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Abstract: Organizing data into sensible groupings is onethef most fundamental
modes of understanding and learning. As an exangplegmmon scheme of scientific
classification puts organisms into taxonomic rantsmain, kingdom, phylum, class,
etc.). Cluster analysis is the formal study of alfpons and methods for grouping, or
clustering, objects according to measured or peeceiintrinsic characteristics or
similarity. Cluster analysis does not use categlahels that tag objects with prior
identifiers, i.e., class labels. The absence oégmty information distinguishes data
clustering (unsupervised learning) from classifwat or discriminant analysis
(supervised learning). The aim of clustering islesgiory in nature to find structure in
data. Clustering has a long and rich history inagety of scientific fields. One of the
most popular and simple clustering algorithms, Kanse was first published in 1955. In
spite of the fact that K-means was proposed overy&&rs ago and thousands of
clustering algorithms have been published sinca,tKemeans is stillvidely used. This
speaks to the difficulty of designing a generalpmse clustering algorithm and the ill-
posed problem of clustering. We provide a briefresav of clustering, summarize well
known clustering methods, discuss the major chgédenand key issues in designing
clustering algorithms, and point out some of thergimg and useful research directions,
including semi-supervised clustering, ensemble tefusy, simultaneous feature
selection, and data clustering and large scaledliaséering.

1. Introduction

Advances in sensing and storage technology andaliagrowth in applications such as
Internet search, digital imaging, and video sutaetde have created many high-volume,
high-dimensional data sets. It is estimated thatdlgital universe was approximately
281 exabytes in 2007, and it is projected to ba&rh@s the size by 2011. (One exabyte is
~10"®bytes or 1,000,000 terabytes) [Gantz, 2008]. Méshis data is stored digitally in

electronic media, thus providing huge potential #og development of automatic data
analysis, classification, and retrieval technigquesaddition to the growth in the amount
of data, the variety of available data (text, imaged video) has also increased.
Inexpensive digital and video cameras have mad#abl@ huge archives of images and

! This paper is based on the King-Sun Fu Prize teaelivered at the f9international
Conference on Pattern Recognition (ICPR), Tampa[d€cember 8, 2008.



videos. The prevalence of RFID tags or transpondeesto their low cost and small size
has resulted in the deployment of millions of sesghat transmit data regularly. E-
mails, blogs, transaction data, and billions of Wxelpes create terabytes of new data
every day. Many of these data streams are unstetttiadding to the difficulty in
analyzing them.

This increase in both the volume and the variety data requires advances in
methodology to automatically understand, procesd,sammarize the data. Data analysis
techniques can be broadly classified into two majpes [Tukey, 1977]: (igxploratory

or descriptive, meaning that the investigator does have pre-specified models or
hypotheses but wants to understand the generahatiastics or structure of the high-
dimensional data, and (ipnfirmatoryor inferential, meaning that the investigator vgant
to confirm the validity of a hypothesis or model @rset of assumptions given the
available data. Many statistical techniques hawenljoposed to analyze the data, such
as analysis of variance, linear regression, disnamt analysis, canonical correlation
analysis, multidimensional scaling, factor analysigncipal component analysis, and
cluster analysis to name a few. A useful overvigwiven in [Sungur, 2008].

In pattern recognition, data analysis is concemvil predictive modeling: given some
training data, we want to predict the behaviorha tinseen test data. This task is also
referred to asearning Often, a clear distinction is made between lewymuroblems that
are (i) supervised (classification) or (ii) unsupsed (clustering), the first involving only
labeled data(training patterns with known category labels) iehhe latter involving
only unlabeled datgDudaet al., 2001]. Clustering is a more difficult and chatjierg
problem than classification. There is a growingeiiast in a hybrid setting, callesgmi-
supervised learninfiChapelleet al., 2006]; in semi-supervised classification, theelab
of only a small portion of the training data set available. The unlabeled data, instead
of being discarded, are also used in the learnmeggss. In semi-supervised clustering,
instead of specifying the class labels, pair-wisastraints are specified, which is a
weake way of encoding the prior knowledge A pair-wisaust-link constraint
corresponds to the requirement that two objectaldhze assigned the same cluster label,
whereas the cluster labels of two objects partteigan acannot-linkconstraint should
be different. Constraints can be particularly berafin data clustering [Langet al. ,
2005, Bastet al., 2008], where precise definitions of underlyingsters are absent. In
the search for good models, one would like to idelall the available information, no
matter whether it is unlabeled data, data with taigs, or labeled data. Figure 1
illustrates this spectrum of different types ofrleag problems of interest in pattern
recognition and machine learning.



(a) Supervised (b) Partially labelled (c) Partially constrained (d) Unsupervised

Figure 1 Learning problems: dots correspond to points wittemy labels. Points with labels are denoted
by plus signs, asterisks, and crosses. In (c)nmthst-link and cannot-link constraints are denotedadlid
and dashed lines, respectively (figure taken frbamfe et al. , 2009).

2. Data clustering

The goal of data clustering, also known as cluatalysis, is to discover theatural
grouping(s) of a set of patterns, points, or olgie@Vebster [Merriam-Webster Online
Dictionary, 2008] defines cluster analysis as “atistical classification technique for
discovering whether the individuals of a populatfah into different groups by making
guantitative comparisons of multiple charactersstidAn example of clustering is shown
in Figure 2. The objective is to develop an auteenatgorithm that will discover the
natural groupings (Figure 2 (b)) fhe unlabeled data (Figure 2 (a)).

