
Designing coupled free-form surfaces

R. Andrew Hicks1,∗ and Christopher Croke2

1Department of Mathematics, Drexel University

3141 Chestnut Street, Philadelphia, PA 19104, USA

2Department of Mathematics, University of Pennsylvania

209 South 33rd Street, Philadelphia, PA 19104, USA

ahicks@math.drexel.edu

The problem of designing optical systems that contain free-form surfaces is a

challenging one, even in the case of designing a single surface. Here we present

a method for the coupled design of two free-form reflective surfaces which

will have a prescribed distortion. On one hand, the method can be described

using traditional vectors and matrices, which we do, but it is motivated

by viewing the problem in the language of distributions from differential

geometry and makes use of the exterior differential systems, which we relegate

to an appendix. Example applications are given to the design of a mirror pair

that increases the field of view of an observer, a similar mirror pair that also

rotate the observers view, and a pair of mirrors that give the observer a tra-

ditional panoramic strip view of the scene. c⃝ 2010 Optical Society of America

OCIS codes: 080.2740, 110.0110, , 230.4040.

1. Introduction

The problem that we consider here can be simply stated: how does one design a pair of

reflectors so that when viewed with the human eye or pinhole camera, the image of a given

object plane (or surface more generally) appears with a prescribed distortion to the observer.

One can think of this as designing a periscope with curved mirrors to achieve a prescribed

purpose such as having wide angle of view. This problem was considered in [1,2] by the first

author and R. Perline. An example of this problem in which only one reflector is used is the

design of a driver-side mirror for a motor vehicle, which has no blind-spot and yet provides

the observer with a perspective view of the scene [3]. Unfortunately though, like most optics

problems, more than one reflector is required to solve this problem. Here we show that the

problem is solvable using a pair of reflectors, and we present an algorithm for constructing
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these reflectors. Although this paper is written with a pair of mirrors in mind, everything also

works with a pair of lenses instead. Since a given piece of glass has two surfaces to design,

we could design such optical systems with a single piece of glass. It is also straightforward

to extend the method to more than two optical elements.

Let us first consider the problem of constructing a single reflecting surface. It is convenient

to view the pinhole as a source from which rays emanate (by the reversibility of geometric

optics). An object surface S is to be imaged onto a plane I in a prescribed way. In other words

a tranformation F : I → S is part of the data of the problem, as in Fig. 1. This mapping

corresponds to controlling the distortion of the mirror. Given such a correspondence, we note

that a vector field W is then defined on some subset of R3 via the construction given in Fig.

1. If a solution surface M exists then W will be perpendicular to it. Of course, the length

of W is irrelevant - our goal is to find a surface that will be perpendicular to W.

It is very unlikely, but if ∇×W = 0 then W = ∇ϕ for some ϕ and the level surfaces

ϕ(x, y, z) = constant (1)

are each a solution to the problem. It may be that W is not a gradient, but a multiple of a

gradient, which occurs if and only (∇×W) ·W = 0 (See [4] or [5]).

Solutions to such problems naturally tend to consist of free-form surfaces, i.e. surfaces that

lack rotational symmetry. An early example of an optical free-form surface is contained in

patent by Kanolt for a progressive lens [6]. A familiar, and commercially successful product

that used free-form surfaces is the Polaroid SX-70 camera [7]. Stone and Forbes studied the

first-order properties of such systems [8,9], but comparatively little theory exists otherwise.

The likely reason for this is that until recently, the grinding of such surfaces was extremely

difficult. In approximately the last ten years though, with technology developed by the

DARPA conformal optics program [10], techniques, such as raster grinding have become

commercially available [11]. It would appear that free-form surfaces could play a role in

numerous applications that by their nature lack rotational symmetry, but methods for the

design of free-form surfaces are in their infancy. Illumination is a natural application area,

and overviews include the book by Winston et al [12] and the article by Minano et al [13].

