs. In
this paper, we expand on these ideas and present a de-
tailed study of their applications and performance.

Abstract regions are general enough to support a
wide range of sensor network applications and form
the basis for other, higher-level communication mod-
els. In this paper, we describe the abstract regions
programming model, as well as several implementa-
tions, including regions based on geographic and radio
neighborhoods, spanning trees, and an approximate pla-
nar mesh. We have implemented abstract regions in
nesC [11], a component-oriented variant of C used by
the TinyOS [17] operating system. To further simplify
abstract region programming, we have implemented a
lightweight, thread-like abstraction for TinyOS, allowing
applications to invoke blocking operations, which were
heretofore disallowed by the TinyOS concurrency model.

We present four applications based on the abstract re-
gion model: tracking a moving object through a sensor
field, detecting a contour in sensor readings, event de-
tection based on a variant of directed diffusion [18], and
geographic routing using GPSR [19]. We evaluate the
accuracy and communication overhead of each of these
applications and present results highlighting the tradeoff
between resource consumption and quality of the results.
The rest of this paper is organized as follows. Section 2
motivates our approach and discusses related work. Sec-

tion 3 introduces the abstract region programming model
and the use of resource tuning. Section 4 describes the
implementation of abstract regions in the TinyOS oper-
ating system. Section 5 presents three applications based
on regions, and Section 6 evaluates the accuracy and
resource consumption tradeoff provided by the regions
programming model. Section 7 discusses future work
and concludes.

2 Motivation and Background
Sensor networks have attracted increasing interest from
research and industry. The potential to instrument the
physical world at high resolution and low cost opens up
a wide range of novel applications in areas such as en-
gineering [7, 20], biology [8, 27], and medicine [9, 34].
The future success of sensor networks depends to a large
extent on the programming and communication abstrac-
tions presented to application developers. This is espe-
cially critical when one considers that the primary de-
velopers for sensor networks will be scientists and en-
gineers. These users require a programming model that
closely represents the high-level, data-centric computa-
tion to be performed within the network, rather than the
existing, low-level, node-centric programming interfaces
provided by existing systems.

In this paper, we focus on sensor networks based
on small, low-power sensors such as the UC Berkeley
MICA node. This device consists of a 7.3 MHz AT-
mega128L processor, 128KB of code memory, 4KB of
data memory, and a Chipcon CC1000 radio capable of
38.4 Kbps and an outdoor transmission range of approx-
imately 300m. The device measures 5.7cm× 3.1cm
× 1.8cm and is typically powered by 2 AA batteries
with an expected lifetime of days to months, depend-
ing on application duty cycle. The limited memory and
computational resources of this platform make an in-
teresting design point, as software layers must be tai-
lored for this restrictive environment. The MICA node
uses a lean, component-oriented operating system, called
TinyOS [17], and an unreliable message-passing com-
munication model based on Active Messages [32].

2.1 The need for abstractions
The bandwidth and energy limitations of sensor nodes
typically require that in-network processing be per-
formed to reduce the amount of data that must be trans-
ferred out of the network. Application designers are
therefore faced with the problem of decomposing an ini-
tially straightforward data-collection task into a parallel
program with local communication among sensor nodes.
Currently, sensor application designers spend a great deal
of effort building up low-level machinery for routing,
data collection, and energy management. We wish to
move away from this state of affairs by providing higher-
level programming interfaces that abstract these details,
yet provide enough flexibility to implement efficient al-



gorithms. The first step in this endeavor is to identify
an appropriate set of programming primitives, and is the
primary focus of this paper.

Our approach can be likened to that of MPI [13],
which provides a unified interface for message passing
across a large family of parallel machines. MPI hides
the details of the communication hardware and provides
efficient implementations of common collective opera-
tions, such as broadcast and reduction. MPI has been ex-
tremely successful in the parallel processing community
as it is high-level enough to shield programmers from
most of the details of the underlying machine, yet low-
level enough to permit extensive application-specific op-
timizations. We wish to provide communication inter-
faces that serve a similar role for sensor networks.

2.2 Related work

Several communication and programming models for
sensor networks have been proposed in the literature.
Among the first was directed diffusion [18], which pro-
vides a framework for distributed event detection and
propagation. This approach has been extended by Hei-
demannet al. [14] to support in-network filtering and
aggregation. In contrast, our focus is on a lower-level
mechanism, namely, maintaining and coordinating re-
gions of nodes for in-network processing. Later in this
paper, we show that abstract regions can be used to im-
plement a form of directed diffusion (see Section 5.3).
Other communication abstractions include GHT [30],
Spatial Programming [3], DIFS [12], SPIN [15], and DI-
MENSIONS [10]. These systems are generally focused
on a specific communication or aggregation model rather
than supporting a wide range of applications.

Most closely related to our approach is Hood [35],
a neighborhood-based programming abstraction for sen-
sor networks. Like abstract regions, Hood provides a
mechanism for discovery and sharing of data among sen-
sor nodes. The shared variable mechanism described
in Section 3 was inspired by the Hood model, although
Hood provides a richer set of primitives for manipulating
shared data. Unlike abstract regions, Hood does not di-
rectly address the resource/accuracy tradeoff or provide
a mechanism for data aggregation.

TinyDB [25], Cougar [38], and IrisNet [28] provide
a high-level SQL or XML-based query interface to sen-
sor network data. Queries are deployed into the network,
streaming results to one or more base stations, and aggre-
gation is used to reduce communication overhead. These
systems have tremendous value and abstract away many
details of communication, aggregation, and filtering. By
the same token, however, they are not well-suited for de-
velopers who wish to implement specific behavior at a
lower level than the query interface.

For example, TinyDB is focused on relaying aggre-
gate data along a spanning tree rooted at a base station.
While this mechanism can support complex algorithms

such as contour finding, TinyDB must expose an internal
“contour finding operator” to queries [16]. Our concern
is with the implementation of these lower-level operators
themselves, and with providing a set of communication
abstractions that can be used to implement higher-level
services, such as queries.