An operational definition of clustering can be sthas follows: Given eepresentatiorof

n objects, find K groups based on a measursiroflarity such that objects within the
same group aralike but the objects in different groups are not aliRet, what is the
notion of similarity? What is the definition of &uster? Figure 2 shows that clusters can
differ in terms of theishape size anddensity The presence of noise in the data makes
the detection of the clusters even more difficah. ideal cluster can be defined as a set
of points that izompactandisolated In reality, a cluster is a subjective entity tigatn

the eye of the beholder and whose significance iaterpretation requires domain
knowledge. But, while humans are excellent clustskers in two and possibly three
dimensions, we need automatic algorithms for highedisional data. It is this challenge
along with the unknown number of clusters in thgegi data that has resulted in
thousands of clustering algorithms that have bedrighed and that continue to appear
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(@) Input data (b) Desired clustering

Figure 2 Diversity of clustersThe seven clusters in (a) (denoted by seven differelors in 1(b)) differ
in shape, size, and density. Although these claistey apparent to a data analyst, none of theadeail
clustering algorithms can detect all these clusters

2.1 Why clustering?

Cluster analysis is prevalent in any disciplinet thaolves analysis of multivariate data.
A search via Google Scholar [gsc, 2009] found 1,&8fries with the wordslata
clusteringthat appeareth 2007 alone. This vast literature speaks to thportance of
clustering in data analysis. It is difficult to eadstively list the numerous scientific fields
and applications that have utilized clustering teghes. Image segmentation, an
important problem in computer vision, can be foratedl as a clustering problem [Frigui
& Krishnapuram, 1999, Jain & Flynn, 1996, Shi & Mal2000]. Documents can be
clustered [lwayama & Tokunaga, 1995] to generag@ctd hierarchies for efficient
information access [Sahami, 1998] or retrieval [ih& Deogun, 1998]. Clustering is
also used to group customers into different typms effficient marketing [Arabie &
Hubert, 1994], to group services delivery engagamér workforce management and
planning [Huet al., 2007] as well as to study genome data [Baldi &fidla, 2002] in
biology.

Data clustering has been used for the followingehmain purposes.

» Underlying structureto gain insight into data, generate hypothesetgat
anomalies, and identify salient features.

» Natural classificationto identify the degree of similarity among forors
organisms (phylogenetic relationship).



» Compressionas a method for organizing the data and summarizithrough
cluster prototypes.

An example of class discovery is shown in FigureH&re, clustering was used to
discover subclasses in an online handwritten cherraecognition application [Connell &
Jain, 2002]. Different users write the same digitdifferent ways, thereby increasing the
within-class variance. Clustering the training eait from a class can discover new
subclasses, called the lexemes in handwritten cteam Instead of using a single model
for each character, multiple models based on thmben of subclasses are used to
improve the recognition accuracy.

Given the large number of Web pages on the Intemest search queries typically result
in an extremely large number of hits. This credtes need for search results to be
organized. Search engines like Clusty (www.clusg).@luster the search results and
present them in a more organized way to the user.
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Figure 3 Finding subclasses using data clustering. (a) Bpdhow two different ways of writing the digit
2; (c) three different subclasses for the charadttgd) three different subclasses for the letigr

2.2 Historical developments

The development of clustering methodology has lzeeuly interdisciplinary endeavor.
Taxonomists, social scientists, psychologists, dgisits, statisticians, mathematicians,
engineers, computer scientists, medical researchadsothers who collect and process
real data have all contributed to clustering metthagly. According to JSTOR [jst, n.d.],
data clusteringfirst appeared in the title of a 1954 article dsgalwith anthropological
data. Data clustering is also known as Q-analygmlogy, clumping, and taxonomy
[Jain & Dubes, 1988] depending on the field wheiis applied. There are several books



published on data clustering; classic ones are dikalSand Sneath [Sokal & Sneath,
1963], Anderberg [Anderberg, 1973], Hartigan [Hgeita, 1975], Jain and Dubes [Jain &
Dubes, 1988] and Duda et al. [Duetaal., 2001]. Clustering algorithms have also been
extensively studied in data mining (see books by ldad Kamber [Han & Kamber,
2000] and Tan et al. [Taat al., 2005]) and machine learning [Bishop, 2006].

Clustering algorithms can be broadly divided intwot groups: hierarchical and
partitional. Hierarchical clustering algorithms recursively finésted clusters either in
agglomerative mode (starting with each data painits own cluster, merge the most
similar pair of clusters successively to form astéu hierarchy) or in divisive (top-down)
mode (starting with all the data points in one ®usrecursively divide the cluster into
smaller clusters). Partitional clustering algorighfimd all the clusters simultaneously as a
partition of the data and do not impose a hieraadhstructure. Input to a hierarchical
algorithm is am x n similarity matrix, wheren is the number of objects to be clustered.
On the other hand, a partitional algorithm can eglker ann x d pattern matrix (K-
means), wheren points are embedded in dadimensional feature space, or arx n
similarity matrix (Spectral clustering). Note tresimilarity matrix can be easily derived
from a pattern matrix, but ordination methods sastmulti-dimensional scaling (MDS)
are needed to derive a pattern matrix from a sitylanatrix.

The most well-known hierarchical algorithms aregiedink and complete-link; the most
popular and the simplest partitional algorithm ismi€ans. Since partitional algorithms
are preferred in pattern recognition due to theneadf available data, our coverage here
is focused on these algorithms. K-means has a aimth diverse history as it was
independently discovered in different scientifielfis by Steinhaus (1955) [Steinhaus,
1956], Lloyd (1957) [Lloyd, 1982], Ball & Hall (1% [Ball & Hall, 1965] and McQueen
(1967) [MacQueen, 1967]. Even though K-means was froposed over 50 years ago, it
is still one of the most widely used algorithms @bustering. Ease of implementation,
simplicity, efficiency, and empirical success ahe tmain reasons for its popularity.
Details of K-means are summarized below.

2.3 K-Means algorithm

Let X ={x},i =1...,n be the set oh d-dimensional points to be clustered into a set of
K clusters, C ={¢, k=1,...,K},. K-means algorithm finds a partition such tha¢ th

squared error between the empirical mean of aearumtd the points in the cluster is
minimized. Lety, be the mean of cluster, . The squared error betwegn and the

points in clusterc, is defined as

J(c) = Z”Xi - i P

%Ly

The goal of K-means is to minimize the sum of theased error over all the K clusters,
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Minimizing this objective function is known to ba &P-hard problem (even for K = 2)
[Drineaset al., 1999]. Thus K-means, which is a greedy algoritbam only be expected
to converge to a local minimum. K-means starts \aithinitial partition with K clusters
and assign patterns to clusters so as to reducsgtheed error. Since the squared error
tends to decrease with an increase in the numbelusferskK (with J(C) = 0 whenK =

n), it can be minimized only for a fixed number ddisters. The main steps of K-means
algorithm are as follows [Jain & Dubes, 1988].

