
Symbolic State Traversal for WCET Analysis

Stephan Wilhelm
AbsInt GmbH and Saarland University

Saarbrücken, Germany
step@absint.com

Björn Wachter
Saarland University

Saarbrücken, Germany
bwachter@cs.uni-sb.de

ABSTRACT
Static worst-case execution time analysis of real-time tasks
is based on abstract models that capture the timing behavior
of the processor on which the tasks run. For complex pro-
cessors, task-level execution time bounds are obtained by
a state exploration which involves the abstract model and
the program. Partial state space exploration is not sound.
A full exploration can become too expensive. We present
a novel symbolic method for WCET analysis based on ab-
stract pipeline models which produces sound results and is
scalable in terms of the considered hardware states.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication; C.3 [Special-purpose and application-based

systems]: Real-time and embedded systems

General Terms
Reliability, Verification

Keywords
abstract interpretation, binary decision diagram, hard real
time, processor models, worst-case execution time

1. INTRODUCTION
Designers of safety-critical real-time systems require safe and
precise worst-case execution times (WCET) for each task.
The execution time of a task depends on the execution speed
of the processor on which the task runs, as well as on the ex-
ecuted program code and on input values. Further, complex
processors implement various features to reduce the average
execution time, e.g. pipelines and caches. Execution times
on such processors also depend on the execution history and
on the start state of the hardware [17, 28]. As a conse-
quence, tools for WCET prediction have to cover all feasible
program paths, inputs, and hardware states.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’09, October 12–16, 2009, Grenoble, France.
Copyright 2009 ACM 978-1-60558-627-4/09/10 ...$5.00.

Measurement-based methods cannot guarantee full cover-
age [4] and, notoriously, miss worst-case situations, in par-
ticular, hardware-related timing accidents like pipeline stalls
and cache misses which cause tremendous variations in exe-
cution time. In contrast, static WCET analysis tools guar-
antee safe upper bounds on the WCET. To this end, a timing
model of the hardware is used, a finite state machine whose
transitions correspond to processor clock cycles [15]. An
upper bound on the execution time of the program can be
obtained by counting cycles of the timing model. To predict
timing accidents, an overapproximation of the set of reach-
able hardware states is computed for each program point.
Static WCET analysis only becomes computationally feasi-
ble in practice by using abstraction, which is applied to both
the modeling of processor and program behavior. However,
abstraction loses information which leads to uncertainty, e.g.
it may not be possible to statically determine the exact ad-
dress of a memory access. Furthermore, program inputs are
not precisely known in advance. At the level of the hard-
ware model, this lack of information is accounted for by
non-deterministic choices. To be safe, the analysis has to
exhaustively explore all possibilities. This can lead to state
explosion making an explicit enumeration of states infeasible
due to memory and computation time constraints [35].
We address the state explosion problem in static WCET
analysis by storing and manipulating hardware states in a
more efficient data structure based on Ordered Binary De-
cision Diagrams [7] (BDDs). Our work is inspired by BDD-
based symbolic model checking [8]. Symbolic model check-
ing has been successfully applied to components of proces-
sors [10, 19]. Its success sparked a general interest in BDDs
and other symbolic representations. Today, BDDs are also
used extensively to analyze software, e.g. in software model
checking [5] and points-to analysis [3].
While the aforementioned analyses exclusively focus on ei-
ther hardware or software, WCET analysis considers both
the software and the processor simultaneously, which brings
about quite unique challenges. The arising complexity has
been alleviated by careful modeling and abstraction, and
by a modular analysis architecture. However, the interplay
of hardware and software and different analyses is complex,
conceptually and in terms of implementation:

• the modular analysis architecture requires exchange of
information between different analyzers. Program in-
variants must be imported and used in the symbolic
state space exploration.

• to reap the benefits of BDDs, efficient encodings are
needed which take into account program structure. In

137

particular, efficient handling of program addresses is
crucial to scale to realistic programs.

This interplay between program analysis and symbolic en-
gine, and the use of complex models of industrial processors
including pipelines and buffers, sets our work apart from the
aforementioned applications of symbolic techniques.
Based on previous work [31], we present a novel framework
for static WCET analysis using symbolic representations of
abstract pipeline models, and assess its effectiveness on a
set of industrial benchmarks. We have developed a proto-
type implementation which is integrated into the commercial
WCET analysis tool aiT [1]. aiT has successfully been ap-
plied to avionics [31, 36] and to automotive software [20]
and compares very favorably with other WCET analysis
tools [32]. In our prototype implementation, we employ the
model of a real-life processor, the Infineon TriCore. The
model was developed and tested within aiT. This enables a
meaningful performance comparison between the two imple-
mentations, which produce the same analysis results.
To arrive at an efficient symbolic analysis that scales to
industrial-size programs, we have not only incorporated well-
known optimizations from symbolic model checking but also
novel domain-specific optimizations that leverage properties
of the processor and the program. The experimental results
are promising, showing that our analysis is able to handle
very large state spaces efficiently.

Our Contribution.
We present the first WCET analysis of abstract pipeline
models using a symbolic representation. We combine static
WCET analysis based on abstract interpretation with sym-
bolic representations from the world of model checking, thus
gaining efficiency without compromising safety. We give de-
tailed information on the efficient integration of aiT’s pro-
gram analysis framework with a symbolic state exploration
engine. We further describe a generic optimization exploit-
ing program locality to make the symbolic representation
independent of the size of the analyzed programs. Besides,
we sketch several optimizations for reducing the size of ab-
stract pipeline models. Note that all of these optimizations
preserve the safety and precision of the analysis. We have
evaluated our approach considering a real-life architecture,
the Infineon TriCore, used in the automotive domain, and
an industrial engine control software.

2. RELATED WORK
Wilhelm [38] discusses the benefits of static WCET analysis
based on abstract interpretation and ILP, and argues why
techniques that do not employ abstraction are not able to
tackle the complexity of the problem. As an example for an
inadequate technique, the paper sketches how binary search
and symbolic model checking could be used for WCET anal-
ysis. Thereby the symbolic model checker is used to check,
for a given potential execution time bound, if there exists
a longer execution, and the whole process is repeated until
a smallest such bound is found. Subsequently, Metzner [26]
took up this idea. He argued that analysis precision could
be improved by using model checking rather than static pro-
gram analysis. However, this analysis has yet to be extended
to realistic programs and processor models with features like
pipelining and speculation.
Logothetis and Schneider [22] proposed an analysis that ob-

tains hardware-independent execution time bounds for syn-
chronous programs making the unit assumption: every in-
struction takes one time unit. However, the unit assumption
does not hold for today’s microarchitectures.

