
Parallelization of Image Segmentation Algorithms
Shu Jiang

University of Florida

Abstract

With the rapid developments of higher resolution imaging systems, larger image data are
produced. To process the increasing image data with conventional methods, the processing
time increases tremendously. Image segmentation is one of the many image processing
algorithms, and it is widely used in medical imaging (i.e. find tumor in MRI), robotic vision
(i.e. vision-based navigation), and face recognition. New faster image processing techniques
are needed to keep up with the ever increasing image data size. This paper investigates the
parallelization of image segmentation techniques: Watershed Transform and K-Means
Clustering algorithms. Lastly, K-Means Clustering is combined with Watershed Transform to
address the over-segmentation issue of the Watershed algorithm.

Introduction

Image segmentation is one of the many image processing algorithms. It is used mainly to
reduce the original image data content for further processing. Image segmentation basically
partitions the input image domain into regions, and each region contains pixels with a certain
similar property with respect to each other within the region. Image segmentation is widely
used in many applications such as medical imaging, robotic vision, and face recognition. Many
algorithms have been developed to implement image segmentation; these include K-Means
Clustering, Histogram-based, Region Growing, Graph Partitioning, Watershed Transform,
Neural Networks, and etc.

With the development of higher resolution imaging technology, the sizes of image data are
growing rapidly, and thus require longer processing time if conventional image segmentation
method is used. This paper presents parallelization of conventional image segmentation
algorithms to address the issue of greater processing demand.

Two image segmentation algorithms are examined and parallelized; they are Watershed
Transform and K-Means Clustering. Watershed is chosen because it is widely used and studied,
whereas K-Means is chosen because of its simplicity. Watershed Transform partitions an image
into valleys of pixels with brinks that are shared by adjacent valleys; these brinks are called
watershed lines. K-Means Clustering divides the image data set into K subsets of pixels
according to some characteristics of individual pixel.

Watershed Transform is a popular image segmentation algorithm, especially in medical image
analysis; however, it has a drawback: over-segmentation. Over-segmentation occurs when the
image has many tiny valleys, which cause the Watershed algorithm to over-partition the
image. The resulted image thus contains a dense collection of regions that might distort
important features in the original image. Depending on the application and image size, over-
segmentation might not be a problem in some cases. This paper addresses the over-
segmentation issue of the conventional Watershed algorithm by combining it with K-Means
Clustering algorithm [2].

Related Work

Image segmentation algorithms with various implementations have been investigated by many
authors. Saegusa and Maruyama implemented a K-Means Clustering algorithm on FPGA with
custom designed processing circuit units; four such units were used. Saegusa and Maruyama
first divided the image to four parts and stored them into four external memory banks, and
then four pixels were fed simultaneously to the four processing units to be processed in
parallel, Figure-1 [1].

Figure-1: K-Means Clustering on FPGA [1]

In [2], a parallel Watershed Transform was implemented on the cellular neural network (CNN)
universal machine. It showed that due to CNN’s massively parallel array computing, the
Watershed Transform can be parallelized without considering problems such as
synchronization, communication, and load balancing. In [3], Moga, Bieniek, and Burkhardt
introduced a divide-and-conquer parallel implementation of the Watershed Transform based
on rain-falling and hill-climbing simulations. A detailed explanation of the Watershed
Transform applied to image segmentation is also presented in [3]. In [4], authors presented a
parallel and pipeline implementation of the Watershed Transform on FPGA.

In [5], the method of combining K-Means and Watershed algorithms was introduced to address
Watershed’s over-segmentation issue. It showed that the resulted images of the proposed
segmentation method have 92% few partitions than the images produced by the Watershed
alone.