1. Select an initial partition with K clusters; repasstps 2 and 3 until cluster
membership stabilizes.

2. Generate a new partition by assigning each patiteits closest cluster center.

3. Compute new cluster centers.
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Figure 4 lllustration of K-means algorithm. (a) Two-dimensa input data with three clusters; (b) three
seed points selected as cluster centers and iaggignment of the data points to clusters; (c)d& (
intermediate iterations updating cluster labels thedt centers; (e) final clustering obtained byreans
algorithm at convergenc

Figure 4 shows an illustration of K-means algoritbma 2-dimensional dataset with
three clusters.

Parameters of K-means



K-means algorithm requires three user-specifiecarpaters: number of clustets,
cluster initialization, and distance metric. The snaritical choice is K. While no
mathematical criterion exists, a number of hewsstare available for choosing K.
Typically, K-means is run independently for diffetevalues of K and the partition that
appears the most meaningful to the domain expedlected. Different initializations can
lead to different final clustering because K-meank/ converges to local minima. One
way to overcome the local minima is to run the Kame algorithm, for a given K, with
several different initial partitions and choose geatition with the smallest value of the
squared error.

K-means is typically used with the Euclidean metoiccomputing the distance between
points and cluster centers. As a result, K-meardsfspherical or ball-shaped clusters in
data. K-means with Mahalanobis distance metric hasn used to detect hyper-
ellipsoidal clusters [Mao & Jain, 1996], but thisntes at the expense of higher
computation cost. A variant of K-means using tlekura-Saito distance has been used
for vector quantization in speech processing [Lietal., 1980] and K-means with L1
distance was proposed in [Kashieizal., 2008]. Banerjee et al. [Banerjetal., 2004]
showed that K-means algorithm will have some salpoperties (e.g., convergence to
local minima, linear separation of classes, lineanumber of data points per iteration,
etc.) if and only if a Bregman divergence is uasa distance measure.

Extensions of K-means

The basic K-means algorithm has been extended ny mdferent ways. Some of these
extensions deal with additional heuristics invotyithe minimum cluster size and
merging and splitting clusters. Two well-known \enis of K-means in pattern
recognition literature are Isodata [Ball & Hall, 88 and Forgy [Forgy, 1965]. In K-
means, each data point is assigned to a singléecl(ealledhard assignmeit Fuzzy c-
means proposed by Dunn [Dunn, 1973] and later improbgdBezdek [Bezdek, 1981],
is an extension of K-means where each data pombeaa member of multiple clusters
with a membership valuesdft assignmeht A good overview of fuzzy set based
clustering is available in Backer (1978) [Backe®,/8]. Some of the other significant
modifications are summarized below. Steinbach.gSa¢inbacket al., 2000] proposed a
hierarchical divisive version of K-means, callbtecting K-meansthat recursively
partitions the data into two clusters at each stepignificant speed up of th€-means
pass[Jain & Dubes, 1988] in the algorithm (computatmfndistances from all the points
to all the cluster centers) involves representing data using &d-tree and updating
cluster means with groups of points instead ofrglsi point [Pelleg & Moore, 1999].
Bradley et al. [Bradlewt al., 1998] presented a fast scalable and single-parsson of
K-means that does not require all the data to bm fihe memory at the same tiné-
meang[Pelleg & Moore, 2000] automatically find§ by optimizing a criterion such as
Akaike Information Criterion (AIC) or Bayesian Infoation Criterion (BIC). InK-
medoid[Kaufman & Rousseeuw, 2005jlusters are represented using the median of the
data instead of the meaKernel K-meangScholkopfet al., 1998] was proposedo
detect arbitrary shaped clusters, with an apprapranoice of the kernel similarity



function. Note that all these extensions introduce some iaddit algorithmic parameters
that must be specified by the user.

2.4 Major approaches to clustering

As mentioned before, thousands of clustering algos have been proposed in the
literature in many different scientific discipline$his makes it extremely difficult to

review all the published approaches. Nevertheleksstering methods differ on the
choice of the objective function, probabilistic gestive models, and heuristics. We will
briefly review some of the major approaches.

Clusters can be defined as high density regionthénfeature space separated by low
density regions. Algorithms following this notiofh@usters directly search for connected
dense regions in the feature space. Different dhgons use different definitions of
connectedness. The Jarvis-Patrick algorithm defthessimilarity between a pair of
points as the number of common neighbors they shérere neighbors are the points
present in a region of pre-specified radius arotlmedpoint [Frank & Todeschini, 1994].
Ester et al. [Esteet al., 1996] proposed the DBSCAN clustering algorithnhich is
similar to the Jarvis-Patrick algorithm. It dirgcHearches for connected dense regions in
the feature space by estimating the density usimg Parzen window method.
Performance of Jarvis Patrick algorithm and DBSCABpend on two parameters:
neighborhood size in terms of distance, and theirmim number of points in a
neighborhood for its inclusion in a cluster. Whilen-parametric density based methods
are attractive because of their inherent abilitgéal with arbitrary shaped clusters, they
have limitations in handling high-dimensional ddtaaddition, a number of probabilistic
models have been developed for data clustering. filest well known ones are
Probabilistic Latent Semantic Analysis (PLSA) [He@inm & Puzicha, 1998] and Latent
Dirichlet Allocation (LDA) [Bleiet al., 2003].

When the data is high-dimensional, the featureegmasually sparse, making it difficult
to distinguish high-density regions from low-dewsitegions. Subspace clustering
algorithms overcome this limitation by finding dess embedded in low-dimensional
subspaces of the given high-dimensional data. ClHQJBgrawal et al. , 1998] is a
scalable clustering algorithm designed to find palees in the data with high-density
clusters. Although CLIQUE is a non-parametric chusty algorithm, it does not suffer
from the dimensionality problem as it estimates die@sity only in a low dimensional
subspace.

Graph theoretic clustering represents the datatpe@is nodes in a weighted graph. The
edges connecting the nodes are weighted by theimise similarity. The central idea is
to partition the nodes into two subsets A and Bhghat the cut size, i.e., the sum of the
weights assigned to the edges connecting betwedgsrio A and B, is minimized. Initial
algorithms solved this problem using the minimurh agorithm. But, the minimum cut
often results in degenerate clusters, as removingudlier point also minimizes the cut
size. A cluster size (number of data points inustelr) constraint was later adopted by the
Ratio cut algorithm [Hagen & Kahng, 1992]). An eféint approximate graph-cut based



clustering algorithm with cluster size (volume bktcluster, or sum of edge weights
within a cluster) constraint, called Normalized Guas proposed by Shi and Malik [Shi
& Malik, 2000]. A multiclass spectral clusteringgalithm was proposed by Yu and Shi
[Yu & Shi, 2003]. Meila and Shi [Meila & Shi, 200pfesented a Markov Random Walk
approach to spectral clustering and proposed thdiftdd Normalized Cut (MNCut)
algorithm that can handle an arbitrary number oktgrs. Another variant of spectral
clustering algorithm is proposed by Ng et al. [Wgal. , 2001], where normalized
eigenvectors of a kernel matrix are used a®wdata representation, that are clustered
using an algorithm like K-means. Dimensionality uetion from high-dimensional
representation of the data to a low dimension ugiiegLaplacian Eigenmap [Belkin &
Niyogi, 2002] is another approach to induce clustem the data.