3. STATIC WCET ANALYSIS
Static WCET analysis [39] employs data flow analyses based
on abstract interpretation [11] to statically determine timing
relevant information, e.g. the possible target addresses of
memory accesses and possible hardware states and cache
contents.

Data Flow Analysis.
Data flow analyses compute invariants for all program points
by fixed point iteration over the control flow graph of the
program. An analysis is defined in terms of:

• a domain, in which program invariants are expressed,

• a transfer function for updating information at pro-
gram points,

• an equality test to check for fixed points of the transfer
function,

• a least upper bound operator for combining informa-
tion at control flow joins. The operator is typically
associated with a loss of precision.

To obtain precise information about the executed machine
code, control flow graphs for static WCET analysis are re-
constructed from fully linked executables. Strictly linear se-
quences of machine instructions, i.e. sequences where control
joins only before the first instruction and branches only after
the last instruction, are folded into basic blocks. The result-
ing control flow graph is also called basic block graph. For
interprocedural data flow analyses, the basic block graphs
of all procedures are merged into a single supergraph that
represents the entire program.
The manual implementation of interprocedural data flow
analyses is intricate and error-prone. The program ana-
lyzer generator PAG [24] allows to generate interprocedural
analyzers from an analysis specification in terms of domain,
transfer function, equality test and least upper bound oper-
ator. Further, it offers flexible means to distinguish different
call contexts and loop iterations by virtual inlining and un-
rolling [25].

The aiT WCET Analyzer.
A successful tool flow for static WCET analysis is the aiT

WCET analyzer. Fig. 1 shows an overview of aiT’s archi-
tecture. aiT employs several data flow analyses, generated
with PAG. Control flow reconstruction [34] decodes a binary
executable and reconstructs its control flow and basic block
graph. Value analysis [11] computes an overapproximation
of possible register values by an interval analysis. The results
are used to determine loop bounds, to eliminate infeasible
paths through the program, and to determine addresses of
memory accesses.
The focus of this paper is microarchitectural analysis [13, 14,
35], which computes upper bounds on the execution time of
basic blocks. Microarchitectural analysis is a data flow anal-
ysis that performs an abstract interpretation of the program
using a hardware model, i.e. it computes an overapproxima-
tion of the set of states of the hardware model that can

138

Figure 1: Architecture of the aiT WCET analyzer.

occur at a basic block. The hardware model accounts for
timing-relevant processor components, such as pipelining,
speculation, and peripheral hardware. To reduce complex-
ity, the arithmetic in the processor and register contents are
factored out into value analysis.
Finally, the results of microarchitectural analysis are passed
to the final phase, path analysis [33] which uses implicit
path enumeration [21], an ILP-based approach to determine
an execution time bound for the whole program based on
bounds on the execution times of basic blocks.

3.1 Microarchitectural Analysis
A microprocessor can be regarded as a very large state ma-
chine performing a state transition in every clock cycle. This
state machine (or any complete and precise specification
thereof) defines the concrete semantics. Each execution of
a program on the hardware corresponds to a sequence of
concrete states called a trace. The goal of the microarchi-
tectural analysis is to determine execution time bounds for
all basic blocks that hold for all executions of the program.
The execution of a basic block is sensitive to execution his-
tory, i.e. it depends on the hardware state with which the
block is entered. Without knowledge about the entering
hardware state, a conservative analysis has to assume that
any hardware state is possible, leading to exploration of un-
reachable states and overly pessimistic bounds. Therefore,
in addition to upper bounds on basic block execution time,
microarchitectural analysis computes for each basic block
an overapproximation of the set of processor states that can
reach the basic block.

Concrete Basic Block Execution.
Let Q be the set of concrete hardware states, T is the set of
all possible traces and B is a set of basic blocks. We denote
the concrete execution of a basic block b ∈ B starting in
state a ∈ Q by a function exec : B × Q → T that computes
a trace t ∈ T . This trace corresponds to an interpretation of
the instruction stream of b starting from a according to the
concrete semantics. In a basic block graph, the execution of
b’s successor starts with the last state of t and b’s execution
time is given by the length of the trace.

Abstract Basic Block Execution.
Let bQ be the set of abstract states. Each abstract state
represents a non-empty set of concrete states. We use the

power set of bQ as the domain for microarchitectural anal-
ysis. We denote the abstract execution of a basic block b

starting from a set of abstract states bA ⊆ bQ by a function

dexec : B × 2
bQ → bT computing an abstract trace t̂ ∈ bT .

An abstract trace is a sequence of sets of abstract states ob-
tained by abstract interpretation of the instruction stream

of basic block b starting from bA. The length of trace t̂ is an
upper bound on the execution time of basic block b for any
concrete start state corresponding to an abstract start state

in the set bA.
The analysis transfer function for updating domain elements

at basic blocks is a function ûpdate : B × 2
bQ → 2

bQ. The
function takes an incoming set of abstract states, constructs
the abstract trace and returns its last element. Every pos-
sible successor block of b is then analyzed with a feasible
subset of the obtained states.

Fixed Point Iteration.
At control flow joins, we combine sets of abstract states by
set union. Since the power set of abstract pipeline states
is a complete lattice and all employed update functions are
monotone, the analysis finds a solution to the data flow prob-
lem by computing the least fixed point solution. If a basic
block b is handled more than once during fixed point itera-
tion, the resulting worst-case execution time for every edge
leaving b is the maximum execution time bound of all ab-
stract interpretations. The method yields safe results, i.e.
overapproximations of the behavior of the real hardware, if
the abstraction is sound w.r.t. the theory of abstract inter-
pretation [11]. It has been shown that sound abstractions
of the timing behavior can be constructed even for complex
processors [35].