For illumination, even the problem of controlling the intensity from a single point source

with a single reflector is quite hard. It was solved theoretically and numerically by Oliker

and Kochengin in [14,15].

The design of multiple free-form surface systems is considerably more complicated. For

illumination the problem has been studied extensively Benitez et al starting in [16]. Appli-

cations to laser beam shaping have been considered by Rubinstein and Wolansky in [17],

who consider a coupled pair of free-form lenses. Two reflector systems for illumination are

investigated Glimm and Oliker in [18].
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2. The Design Algorithm

The two-mirror case may be modeled with a system of partial differential equations. Consider

the problem of building a two mirror system to realize a given correspondence F between

the image plane x = 1 and the object surface. We consider the rays to be emanating from a

source L at the origin (or entering a pinhole there). We consider L as the eye of an observer

which is looking down the x-axis, in the positive direction. As in Fig. 2, a ray traveling from

L through a point A = (1, s, t) is to travel to F(s, t) by reflecting off of two mirrors at the

points P and Q. This requirement determines a pair of normals, W and V, at P(A) and

Q(A) respectively. Thus we seek two mirrors, parameterized as

P : (s, t) 7→ (x(s, t), y(s, t), z(s, t)), (2)

and

Q : (s, t) 7→ (u(s, t), v(s, t), w(s, t)) (3)

where to ensure that the light ray reflects from P to Q to F(A) we demand that the tangent

vectors to the above surfaces be perpendicular to the vectors W and V. This gives a system

of four partial differential equations in four unknowns:

Ps(s, t) ·W(s, t) = 0, Pt(s, t) ·W(s, t) = 0, (4)

Qs(s, t) ·V(s, t) = 0, Qt(s, t) ·V(s, t) = 0. (5)

W and V are computed by finding the unit directions from various points and adding them.

W =
(0, 0, 0)−P(s, t)

|(0, 0, 0)−P(s, t)|
+

Q(s, t)−P(s, t)

|Q(s, t)−P(s, t)|
. (6)

V =
P(s, t)−Q(s, t)

|P(s, t)−Q(s, t)|
+

F(s, t)−Q(s, t)

|F(s, t)−Q(s, t)|
. (7)

An abstract, but useful way to think of the problem is to then view the two parameterized

surfaces as a single parameterized surface in six dimensional space R6, with the parametriza-

tion

Γ(s, t) = (x(s, t), y(s, t), z(s, t), u(s, t), v(s, t), w(s, t)). (8)

We emphasize that this is still a two dimensional object, and so does have a two dimensional

tangent plane at each point, which is spanned by Γs and Γt. One advantage of this way of

looking at things is that the above equations can be interpreted as saying that for all (s, t)

both Γs and Γt are perpendicular to two vector fields W̃ and Ṽ in R6. To define W̃ and Ṽ,

for each 6-tuple (x, y, z, u, v, w) the vector (W1,W2,W3) in R3 is defined by
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(0, 0, 0)− (x, y, z)

|(0, 0, 0)− (x, y, z)|
+

(u, v, w)− (x, y, z)

|(u, v, w)− (x, y, z)|
, (9)

and then we define the vector field W̃ in R6 as

W̃(x, y, z, u, v, w) = (W1,W2,W3, 0, 0, 0). (10)

Similarly

Ṽ(x, y, z, u, v, w) = (0, 0, 0, V1, V2, V3). (11)

where (V1, V2, V3) is the three dimensional vector

(x, y, z)− (u, v, w)

|(x, y, z)− (u, v, w)|
+

F(y/x, z/x)− (u, v, w)

|F(y/x, z/x)− (u, v, w)|
. (12)

Note that in the above F(y/x, z/x) geometrically represents projecting the point (x, y, z)

onto the image plane x = 1, and then applying T to it.