Several clustering algorithms have information tieéio formulation. For example, the
minimum entropy methods approach presented in [Rebeal., 2001] assumes that the
data is generated using a mixture model and eaastecl is modeled using a semi-
parametric probability density. The parameters estémated by maximizing the KL-
divergence between the unconditional density arcctnditional density of a data points
conditioned over the cluster. This minimizes thertap between the conditional and
unconditional densities, thereby separating thetels from each other. In other words,
this formulation results in an approach that miziesi the expected entropy of the
partitions over the observed data. Informationlbotick method [Tishbyt al., 1999]
was proposed as a generalization to the rate-timtotheory and adopts a lossy data
compression view. In simple words, given a joirgtdbution over two random variables,
Information Bottleneck compresses one of the végbvhile retaining the maximum
amount of mutual information with respect to theestvariable. An application of this to
document clustering is shown in [Slonim & TishbyQOR] where the two random
variables are words and documents. The words asteced first, such that the mutual
information with respect to documents is maximakyained, and using the clustered
words, the documents are clustered such that thteaiinformation between clustered
words and clustered documents is maximally retained

3. User’s dilemma

In spite of the prevalence of such a large numbelustering algorithms, and its success
in a number of different application domains, ctustg remains a difficult problem. This
can be attributed to the inherent vagueness idé¢hfaition of a cluster, and the difficulty
in defining an appropriate similarity measure abgective function.

The following fundamental challenges associatech wiustering were highlighted in
[Jain & Dubes, 1988], which are relevant even ts tiate.

(a) What is a cluster?

(b) What features should be used?

(c) Should the data be normalized?

(d) Does the data contain any outliers?



(e) How do we define the pair-wise similarity?

() How many clusters are present in the data?
(9) Which clustering method should be used?

(h) Does the data have any clustering tendency?
(i) Are the discovered clusters and partition valid?

We will highlight and illustrate some of these dbaaes below.
3.1 Data representation

Data representations one of the most important factors that influenice performance
of the clustering algorithm. If the representat(choice of features) is good, the clusters
are likely to be compact and isolated and evemgplsi clustering algorithm such as K-
means will find them. Unfortunately, there is noivemsally good representation; the
choice of representation must be guided by the dok@owledge. Figure 5(a) shows a
dataset where K-means fails to partition it inte ttwvo “natural” clusters. The partition
obtained by K-means is shown by a dotted line sy in Figure 5(a). However, when
the same data points in (a) are represented usagop two eigenvectors of the RBF
similarity matrix computed from the data in Figué), they become well separated,
making it trivial for K-means to cluster the dakg[et al., 2001].

(@) (b)

Figure 5 Importance of a good representation. (a) “Two rirdgtaset where K-means fails to find tive
“natural” clusters; the dashed line shows the linglaster separation boundary obtained by running K
means with K = 2. (b) a new representation of thedn (a) based on the top 2 eigenvectors of thpt
Laplacian of the data, computed using an RBF kekKi@heans now can easily detect the two clusters

3.2 Purpose of grouping

The representation of the data is closely tied whe purpose of grouping. The
representation must go hand in hand with the eradl gfathe user. An example dataset of
16 animals represented using 13 Boolean featuresuged in [Pampal&t al., 2003] to



demonstrate how the representation affects thepgrgu The animals are represented
using 13 Boolean features related to their appearand activity. When a large weight is
placed on the appearance features compared toctivityafeatures, the animals were
clustered intomammals vs. birdsOn the other hand, a large weight on the activity
features clustered the dataset iptedators vs. non-predatar8oth these partitioning
shown in Figure 6 are equally valid, and uncoveamirggful structures in the data. It is
up to the user to carefully choose his represeamtdt obtain a desired clustering.
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Figure 6 Different weights on features result in differerdriitioning of the data. Sixteen animals are

represented based on 13 Boolean features relatagpearance and activity. (a) partitioning withgkar

weights assigned to appearance based featurespdrYitioning with large weights assigned to thevity
features (figure reproduced frogmpalk et al. , 2003).

3.3 Number of Clusters

Automatically determining the number of clusters lien one of the most difficult
problems in data clustering. Usually, clusteringoaithms are run with different values
of K; the beswalue ofK is then chosen based on a criterion function. kigde and Jain
[Figueiredo & Jain, 2002] used the minimum mességegth (MML) criteria in
conjunction with the Gaussian mixture model (GMM) dstimateK. Their approach
starts with a large number of clusters, and gradgumaérges the clusters if this leads to a
decrease in the MML criterion. Gap statistics [Tibani et al. , 2001] is another
commonly used approach for deciding the numbetusiters. The key assumption is that
when dividing data into an optimal number of clustdhe resulting partition is most
resilient to the random perturbation. Dirichlet &ss (DP) [Rasmussen, 2000, Ferguson,
1973] introduces a non-parametric prior for the bamof clusters. It is often used by



probabilistic models to derive a posterior disttibn for the number of clusters, from
which the most likely number of clusters can be poted.. Its key idea is to introduce a
non-parametric Bayesian prior for the number ofsts. In spite of these objective
criteria, it is not easy to decide which valuekofeads to more meaningful clusters. 7(a)
shows a 2-dimensional synthetic dataset generatad & mixture of six Gaussian
components. The true labels of the points are showi(e). When a mixture of
Gaussians is fit to the data with 2, 5 and 6 corepts) shown in 7(b)-(d), respectively,
each one of them seems to be a reasonable fit. dgias is 2-dimensional, so we can
easily visualize and assess how many clusters @rd. @g8ut, this cannot be done when
the data is high dimensional.