State Explosion.
Abstract states sometimes lack information about the pre-
cise state of some processor components, e.g. contents of
buffers. Furthermore, value analysis information used for
the classification of memory accesses can be imprecise, i.e.
rather than one single address, the analysis may provide a
range of possible addresses. In such cases, transitions in the
abstract model depending on imprecise information become
non-deterministic, i.e. an abstract state can have more than
one successor. Unfortunately, we are not aware of an auto-
matic way to decide locally which of these successors leads
to the highest execution time [23, 30, 2]. Therefore pipeline
analysis has to consider all possible successor states. We
then say that the analysis performs so-called state splits.
Current tools for static WCET analysis employ an explicit

139

encoding of abstract pipeline states, i.e. states are stored
individually in a list or a vector. Memory consumption and
computation time for updating the set of abstract states at
each program point grow linearly in the number of states.
Since the number of states usually grows exponentially in
the number of state splits, the analysis can quickly become
infeasible [35].

4. SYMBOLIC REPRESENTATION
State explosion is a well-known problem in the area of model
checking. Symbolic representations, usually based on BDDs,
have significantly improved the situation because they ad-
mit both an implicit encoding of the transition system and
of analysis information, like sets of states in state traver-
sal. This has enabled the analysis of hardware designs with
large state spaces [8]. We leverage a symbolic representa-
tion based on BDDs for state traversal of abstract pipeline
models in WCET analysis, in order to avoid the explicit
enumeration of abstract pipeline states and to improve scal-
ability.

Fundamentals.
Let f , g : B

n → B be Boolean functions. We write f · g for
conjunction, f + g for disjunction, f ⇒ g for logical impli-
cation, f for negation and (∃x)[f(x)] for existential quantifi-
cation.
A finite state machine (FSM) with n state bits, consists of
a set of states Q ⊆ B

n, a set of initial states S ⊆ Q and a
transition relation T ⊆ Q × Q. Each set of states A ⊆ Q,
as well as the transition relation T , can be associated with
a Boolean function A : 2Q → B where A(x) = 1 ⇔ x ∈ A

and T : 2Q×Q → B where T(x, y) = 1 ⇔ (x, y) ∈ T .
Given a set of FSM states A ⊆ Q, we want to compute
its set of successors with respect to the FSM transition re-
lation, i.e. we want to compute the image of A under T

denoted by the function Img : 2Q×Q × 2Q → 2Q where
Img(T,A)(y) = (∃x)[T(x, y) · A(x)]. Image computation
is the core operation of symbolic model checking algorithms
and its efficient implementation has been the topic of many
research papers, e.g. [27].
Symbolic model checking implements FSMs, sets of states,
and image computation using BDDs and BDD operations.
BDDs provide a compact, canonical representation of many
Boolean functions of practical relevance. Fig. 2 shows an
example of a BDD for a function with three variables. The
BDD is evaluated by traversing the graph from the first vari-
able node x1 to one of the terminal nodes 1 or 0. Each vari-
able node has two outgoing edges: the solid edge indicates
that the variable has value 1, the dashed edge corresponds
to the value 0. The terminal nodes represent the evaluation
result. The path x1, x2, x3, 1 in the example corresponds to
the assignment x1 = 1, x2 = 0, x3 = 0 for which the function
evaluates to 1.
The complexity of BDD operations depends on the size, i.e.,
number of nodes, of the involved BDDs, which depends not
only on the represented function, but also on the chosen
variable ordering. Constructing a minimal BDD for a given
function is an NP-hard problem.

4.1 Abstract Models
Abstract pipeline models can be specified as hardware de-
signs in terms of latches and interconnecting wires. A design
with n latches can be characterized by an FSM with state