We propose to find a solution Γ(s, t) that contains an initial curve

C(t) = (C1(t), C2(t), C3(t), C4(t), C5(t), C6(t)) (13)

which is assumed to be perpendicular to Ṽ and W̃. There are many ways to find such initial

curves which usually amounts to solving an ordinary differential equation. We give explicit

examples in the next section. The first three components of the curve, (C1(t), C2(t), C3(t)

defines a curve CL(t) in one of the mirrors (the “lower mirror”), and the second three,

(C4(t), C5(t), C6(t)), defines a curve CU(t) in the other mirror (the “upper mirror”).

In sharp contrast to the case of a single mirror (where no solution is expected), in general

one can expect that there exists a unique solution surface (albeit possibly very small) passing

through the curve C(t). See the appendix for a more precise statement.

The idea for how to compute this solution is to “grow” a solution surface out from C(t)

by computing the tangent spaces at each point along it, and approximating a thin strip

of the solution surface by using the tangent planes. The technical difficulty then is how

one could compute a tangent plane to Γ along the curve, assuming that the curve lies in a

solution surface Γ. Choosing a point on the curve, C(t0), we know one of the vectors that

span the tangent plane, namely C′(t0). How do we find the entire tangent space? The space

of candidate vectors is 6 dimensional. We will show how to produce four linear equations

that will (unless things are degenerate) reduce the dimension of choices to two, and thus

determine our tangent space.

We already know two of the equations. If T is a tangent vector to Γ at C(t0) it must

satisfy the two linear equations

W̃(C(t0)) ·T = 0, (14)
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and

Ṽ(C(t0)) ·T = 0, (15)

There are two more equations. We define 6-by-6 matrices A = A(C(t0)) and B = B(C(t0))

by the equations

Ai,j =
∂W̃i

∂xj
− ∂W̃j

∂xi
(16)

and

Bi,j =
∂Ṽi

∂xj
− ∂Ṽj

∂xi
. (17)

It is a fact (see the appendix) that if S and T are tangent (column) vectors to our solution

surface, then A and B annihilate them in the sense that

StAT = 0, StBT = 0. (18)

Since C′(t0) is tangent to Γ we can use it for S above. Inserting that vector into the above

gives two additional linear equations for a total of four linear equations for T at C(t0):

W̃ ·T = 0, Ṽ ·T = 0, C′tAT = 0, C′tBT = 0. (19)

This describes the full two dimensional space of tangent vectors T.

The initial curve C0(t) = C(t) must of course be discretized as a finite (ordered) collection

of points in R6. At each of these points p, we may compute the tangent space of the solution

surface by using the four linear equations (19). As in Fig. 3 one “pushes off”, by choosing

a tangent vector w at each p, to form a new discretized curve, C1(t) (i.e. the point on the

new curve is p+w). This pushing off may be done in an infinite number of directions w. For

example, one could demand that w be perpendicular to C′(p) (V in figure 3) and |w| is some

small step size. However, in practice there are (for numerical reasons) often better choices for

w. The construction should lead to a new curve C1 which is an approximate solution curve

(i.e. is approximately perpendicular to Ṽ and W̃) and thus we can continue the process to

find a new curve C2 from C1 etc. generating our solution surface in six dimensions. This

surface in turn describes the two mirrors in three space that give a solution to our problem.

3. Examples

In this section we give some examples. Once we are given the desired transformation T

(which defines our vector fields Ṽ and W̃) there are three steps. The first is to choose an
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initial curve C(t) everywhere perpendicular to Ṽ and W̃. Next we apply the method to yield

two mirrors and finally we test the result with a ray tracing program.

There are many ways to choose the initial curve C(t) and the best choice will depend on

the application in mind. There is however a nice choice of curves that will give nice mirrors

in a number of cases. We choose C(t), for t in an interval about 0, of the form

C(t) = (9 cos(t), 9 sin(t), 0, 9 cos(t), 9 sin(t), β(t)). (20)

That is the lower curve will be an arc of the circle of radius 9 in the x-y plane. The upper

curve will lie directly above the lower curve but have variable height. (Of course 9 is arbitrary

and is chosen depending on where you want your lower mirror to be.) An advantage of these

curves is that whatever T is or your choice of β(t) these curves will be perpendicular to W̃.

