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Abstract- Highly scaled CMOS devices in the nanoscale regime
would inevitably exhibit statistical or probabilistic behavior. Such
behavior is due to process variations and other perturbations
such as noise. Therefore current circuit design methodologies,
which depend on the existence of deterministic and uniform
devices with no consideration for either power consumption
or probabilistic behavior, would no longer be sufficient to
design robust circuits. To help overcome this challenge, we have
been characterizing CMOS devices with probabilistic behavior
(probabilistic CMOS or PCMOS devices) at several levels: from
foundational principles to analytical modeling, simulation, fab-
rication and measurement, as well as innovative approaches
to harnessing PCMOS devices in system-on-a-chip architectures
which can implement a wide range of applications. In this paper,
we present a broad overview of our contributions in the domain
of PCMOS, and outline ongoing work and future challenges in
this area.

I. INTRODUCTION AND OVERVIEW

Sustained device scaling into the nanometer regime faces
several hurdles. Manufacturing difficulties yield devices with
parameter variations and since these devices are likely to
operate close to the thermal limit, they are susceptible to
perturbations due to noise [1], [2], [3]. We refer to such CMOS
devices whose behavior is probabilistic as probabilistic CMOS
devices, or PCMOS devices for short. Clearly, current circuit
design methodologies are inadequate to design robust circuits
in the presence of these perturbations, since they depend on the
devices with deterministic behavior. To design robust circuits
and architecture in the presence of this (inevitable) statistical
behavior at the device level, it has been speculated that a shift
in the design paradigm from the current day deterministic
designs to statistical or probabilistic designs of the future-
would be necessary [4].
We have addressed this issue of probabilistic design at

several levels, from foundational models [5], [6] to practical
system-on-a-chip architectures which leverage PCMOS tech-
nology for applications from the cognitive and embedded
domains [7]. This paper presents a broad overview of our
contributions in the area of probabilistic CMOS; several of
these results have appeared in prior publications [7], [8], [9],
[5], [6]. In this paper we survey our past work, present some
new results in particular a formulation of the two laws of
PCMOS using asymptotic notation as well as a scheme for

efficient implementation of PCMOS based system on a chip
architectures.
The rest of the paper is organized as follows. In Section II

we outline the foundational principles of PCMOS technology
based on the probabilistic switch. In Section III we show
how these abstract foundational models can be realized in
the domain of CMOS in the form of noise susceptible scaled
CMOS devices operating at low voltages and state the two
laws of PCMOS technology using novel asymptotic notions.
For our present purpose, it is convenient to partition the
application domain into three groups (i) applications which
benefit from (or harness) probabilistic behavior at the device
level naturally, (ii) applications that can tolerate (and trade
off) probabilistic behavior at the device level (but do not need
such behavior naturally) and (iii) applications which cannot
tolerate probabilistic behavior at all. We will briefly sketch our
approach towards implementing PCMOS based architectures,
in Section IV. In Section V we outline other challenges such
as design for manufacturability, and through a probabilistic
approach present a novel approach towards addressing one
such problem the problem of multiple voltage levels on a
chip. Finally in Section VI we conclude and sketch future
directions of inquiry.

II. FOUNDATIONAL PRINCIPLES

We have innovated probabilistic switches as foundational
models which incorporate probabilistic behavior as well as
energy consumption as first class citizens [6]. A probabilis-
tic switch is a switch, which realizes a probabilistic one-
bit switching function. As illustrated in Figure 1, the four
deterministic one bit switching functions (Figure l(a)) have
a probabilistic counterpart (Figure 1(b)) with an explicit prob-
ability parameter (probability of correctness) p. Of these, the
two constant functions are trivial and the others are non-
trivial. We consider an abstract probabilistic switch sw to
be the one which realizes one of these four probabilistic
switching functions. Such elementary probabilistic switches
may be composed to realize primitive boolean functions, such
as AND, OR, NOT functions.