2.3 Resource management and adaptation
It is critical that communication abstractions for sensor
networks take resource management into account, and
give applications control over the tradeoff between re-
source usage and the accuracy and yield of collective
operations [33]. The energy usage of communication
is dictated by a number of factors, including hardware
properties, node density, radio channel quality, and lo-
cal activity within the network. Moreover, these factors
are generally not knowna priori and may be highly dy-
namic. As a result, it is often desirable to consume fewer
resources to obtain an approximate result, rather than pay
an arbitrary resource cost for complete accuracy.

Adlakha et al. [1] describe a design-time recipe for
tuning aspects of sensor networks to achieve given accu-
racy, latency, or lifetime goals. However, this approach
assumes a statically-configured network where resource
requirements are known in advance, rather than allow-
ing the network behavior to be tuned at runtime (say, in
response to increased activity).

Several adaptive communication mechanisms for sen-
sor networks have been proposed. SPIN [15] is a set of
data dissemination protocols that adapt to energy avail-
ability by reducing protocol overhead when energy re-
sources are low. TinyDB provides alifetime keyword
that scales the query sampling and transmission period
to meet a user-supplied network lifetime [26]. Bouliset
al. [4] describe an aggregation mechanism that exposes
an energy/accuracy knob to the user. These approaches
are a step in the right direction, and our goal is to gen-
eralize the communication abstraction exposed to appli-
cations while retaining this approach of yielding control
over resource usage.

3 Abstract Regions
Sensor network applications are often expressed in terms
of groups of nodes over which local sampling, computa-
tion, and communication occur. For example, tracking a
moving object involves aggregating sensor readings from
nodes near the object. Abstract regions are a communi-
cation abstraction intended to simplify application devel-
opment by providing a region-based collective commu-
nication interface. Abstract regions capture the inherent
locality of communication and hide the details of data
dissemination and aggregation within regions.

An abstract region defines aneighborhood relation-
ship between a particular node and other nodes in the
network. Examples of neighborhood predicates include
“the set of nodes withinN radio hops” and “the set of



nodes within distanced.” Local, spatial operations in the
sensor network are performed by sharing data and coor-
dinating activity among nodes in this neighborhood. In
general, each node in the sensor network defines multiple
abstract regions that it wishes to operate over, depending
on application requirements. A node may also be a mem-
ber of multiple regions at once: for example, a node will
belong to multiple single-hop radio regions, one for each
of its own set of single-hop neighbors.

3.1 Programming Abstraction

Regions capture a range of common idioms in sen-
sor network programming. These include identification
of neighboring nodes, data sharing, and data reduction
within local neighborhoods. These operators allow nodes
to query the state of neighboring nodes and implement
efficient aggregation, compression, and summarization
of local data. This programming model is based on that
originally proposed by Hood [35]. Abstract regions sup-
port the following set of operators:

Neighbor discovery: Before performing other opera-
tions on a region, each node initiates the process of dis-
covering neighboring nodes. Depending on the type of
region, this may require broadcasting messages, collect-
ing information on node locations, or estimating radio
link quality. This is a continuous process, and each node
is informed of changes in the region membership set,
due to nodes joining, leaving, or moving within the net-
work. A node may terminate this process at any time to
avoid additional discovery messages. When terminated,
the neighbor discovery operator returns a quality metric
that measures the accuracy of the region formation, such
as the percentage of candidate nodes that responded to
the discovery request.

Enumeration: The enumeration operator returns the
set of nodes participating in the region, allowing them to
be addressed, for example, for direct message communi-
cation. Supplemental information, such as the location
of each node, may be returned as well.

Data sharing: The data sharing operator allows vari-
ables, represented as key/value pairs, to be shared among
nodes in the region. A shared variable supports two oper-
ations:getandput. get(v,n)retrieves the value of variable
v from noden, andput(v,l)stores the valuel of variable
v at the local node. A simple implementation ofget(v,n)
sends a message to noden requesting the value ofv. In
this case,put(v,l)simply stores the value ofv locally. An
alternate implementation might broadcast or gossip the
values of shared variables among nodes in the region, al-
lowing get(v,n)to fetch locally cached values.

Reduction: The reduction operator takes a shared
variable key and an associative operator (such assum,
max, or min) and reduces the shared variable across
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Figure 1:Examples of abstract regions.

nodes in the region, storing the result in a shared vari-
able. Reduction may be implemented in a number of
ways, such as by collecting all values locally, or forming
a spanning tree and propagating values up the branches
of the tree, performing reduction at each level. As with
shared variables, the region hides the details of reduc-
tions from the programmer.

Abstract regions simplify application design by
shielding developers from the complexity of routing,
data dissemination, and state management. Additionally,
regions provide a unified interface regardless of the par-
ticular definition of the region membership. That is, one
can readily interchange the underlying region implemen-
tation without necessarily affecting higher-level applica-
tion logic. For example, an application that makes use of
anN -radio-hop region can be readily modified to use a
geographic neighborhood region in its place.

3.2 Abstract Region Implementations
Given the diverse needs of sensor network applications,
we expect a range of abstract region definitions will be
useful to programmers. We have completed several ab-
stract region implementations, with several others under-
way. Three examples are shown in Figure 1. They in-
clude:

• N -radio hop: Nodes withinN radio hops;

• N -radio hop with geographic filter:Nodes within
N radio hops and distanced;

• k-nearest neighbor:k nearest nodes withinN radio
hops;

• k-best neighbor:k nodes withinN radio hops with
the highest link quality, as measured in fraction of
packets dropped over some measurement interval;

• Approximate planar mesh:A mesh with a small
number (possibly zero) crossing edges; and

• Spanning tree:A spanning tree rooted at a single
node, used for aggregating values over the entire
network.