Thus we only need to choose β(t)) so that C′(t) is perpendicular to Ṽ(C(t)). This leads to

a first order ODE for β(t) which is easy to solve (sometimes even in closed form - depending

on T ) given an initial condition (e.g. an initial height the upper mirror will be above the

lower one).

There are a number of ways to implement the method. The choice basically amounts to

how to choose the w at each step. It is also often useful to parameterize each new curve by

arclength. In this paper we wont go into the specific choices we made in the examples below.

We tested our mirrors using the program POV-Ray. This is a ray tracing program. We

put our mirrors in a cubical room with checkerboard walls. The wall we are looking towards

is the ”x-positive” wall. It consists of red and black squares and has the words ”this is x

positive” in blue. The view point is the origin and we will be looking at the lower mirror.

(The upper mirror is out of our field of view.) Behind the mirror is the wall which we see

directly.

The first example will be a “wide angle periscope” with initial curve described above. The

expansion factor is four. Figure 4 gives a view of the two mirrors as generated by Maple.

Figure 5 gives the view (via ray tracing) of the room described above. Here the field of view

of the observer subtended by the mirror is approximately 12◦ and the resulting field of view

in the mirror is approximately 33◦.

The second example not only has the wide angle (with a factor of 4) but a rotation of 45◦.

Figure 6 shows the view of the room and Fig. 7 shows the view of the room in the mirror.

For the third example we aimed for a 360◦ panoramic view. The mirrors will take 360◦ and

image it in 360◦/12 = 30◦ . The vertical is scaled by a factor of 16 to make the horizontal

and vertical scalings similar and to include a view of part of the floor. Figure 8 shows the

mirror pair while Figure 9 shows the view of the room. In this case we see more than the

front wall. The wall to the left is a black and green checkerboard, the one to the right green

and white, the wall behind you is red and white, while the floor is blue and white. Note that
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we viewing the room with a wider angle than in the other examples.

In the fourth example we revisit the first example, i.e. a wide angle periscope with magni-

fication factor of 4. However, this time we use a different initial curve C(t). Here the lower

curve CL(t) is a straight line in the plane y = 0 the upper curve also lies in this plane. Figure

10 shows the mirrors and figure 11 the room. It is interesting to compare figures 10 and 4 to

see two different solutions to the same problem (due to different initial curves).

(We should point out that in the fourth example there is a difficulty. This because our

initial curve has both upper and lower parts lying in the plane y = 0 - which is a plane of

symmetry. It turns out that the four linear equations (19) are degenerate in this case. We

overcame this by having the initial curves be very slightly off this plane. This allowed the

procedure to start, and since the generated curves are sufficiently far away from y = 0 we

got a nice solution.)

4. Appendix - The differential forms viewpoint

To phrase the problem in terms of differential forms, we note that dual to W̃ and Ṽ are

one forms θ1 and θ2 (e.g. for a tangent vector X ∈ R6 we have θ1(X) = W̃ · X). The

common kernel (i.e. the vectors that are simultaneously perpendicular to W̃ and Ṽ) is a

four-dimensional distribution E in R6. This means that for each p ∈ R6 there is a four

dimensional subspace Ep of tangent vectors. We seek a 2 dimensional integral surface, Γ

(i.e. a surface which at every point p has its tangent vectors in Ep). To construct a solution

surface using finite difference methods for example, one would like to find the tangent space

at a given point, but the equations given by θi(T) = 0 are not sufficient. We will see that,

additional equations must hold that provide this information. Namely, it must be the case

that dθ1 and dθ2 must also vanish on the tangent bundle of any solution. This is formalized

as follows.