76540123x1

~~~~
~~

~~
~

��
�
�
�
�
�
�
�
�
�

76540123x2

��

��
0

0
0

76540123x3

��






��
11

11
1

1 0

Figure 2: BDD for f(x1, x2, x3) = x1 · x2 + x1 · x2 · x3.

space Q = B
n. Translating a hardware specification into

its corresponding FSM is a well-known problem in hardware
verification and solutions are readily available [9]. The tran-
sition relation of the FSM T is usually constructed by con-
junction of the transition relations of the individual latches
of the design [27]. For an FSM with n latches, we have

T(x, y) =
n

Y

j=0

Tj(x, y)

Let TM be the transition relation for an abstract pipeline

model M with state space bQ. We require an abstract model
that is independent of any specific program. Such a model
can be constructed by identifying variables, either single
latches or groups of latches, for which some updates require
information associated with program points (instructions).
An example of such a variable is the current fetch address.
On linear control flow, the fetch address is incremented by
the pipeline model. On control flow redirections, e.g. by
execution of branch instructions, program information is re-
quired to set the new fetch address to the branch target.
In such states, the update of the fetch address is not con-
strained by TM. It is updated non-deterministically.
In general, in TM we impose no restriction on the update
of a variable v in states where the update of v requires pro-
gram information. Thus, the following fixed point compu-
tation yields all abstract pipeline states reachable from an

arbitrarily chosen set of start states dInit(x):

bA0(x) = dInit(x)

bAk+1(y) = bAk(x) + Img(TM, bA)
(1)

4.2 Program Representation
Let V be the set of variables of model M. V̄ ⊆ V is the sub-
set of variables whose updates require program information
and are thus not completely determined by TM. We re-
gard a program L for pipeline analysis as a set of attributed
instructions uniquely identified by their physical addresses.
The effect of executing instruction l ∈ L in a state of M up-
dating a variable v̄ ∈ V̄ can be expressed as a relation Tl,v̄

between the states of M. Intuitively, Tl,v̄ is a restriction
for TM. The relation Tl,v̄ can be computed by a function

δv̄ : L × 2V → bQ × bQ which takes an instruction and a
set of variables D ⊆ V on which the update of v̄ depends:
δv̄(l, D) = Tl,v̄. Each relation Tl,v̄ constrains only the next-
state value of v̄. A relation for the whole program L is
constructed as the conjunction of the relations for the in-

140



structions:

TL(x, y) =
Y

l∈L v̄∈V̄

Tl,v̄(x, y)

Reachability analysis (as in Eq. 1) using the transition rela-
tion TL

M = TM · TL yields the set of all abstract pipeline
states of M that are reachable by execution of L.

Example.
Modeling the Infineon TriCore requires information about
instruction fetches, i.e. the number and type of fetched in-
structions. On the rising edge of the clock signal clk this
information is read into a variable data whenever the sig-
nal valid indicates that data is arriving on the bus and the
fetch address addr holds a legal program address. In such
states, data is updated non-deterministically in TM. Let
data

′ denote the next-state instance of the variable data.
The instruction attribute l.fetchData contains information
about the instruction fetch at program point l. We define
Tl,data such that if the clock is rising, the data is valid, and
the l is fetched, the next value of data is l.fetchData, i.e.
Tl,data = (clk · valid · (addr = l)) ⇒ (data′ = l.fetchData).

Other Required Program Information.
Beside control flow and instruction type information, up-
dates of variables in the set V̄ may also require information
about data dependencies (for detecting pipeline stalls) and
address ranges of memory accesses (for determining memory
access latencies). The latter can be obtained from instruc-
tion attributes computed by the preceding value analysis.
Data dependencies can also be precomputed and stored as
instruction attributes.

4.3 Symbolic WCET Analysis
We present a microarchitectural WCET analysis which uses
only symbolic computations on BDDs. It is based on the
symbolic representation of abstract pipeline models and pro-
grams. Note that the symbolic implementation is equivalent
to the explicit state approach in all but the representation of
states. Due to our symbolic representation, explicit enumer-
ation of states of the abstract pipeline model is completely
avoided. This improves the performance of microarchitec-
tural WCET analysis while preserving the soundness and
precision of the analysis.

Abstract Basic Block Execution.
Let b be a basic block and last(b) the last instruction in
b. For a set of abstract pipeline states, pred(x) : B

n → B
n

computes all predecessor states. Rb is the set of all states
where last(b) has just left the pipeline model, which can
be characterized by the function Rb : B

n → B given by
Rb(x) = 1 ⇔ last(b) left the pipeline in pred(x). The empty
set of pipeline states is represented by Empty : B

n → {0}.

Let bAin be the set of incoming states at block b. The set

of outgoing states bAout, i.e. the last element in the abstract

trace of b starting with bAin, can be computed by Alg. 1

as ûpdate(TL
M, bAin,Rb). This is an implementation of the

update function for microarchitectural analysis introduced
in Sec. 3. Its first argument (the basic block) is implicitly
contained in TL

M and Rb.
Note that the algorithm implicitly constructs the abstract

trace t̂ = dexec(b, bAin). Line 3 of the algorithm computes the
successor states in the next cycle. Line 4 adds the retired

1: bAout = Empty

2: while bA 6= Empty do

3: bA = Img(T, bA)

4: bAout = bAout + ( bA · U)

5: bA = bA · ( bA · U)
6: end while

Algorithm 1: ûpdate(T, bA,U)

1: bAout = ûpdate(T, bA,Db)
2: for all e leaving b do

3: bAout,e = ûpdate(T,Lb,e · bAout,Rb)
4: end for

Algorithm 2: DoBlock(T, bA, b)

states to bAout and line 5 removes them from bA. The number
of execution cycles of b equals the number of loop iterations

in ûpdate(TL
M, bAin,Rb).

Control Flow Sensitive Timing Effects.
A basic block b can have more than one successor in the
basic block graph, e.g. if b contains a conditional branch.

The previous ûpdate algorithm only computes the effect of a
single control flow edge starting in a particular basic block.

We now give an algorithm that uses the ûpdate algorithm to
deal with the general case of blocks with multiple outgoing
edges. For each outgoing edge of the block, it computes the
set of outgoing pipeline states and an execution time bound
for the respective edge.
Let us assume that if b contains a branch instruction, then
this instruction is always last(b). In the case of a conditional
branch, we allow for two successor states in the pipeline
model (branch taken, not taken). If this state split occurs
while decoding last(b), we define the function Db : B

n → B;
Db(x) = 1 ⇔ last(b) has been decoded in pred(x). If we run