Principles of statistical thermodynamics may be applied to
such switches to quantify their energy consumption, and hence
the energy consumption (or energy complexity) of a network
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Fig. 1. (a) Deterministic one bit switching functions (b) Their probabilistic
counterparts with probability parameter (probability of correctness) p

(J2. The normalized output voltage V.,jt can be represented as

a random variable having a Gaussian distribution as shown in
Figure 2 (b), and the variance of the distribution is 1. The mean
value of the distribution is 0 if the correct output is supposed
to be a digital 0, and Vdd if the correct output is supposed to
be a digital 1. In this representation, the two shaded regions
of Figure 2 (b) (which are equal in area) correspond to the
probability of error per switching of a PCMOS inverter. From
this, we determine the probability of correctness denoted as p,

by computing the area in the shaded regions and express p as

p = 1- Ierfc (
d

2 k2 v~2u
where erfc(x) is the complementary error function

00

erfc(x) 2 t2dt

x

(1)

(2)

Using the bounds for erfc derived by Ermolova and Hag-
gman [15], we have

Fig. 2. (a) PCMOS switch (b) Representation of digital values 0 and I and
the probability of error for a PCMOS switch

of such switches. While a switch that realizes the deterministic
non-trivial switching function consumes at least Kt In 2 Joules
of energy [10], a probabilistic switch can realize a probabilistic
non-trivial switching function with Kt ln(2p) Joules of energy

where p is the probability parameter [6]. For a complete
definition of a probabilistic switch, the operation of a network
of probabilistic switches and a derivation of energy complexity
of such networks, the reader is referred to Palem [6].

III. THE CMOS DOMAIN: PROBABILISTIC CMOS

We have demonstrated how abstract probabilistic switches
might be used to implement useful logic, where the probability
of correct operation p is a parameter. Probabilistic switches
serve as a foundational model for physical realizations of
highly scaled devices as well as emerging non-CMOS devices.
In the domain of CMOS, they model noise-susceptible CMOS

(or PCMOS) devices operating at very low voltages [9]. To
show that PCMOS based realizations correspond to abstract
probabilistic switches, we have demonstrated two key charac-
teristics of PCMOS: (i) Probabilistic switching and (ii) Energy
savings through probabilistic switching. These characteristics
were demonstrated through analytical modeling and HSpice
based simulations [9], [11] as well as actual measurements of
fabricated PCMOS based devices. We will now formalize these
behavioral and energy characteristics of PCMOS switches using
asymptotic notions from computer science [12], [13], [14] in
the form of two laws.

For a PCMOS switch as shown in Figure 2 (a), the output
voltage (V,,tl) is probabilistic due to (thermal) noise coupled to
its output. This noise has a mean value of 0 and a variance of

d275d2
p <lI 0.28e -1.27 , (3)

Using this expression to lower-bound Vdd and hence the
switching energy CVdd2, we have, for a given value of p,

Ep C, 7) >C72 (45) In (0.28) (4)

Clearly, E is a function of the capacitance C, determined
by the technology generation, or the root-mean-square (RMS)
value of the noise and the probability of correctness p. For
a fixed value of C C and p = P, E (or) is defined as

Ec p(or) C(J2 ( 1 75) In (028 . Similarly for fixed values

of C C and or , Ec- a function of p, is defined as

EcU' (p) C(2 (1 275) in (o0 28)
In computer science, the notion of asymptotic complexity

is widely used to study the efficiency of algorithms. Usually,
efficiency is characterized by the growth of the running time
(or space), of the algorithm as a function of the size of its
inputs [12], [13], [14]. The 0 notation provides an asymptotic
upper-bound. In this context, for a function f(x) where x is
from the set of natural numbers

f(x) = O (h(x))

Given any function h(x), whenever there exists positive
constants c, x0 such that Vx > xo, 0 < f(x) < ch(x).