Watershed Transform

Many implementations of the Watershed Transform had been developed [7]. This paper
implements the Watershed Transform by immersion for grayscale images. Watershed by
immersion was introduced in 1991 by Vincent and Soille [6], Figure-2. Each pixel in a
grayscale image can have a value of 0-255, with 0 representing black, 255 for white, and
values in between for shades of gray. To understand the idea of Watershed by immersion,
imagine a landscape with catchment basins being immersed in a lake and a hole is pierced at
the local minimum of each catchment basin. Water will fill up the basins start with their local
minima. Dams are built at points where water coming from different basins would meet.
When water reaches the highest altitude in the landscape, the immersion process is stopped.
At a result, the landscape is partitioned into regions separated by dams, called watershed
lines or watersheds [7]. Grayscale images can be imagined as such landscapes made of pixels
with various altitudes (0-255). A binary image is produced by the Watershed Transform, 1

(black) is assigned to dams, or watersheds, and 0 (white) assigned to regions surrounded by
dams.

Figure-2: Watersheds, Minima, Basins [6]

Sequential Watershed Transform

The sequential Watershed algorithm implemented in this paper consists of following steps:

1. Read in the image file (.txt) and store image data in a matrix array
2. Find the minimum and maximum altitudes (pixel values) of the input grayscale image
3. Initialize the output image, each pixel in the output image is assigned to the constant

INIT (-1)
4. Start with the minimum altitude, assign new distinct labels to each of these minimum,

a label is any integer greater than 0
5. Exam each pixel at the next higher altitude

a. If none of its neighbors is labeled (-1), label it as a new local minimum by
assigning a new label to it (any integer > 0)

-1 -1 -1

-1 ? -1

-1 -1 -1

-1 -1 -1

-1 2 -1

-1 -1 -1

Figure-3

b. If its neighbors are labeled and all neighbors have the same label, label it as a
basin pixel by assigning the label of its neighbors to it

10 10 -1

-1 ? 10

-1 -1 10

10 10 -1

-1 20 10

-1 -1 10

Figure-4

c. If its neighbors are labeled and neighbors have different labels, label it as a
watershed point

5 5 5

-1 ? 5

7 -1 5

5 5 5

-1 13 5

7 -1 5

Figure-5

6. Repeat 3 until the maximum altitude is reached, all pixels in the maximum altitude
are labels as watershed points

7. Produce the binary image by giving all watershed points the value 0 (black) and all
non-watershed points the value 1 (white)

8. Write the binary output image to a file (.txt)

Steps 4 to 6 are the immersion process. In step 5, each pixel’s neighbors are read to
determine the final value for the pixel. However, the number of neighbors read can be varied.
When all 8 neighbors are read, it is called 8-connectivity; and 4-connectivity for 4 neighbors,
Figure-6. The implementation of Watershed for this paper uses 8-connectivity. 4-connectivity
has the potential of reducing computation, and communication when the algorithm is
parallelized. Lastly, edge pixels of the image are ignored for ease of implementation. The
pseudo code for the sequential Watershed Transform implementation is shown below in
Figure-7.

N1 N2 N3

N4 ? N5

N6 N7 N8

 N1

N2 ? N3

 N4

8-Connectivity 4-Connectivity

Figure-6: connectivity

#define INIT -1
#define WATERSHED 0

int inputImage[m][n]; //storage input image matrix
int outputImage[m][n]; //storage output image matrix

main()
{

read input image file, inputImage[m][n] = image file;

find minimum and maximum altitudes of the input image;

initialize the output image, outputImage[m][n] = INIT;

for(altitude <= the maximum altitude)
{
 If(inputImage[m][n] == altitude)
 {
 If(no labeled neighbors)
 outputImage[m][n] = a new label;
 if(same labeled neighbors)
 outputImage[m][n] = neighbors’ label;
 if(different labeled neighbors)
 outputImage[m][n] = WATERSHED;
 }
 altitude++;
}

If(outputImage[m][n] != WATERSEHD) //output binary image
 outputImage[m][n] = 1;

write output image to file, image file = outputImage[m][n];

}
Figure-7: Pseudo code for sequential Watershed Transform with block diagram

Grayscale Image

Find min & max
altitudes (pixels)

Initialize output
image

Immersion

Output binary
image

The result of the Watershed implemented for this paper is shown here in Figire-5(c). A
grayscale image of Taj Mahal (300x300) is segmented. The result of MatLab implementation is
also show here in Figure-5(b) for comparison purpose.