(a) Input data (b) GMM (K=2) (c) GMM (K=5)

(d) GMM (K=6) (e)True labels, K =

Figure 7 Automatic selection of number of clusters, K. (@ut data generated from a mixture of six
Gaussian distributions; (b)-(d) Gaussian mixtureleddGMM) fit to the data with 2, 5 and 6 comporsnt
respectively; (e) true labels of the data.

3.4 Cluster validity

Clustering algorithms tend to find clusters in thega irrespective of whether or not any
clusters are present. Figure 8(a) shows a datasietnw natural clustering; the points
here were generated uniformly in a unit square. él@s, when the K-means algorithm is
run on this data witlK = 3, three clusters are identified as shown in Fed(b)! Cluster
validity refers to formal procedures that evaluate theltesf cluster analysis in a



guantitative and objective fashion [Jain & Dube338]. In fact, even before a clustering
algorithm is applied to the data, the user shoudtemhnine if the data even has a
clustering tendencfSmith & Jain, 1984].
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Figure 8 Cluster validity.(a) A dataset with no “natural” clustering; (b) Keans partition withk = 3.

Cluster validity indices can be defined based wedldifferent criteriainternal, relative,
and external [Jain & Dubes, 1988]Indices based oimternal criteria assess the fit
between the structure imposed by the clusteringréihgn (clustering) and the data using
the data alone. Indices basedretative criteriacompare multiple structures (generated
by different algorithms, for example) and decideichhof them is better in some sense.
External indicesmeasure the performance by matching cluster stidtuthe a priori
information, namely the “true” class labels (oftefierred to as ground truth). Typically,
clustering results are evaluated using the extecniggrion, but if the true labels are
available, why even bother with clustering? Thdorbdf cluster stability[Langeet al.,
2004] is appealing as an internal stability measGtaster stability is measured as the
amount of variation in the clustering solution odéferent sub-samples drawn from the
input data. Different measures of variation canused to obtain different stability
measures. In [Langet al. , 2004], a supervised classifier is trained on ofehe
subsamples of the data, by using the cluster laidgned by clustering the subsample,
as thetrue labels. The performance of this classifier ontdsting subset(s) indicates the
stability of the clustering algorithm. In model bkdsalgorithms (e.g., centroid based
representation of clusters in K-means, or Gaus$ixture Models), the distance
between the models found for different subsampéeshe used to measure the stability
[von Luxburg & David, 2005]. Shamir and Tishby [$fhia & Tishby, 2008] define
stability as the generalization ability of a clustg algorithm (in PAC-Bayesian sense).
They argue that since many algorithms can be shliovee asymptotically stable, thate

at which the asymptotic stability is reached widspect to the number of samples is a
more useful measure of cluster stability.



3.5 Comparing clustering algorithms

Different clustering algorithms often result in ieglly different partitions even on the
same data; see Figure 9. Seven different algorithere applied to cluster the 15 two-
dimensional points in 9(a). FORGY, ISODATA, CLUSTE&d WISH are patrtitional
algorithms that minimize the squared error criter{they are variants of the basic K-
means algorithm). Of the remaining three algorithMST (minimum spanning tree) can
be viewed as a single-link hierarchical algoritrangd JP is a nearest neighbor clustering
algorithm. Note that a hierarchical algorithm cam Uised to generate a partition by
specifying a threshold on the similarity. It is @nt that none of the clustering is superior
to the other, but some are similar to the other.

An interesting question is to identify algorithmbat generate similar partitions
irrespective of the data. In other words, can wstelr the clustering algorithms? Jain et
al. [Jainet al., 2004] clustered 35 different clustering algorithmto 5 groups based on
their partitions on 12 different datasets. The kinty between the clustering algorithms
is measured as the averaged similarity betweepdhéions obtained on the 12 datasets.
The similarity between a pair of partitions is measl using the Adjusted Rand Index
(ARI). A hierarchical clustering of the 35 clustagialgorithms is shown in Figure 10(a).
It is not surprising to see that the related atboms are clustered together. For a
visualization of the similarity between the algbnts, the 35 algorithms are also
embedded in a two-dimensional space; this is aeligvy applying the Sammon’s
projection algorithm [J. W. Sammon, 1969] to th35 similarity matrix. Figure 10(b)
shows that all the CHAMELEON variations (6, 8-10¢ @lustered into a single cluster.
This plot suggests that the clustering algoritholfowing the same clustering strategy
result in similar clustering in spite of minor \ations in the parameters or objective
functions involved.
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(aj 15 pdints in‘2D (b) MST (c) FORGY (d) ISODATA
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Figure 9 Several clustering of fifteen patterns in two disiens: (a) fifteen patterns; (b) minimum
spanning tree of the fifteen patterns; (c) clusfesm FORGY:; (d) clusters from ISODATA; (e) cluster

from WISH; (f) clusters from CLUSTER; (g) clusteirom complete-link hierarchical clustering; and (h)
clusters from Jarvis-Patrick clustering algorith(®igure reproduced fronDubes & Jain, 197).
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Figure 10 Clustering of clustering algorithmg¢a) Hierarchical clustering of 35 different algbris; (b)
Sammon’s mapping of the 35 algorithms into a twmetisional space, with the clusters highlighted for
visualization. The algorithms in the group (4, 24-35) correspond to K-means, spectral clustering,
Gaussian mixture models, and Ward's linkage. Thgordhms in group (6, 8-10) correspond to
CHAMELEON algorithm with different objective funcins.

Clustering algorithms can also be compared at Heoretical level based on their
objective functions. In order to perform such a panson, a distinction should be made
between aclustering methodand aclustering algorithm[Jain & Dubes, 1988]. A

clustering method is a general strategy employeddive a clustering problem. A



clustering algorithm, on the other hand, is simgfyinstance of a method. For instance,
minimizing the squared error is a clustering methadd there are many different
clustering algorithms, including K-means, that ismpkent the minimum squared error
method. Some equivalence relationships even betdiement clustering methods have
been shown. For example, Dhillon et al. [Dhillenhal. , 2004] show that spectral
methods and kernel K-means are equivalent; foraécehof kernel in spectral clustering,
there exists a kernel for which the objective fimmts of Kernel K-means and spectral
clustering are the same. The equivalence betweamegative matrix factorization for
clustering and kernel K-means algorithm is showning et al. , 2005]. All these
methods are directly related to the analysis aémigctors of the similarity matrix.