ûpdate( bAin,Db), the resulting set bAout contains all states
that have decoded last(b) in the last cycle. For an outgoing
edge e of block b, we characterize the set containing all states
that can leave b over e by the function Lb,e : B

n → B;
Lb,e(x) = 1 ⇔ x may leave b via e.
E.g. if last(b) is a conditional branch and e is a true edge,
then the conditional branch must have been taken on any
state x leaving b via e. We can compute the outgoing set
bAout,e of states for every edge leaving b using Alg. 2. Let |a|
denote the number of loop iterations of algorithm a. The
number of execution cycles for block b on the path via edge
e is then given by

| ûpdate(TL
M , bA , Db) | + | ûpdate(TL

M , Lb,e · bAout , Rb) |

Fixed Point Iteration.
Fixed point iteration on the basic block graph should also
operate directly on the symbolic representation. The re-
quired operations are set union and checking for equality of
sets. Union of two sets is implemented by disjunction of
BDDs. Equality checks are constant-time operations due to
properties of BDDs [7].

141



5. OPTIMIZATIONS
A straightforward implementation of the analysis presented
in the preceding section, does not scale to realistic micropro-
cessors and programs. To scale, we not only leverage stan-
dard techniques from model checking. We also use knowl-
edge about the processor to keep the processor model small
and heavily exploit program structure in the symbolic repre-
sentation of both program information and buffer contents
in the processor. All of the presented optimizations improve
the analysis performance without affecting the precision of
the computed WCET bounds.
Building the transition relation for an FSM as a monolithic
BDD by taking the conjunction of the relations for all latches
is usually infeasible but for the smallest models. Therefore
we apply conjunctive partitioning both to the FSM and the
program relation TL which is also a conjunction of relations
for the instructions. As this is a standard technique, we refer
to [27] for a description and instead focus on an optimization
specific to our approach: address compression.
Abstract pipeline models store many (program) addresses.
A direct encoding would be to bit-blast the addresses, i.e. a
32-bit address takes 32 state bits. This would be inefficient,
since BDD size, and therefore performance, is very sensi-
tive with respect to the number of state bits. However, a
program typically uses only a small fraction of the address
space. Exploiting information from the basic block graph
and from value analysis, one can compactly enumerate all
addresses used in the program and then encode these ad-
dresses using a number of state bits logarithmic in the size
of the set of used addresses.

5.1 Processor-Specific Optimizations
We apply several processor-specific optimizations. These fol-
low the general pattern of:

1. reducing representation size of components by omit-
ting information which is not timing-relevant.

2. statically precomputing information.

For illustration, we give two specific examples of such op-
timizations which are used in our TriCore implementation
described in Sec. 6.

Compact Buffer Representation.
The prefetch buffer of the TriCore holds up to 8 instructions.
Updating buffers and dispatching instructions into the cor-
rect pipelines requires type and size information for each
instruction. Since the TriCore has two different instruction
sizes and two major pipelines, this information can be rep-
resented by 2 bits per instruction. We thus represent the
timing-relevant buffer contents by 16 bits compared to 16
bytes in the actual processor.

Precomputing Stall Conditions.
TriCore features a set of rules that define pipeline stalls in
case of unresolved data dependencies. We precompute such
dependencies by a data flow analysis and store the results
as instruction attributes. The model then requires only one
single bit per pipeline to encode pipeline stalls due to un-
fulfilled data dependencies. Updates of the stall bits are en-
coded in TL depending on the positions of the instructions
in the pipelines.

Figure 3: Illustration of Program Decomposition.

5.2 Program Decomposition
The aforementioned optimizations make the construction of
the symbolic representations feasible. However, the required
number of state bits heavily depends on the size of the pro-
gram because all instructions must be uniquely identified in
the pipeline model. Additionally, context-sensitive analysis,
which is indispensable to obtain sufficient analysis precision,
increases the number of individual instructions even further
by virtual inlining and unrolling. Since BDD performance
depends on the number of state bits, the performance of
every single analysis operation depends on the size of the
analyzed program and on the degree of context-sensitivity.
We have developed an optimization that removes this unde-
sired dependence. It is based on two observations:

1. There is an upper bound on the number of instructions
that a pipeline (or abstract pipeline model) can process
concurrently due to parallel execution, prefetching and
speculation.

2. Pipelines perform out-of-order execution and yet guar-
antee in-order completion, i.e. even if some instruction
l2 can be executed before some other instruction l1, it
will not leave the pipeline before l1.

Let Vl be the set of abstract model variables that reference
instructions. It exists a partial ordering on Vl, ordering the
variables with respect to their distance from the pipeline
entry. E.g. variables in the decode stage are further away
from the pipeline entry than variables in the fetch unit. We
call the longest ascending chain of elements in this lattice
an overlap bound.
We define two functions pre, post : L×L → N where pre(i, j)
returns k if j is the k-th predecessor of i and 0 otherwise.
Further, post(i, j) returns k if j is the k-th successor of i

and 0 otherwise. The set of all predecessor or successor
instructions for a given distance is obtained by preds, succs :
L × N → 2L where preds(i, k) = {j : 0 < pre(i, j) ≤ k} and
succs(i, k) = {j : 0 < post(i, j) ≤ k}. Based on a given
overlap bound c̄, a set of relevant instructions at a basic
block b can be defined as R(b) = b ∪ preds(first(b), c̄) ∪
succs(last(b), c̄) where first(b) and last(b) are the first and
the last instruction of b. Fig. 3 shows an example for two
blocks b3 and b5, assuming that c̄ = 2. The numbers in

142



⌈bAout⌉b = ûpdate(⌈T⌉b, ⌈bA⌉b, ⌈Db⌉b)
for all e leaving b do

⌈bAout,e⌉tgt(e) = Img(T(b,tgt(e)), ûpdate(⌈T⌉b, ⌈Lb,e⌉b ·

⌈bAout⌉b, ⌈Rb⌉b))
end for

Algorithm 3: DoBlock
+(⌈T⌉b, ⌈bA⌉b, b)

the blocks correspond to the enumeration of the relevant
instructions at b3 and b5 respectively.
In general, we require fewer state bits for the unambiguous
enumeration of R(b) than for enumerating all instructions
in L. Furthermore, |R(b)| is independent of |L|. We denote
this compaction of the symbolic representation by ⌈ ⌉b.

Translation Between Basic Blocks.