(a) Taj Mahal (300x300) (b) MatLab Watershed (c) Sequential Watershed

Figure-8: MatLab Watershed vs. implemented sequential Watershed

Parallel Watershed Transform

There are two major classifications of current parallel implementations of the Watershed
Transform: domain decomposition and functional decomposition [7]. Domain decomposition
divides the image into sub-images and distributes them across processors, and each processor
uses the sequential algorithm to process its assigned sub-image. Domain decomposition is
more portable than functional decomposition in the sense that one decomposition result of an
image can be used for many algorithms if they are processing the same image, thus domain
decomposition is used for this paper. Two dominant parallel programming models exist:
message-passing programming model and shared-memory programming model. In message-
passing model, tasks and data are assigned to processors, and processors interact with each
other by initiating explicit communication calls (i.e. MPI_Send() and MPI_Receive()). In
shared-memory model, all processor shared a common memory, and processors interact with
each other by simply reading and writing to the shared memory space. Shared-memory
programming model is used for this paper. Lastly, Unified Parallel C (UPC) is used to write
parallel programs for both image segmentation algorithms.

Parallelization of the Watershed algorithm is done by dividing the input image matrix into p
strips of sub-matrices (p = # of processors), and each processor applying Watershed to one
sub-matrix, Figur-9. In other words, every processor runs the same program but processes
different data. Data allocation is done statically before run time. The reason for dividing the
image into strips of columns is that the number of rows is usually smaller than the number of
columns (i.e. 480x640), thus frequency of communication is a little smaller than dividing the
image into slices of rows.

0

1

…

p-2

p-1

Figure-9: Image data domain decomposition

Among the steps described previous for the sequential Watershed, only steps 3 to 6 are
parallelized. Steps 1 and 8, reading from and writing to an image file, require parallel I/O [8].
Steps 1 and 8 are not parallelized because their execution times are assumed to be negligible
compare to immersion time, and the complexity of parallel I/O render the effort not
worthwhile. Step 2, finding the minimum and maximum altitudes of the image, is not
parallelized because two global shared variables are used to store the minimum and maximum
altitudes, and locks are needed to prevent more than one processors trying to write to the
same memory location at the same time; locks would introduce overhead that might be worse
than execute the step sequentially. Barriers are also used in the parallel program to
synchronize all processors and making sure no one gets too far ahead of the others. Barriers
introduce overhead naturally, but they are necessary to ensure the correctness of the final
result.

Figure-10: Parallel Watershed

Experiments and Results

The Marvel machine in the HCS lab is used to conduct experiments to quantify the
performance of the parallel algorithms. Marvel has 8 AMD Opteron 880 Dual-core processors
(2.4GHz), which give a total of 16 processors. The communication among processors is
supported by the HyperTransport link. Marvel also has a 32GB of shared-memory.

A 300x300 grayscale image, Figure-11(a), is first used to test the performance of the parallel
Watershed algorithm. The segmented image, Figure-11(c), is produced when 6 processors are
used. The execution times of the program for various numbers of processors are also
measured to quantify the speedup. As discussed previously, not all parts of the parallel
program is being executed in parallel, thus only execution time and speedup of the
(parallelized) immersion process of the Watershed algorithm are measured, Figure-12(a). The
resulted speedup is not as good as expected and it flattens out as the number of processor
increases. In conclusion, the implementation of the parallel Watershed algorithm is not
scalable. A larger image (1236x1500) is also tested, and the result produced gives the same
conclusion, Figure-13.

Parallelized

Grayscale Image

Find min & max altitudes (pixels)

Initialize output image

Immersion

Output binary image

(a) Taj Mahal (300x300) (b) MatLab Watershed (c) 6-processors Watershed

Figure-11

(a) Watershed Immersion Time (b) Watershed Immersion Speedup

Figure-12

(a) Watershed Immersion Time (1236x1500) (b) Watershed Immersion Speedup (1236x1500)

Figure-13

The performance of the parallel Watershed algorithm is analyzed by the Parallel Performance
Wizard [9] to look for possible optimization opportunities. Figure-14 shows the profile
metrics pie chart produced by PPW for the parallel Watershed running on 5 processors.
Figure-14 also justifies the earlier assumption made during parallelization that the immersion
time would dominate the execution time of the whole program. Based on Amdahl's law, in

order to speed up the algorithm, the obvious choice would be to speed up the immersion
process of Watershed.