3.2.1 Radio and geographic neighborhoods

The implementation of the radio and geographic neigh-
borhoods is straightforward. To discover neighbors, each
node broadcasts periodic advertisements. Data sharing
may be implemented using either a “push” (put broad-
casts updates to neighboring nodes) or “pull” (getsends
a fetch message to the corresponding node) approach;
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Figure 2:Forming an approximate planar mesh region.(a)
Nodes first create a region ofk-nearest neighbors. (b) The
nearest neighbor in each sector is chosen as an outedge and
advertised. (c) If an advertised edge crosses another edge, in-
validation messages are sent to the source.

our current implementation uses the latter. Reduction
involves collecting shared variable values locally, com-
bining them with the reduction operator, and storing the
result in another shared variable.

3.2.2 Approximate planar mesh

Planar meshes, such as the Delaunay triangulation [31],
are useful for spatial computation (such as dividing space
into nonoverlapping cells) and geographic-based rout-
ing [19]. However, algorithms for constructing planar
meshes generally require either global knowledge of the
connectivity graph or extensive interprocessor commu-
nication. We have implemented anapproximatepla-
nar mesh in which a small number of edges may cross,
but which uses communication only within single-hop
neighborhoods of each node.

Our algorithm is based on a pruned Yao graph [23]
and is depicted in Figure 2. First, each node discovers
a k-nearest radio region of candidate nodes. Whenk
neighbors have been accumulated, each node forms the
Yao graph by dividing space around it intom equal-sized
sectors of angleθ = 2π/m and selecting the nearest
node within each sector as a potential neighbor. Next,
each node uses a single-hop broadcast to advertise its se-
lected outedges. Upon reception of an edge advertise-
ment, each node tests whether the given edge crosses one
of its own outedges, and if so sends an invalidation mes-
sage to the source, causing it to prune the offending edge
from its set. Nodes do not select additional neighbors
beyond the initial candidates, so a node may end up with
fewer thanm outedges. Nodes perform several rounds
of edge set broadcasts and wait for some time before set-
tling on a final set of neighbors. Both the number of
broadcasts and the timeout settings can be tuned by the
application, as discussed below in Section 3.3. Changes
in the underlyingk-nearest-neighbor set initiates selec-
tion of new Yao neighbors. Data sharing and reduction
are implemented using the same components as in the
radio neighborhood, as all neighbors are one radio hop
away.

We have also implemented planar regions based on
the Relative Neighborhood Graph and Gabriel Graph,
and an implementation of GPSR [19] based on them.
This is described in Section 5.4.

3.2.3 Spanning tree

Spanning trees are useful for aggregating values within
the sensor network at a single point, as demonstrated by
systems such as TinyDB [25] and directed diffusion [18].
Our spanning tree implementation provides the same
programmatic interface as other regions, although the se-
mantics of the shared variable and reduction operations
have been augmented to supportglobal communication
through the routing topology provided by the spanning
tree. The shared variableput operation at the root floods
the shared value to all nodes in the tree, while aput at
a non-root node propagates the value to the root. Re-
duction operations cause data to propagate up the tree,
causing each node to aggregate its local value with that
of its children.

The spanning tree implementation adapts to chang-
ing network conditions, as nodes attempt to select a par-
ent in the spanning tree to maximize the link quality and
minimize the message hopcount to the root. Each node
maintains an estimate of the link quality to its parent,
measured in terms of the fraction of successful message
transmissions to the parent and the fraction of messages
successfully received from other nodes, using a simple
sequence number counting scheme.

The tree is formed by broadcasting messages indi-
cating the source node ID and number of hops from
the root; nodes rebroadcast received advertisements with
their own ID as the source and the hopcount incremented
by 1. Nodes initially select a parent in the tree based on
the lowest hopcount advertisement they receive, but may
select another parent if the link quality estimate falls be-
low a certain threshold. This estimate is smoothed with
an exponentially weighted moving average (EWMA) to
avoid rapid parent reselections. Our goal in this work
has not been to develop the most robust tree formation
algorithm, but rather to demonstrate that spanning trees
fit within the programming interface provided by ab-
stract regions. It would be straightforward to replace the
tree construction algorithm with another, such as that de-
scribed in [36], and layer the abstract regions interface
over it.

3.3 Quality feedback and tuning interface
The collective operations provided by abstract regions
are inherently unreliable. The quality of region discov-
ery, the fraction of nodes contacted during a reduction
operation, and the reliability of shared variable opera-
tions all depend on the number of messages used to per-
form those operations. Generally, increasing the number
of messages (and hence, energy usage) improves com-
munication reliability and the accuracy of collective op-
erations. However, given a limited energy or bandwidth
budget, the application may wish to perform region op-
erations with reduced fidelity.

Abstract regions expose this tradeoff between re-
source consumption and the accuracy or yield of collec-



tive operations. This is in contrast to most existing ap-
proaches to sensor network communication, which hide
these resource tradeoffs from the application. As a con-
crete example of such a tradeoff, the communication
layer may tune the number and frequency of message re-
transmissions to obtain a given degree of reliability from
the underlying radio channel. Similarly, nodes may vary
the rate at which they broadcast location advertisements
to neighboring nodes, affecting the quality of region dis-
covery.

Abstract regions provide feedback to the application
in the form of aquality measurethat represents the com-
pleteness or accuracy of a given operation. For mem-
ber discovery, the quality measure represents the fraction
of candidate nodes that responded to the discovery re-
quest. For example, when discovering one-hop neigh-
bors within distanced, the quality measure represents
the fraction of one-hop nodes that responded to the re-
gion formation request. For reduction, the quality mea-
sure represents the fraction of nodes in the region that
participated in the reduction. In addition, each operation
supports a timeout mechanism, in which the operation
will fail if it has not completed within a given time inter-
val. For example, when performing a shared variableget
operation, a timeout indicates that the data could not be
retrieved from the requested node.