The encoding of instructions is no longer globally the same
for all blocks and must therefore be translated before prop-
agating states along control flow edges. We observe that
the number of overlapping instructions between two adja-
cent blocks is bounded by the processor-specific constant c̄.
Let block s be a direct successor of block p. A symbolic rela-

tion T(p,s) between different representations ⌈bA⌉s and ⌈bA⌉p

of the same set of abstract pipeline states bA can be con-
structed by tabulating both instruction enumerations. For
the relevant overlapping instruction numbers of Fig. 3 this
yields the relation

{(5, 1), (6, 2), (7, 5), (8, 6)}

between the enumerations at b3 and b5.
Translating sets of abstract pipeline states between s and
p can be implemented symbolically using image computa-
tion. We include this translation into Alg. 3 (DoBlock

+), an
improved version of Alg. 2 (DoBlock). Abstract basic block

execution for a compatibly encoded set of states ⌈bA⌉b can
now be performed efficiently by

DoBlock
+(⌈TR(b)⌉b · ⌈TM⌉b, ⌈bA⌉b, b)

Note that for a block b with several predecessors, all incom-
ing states are translated into the same range ⌈ ⌉b. There-
fore, the instruction numbering is consistent over all incom-
ing edges and incoming states can be safely combined by
computing the disjunction of the Boolean functions before
proceeding with the state traversal.
The additional cost for translating between different ba-
sic blocks is amortized by the savings achieved by reducing
BDD size during state traversal. Moreover, ⌈T⌉b conjoins
fewer relations than TL which further improves the perfor-
mance of image computations.

6. EXPERIMENTAL RESULTS
We have implemented a symbolic pipeline analysis frame-
work that is integrated into the aiT tool chain and uses
the code base of the model checker VIS [6]. All aiT anal-
ysis phases, except microarchitectural analysis, have been
left unchanged. The pipeline model is specified in Verilog
and compiled into a symbolic transition relation by VIS. A
setup phase enumerates the instruction addresses in all anal-
ysis contexts and initializes tables for mapping between both
representations. Based on this mapping, a relation genera-
tor builds the program transition relation. The generator

is implemented as a processor-specific plugin that has to be
specified together with the model’s Verilog description. The
plugin also comprises generators for the retirement functions
R and D required by Alg. 2. The data flow analysis frame-
work [24] of aiT has been instantiated to perform fixed point
iteration on the symbolic representation. Thus, the integra-
tion is processor-independent, i.e. analyzing a new target
requires only a Verilog model specification and the plugin
for generating the program relation and retirement func-
tions. To enable debugging and result checking, the frame-
work provides a graphical representation of the least fixed
point of abstract pipeline states.

6.1 Pipeline Modeling
The Infineon TriCore is used in hard real-time systems in
the automotive industry, e.g. for engine control. It fea-
tures two major pipelines: the Integer pipeline (I) handles
data arithmetic and conditional jumps. The Load/Store
pipeline (L/S) handles loads/stores, address arithmetic, un-
conditional jumps and calls. Both pipelines have decode, ex-
ecute and writeback stages. The shared fetch unit reduces
instruction fetch latencies using a 16 byte prefetch buffer
holding up to 8 instructions which are either 2 or 4 bytes
wide. A minor pipeline for handling zero-overhead loop in-
structions shares its decode stage with the L/S pipeline. Tri-
Core can issue one instruction per cycle into each of the ma-
jor pipelines. For improved performance, the architecture
also features static branch prediction.
A commercial TriCore model is available in aiT. The model
includes all relevant peripheral hardware such as buses, flash
modules, buffers and caches. Its representation requires 500
bytes 1 per abstract pipeline state plus 196 bytes for the state
of the peripheral components (not counting the dynamically
sized abstract cache). Analysis of the TriCore model exhibits
two sources of state splits:

1. imprecise information about data memory accesses.

2. imprecise information about the state of peripheral
components.

A single unclassified memory access in this model causes up
to 64 state splits. A series of unclassified memory accesses
may quickly multiply this number. Imprecise information
about the state of caches, flash modules and buffers may
cause further state splits.
Our symbolic TriCore model has been modeled after the ex-
isting explicit state model. It conservatively approximates
the timing of the full pipeline core. This has been verified by
comparison with hardware traces of programs running from
the on-chip scratch pad memory and with analysis traces of
the explicit state analysis. Using the presented compression
techniques, we arrive at a very compact symbolic represen-
tation. Its size ranges from 163 to 333 state bits, depending
on the analyzed program.

6.2 Experimental Setup
Without caches and flash buffers, the pipeline model for Tri-
Core is mostly deterministic since the processor core can be
modeled accurately. To study the effects of state explosion,

1Explicit state pipeline models represent instructions and
contexts as pairs of 32 bit pointers/integers. The space re-
quired to store these pairs dominates the size of abstract
pipeline states.

143



|L| sym bits sym+ bits

dhry 2.1 3361 12 7

edn 69462 17 8

task A 3214 12 8

task B 28606 15 9

task C 1035 11 8

Figure 4: Program sizes.

dhry 2.1 7 15 31 63 127

explicit 3 19 160 1286 9524

sym stat 815 1379 2609 5373 7748

sym dyn 329 580 774 2256 4090

sym+ stat 455 796 1466 2869 4632

sym+ dyn 256 522 926 1849 2788

edn 7 15 31 63 127

explicit 75 480 3666 40266 > 48 h

sym+ dyn 2169 4033 7965 15245 19561

Figure 5: Analysis times in secs.

we introduce additional state splits by losing precision on
the latencies of instruction fetches. This forces the analysis
to explore the different possible prefetch buffer states and
interleavings of instructions in the pipeline. The resulting
behavior of the analysis corresponds closely to the analysis
behavior in cases of unknown data memory accesses or cache
misses. The commercial TriCore model has been modified
accordingly, i.e. the behavior of both models is identical.
This setup allows us to study state explosion of pipeline
states in isolation, without dealing with the additional com-
plexity of cache and bus models. Further, it gives us some
control over the amount of state splits performed by the
analysis. We use it to investigate how both implementations
scale up in cases of state explosion.

Benchmark Programs.
We compare the performance of the explicit- and symbolic-
state implementations by analyzing the following programs:

dhry 2.1 is the Dhrystone [37] integer CPU performance
benchmark.

edn comprises DSP algorithms [12] like filters, matrix mul-
tiplication and FFT.