Similarly, the symbol Q is used to characterize an asymp-
totic lower-bound on the rate of growth of a function. For a

function f(x) as before,

f(x) = Q (h(x))

2
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whenever there exists positive constants c, x0 such that Vx >
xO<0 ch(x) < f(x). In this context, the 0 and the Q
notation is defined for functions over the domain of natural
numbers. We now extend this notion to the domain of reals.
For any y e (a, Q) where a, C {X+ U 0}

h(y) = Qr (g(Y))

whenever there exists a -y e (a, Q) such that Vy > -y, 0 <
g(y) < h(y). Intuitively, the conventional asymptotic notations
capture the behavior of a function h(x) "for very large" x. Our
modified notion Qr captures the behavior of a function h(y),
defined in an interval (a, 3). In this case, h(y) = Qr (g (Y))
if there exists some point -y in the interval (a, Q) beyond
which 0 < g(y) < h(y). This notion means "the function
h(y) eventually dominates g(y) in the interval (a, /3)". In this
paper, we will use this asymptotic approach to determine the
rate of growth of energy described in Equation 4, as follows.

Let us now express the lower-bound we stated in (4) using
the novel asymptotic (Qr) notation. Again, fixing C = C and
or , let us consider the expression C(J2 ( 1 75) in (028)
from Equation 4, and compare it against the exponential (in
p) function, EC _(p) = Cu(2ep. We note that, when p = 0.5,

C(J2 (145) In (0.28) < EC,(p)

Furthermore, both functions are monotone increasing in p

and they have equal values at p 0.87. Hence,

C(J2 (45) In (0.28) > EC,(p)
whenever p > 0.87. Then, from the definition of Qr, an

asymptotic lower-bound for EC, (p) in the interval (0.5,1) is

E,jp(P) = Qr (EC f (p)) (5)

Earlier forms of these laws [9], [8], [11] were implicitly
based on the asymptotic notions described here explicitly for
the first time.

IV. IMPLEMENTING APPLICATIONS USING PCMOS
TECHNOLOGY

So far, we have summarized abstract models of probabilis-
tic switches and their implementation and characterization
in the domain of CMOS. To harness PCMOS technology to
implement applications, we will now consider three categories:
(i) applications which benefit from (or harness) probabilistic
behavior at the device level, (ii) applications that can tolerate
probabilistic behavior at the device level and (iii) applications
which cannot tolerate statistical behavior. In this paper, we

outline our implementation approach for first two categories.
For the last category, we envision an approach based on re-

dundancy as well as error correction and recovery techniques,
which will be the basis for our future work.

A. Applications that harness probabilistic behavior

We have investigated applications from the cognitive and
embedded domain which embody probabilistic behaviors.
Probabilistic algorithms are those in which each step, upon

repeated execution with the same inputs, could have several
possible outcomes, where each outcome is associated with a

probability parameter. Examples of such algorithms include
the celebrated probabilistic tests for primality [16], [17].

Let E ^()
q

C (4175') in (028) 2 Referring to (4) and

considering EC' (or) for a fixed value of C = C and p = p,

using the Qr notation, an asymptotic lower-bound for EC, (a)
is

(6)

Observation 1: Whereas the function E ^ (p) grows ex-

ponentially in p, for a fixed C = C and or = (u, the function
EC ,(or) grows quadratically in or, for fixed values C = C

and p = p
Then, from (5) and (6), we have

Input Output with corresponding probability
parameters

000 00 (0.98) 01 (0.01) 10 (0.01)

001 00 (0.01) 01 (0.98) 10 (0.01)

010 00 (0.01) 01 (0.01) 10 (0.98)

011 00 (0.98) 01 (0.01) 10 (0.01)

100 00 (0.98) 01 (0.01) 10 (0.01)

101 00 (0.69) 01 (0.30) 10 (0.01)

Fig. 3. The probabilistic truth table for a node in a Bayesian network with
37 nodes