Applications can use this quality feedback to affect
resource consumption of collective operations through
a tuning interface. The tuning interface allows the ap-
plication to specify low-level parameters of the region
implementation, such as the number of message broad-
casts, amount of time, or number of candidate nodes to
consider when forming a region. Likewise, region oper-
ations perform message retransmission and acknowledg-
ment to increase the reliability of communication; the
depth of the transmit queue and number of retransmis-
sion attempts can be tuned by the application.

In our current implementation, the set of parameters
exposed by the tuning interface is somewhat low-level
and in many cases specific to the particular region imple-
mentation. Many of these parameters are straightforward
to tune, although their effect on resource consumption
may not be immediately evident, as it is highly depen-
dent on application behavior. In general, an application
designer will need to study the impact of the relevant tun-
ing parameters on resource usage and application perfor-
mance.

Exposing tuning knobs and quality feedback greatly
impacts the programming model supported by abstract
regions. Rather than hiding performance tradeoffs within
a generic communication library with no knowledge of
application requirements, the tuning interface enables
applications to adapt to changing environments, network
conditions, node failure, and energy budget. For exam-
ple, this interface can be used to implement adaptive
control mechanisms that automatically tune region pa-

rameters to meet some quality or resource usage target.
In Section 6, we demonstrate an adaptive controller that
tunes the maximum retransmission count to achieve a tar-
get yield for reduction operations.

We are currently working on a resource-centric tuning
mechanism that allows the programmer to express an en-
ergy, radio bandwidth, or latency budget for each opera-
tor, and which maps these constraints onto the appropri-
ate low-level parameter settings. This approach shields
the programmer from details of the low-level interface
and enables adaptivity using higher-level resource con-
straints. This is discussed further in Section 7.

4 Implementation
In this section we detail the implementation and pro-
gramming interface for abstract regions on TinyOS [17],
a small operating system for sensor nodes. Unlike the
event-driven, asynchronous concurrency model provided
by TinyOS, abstract regions provide a blocking, syn-
chronous interface, which greatly simplifies application
logic. This is accomplished using a lightweight, thread-
like abstraction calledfibers, described below.

4.1 TinyOS concurrency model

Traditional concurrency mechanisms, such as threads,
are too heavyweight to implement on extremely
resource-constrained devices such as motes. TinyOS em-
ploys an event-driven concurrency model, in which long-
running operations are not permitted to block the applica-
tion, but rather using asplit-phaseapproach. An initial
request for service is invoked through acommand, and
when the operation is complete, anevent(or callback) is
invoked on the original requesting component. For ex-
ample, to take a sensor reading, an application invokes
thegetData() command on the sensor hardware com-
ponent, which later invokes thedataReady() callback
supplying the sensor reading.

The TinyOS concurrency model requires each con-
current “execution context” to be implemented manually
by the programmer as a state machine, with execution
driven by the sequence of commands and events invoked
on each software component. If an application is per-
forming multiple concurrent tasks, these operations must
be carefully interleaved. In addition, each split-phase
operation requires that the application code be broken
across multiple disjoint segments of code. The program-
mer must manually maintain continuation state across
each split-phase operation, adding significant complex-
ity to the code. While the logical program may be quite
simple, the lack of blocking operations in TinyOS re-
quires that the application be broken into multiple tasks
and event handlers.

A key observation is that a broad class of sensor net-
work applications can be represented by a small number
of concurrent activities: for example, a core application



loop that periodically performs some sensing and com-
munication operations, as well as a reactive context that
responds to external events (e.g., incoming messages).
Providing blocking operations in TinyOS does not re-
quire a full-fledged threads mechanism, but rather the
means to support a limited range of blocking operations
along with event-driven code to handle asynchronous
events.

4.2 Lightweight Fibers
We have implemented a lightweight, thread-like con-
currency model for TinyOS, supporting a single block-
ing execution context alongside the default, event-driven
context provided by TinyOS. We use the termfibersto re-
fer to each execution context.1 The defaultsystem fiber
is event-driven and may not block, while theapplication
fiber is permitted to block. Because there is only one
blocking context, both the system and application fibers
can share a single stack. The overhead for each fiber,
therefore, consists of a saved register set, which on the
ATmega128L is 24 bytes. The runtime overhead for a
context switch is just 150 instructions. Apart from the
single blocking context, applications may employ addi-
tional concurrency through TinyOS’s event-driven con-
currency model.

The application fiber may block by saving its regis-
ter set and jumping to the system fiber. The system fiber
restores its registers, but resumes execution on the appli-
cation stack. An event, such as a timer interrupt or mes-
sage arrival, may wake up the application fiber, causing
its register state to be restored once the event handler has
completed. The system fiber maintains no live state on
the stack after the application fiber is resumed.

Fibers allow blocking and event-driven concurrency
to be freely mixed in an application, and different com-
ponents can use different concurrency models depend-
ing on their requirements. In general, the central sense-
process-communication loop of an application may em-
ploy blocking for simplicity, while the bulk of the
TinyOS code remains event-driven.

4.3 Abstract region API
The abstract regions programming interface is shown
in Figure 3. The use of blocking interfaces, provided
by fibers, greatly simplifies application design. Rather
than breaking application logic across a set of disparate
event handlers, a single, straight-line loop can be writ-
ten. Apart from considerably shortening the code, this
approach avoids common programming errors, such as
maintaining continuation state incorrectly.