EC is a closed source automotive software for engine con-
trol, one of the main application areas for TriCore. We
analyze its 3 major tasks which we call A, B and C.

Fig. 4 lists size information for all of the described programs.
The first column gives the number of instructions in all anal-
ysis contexts, i.e. after virtual inlining and loop unrolling.
The edn benchmark is analyzed with full virtual inlining
and unrolling, hence the large number of instructions. The
second column lists the number of bits required for global
enumeration of all instructions including padding addresses.
The last column gives the same information for the opti-
mized implementation of Sec. 5.1.

6.3 Performance Comparison
Fig. 5 and 6 show a comparison of the analysis runtimes
for the different implementations running on an Intel Core

task A 7 15 31 63 127

explicit 7 56 432 3450 > 5 h

sym stat 2352 4706 9425 19296 > 5 h

sym dyn 1131 1879 2368 4502 > 5 h

sym+ stat 1296 2480 4879 9748 16069

sym+ dyn 675 1174 2851 3848 5905

task B 7 15 31 63 127

explicit 64 459 3336 26090 > 48 h

sym+ dyn 9529 14947 28141 56122 101658

task C 7 15 31 63 127

explicit 1 9 72 549 4198

sym stat 230 383 685 1564 2034

sym dyn 146 179 277 374 692

sym+ stat 328 515 1155 2367 3967

sym+ dyn 227 506 649 1205 1860

Figure 6: Analysis times for EC in secs.

2 Duo at 2.66 GHz. The first row of each table shows the
runtimes for the explicit-state implementation whereas the
following rows list the results for its symbolic-state counter-
part in the following configurations:

sym symbolic implementation of Sec. 4.3.

sym+ optimized symbolic implementation of Sec. 5.1.

stat initial static variable order of VIS [6].

dyn dynamic variable reordering by converging window per-
mutation [16, 18].

Each program is analyzed with an increasing number of pos-
sible instruction fetch latencies starting from 7 up to 127.
Thus, the average number of concurrently analyzed states
grows exponentially from left to right. At the same time, the
summarized maximum latencies on every path through the
program grow by a factor of 2. The reported analysis times
are in seconds and include all setup costs. The analysis times
of the explicit-state implementation reflect the exponential
growth in the number of states whereas the runtimes of
the symbolic-state implementation only grow linearly. The
explicit-state implementation is significantly faster if the
number of states is small. However, the symbolic-state im-
plementation catches up if the average number of states ex-
ceeds a certain threshold which appears to be independent
of the analyzed program. The best symbolic-state analy-
sis typically reaches the same order of magnitude as the
explicit-state analysis at 63 splits per fetch and outperforms
it at 127 splits per fetch.
We would like to point out that the considered numbers of
state splits are within the typical range for pipeline models
of medium complexity. E.g. the commercial TriCore model
performs at most 64 splits per unclassified memory access.
For more complex architectures, such as the Motorola Pow-
erPC family of processors, the maximum number of state
splits per unclassified memory access can be as high as 1000.
For such architectures, the presented approach can be ex-
pected to enable significant performance improvements in
cases of state explosion.
A comparison of the different configurations of the symbolic-
state implementation shows that the optimized implementa-
tion of Sec. 5.1 is clearly superior to the global enumeration

144



approach of Sec. 4.3 except for very small programs as EC
task C. Moreover, for large programs as EC task B and edn,
the global enumeration becomes practically infeasible. We
therefore show only the results for explicit and sym+ for EC
task B and edn.
The results also show that the initial static BDD variable
ordering chosen by VIS is suboptimal for our application.
We get better results using dynamic reordering. Reorder-
ing was invoked between 5 and 30 times per analysis. In
most cases, analyses using global instruction enumeration
performed about twice the number of reordering steps com-
pared to the optimized configuration sym+. The selected re-
ordering algorithm, using window permutation [16, 18], was
chosen for its speed and consistently good results. How-
ever, VIS implements a large number of reordering algo-
rithms that we did not explore exhaustively. It is likely that
other advanced reordering algorithms such as sifting [29] will
yield similar results.

7. CONCLUSION
We have presented a tight integration of a symbolic state-
exploration engine into a static WCET analysis tool. The
approach combines the advantages of static program anal-
ysis, in particular the possibility to decompose a very hard
analysis problem (WCET computation) into several sim-
pler subproblems (value, cache, pipeline, and path analysis),
with the strengths of symbolic state traversal. The use of
symbolic methods significantly improves the scalability of
the pipeline analysis while maintaining soundness. Combin-
ing an abstract-interpretation-based static analysis with a
symbolic state-exploration engine is not an easy task. We
described some of the difficulties that had to be solved on
the way. Let us summarize our major contributions:

1. We describe a novel and efficient integration of a sym-
bolic state traversal engine into an abstract interpre-
tation based static analysis framework. Model size is
kept relatively small since arithmetic is handled by the
value analysis. Further, no cycle counter is required
within the symbolic representation.

2. The integration comprises a generic solution for the in-
teraction between a symbolic domain and other static
analyses. The interaction is based on an explicit pro-
gram representation as a control flow graph and sup-
ports advanced context-sensitive analysis. This en-
ables interprocedural analysis and the precise analysis
of loops.

3. We present a solution to scale the symbolic analysis
to realistic program sizes. State traversal costs only
depend on the size of the pipeline model, not on the
program size or the number of analysis contexts.

4. We give experimental evidence showing that symbolic
state traversal for pipeline analysis is feasible in prac-
tice. Since BDD representations are sensitive to the
size of the employed models, it is crucial that we are
able to keep the size of realistic pipeline models within
acceptable limits. Further, our experimental data in-
dicate that the built-in automatic variable reordering
heuristics of a state-of-the-art model checker work well
for our application.

The reported results confirm that the approach is suitable
to alleviate the state explosion problem and demonstrate
that the approach scales to industrial programs thanks to
several optimizations. The symbolic computation of single
cycle updates is relatively expensive for small sets of FSM
states. Explicit-state implementations are therefore better