3

Law 1: Energy-probability Law: For any fixed technology
generation (which determines the capacitance C = C) and
constant noise magnitude or , the switching energy EC0.
consumed by a probabilistic switch grows with p. Furthermore,
the order of growth of Eto' in p is asymptotically bounded

below by an exponential in p since EC,,(p) =Qr (EC,(P))

Law 2: Energy-noise Law: For any fixed probability p
p and a fixed technology generation (which determines the
capacitance C C), ECp grows quadratically with or, since

EC,P (or) = Qr~(EC^ (af)

Eo,p(or) = Qr E., (or)c p
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Fig. 4. The canonical PSOC architecture

In particular, the applications we have considered are based
on Bayesian inference [18], Probabilistic Cellular Automata
[19], Random Neural Networks [20] and Hyper Encryption
[21]. For brevity, these algorithms will be referred to as BN,
PCA, RNN and HE respectively. Common to these applications
(and to almost all probabilistic algorithms) is the notion
of a core probabilistic step with its associated probability
parameter. An abstract model of a core probabilistic step
is a probabilistic truth table. In Figure 3, we illustrate the
probabilistic truth table for one such step in Bayesian in-
ference. Intuitively, realizing such probabilistic truth tables
using probabilistic switches is inherently more efficient with
PCMOS switches than with conventional (deterministic) CMOS
switches. This is because of the inherent probabilistic behavior
of the PCMOS switches.
We have implemented these applications as probabilistic

system on a chip (PSOC) architectures. As illustrated in Fig-
ure 4, probabilistic system on a chip architectures are envi-
sioned to consist of two parts: A host processor which consists
of a conventional low energy embedded processor like the
StrongARM SA- 100 [22], coupled to a co-processor which
utilizes PCMOS technology and executes the core probabilistic
steps.
The energy-performance product or EPP is the chief metric

of interest for PSOC based architectures [7]; it is the product of
the energy and time consumed by an application as it executes
on the architecture. Then, for any given application, energy-
performance product gain F_T of a PSOC over a conventional
(baseline) architecture is the ratio of the EPP of the baseline
denoted by Q, to the EPP of a particular architectural imple-
mentation 1. F_T is thus:

Energy3 x Time3
Energyj x Time(

When compared to a baseline implementation using soft-
ware executing on a StrongARM SA-1100, the gain of a
PCMOS based PSOC is summarized in Table I

In addition, when the baseline is a custom ASIC realization
(host) coupled to a functionally identical CMOS based co-
processor, in the context of the HE and PCA applications, the
gain F_T is 9.38 and 561 respectively. Thus, for applications
which can harness probabilistic behavior, PSOC architectures

Algorithm F|
Min Max

BN 3 7.43
RNN 226.5 300
PCA 61 82
HE 1.12 1.12

TABLE I
MAXIMUM AND MINIMUM EPP GAINS OF PCMOS OVER THE BASELINE

IMPLEMENTATION WHERE THE IMPLEMENTATION I HAS A STRONGARM

SA- 1100 HOST AND A PCMOS BASED CO-PROCESSOR

based on PCMOS technology yield several orders of magnitude
improvements over conventional (deterministic) CMOS based
implementations. For a detailed explanation of the architec-
tures, experimental methodology and a description of the
applications, the reader is referred to Chakrapani et. al. [7].