Without blocking calls, the object tracking applica-
tion described in Section 5.1 is 369 lines of nesC code,
consisting of 5 event handlers and 11 continuation func-
tions. The corresponding blocking version (shown in

1This term is borrowed from Windows, in which fibers are explicitly
scheduled by the application [2]

/* Discover region */
result_t Region.formRegion(<region specific args>,

int timeout);

/* Wait for region discovery */
result_t Region.sync(int timeout);

/* Set local shared variable */
result_t SharedVar.put(sv_key_t key, sv_value_t val);

/* Get shared variable from give node */
result_t SharedVar.get(sv_key_t key, addr_t node,

sv_value_t *val, int timeout);

/* Wait for shared variable gets */
result_t SharedVar.sync(int timeout);

/* Reduce ’value’ to ’result’ with given op */
/* ’yield’ returns pct of nodes responding */
result_t Reduce.reduceToOne(op_t operator,

sv_key_t value, sv_key_t result,
float *yield, int timeout);

/* Reduce and set result in all nodes */
result_t Reduce.reduceToAll(op_t operator,

sv_key_t value, sv_key_t result,
float *yield, int timeout);

/* Wait for reductions to complete */
result_t Reduce.sync(int timeout);

Figure 3:Abstract regions programming interface.

pseudocode form in Section 5.1) is 134 lines of code and
consists of a single main loop. All application state is
stored in local variables within the loop, rather than be-
ing marshaled into and out of global continuations for
each split-phase call.

Abstract regions themselves are implemented using
event-driven concurrency, due to the number of concur-
rent activities that the region must perform. For exam-
ple, the spanning tree region is continually updating rout-
ing tables based on link quality estimates received from
neighboring nodes; the reactive nature of this activity is
better suited to an event-driven model. A wrapper com-
ponent is used to provide a blocking, fiber-based inter-
face to each abstract region implementation, and appli-
cations can decide whether to invoke a region through
the blocking or the split-phase interface.

5 Applications
To demonstrate the effectiveness of regions, in this sec-
tion we describe four sensor network applications that
are greatly simplified by their use. These include track-
ing an object in the sensor field, finding spatial contours,
distributed event detection using directed diffusion [18],
and geographic routing using GPSR [19].

5.1 Object tracking
Object tracking is an oft-cited application for sensor net-
works [5, 22, 37]. In its simplest form, tracking involves
determining the location of a moving object by detecting
changes in some relevant sensor readings, such as mag-
netic field.



Our version of object tracking uses a simple algorithm
based on the DARPA NEST demonstration software, de-
scribed in [35]. Each node takes periodic magnetometer
readings and compares them to a threshold value. Nodes
above the threshold communicate with their neighbors
and elect a leader node, which is the node with the largest
magnetometer reading. The leader computes the centroid
of its neighbors sensor readings, and transmits the result
to a base station.

The following pseudocode shows this application
expressed in terms of abstract regions:2

location = get_location();
/* Get 8 nearest neighbors */
region = k_nearest_region.create(8);

while (true) {
reading = get_sensor_reading();

/* Store local data as shared variables */
region.putvar(reading_key, reading);
region.putvar(reg_x_key, reading * location.x);
region.putvar(reg_y_key, reading * location.y);

if (reading > threshold) {
/* ID of the node with the max value */
max_id = region.reduce(OP_MAXID, reading_key);

/* If I am the leader node ... */
if (max_id == my_id) {

/* Perform reductions and compute centroid */
sum = region.reduce(OP_SUM, reading_key);
sum_x = region.reduce(OP_SUM, reg_x_key);
sum_y = region.reduce(OP_SUM, reg_y_key);
centroid.x = sum_x / sum;
centroid.y = sum_y / sum;
send_to_basestation(centroid);

}
}
sleep(periodic_delay);

}

The program performs essentially all communication
through the abstract regions interface, in this case thek-
nearest-neighbor region. Nodes store their local sensor
reading and the reading scaled by thex and y dimen-
sions of their location as shared variables. Nodes above
the threshold perform a reduction to determine the node
with the maximum sensor reading, which is responsible
for calculating the centroid of its neighbors’ readings.
A series of sum-reductions is performed over the shared
variables which are used to compute the centroid:

cx =
∑

i

Rixi/
∑

i

Ri

cy =
∑

i

Riyi/
∑

i

Ri

wherecx andcy are the(x, y)-coordinates of the cen-
troid, Ri is the reading at nodei, andxi andyi are the
(x, y)-coordinates of nodei.

The use of regions greatly simplifies application de-
sign. The programmer need not be concerned with the

2For brevity, the use of tuning and quality feedback is not shown in
this example.

Figure 4: Contour finding application. The shaded region
represents an area where sensor readings fall above a thresh-
old. Nodes (unfilled circles) are connected into an approximate
planar mesh. Contour points (filled circles) are chosen as mid-
points between a node above the threshold and a node below
the threshold.

details of routing, data sharing, or identifying the ap-
propriate set of neighbor nodes for performing reduc-
tions. As a result the application code is very concise.
As described earlier, our actual implementation is just
134 lines of code, of which 70 lines comprise the main
application loop above. The rest consists of variable and
constant declarations as well as initialization code.

As a rough approximation of the linecount for a “hand
coded” version of this application, without the benefit of
the abstract regions interface, consider the combined size
of the nonblocking object tracking code (369 lines) and
thek-nearest-neighbor region code (247 lines). This total
of 616 lines, compared with 134 lines for the abstract re-
gion version, suggests that this programming abstraction
captures a great deal of the complexity of sensor applica-
tions.

5.2 Contour finding

Another typical sensor network application is detecting
contours or edges in the set of sensor readings [16, 24].
Contour finding involves determining a set of points in
space that lie along, or close to, an isoline in the gradient
of sensor readings. Contours might represent the bound-
ary of a region of interest, such as a group of sensors
with an interesting range of readings. Contour finding is
a valuable spatial operation as it compresses the per-node
sensor data into a low-dimensional surface. This primi-
tive could be used for detecting thermoclines or tracking
the flow of contaminants through soil [6].

An implementation of contour finding using abstract
regions is depicted in Figure 4, and is expressed in pseu-
docode as:

location = get_location();
/* Form approximate planar mesh */
region = apmesh_region.create();
region.putvar(loc_key, location);

while (true) {
reading = get_sensor_reading();
region.putvar(reading_key, reading);

if (reading > threshold) {
foreach (nbr in region.get_neighbors()) {



(a) (b)

Figure 5:Directed diffusion operation. (a) The sink forms a
spanning tree and floods interests throughout the network. (b)
Matching nodes route event reports to the corresponding sink
through the spanning tree topology.