suited for analyses where state explosion does not occur. Fu-
ture research should consider a hybrid approach that admits
switching between explicit-state and symbolic-state repre-
sentations. Another direction for future research is to con-
sider more complex architectures, e.g. Motorola PowerPC
755 [35]. Finally, integration of cache analyses remains fu-
ture work.

Acknowledgements.
We would like to thank the anonymous reviewers for their
comments. We thank Daniel Kästner and Reinhard Wilhelm
for proof-reading preliminary versions of this paper. The
second author is supported by the Deutsche Forschungsge-
meinschaft as part of the Transregional Collaborative Re-
search Center SFB/TR 14 AVACS.

8. REFERENCES
[1] AbsInt. aiT WCET Analyzers.

http://www.absint.com/ait, 2000.

[2] C. Berg. PLRU cache domino effects. In 6th Intl.
Workshop on Worst-Case Execution Time (WCET)
Analysis. Schloss Dagstuhl, Germany, 2006.

[3] M. Berndl, O. Lhoták, F. Qian, L. J. Hendren, and
N. Umanee. Points-to analysis using BDDs. In PLDI,
pages 103–114, 2003.

[4] A. Betts, G. Bernat, R. Kirner, P. Puschner, and
I. Wenzel. WCET Coverage for Pipelines. Technical
report, 2006.

[5] D. Beyer, T. A. Henzinger, R. Jhala, and
R. Majumdar. The software model checker Blast.
STTT, 9(5-6):505–525, 2007.

[6] R. K. Brayton, G. D. Hachtel, A. L.
Sangiovanni-Vincentelli, F. Somenzi, A. Aziz, S.-T.
Cheng, S. A. Edwards, S. P. Khatri, Y. Kukimoto,
A. Pardo, S. Qadeer, R. K. Ranjan, S. Sarwary, T. R.
Shiple, G. Swamy, and T. Villa. VIS: A System for
Verification and Synthesis. In CAV, pages 428–432,
1996.

[7] R. Bryant. Graph based algorithms for boolean
function manipulation. In IEEE Transactions on
Computers, 1986.

[8] J. Burch, E. Clarke, K. McMillan, D. Dill, and
J. Hwang. Symbolic model checking: 1020 states and
beyond. IEEE Comp. Soc. Press, 1990.

[9] S.-T. Cheng. Compiling Verilog into Automata.
Technical report, Electronics Research Lab, Univ. of
California, Berkeley, CA 94720, 1994.

[10] E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E.
Long, K. L. McMillan, and L. A. Ness. Verification of
the Futurebus+ Cache Coherence Protocol. In CHDL,
pages 15–30, 1993.

[11] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In
Conference Record of the Fourth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of

145



Programming Languages, Los Angeles, California,
1977.

[12] EDN. DSP Benchmarks. In EDN - Electronic Design,
Strategy, News, Sept. 1988.

[13] J. Engblom. Processor Pipelines and Static
Worst-Case Execution Time Analysis. PhD thesis,
Uppsala University, 2002.

[14] C. Ferdinand. Cache Behavior Prediction for
Real-Time Systems. PhD thesis, Saarland University,
1997.

[15] C. Ferdinand, R. Heckmann, M. Langenbach,
F. Martin, M. Schmidt, H. Theiling, S. Thesing, and
R. Wilhelm. Reliable and Precise WCET
Determination for a Real-Life Processor. In
Proceedings of EMSOFT 2001, LNCS 2211, 2001.

[16] M. Fujita, Y. Matsunaga, and T. Kakuda. On variable
ordering of binary decision diagrams for the
application of multi-level logic synthesis. In
Proceedings of the conference on European design
automation, 1991.

[17] R. Heckmann, M. Langenbach, S. Thesing, and
R. Wilhelm. The influence of processor architecture on
the design and the results of WCET tools. Proceedings
of the IEEE, 91(7), 2003.

[18] N. Ishiura, H. Sawada, and S. Yajima. Minimization of
binary decision diagrams based on exchanges of
variables. In ICCAD, pages 472–475, 1991.

[19] R. Jhala and K. L. McMillan. Microarchitecture
Verification by Compositional Model Checking. In
CAV, pages 396–410, 2001.

[20] D. Kästner, R. Wilhelm, R. Heckmann, M. Schlickling,
M. Pister, M. Jersak, K. Richter, and C. Ferdinand.
Timing Validation of Automotive Software. In 3rd
International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation
(ISOLA) 2008, Communications in Computer and
Information Science (CCIS). Springer, 2008.

[21] Y.-T. S. Li and S. Malik. Performance analysis of
embedded software using implicit path enumeration.
In DAC, pages 456–461, 1995.

[22] G. Logothetis and K. Schneider. Exact High Level
WCET Analysis of Synchronous Programs by
Symbolic State Space Exploration. In DATE, pages
10196–10203, 2003.

[23] T. Lundquist and P. Stenström. Timing Anomalies in
Dynamically Scheduled Microprocessors. In
Proceedings of the 20th IEEE Real-Time Systems
Symposium, 1999.

[24] F. Martin. PAG - An Efficient Program Analyzer
Generator. STTT, 2(1), 1998.

[25] F. Martin, M. Alt, R. Wilhelm, and C. Ferdinand.
Analysis of Loops. In K. Koskimies, editor,
Proceedings of the 7th International Conference on
Compiler Construction, LNCS 1383, pages 80–94,
Berlin, 1998. Springer.

[26] A. Metzner. Why Model Checking Can Improve
WCET Analysis. In CAV, 2004.

[27] R. Ranjan, A. Aziz, R. Brayton, B. Plessier, and
C. Pixley. Efficient BDD Algorithms for FSM
Synthesis and Verification, 1995.

[28] J. Reineke. Caches in WCET Analysis. PhD thesis,
Saarland University, 2008.

[29] R. Rudell. Dynamic variable ordering for ordered
binary decision diagrams. In ICCAD ’93: Proceedings
of the 1993 IEEE/ACM international conference on
Computer-aided design, pages 42–47. IEEE Computer
Society Press, 1993.

[30] J. Schneider. Combined Schedulability and WCET
Analysis for Real-Time Operating Systems. PhD
thesis, Saarland University, 2003.

[31] J. Souyris, E. Le Pavec, G. Himbert, V. JÃ c©gu,
G. Borios, and R. Heckmann. Computing the Worst
Case Execution Time of an Avionics Program by
Abstract Interpretation. In Proceedings of the 5th Intl
Workshop on (WCET) Analysis, 2005.

[32] L. Tan. The Worst-case Execution Time Tool
Challenge 2006. International Journal on Software
Tools for Technology Transfer (STTT), 11(2):133 –
152, 2009.

[33] H. Theiling. ILP-based Interprocedural Path Analysis.
In Proceedings of the Workshop on Embedded
Software, Grenoble, France, 2002.

[34] H. Theiling. Control Flow Graphs for Real-Time
System Analysis. PhD thesis, Saarland University,
2003.

[35] S. Thesing. Safe and Precise WCET Determination by
Abstract Interpretation of Pipeline Models. PhD
thesis, Saarland University, 2004.

[36] S. Thesing, J. Souyris, R. Heckmann,
F. Randimbivololona, M. Langenbach, R. Wilhelm,
and C. Ferdinand. An Abstract Interpretation-Based
Timing Validation of Hard Real-Time Avionics
Software. In Proceedings of the International
Conference on Dependable Systems and Networks.
IEEE Computer Society, 2003.

[37] R. Weicker. Dhrystone benchmark: rationale for
version 2 and measurement rules. SIGPLAN Notices,
23(8):49–62, 1988.

[38] R. Wilhelm. Why AI + ILP is good for WCET, but
MC is not, nor ILP alone. In In Verification, Model
Checking and Abstract Interpretation (VMCAI),
LNCS 2937, 2004.

[39] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,
R. Heckmann, F. Mueller, I. Puaut, P. Puschner,
J. Staschulat, and P. Stenström. The Determination of
Worst-Case Execution Times—Overview of the
Methods and Survey of Tools. 7(3), 2008. ACM
Transactions on Embedded Computing Systems
(TECS).

146