The above discussion underscores one of the impdeats about clusteringhere is no
best clustering algorithmEach clustering algorithm imposes a structuretlen data
either explicitly or implicitly. When there is a gd match between the model and the
data, good patrtitions are obtained. Since the stre®f the data is not known a priori,
one needs to try competing and diverse approach@éstérmine an appropriate algorithm
for the clustering task at hand. This idea of natba®ustering algorithm is partially
captured by the impossibility theorem [Kleinberd)02], which states that no single
clustering algorithm simultaneously satisfies thee¢ basic axioms of data clustering,
i.e., scale invariance, consistency, and richness.

3.6 Admissibility analysis of clustering algorithms

Fisher and Van Ness [Fisher & vanNess, 1971] fdyreadalyzed clustering algorithms
with the objective of comparing them and providmgidance in choosing a clustering
procedure. They defined a setaafmissibility criteriafor clustering algorithms that test
the sensitivity of clustering algorithms with respé&o the changes that do not alter the
essential structure of the data. A clustering IedaA-admissiblef it satisfies criteriorA.
Example criteria includeonvex, point and cluster proportion, cluster onassand
monotoneThey are briefly described below.

m  Convex:A clustering algorithm igonvex-admissiblé it results in a clustering
where the convex hulls of clusters do not intersect

m Cluster proportion:A clustering algorithm igluster-proportion admissiblé the
cluster boundaries do not alter even if some of dlusters are duplicated an
arbitrary number of times.

» Cluster omissionA clustering algorithm ismission-admissibl& by removing
one of the clusters from the data and re-runnirgalgorithm, the clustering on
the remainingK-1 clusters is identical to the one obtained on theith W
clusters.

* Monotone:A clustering algorithm isnonotone-admissibiié the clustering results
do not change when a monotone transformation iSeapfo the elements of the
similarity matrix.



Fisher and Van Ness proved that one cannot comsatgorithms that satisfy certain
admissibility criteria. For example, if an algonths monotone-admissible, it cannot be a
hierarchical clustering algorithm.

Kleinberg [Kleinberg, 2002] addressed a similarigbeon, where he defined three criteria:

» Scale invarianceAn arbitrary scaling of the similarity metric musit change the
clustering results.

» RichnessThe clustering algorithm must be able to achidvpassible partitions
on the data.

» ConsistencyBy shrinking within-cluster distances and stretghliretween-cluster
distances, the clustering results must not change.

Kleinberg also provides results similar to thaffisher & vanNess, 1971], showing that
it is impossible to construct an algorithm thaisfegs all these properties hence the title
of his paper “An Impossibility Theorem for Clustagl. Further discussions in
[Kleinberg, 2002] reveal that a clustering algamititan indeed be designed by relaxing
the definition ofsatisfyinga criterion tanearly-satisfyinghe criterion.

4 Trends in data clustering

Information explosion is not only creating largeaamts of data but also a diverse set of
data, bothstructuredandunstructured Unstructured datdas a collection of objects that
do not follow a specific format. For example, imagext, audio, video etc. On the other
hand, instructured datathere are semantic relationships within each obijeat are
important. Most clustering approaches ignore thecture in the objects to be clustered
and use a feature vector based representationotar dtructured and unstructured data.
The traditional view of data partitioning based ctor-based feature representation
does not always serve as an adequate frameworknfit&s include objects represented
using sets of points [Lowe, 2004], consumer purelrasords [Guhat al., 2000], data
collected from questionnaires and rankings [Craehl 1985], social networks
[Wasserman & Faust, 1994], and data streams [Gathal. , 2003b]. Models and
algorithms are being developed to process hugemesuof heterogeneous data. A brief
summary of some of the recent trends in data aiastés presented below.

4.1 Clustering ensembles

The success of ensemble methods for supervisadnganas motivated the development
of ensemble methods for unsupervised learning [RBrethin, 2002]. The basic idea is
that by takingmultiple looksat the same data, one can generate multiple ipadit
(clustering ensemb)eof the same data. By combining the resulting ipants, it is
possible to obtain a good data partitioning evemwthe clusters are not compact and
well separated. Fred and Jain used this approactakigg an ensemble of partitions
obtained by K-means; the ensemble was obtainechagging the value of K and using
random cluster initializations. These partitiongevihen combined using a co-occurrence
matrix that resulted in a good separation of thestelrs. An example of a clustering



ensemble is shown in Figure 11 where a “two-spidataset is used to demonstrate its
effectiveness. K-means is run multiple, say N, 8méth varying values of the number of
clustersK. The new similarity between a pair of points isired as the number of times
the two points co-occur in the same cluster in Nsraf K-means. The final clustering is
obtained by clustering the data based on the nemwwpse similarity. Strehl and Ghosh
[Strehl & Ghosh, 2003] proposed several stratefgiesitegrating multiple partitions.

There are many different ways of generating a ehusj ensemble and then combining
the partitions. For example, multiple data pamiiccan be generated by: (i) applying
different clustering algorithms, (ii) applying tsame clustering algorithm with different
values of parameters or initializations, and (iidombining of different data
representations (feature spaces) and clusteringyitimns. The evidence accumulation
step that combines the information provided bydtierent partitions can be viewed as
learning the similarity measure among the datatpoin
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Figure 11 Clustering ensembles. Multiple runs of K-meansused to learn the pair-wise similarity
using the “co-occurrence” of points in clustersisI$imilarity can be used to detect arbitrary sklape
clusters.

4.2 Semi-supervised clustering

Clustering is inherently an ill-posed problem wh#re goal is to partition the data into
some unknown number of clusters based on intritgiermation alone. Data driven
nature of clustering makes it very difficult to dgs clustering algorithms that will
correctly find clusters in the given data. Any ertd orside informationavailable along
with the n x d pattern matrix or the n x n simitarmatrix can be extremely useful in
finding a good partition of data. Clustering algloms that utilize such side information
are said to be operating irsami-supervised mod€hapelleet al., 2006]. There are two
open questions: (i) how should the side informatien specified? and (ii) how is it
obtained in practice? One of the most common meathofl specifying the side
information is in the form of pair-wise constraints must-link constrainspecifies that



the point pair connected by the constraint belanth¢ same cluster. On the other hand, a
cannot-link constraintspecifies that the point pair connected by thesttaimt do not
belong to the same cluster. It is generally assutimgothe constraints are provided by the
domain expert. There is limited work on automatycdkeriving constraints from the data.
Some attempts to derive constraints from domaimlogy and other external sources
into clustering algorithms include the usage of W\et ontology, gene ontology,
Wikipedia, etc. to guide clustering solutions. Hoee these are mostly feature
constraints and not constraints on the instanceghfplet al. , 2003, Banerjeet al. ,
2007Db, Liuet al., 2004]. Other approaches for including side infation include (i)
“seeding”, where some labeled data is used alotig laige amount of unlabeled data for
better clustering [Bastet al. , 2002] and (ii) methods that allow encouraging or
discouraging some links [Laet al., 2005, Figueiredet al., 2006].