/* Fetch neighbor’s reading */
rem_reading = region.getvar(reading_key, nbr);
if (rem_reading <= threshold) {

rem_loc = region.getvar(loc_key, nbr);
contour_point = midpoint(location, rem_loc);
send_to_basestation(contour_point);

}
}

}
sleep(periodic_delay);

}

Nodes first form an approximate planar mesh region, as
described in Section 3. Each node stores its location and
sensor reading as a shared variable. Nodes that are above
the sensor threshold of interest fetch the readings and lo-
cations of their neighbors. For each neighbor that is be-
low the threshold, the node computes a contour point as
the midpoint between itself and its neighbor, and sends
the result to the base station.

The use of the approximate planar mesh region en-
sures that few edges will cross, and that nodes will gener-
ally select neighbors that are geographically near. These
properties are vital for our contour finding algorithm as it
is based on pairwise comparisons of sensor readings, and
values are computed along edges in the mesh. As with
the object tracking application, abstract regions shield
the programmer from details of mesh formation and data
sharing; the application code is very straightforward. It
is only 118 lines of nesC code, 56 lines of which are de-
voted to the main application loop.

5.3 Directed diffusion

As discussed in Section 2, directed diffusion [18] has
been proposed as a mechanism for distributed event de-
tection in sensor networks. The idea is to floodinter-
estsfor named data throughout the network (such as “all
nodes with sensor readings greater than thresholdT ”),
as shown in Figure 5. Nodes that match some interest
report their local value to thesink that generated the in-
terest. Here, we show that abstract regions can be used
to implement the directed diffusion mechanism, demon-
strating their value for building higher-level communica-
tion abstractions.

The directed diffusion programming interface con-
sists of two operations:broadcastInterestand publish-
Data. Sink nodes invokebroadcastInterestwith an oper-

ator (such as=, >, or <=) and a comparison value. Our
current implementation supports interests in the form of
simple binary operator comparisons; it would be straight-
forward to extend this to support more general interest
specifications. Nodes callpublishDatato provide local
data, which is periodically compared against all received
interests. When the local data matches an interest, the
node routes an event report to the corresponding sink.
When the sink receives an event report, adataReceived
event handler is invoked with the corresponding node ad-
dress and value.

Our directed diffusion layer is implemented using the
spanning tree abstract region. Data sinks first form an
adaptive spanning tree, and publish an interest record
by inserting it into the tuplespace associated with that
region. Recall that in the spanning tree region, the tu-
plespaceput operation, when invoked at the root, broad-
casts the entry to all nodes in the tree. Nodes periodi-
cally check for interest records using the tuplespaceget
operation, and compare their current value (provided by
publishData() ) with all received interests. If the
value matches, it is inserted into the tuplespace of the
corresponding spanning tree, which propagates the value
to the root.

Nearly all of the complexity of broadcasting inter-
ests and propagating data to the sink is captured by
the spanning tree region and its tuplespace implemen-
tation. The directed diffusion layer is responsible only
for representing interests and matching data values as
tuplespace entries, allowing the spanning tree region to
handle the details of maintaining routes between data
sources and sinks. One drawback with our current im-
plementation is that multiple sinks receiving the same
data must form separate spanning trees, causing nodes
with matching data to send multiple copies. However, it
would be straightforward to optimize the spanning tree
region by suppressing duplicate packets being sent along
the same network path. The directed diffusion layer is
only 188 lines of nesC code, of which 66 lines handle
initialization and definitions. In contrast, the spanning
tree region code is 937 lines.

5.4 Geographic routing using GPSR

Geographic routing protocols use the locations of nodes
in the network to make packet forwarding decisions.
Rather than maintaining distance vectors or link state at
each node, a node only needs to know the geographic po-
sitions of its immediate neighbors. One such protocol is
Greedy Perimeter Stateless Routing (GPSR) [19], which
operates in two modes:greedy routing, in which the mes-
sage is routed to the neighboring node that is closest to
the destination, andface routing, which is used when
no neighbor is closer to the destination than the current
node. Face routing requires a planar mesh to ensure that
these local minima can be traversed.

We have implemented GPSR using both our radio
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Figure 6: TOSSIM radio loss model based on empirical
data. The mean packet loss rate versus distance is shown, with
errorbars indicating one standard deviation from the mean.
The model is highly variable at intermediate distances.

neighborhood region (for greedy routing mode) and ap-
proximate planar mesh regions (for face routing mode).
The abstract regions code handles all aspects of con-
structing the appropriate graphs, greatly simplifying the
GPSR code itself. There are three types of approxi-
ate planar mesh: the pruned Yao graph (PYG), Relative
Neighborhood Graph (RNG), and Gabriel Graph (GG).
Each of these graphs has slightly different rules for de-
termining inclusion of an edge using only local informa-
tion about the immediate neighbors of each node. Our
GPSR implementation provides a scalablead hocrout-
ing framework for sensor networks, although space limi-
tations prevent us from presenting detailed results.

6 Evaluation
In this section, we evaluate the abstract region primi-
tives and demonstrate their ability to support tuning of
resource consumption to achieve targets of energy usage
and reliability. We investigate five scenarios: adaptive
shared variable reduction, construction of an approxi-
mate planar mesh, object tracking, contour finding, and
event detection using directed diffusion. In each case, we
explore the use of the tuning interface to adjust resource
usage and evaluate its effect on the accuracy of region
operations.