B. Applications that tolerate probabilistic behavior
Moving away from applications that embody probabilistic

behaviors naturally (and in turn harness probabilistic behavior
of PCMOS devices), we will now consider the domain of appli-
cations that tolerate probabilistic behavior. Specifically, we in-
vestigate applications which can trade energy and performance
for application-level quality of the solution. Applications in the
domain of digital signal processing are good candidates, where
application-level quality of solution is naturally expressed in
the form of signal-to-noise ratio or SNR. To demonstrate
the utility of PCMOS technology in this context, we have
implemented filter primitives using PCMOS technology, used
to realize the H.264 decoding algorithm [23].
As illustrated in Figure 5(b) the probability parameter p

of correctness can be lowered uniformly for each bit in the
adder (which is one of the building blocks of the FIR filter
used in the H.264 application). While this approach saves
energy, it significantly degrades the output picture quality
when compared to conventional (CMos based and error-free)
operation. However, as illustrated in Figure 5(c), if the prob-
ability parameter is varied non-uniformly, significantly lower
energy consumption is possible with minimal degradation of
the quality of the image [24]. Hence, not only can PCMOS
technology be leveraged for implementing energy efficient
filters, but also can be utilized to naturally trade-off energy
consumed for application level quality of solution through
novel probabilistic voltage scaling schemes [24].

V. IMPLEMENTATION CHALLENGES

The actual implementation and fabrication of architectures
that leverage PCMOS based devices poses further challenges.
Chief among them is "tuning" the PCMOS devices, or in other
words, controlling the probability parameter p of correctness.
Additionally, the number of distinct probability parameters is
a concern, since this number directly relates to the number of
voltage levels [9]. We make two observations aimed at address-
ing these problems: (i) The distinct probability parameters are
a requirement of the application and the application sensitivity
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Nominal V operation C nventional uniform Vdd scaling PCMOS non-uniform Vdd scaling
Vdd
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outputs outputs outputs

An element of a FIR filter used in H.264 image compression standard yielding an image

Normal operation Conventional voltage scaling Non-Uniform voltage scaling

(a) (b) (c)

Fig. 5. Comparing images reconstructed using H.264 (a) conventional error
free operation (b) probability parameter p varied non-uniformly based on bit
significance (c)probability parameter p lowered uniformly for all bits

to probability parameters is an important aspect. That is, if an
application uses probability parameters P1, P2, P3, for example,
it might be the case that the application level quality is not
affected when only two distinct values, say P1,P2 are used.
This, however can only be determined experimentally and is
a topic being investigated. (ii) Given probability parameters
P1 and P2, other probability parameters might be derived
through logical operations. For example, if the probability
of obtaining a 1 from a given PCMOS device is p and the
probability of obtaining a 1 from a second PCMOS device is
q, a logical AND of the output of the two PCMOS devices
produces a 1 with a probability p.q. Using this technique, in
the context of an application (the case of Bayesian inference is
used here), the number of distinct probability parameters may
be drastically reduced. Since the probability parameter p is
controlled through varying the voltage, reducing the number of
probability parameters reduces the number of distinct voltage
levels required and is another topic being investigated.

VI. CONCLUSION AND FUTURE DIRECTIONS

We have demonstrated ways through which probabilistic
(noise based) devices can be modeled with considerations for
probabilistic behavior as well as energy consumption. We have
also demonstrated how these (abstract) models have a physical
counterpart in the domain of CMOS and ways through which
they can be used to implement applications.

In any implementation of applications which embodies
probability, the quality of the implementation is an important
aspect apart from the energy and running time. In con-
ventional implementations of probabilistic algorithms which
usually leverage hardware or software based implementations
of pseudo random number generators to supply (pseudo)
random bits, it is a well known fact that random bits of
"low quality" affect application behavior, from the correctness
of Monte Carlo simulations [25] to the strength of encryption
schemes. To ensure that application behavior is not affected by
low quality random bits, the quality of random bits produced
by a particular strategy should be evaluated rigorously. Our
approach to determine the quality of random bits, is to use

statistical tests to determine the quality of randomness. To
study the statistical properties of PCMOS devices in a pre-
liminary way, we have utilized the randomness tests from the
NIST Suite [26] to assess the quality of random bits generated
by PCMOS devices. Preliminary results indicate that PCMOS
affords a higher quality of randomness; a future direction of
study is to quantify the impact of this quality on the application
level quality of solution.
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