In general, suppose that E is a 4-distribution on a 6-manifoldM , which is the is the kernel

of a pair of 1-forms, say θ1 and θ2. Say that a nonzero vector V in Ep is Kähler-regular if

the set of 4 linear equations

θ1(W) = θ2(W) = dθ1(V,W) = dθ2(V,W) = 0 (21)

for W in TpM has maximum rank, four, which would result in a two-dimensional solution.

An important technical fact that we are using here is that if a form ψ vanishes on an integral

surface, then so will the form dψ. (See page 11 of [19].) The idea is that these four equations

will determine a unique tangent space to a solution surface at p, if V is given. Similarly, say

that an immersed curve C inM is Kähler-regular if its tangent vectors are Kähler-regular at

each point of C. (Note that, in particular, such a curve C is a 1 dimensional integral of the

distribution E.) In this case, the Cartan-Kähler theorem then says that if E is real-analytic
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and C is a real-analytic, Kähler-regular integral curve of E, then C lies in a locally unique

real-analytic 2 dimensional integral surface of E (see [19]). In other words, generically, if

the initial data is tangent to the distribution, then a unique solution surface will exist that

contains it.

Thus, in some generic sense, given a 4-distribution E on a 6-manifold, the generic vector

V in Ep (for p a generic point in M) is Kähler-regular. Thus, for most 4-distributions, one

expects existence and uniqueness of 2 dimensional integral surfaces. In the above example

of multiple surface design, we take θ1 and θ2 to be the 1-forms in an open subset of R6

that are dual to the vector fields W̃ and Ṽ. In our problems, all of the quantities are real

analytic, and in fact often algebraic. Equation (21), which corresponds directly to equation

(19) then hints at the method of numerically constructing a solution. Finding an initial curve

C amounts to solving an under-constrained differential equation, i.e., every distribution has

many 1-dimensional integrals. This is the technique described above for solving the problem.
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List of Figure Captions

Fig. 1. Given a correspondence, T , that points from an image plane to points on a object

surface, one can define a vector field W that is hopefully normal to a mirror surface that

realizes the correspondence.

Fig. 3. A two mirror system for controlling a ray bundle emanating from a single source, L.

Fig. 4 A numerical method for generating a solution surface from an initial Kähler-regular

curve.

Fig. 5 Initial Cauchy data for our problem, which lies in a plane, with some sample rays

traced.

Fig. 7 A raytracing simulation of the mirror pair. The wall is visible beyond the lower mirror,

which presents a wide-angle view of the wall.
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(x/z,y/z,1)
W(x,y,z)= 

(x,y,z)

Object surface S

In Out

    In + Out
F(x/z,y/z,1)

Fig. 1. Given a tranformation, T, that points from an image plane to points

on a object surface, one can define a vector field W that will be normal to any

mirror surface that realizes the correspondence. In and Out are unit vectors.
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Light ray

F(A)

P

V

W

Q

AL

Fig. 2. A two mirror system for controlling a ray bundle emanating from a

single source, L. Likewise, this could be viewed as a system consisting of a

pinhole camera and two reflectors.
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Fig. 3. A numerical method for generating a solution surface from an initial

Kähler-regular curve.
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Fig. 4. A pair of mirrors which increases an observers field of view.
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Fig. 5. A raytracing simulation of the mirror pair in Fig. 4. The wall is visible

beyond the lower mirror, which presents a wide-angle view of the wall.
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Fig. 6. A wide-angle pair that also rotates the image by 45◦.
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Fig. 7. A raytracing simulation of the mirror pair in Fig. 6.
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Fig. 8. A pair of mirrors that gives a panoramic view.
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Fig. 9. A raytracing simulation of the mirror pair in Fig. 8.
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Fig. 10. The wide angle mirror pair generated by the “straight line vertical”

initial data. Compare to Fig. 4.
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Fig. 11. A raytracing simulation of the mirror pair in Fig. 10.
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