These results were obtained using TOSSIM [21],
a simulation environment that executes TinyOS code
directly; our abstract region code can either run di-
rectly on real sensor motes or in the TOSSIM environ-
ment. TOSSIM incorporates a realistic radio connectiv-
ity model based on data obtained from a trace gathered
from Berkeley MICA motes in an outdoor setting, as
shown in Figure 6. This loss probability captures trans-
mitter interference during the original trace that yielded
the model. More detailed measurements would be re-
quired to capture the full range of transmission charac-
teristics, although experiments have shown the model
to be highly accurate [21]. We simulate a network of
100 nodes distributed semi-irregularly in a 20x20 foot
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Figure 8:Adaptive reduction algorithm performance. This
figure shows the effectiveness of dynamically tuning the maxi-
mum retransmission count to meet a reduction yield target. The
figure shows the average yield across 100 reduction operations,
as well as the average retransmission count determined by the
controller.

area. Because TOSSIM does not currently simulate the
energy consumption of nodes, we report the number of
radio messages sent as a rough measure of energy con-
sumption, which is reasonable given that on the MICA
platform, radio communication dominates CPU energy
usage by several orders of magnitude.

6.1 Adaptive reduction algorithm

By performing reduction over a subset of neighbors in
a region, nodes can trade off energy consumption for
accuracy. As described earlier, the reduction operator
provides quality feedback in the form of the fraction of
nodes that responded to the reduce operation. Over an
unreliable radio link, this fraction is directly related to the
number of retransmission attempts made by the underly-
ing transport layer, as shown in Figure 7. Moreover, the
appropriate retransmission count to meet a given yield
target is a function of the local network density and chan-
nel characteristics, which vary both across the network
and over time.



region = k_nearest_region.create(8);
region.putvar(key, local_id);
tuning.set(MAX_RETRANSMIT_COUNT, max_xmit);

while (true) {
val = region.reduce(OP_MAX, key, &quality, timeout);
avg_quality = (quality * ALPHA) +

(avg_quality * (1.0 - ALPHA));

if (avg_quality < (target - LOW_WATER)) {
max_xmit++;

} else if (avg_quality > (target + HIGH_WATER)) {
if (--max_xmit < 1) max_xmit = 1;

}
tuning.set(MAX_RETRANSMIT_COUNT, max_xmit);
sleep(delay);

}

Figure 9:Pseudocode for adaptive reduction algorithm.

We implemented a simple adaptive reduction al-
gorithm that attempts to maintain a target reduction
yield by dynamically adjusting the maximum num-
ber of retransmission attempts made by the transport
layer. Pseudocode is shown in Figure 9, and illus-
trates the use of the regions tuning interface. Nodes
form a k-nearest-neighbor region (k = 8) and repeat-
edly perform a max-reduce over a local sensor read-
ing. An additive-increase/additive-decrease controller is
used, which takes an exponentially-weighted moving av-
erage (EWMA) of the yield of each reduction operation.
If the yield is 10% greater than the target, the maximum
retransmission count is reduced by one; if it is 10% less
than the target, the count is increased by one.

This simple algorithm is very effective at meeting a
given yield target, as shown in Figure 8. Note that for
targets below 0.5, the controller overshoots the target
somewhat. This is mainly because most nodes are well-
connected, and even a low retransmission count will re-
sult in a good fraction of messages getting through. An-
other interesting metric is the average number of mes-
sages exchanged for each reduction operation (not shown
in the figure). Reductions are implemented by the root
sending a request message to each neighbor in the re-
gion, which replies with the value of the requested shared
variable. Therefore, with no message loss, two messages
are exchanged per node. As the yield target scales, this
number ranges from 3 (for a yield target of 0.2) to about
10.5 (for a target of 0.9), which gives an indication of the
additional overhead for achieving a target reliability.

6.2 Approximate planar mesh construction

Constructing an approximate planar mesh is a tradeoff
between the number of messages sent and the quality of
the resulting mesh, which we measure in terms of the
fraction of crossing edges. Given the unreliable nature
of the communication channel, our pruned Yao graph al-
gorithm cannot guarantee that the mesh will be planar.
For many applications, a perfect mesh is not necessary,
since planarity is impossible to guarantee if there is mea-
surement error in node localization. As we will see in
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Figure 10:Quality and overhead of the pruned Yao graph
as a function of number of node advertisements.The frac-
tion of crossed edges is substantially similar for 50 and 100
nodes.

the next subsection, the quality of the planar mesh has a
direct influence on the accuracy of contour detection.

In our implementation, the fraction of crossed edges
in the mesh depends primarily on the number of broad-
casts made by each node to advertise its location. These
advertisements are used to form thek-nearest-neighbor
region, the first step in the planar mesh construction. In-
tuitively, hearing from a greater number of radio neigh-
bors allows thek-nearest-neighbor region to select the
closest neighbors from this set. Missing an advertise-
ment may cause nodes to select more distant neighbors,
leading to a larger proportion of crossed edges.

Figure 10 shows the cost in terms of the number
of messages sent per node, as well as the fraction of
crossed edges, as the number of node advertisements
is increased. Note that the message overhead does not
grow linearly with the broadcast count; this is because
we are counting all messages involved in mesh construc-
tion, including exchanging location information, outedge
advertisements, and edge invalidation messages. There is
a clear relationship between increased communication,
and hence increased bandwidth and energy usage, and
the quality of the mesh. As in the case of reduction, ap-
plications can tune the number of broadcasts to meet a
given target resource budget or mesh quality.

The effect of increasing network density is also shown
in the figure. In all cases, nodes are distributed over a
fixed geographic area. As density increases, so does the
message overhead, since nodes have more neighbors to
consider during graph construction.

6.3 Contour finding accuracy
Next, we evaluate the contour finding application, de-
scribed in Section 5, in terms of the quality of the un-
derlying approximate planar mesh. We characterize the
accuracy of contour finding as the mean error between
each computed contour point and the actual contour lo-
cation. Crossed edges in the mesh are likely to introduce
error in the contour calculation, as they generally connect
two nodes that may not be closest to the actual contour.
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function of the number of node advertisements.
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Figure 12: Accuracy and overhead of object tracking as
a function of neighborhood size.Results are the average of
three runs for each neighborhood size.