Figure 12 illustrates the semi-supervised learnmgn image segmentation application
[6]. The textured image to be segmented (clusjeredshown in Figure 12 (a). In
addition to the image, a set of user-specified-p@se constraints on the pixel labels are
also provided. Figure 12 (b) shows the clusteribtpimed when no constraints are used,
while Figure 12 (c) shows improved clustering wilie use of constraints. In both the
cases, the number of clusters was assumed to benk{o= 5).

(a) Input image and constraints b) No constraints (c) 10%eds in constraints

Figure 12 Semi-supervised learning. (a) Input image with ringt (solid blue lines) and must not link
(broken red lines) constraints. (b) Clustering (segtation) without constraints. (¢) Improved cluisig
with 10% of the data points included in the paisevconstraints [6].

Most approaches [Baset al., 2004, Lu & Leen, 2007, Chapelé al., 2006, A. Bar-
Hillel & Weinshall, 2003, Hofmann & Buhmann, 199ig semi-supervised clustering
modify the objective function of existing clustegimlgorithms to incorporate the pair-
wise constraints. It is desirable to have an apgrda semi-supervised clustering that can
improve the performance of an already existingteliisg algorithm without modifying it.
BoostClustelLiu et al., 2007] adopts this philosophy and follows a bawsframework

to improve the performance of any given clusteatgprithm using pair-wise constraints.
It iteratively modifies the input to the clusteriredgorithm by generating new data



representations (transforming the n x n similanatrix) such that the pair-wise
constraints are satisfied while also maintaining thtegrity of the clustering output.
Figure 13 shows the performance of BoostClusteduatd on handwritten digit
database in the UCI repository [Blake & Merz, 1998ith 4,000 points in 256-
dimensional feature space. BoostCluster is ablenfmove the performance of all the
three commonly used clustering algorithms, K-meamgjle-link, and Spectral clustering
as pair-wise constraints are added to the datay ®nist-link constraints are specified
here and the number of true clusters is assumed kmown (K=10).

_ |- BoostCluster + K-means|
= : . | ™ BoostCluster + SLINK
0.8 i 2 BoostCluster + SPEC 4
017 | | | | | -
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0 100 200 300 400 500 600 700 800
# Pairwise Constraints

Figure 13 Performance of BoostCluster (measured using Noee@lMutual Information (NMI)) as the
number of pair-wise constraints are increased.tfitee plots correspond to boosted performance -of K
means, Single-Link (SLINK), and Spectral cluster{8§EC).

4.3 Large scale clustering

Large-scale data clustering addresses the challehglistering millions of data points

that are represented in thousands of featureseTlabhows a few examples of real-world
applications for large-scale data clustering. Belowe review the application of large-

scale data clustering to content-based image vatrie

| Application | Description | # Objects # Featurds




document clustering group documents of similardspi 16 10°

gene clustering group genes with similar expression| 10° 10°
levels

content-based imagequantize low-level image features ’10 10°

retrieval

clustering of earth | derive climate indices fo 10°

science data

Table 1: Example applications of large-scale datstering

(a) 370 (b) 64

Figure 14 Threetattoo images represented using SIFT key poirgs A (pair with similar images has 370
matching key points; (b) pair with different imadess 64 matching key points. The green lines shew t
matching key-points between the imagesdet al. , 2009.

The goal of Content Based Image Retrieval (CBIRpigetrieve visually similar images
to a given query image. Although the topic has b&tedied for the past 15 years or so,
there has been only a limited success. Most eashkwn CBIR was based on computing
color, shapeandtexturebased features and using them to define a sinyilagtween the
images. A 2008 survey on CBIR highlights the d#far approaches used for CBIR



through time [Dattaet al., 2008]. Recent approaches for CBIR use point bésstdres.
For example, SIFT [Lowe, 2004] descriptors can beduto represent the images (see
Figure 14). However, once the size of the imagealtkde increases (~10 million), and
assuming 10 milliseconds to compute the matchiogesbetween an image pair, a linear
search would take approximately 30 hours to ansame query. This clearly is
unacceptable.

On the other hand, text retrieval applicationsmateh faster. It takes about one-tenth of a
second to search 10 billion documents in Googlao®el approach for image retrieval is
to convert the problem into a text retrieval probleThe key points from all the images
are first clustered into a large number of clust@viich is still much less than the
number of key points themselves). These are cabeithevisual words An image is then
represented using the number of key-points fromrttege that are in each word or each
cluster. Now that a vector based representatiosi¢ef equal to the number of clusters) is
obtained, searching becomes very efficient. Onéhefmajor challenges in quantizing
key points is the number of objects to be clusteFed a collection of 1,000 images with
an average of 1,000 key points and the target nuwib®,000 visual words, it requires
clustering 18 objects into 5,000 clusters.

A large number of clustering algorithms have beewvetbped to efficiently handle large-
size data sets. Most of these studies can be fotakssito four categories:

m Efficient Nearest Neighbor (NN) Search. One oflbhsic operations in any data
clustering algorithm is to decide the cluster mersbip of each data point, which
requires NN search. Algorithms for efficient NN s#aare either tree-based (e.g. kd-
tree [Moore, 1998, Muja & Lowe, 2009]) or randonojection based (e.g., Locality
Sensitive Hash [Buhler, 2001]).

m Data Summarization. Approaches in this categoryavg the clustering efficiency
by first summarizing a large data set into a re&dyi small subset, and then applying
the clustering algorithms to the summarized dataEsexmple algorithms include
BIRCH [Zhanget al., 1996], divide-and-conquer [Steinbaethal., 2000], and
coreset K-means [Har-peled & Mazumdar, 2004].

m Distributed Computing. Approaches in this cated@ryillon & Modha, 1999]
divide each step of a data clustering algorithra amhumber of procedures that can
be computed independently. These independent catnel procedures will then
be carried out in parallel by different procesdorseduce the overall computation
time.

m Incremental Clustering. Approaches in this categBradleyet al., 1998] are
designed to operate in a single pass over dataspminmprove the efficiency of data
clustering. This is in contrast to most clusterahgorithms that require multiple
passes over data points before identifying thetetusenters.

m  Sampling-based methods. Approaches in this cateerglgorithms like CURE
[Guhaet al., 1998, Kollioset al., 2003] that subsample a large dataset selectively,
and perform clustering over the smaller set, wingdater transferred to the larger
dataset.