We simulated a linear contour passing through the
center of the sensor field that rotates by an angle of
0.1 radians every 5 sec. Nodes take local sensor readings
once a second and those that are above the sensor thresh-
old compute new contour points. This scenario stresses
the contour finding application and causes all areas of
the network to eventually calculate contour points as the
frontier rotates. In each case we ran the application for
100 simulated seconds.

Figure 11 shows the error in contour detection as the
number of broadcasts used to construct the planar mesh
is increased. There is a clear relationship between the
overhead of mesh formation and the accuracy of contour
detection. Also shown is the fraction of crossed edges,
following a pattern similar to that in Figure 10.

6.4 Object tracking accuracy

Next, we evaluate the accuracy of the object tracking ap-
plication described in Section 5. The application tracks
a simulated object moving in a circular path of radius
6 feet at a rate of 0.6 feet every 2 sec. As with contour
finding, moving the object in a circular path causes nodes
in different regions of the network to detect and track the
object. Nodes take sensor readings once a second, the
value of which scales linearly with the node’s distance to
the object, with a maximum detection range of 5 feet. In
each case we run the application for 100 simulated sec-

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  1  2  3  4  5  6  7  8  9  10
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

M
es

sa
ge

s 
pe

r e
ve

nt

Fr
ac

tio
n 

of
 re

ce
iv

ed
 e

ve
nt

s

Maximum retransmission attempts

Messages per event
Fraction of received events

Figure 13:Reliability and overhead of event detection as a
function of retransmission attempts.

onds and average over three runs.
The resource tuning parameter in question is the size

of the k-nearest neighbor region. A smaller number
of neighbors reduces communication requirements, but
yields a less accurate estimate of the object location.
Note that increasing the neighborhood size beyond a cer-
tain point will not increase tracking accuracy, as more
distant nodes are less likely to respond to the reduction
request due to packet loss.

Figure 12 shows the accuracy of the tracking applica-
tion as we vary the number of neighbors in each region.
For each time step, we calculate the distance between
the simulated object and the value reported by the sensor
network. As the figure shows, as the size of the neigh-
borhood increases, so does the accuracy, as well as the
number of messages sent (network-wide) per tracking
event. Above aboutk = 8, the increase in the neigh-
borhood size does not improve performance appreciably,
in part because the additional nodes are further from the
target object and may not detect its presence. Also, the
more distant nodes may have poor radio connectivity to
the root, as described above.

6.5 Event detection reliability

Finally, we evaluate the use of directed diffusion, imple-
mented using the spanning tree region, to detect the pres-
ence of a moving object through the sensor field. The
base station, located in the upper-left corner of the sensor
field, forms a spanning tree region and floods interests
to the network through the directed diffusion interface.
Rather than computing the location of the object, nodes
with a local sensor reading over a fixed threshold (corre-
sponding to an object distance of 2.5 feet) route an event
report back to the base. We compute the total number of
messages as well as the fraction of event reports received
at the base station as the number of retransmission at-
tempts is scaled.

Figure 13 presents the results in terms of the number
of messages transmitted per detected event, as well as the
fraction of events received by the base station. As with
the other examples, scaling the maximum retransmission



count increases the number of messages, and has a cor-
responding effect on the reliability if event delivery to
the base. In all of these cases, the core benefit of the
abstract regions interface is the ability to tune the under-
lying communication substrate to achieve resource man-
agement and accuracy goals.

7 Conclusions and Future Work
As sensor networks become more common, better tools
are needed to aid the development of applications for
this challenging domain. We believe that programmers
should be shielded from the details of low-level radio
communication, addressing, and sharing of data within
the sensor network. At the same time, the communica-
tion abstraction should yield control over resource us-
age and make it possible for applications to balance the
tradeoff between energy/bandwidth consumption and the
accuracy of collective operations.

The abstract region is a fairly general primitive that
captures a wide range of communication patterns within
sensor networks. The notion of communicating within,
and computing across, a neighborhood (for a range of
definitions of “neighborhood”) is a useful concept for
sensor applications. Similar concepts are evident in other
communication models for sensor networks, although of-
ten exposed at a much higher level of abstraction. For
example, directed diffusion [18] and TinyDB [25] em-
body similar concepts but lump them together with addi-
tional semantics. Abstract regions are fairly low-level
and are intended to serve as building blocks for these
higher-level systems.

We have described several abstract region implemen-
tations, including geographic and radio neighborhoods,
an approximate planar mesh, and spanning trees. The im-
plementation of abstract regions in the TinyOS environ-
ment relies on fibers, a lightweight concurrency primitive
that greatly simplifies application design. Finally, we
have evaluated the use of abstract regions for four typ-
ical sensor network applications: object tracking, con-
tour finding, distributed event detection, and geographic
routing. Our results show that abstract regions are able
to provide flexible control over resource consumption to
meet a given latency, accuracy, or energy budget.

In the future, we intend to explore how far the ab-
stract region concept addresses the needs of sensor net-
work applications. We are currently completing a suite of
abstract region implementations and are developing sev-
eral applications based on them. We also intend to pro-
vide a set of tools that allow application designers to un-
derstand the resource consumption and quality tradeoffs
provided by abstract regions. These tools will provide
developers with a view of energy consumption, commu-
nication overheads, and accuracy for a given application.
Our goal is to allow designers to express tolerances (say,
in terms of a resource budget or quality threshold) that
map onto the tuning knobs offered by abstract regions.

This process cannot be performed entirely off-line, as re-
source requirements depend on activity within the net-
work (such as the number of nodes detecting an event).
Runtime feedback between the application and the un-
derlying abstract region primitives will continue to be
necessary.

Our eventual goal is to use abstract regions as a build-
ing block for a high-level programming language for sen-
sor networks. The essential idea is to capture communi-
cation patterns, locality, and resource tradeoffs in a high-
level language that compiles down to the detailed behav-
ior of individual nodes. Shielding programmers from the
details of message routing, in-network aggregation, and
achieving a given fidelity under a fixed resource budget
should greatly simplify application development for this
new domain.
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