4.4 Multi-way clustering

Objects or entities to be clustered are often farnby a combination ofrelated
heterogeneous components. For example, a docusenade of words, title, authors,
citations, etc. While objects can be converted iatgpooled feature vectors of its
components prior to clustering, it is not a natuegdresentation of the objects and may
result in poor clustering performance.

Co-clustering [Hartigan, 1972, Mirkin, 1996] aints d¢luster both features and instances
of the data (or both rows and columns of th& d pattern matrix) simultaneously to
identify the subset of features where the resulthugters are meaningful according to
certain evaluation criterion. This problem was tfigudied under the nameirect
clustering by Hartigan [Hartigan, 1972]. It is also calldd-dimensional clustering
[Cheng & Church, 2000]double clusteringcoupled clusteringor bimodal clustering
This notion is also related to subspace clustenihgre all the clusters are identified in a
common subspace. Co-clustering is most populdrdrfield of bioinformatics, especially
in gene clustering, and has also been successipiiired to document clustering [Slonim
& Tishby, 2000, Dhilloret al., 2003].

The co-clustering framework was extendednuati-way clusteringn [Bekkermaret al.,
2005] to cluster a set of objects by simultaneoudlystering their heterogeneous
components. Indeed, the problem is much more aigilig because different pairs of
components may participate in different types ohilsirity relationships. In addition,
some relations may involve more than two componddserjee et al. [Banerjest al. ,
2007a] present a family of multi-way clustering egtes that is applicable to a class of
loss functions known as Bregman divergences. Siadhet al.[Sindhwanet al., 2008]
apply semi-supervised learning in the co-clustefraghework.

4.5 Heterogeneous data

In traditional pattern recognition settings, a featvector consists of measurements of
different properties of an object. This represeatatof objects is not a natural
representation for several types of d&taterogeneous datafers to the data where the
objects may not beaturally represented using a fixed length feature vector.

Rank Data: Consider a dataset generated by ranking of a setnedvies by different
people; only some of the objects are ranked. The task is to cluster thesuadrose
rankings are similar and also to identify the ‘esg@ntative rankings’ of each group
[Mallows, 1957, Critchlow, 1985, Buss¢ al., 2007].

Dynamic Data: Dynamic data, as opposed to static data, can chaweyethe course of
time e.g., blogs, Web pages, etc. As the datamgetiified, clustering must be updated
accordingly. Adata streamis a kind of dynamic data that is transient inunat and



cannot be stored on a disk. Examples include n&twackets received by a router and
stock market, retail chain, or credit card transacstreams. Characteristics of the data
streams include their high volume and potentiatpaunded size, sequential access and
dynamically evolving nature. This imposes additliomaquirements to traditional
clustering algorithms to rapidly process and sunmearthe massive amount of
continuously arriving data. It also requires theligbto adapt to changes in the data
distribution, the ability to detect emerging clustand distinguish them from outliers in
the data, and the ability to merge old clustersdiscard expired ones. All of these
requirements make data stream clustering a sigmifichallenge since they are expected
to be single-pass algorithms [Gudiaal., 2003b]. Because of the high-speed processing
requirements, many of the data stream clusterintpode [Guhaet al., 2003a, Aggarwal

et al., 2003, Cacet al., 2006] are extensions of simple algorithms sucK-aseans, K-
medoid or density-based clustering, modified to kvor a data stream environment
setting.

Graph Data: Several objects, such as chemical compounds, preteictures, etc. can
be represented most naturally as graphs. Manyeoirttial efforts in graph clustering
have focused on extracting graph features to aé®isting clustering algorithms to be
applied to the graph feature vectors [Tsuda & K&)6]. The features can be extracted
based on patterns such as frequent subgraphseshgadths, cycles, and tree-based
patterns. With the emergence of kernel learningrehhave been growing efforts to
develop kernel functions that are more suited faph-based data [Kashinet al. ,
2003]. One way to determine the similarity betwegmaphs is by aligning their
corresponding adjacency matrix representations hme, 1988].

Relational Data: Another area that has attracted considerable Biteége clustering
relational (network) data. Unlike the clusteringgrbph data, where the objective is to
partition a collection of graphs into disjoint gp®y the task here is to partition a large
graph (i.e., network) into cohesive subgraphs basedheir link structure and node
attributes. The problem becomes even more compticatien the links (which represent
relations between objects) are allowed to havergevéypes. One of the key issues is to
define an appropriate clustering criterion for tielaal data. Newman’s modularity
function [Newman, 2006, White & Smyth, 2005] is &®ly-used criterion for finding
community structures in networks, but the measoresiclers only the link structure and
ignores attribute similarities. Since real netwogks often dynamic, another issue is to
model the evolutionary behavior of networks, takinp account changes in the group
membership and other characteristic features [LkBtaomet al., 2006].

5. Summary

Organizing data into sensible groupings arisesraliyuin many scientific fields. It is,
therefore, not surprising to see the continued [aojiy of data clustering. It is important
to remember that cluster analysis is an exploratogl; the output of clustering
algorithms only suggest hypotheses. While thousahdtustering algorithms have been
published and new ones continue to appear, thare tgest algorithm. Most algorithms,
including the popular K-means, are admissible dtigors. Indeed, the search for a best



clustering algorithm is fruitless and contrary be &xploratory nature of clustering. The
challenge in data clustering is to (i) incorpordtamain knowledge in the algorithm, (ii)
find appropriate representation and measure oflaiity, (iii) validate clustering, (iv)
devise a rational basis for comparing methods¢c@wmbine ‘multiple looks” of the same
data, and (vi) develop efficient algorithms for stlering large datasets (billions of points
in thousands of dimensions).
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