Figure-14: Watershed on 5 processors (1236x1500) profile metrics

One approach to reduce the execution time of the immersion process is to reduce the number
of neighbors being accessed for each pixel (step 5). The new immersion process is
implemented using 4-connectivity (4 neighbors are access) instead of 8-connectivity in the
original immersion process. However, the results produced by the Watershed with 4-
connecitivity show that the execution time of the immersion process is not reduced, Figure-15;
this result is not expected. Since the new immersion process did not improve the performance
of the Watershed algorithm, it is discarded.

Figure-15: 8-connectivity vs. 4-connectivity

Immersion

4-Connectivity 8-Connectivity 5 processors

Another approach can be used to reduce the execution time of Watershed is to hide remote
accesses with computation by pre-fetching ghost zones [8], Figure-16. For the Watershed
algorithm with 8-connectivity, each pixel in the ghost zone would require three remote
accesses of neighbor pixels. However, this approach is not implemented after the realization
that remote access is not the cause of non-scalability of the Watershed algorithm; the
immersion time is not reduced even if remote neighbor pixels are not accessed.

Figure-16: Ghost zone optimization [8]

K-Means Clustering Algorithm

K-Means Clustering algorithm clusters the image data set into k subsets of pixels; each subset
has a center value which is the average of all pixels in the subset, thus k subsets resulted in k
centers total. A pixel is grouped into a subset by first calculating the distances between the
pixel and each center, and then the pixel is grouped into the subset that has the closest
center. After one pass through the image, error is calculated, and the clustering process is
stopped when the error converged to a value; error is the sum of the squared distances
between all pixels in a subset and the subset’s center.

Sequential K-Means Clustering Algorithm

The sequential K-Means Clustering algorithm implemented for grayscale images consists of
following steps:

1. Read in the image file (.txt) and store image data in a matrix array
2. Find the minimum and maximum pixel values of the input image
3. Initialized K centers with the results from step 2
4. For each pixel

i. calculate its distance to each center
ii. cluster the pixel into the subset that has closest center

5. Calculate new K centers; each new K center is the average of all pixel values in its
subset

6. Calculate new error, the sum of the squared distances between all pixels in a subset
and the subset’s center

7. Repeat steps 4 to 6 until error converged to a value
8. Write the output image to an image file (.txt)

The pseudo code for the sequential K-Means Clustering implementation is shown below in
Figure-17.

#define K
int inputImage[m][n]; //storage input image matrix
int outputImage[m][n]; //storage output image matrix

main()
{

read input image file, inputImage[m][n] = image file;
findMinMaxPixels();
initialize centers, center[K];

while(error is not converged)
{
 for(each pixel inputImage[m][n])
 {
 distance = |inputImage[m][n] – center[K]|;
 outputImage[m][n] = closest center[K];
 }

 new center[k] = ;

 error = ;
}

write output image to file, image file = outputImage[m][n];

}
Figure-17: Pseudo code for K-Means Clustering algorithm with block diagram

The clustered image of K-Means for a grayscale image is not as visually obvious as a clustered
color image, Figure-18. For a color image, K-Means reduces its original number of colors to K
colors. For a grayscale image, K-Means reduces its original 256 possible levels down to K
levels. As a result, K-Means effectively reduces the information content of an image while
preserving its important features.

(a) Taj Mahal (b) Sequential K-Means

Figure-18: K-Means clustered images

Grayscale Image

Find min & max
pixel values

Initialize K
centers

Clustering

Output
clustered image

Parallel K-Means Clustering Algorithm

The implementation of the parallel K-Means Clustering algorithm uses the same
parallelization approach (discussed previously) used for Watershed algorithm, data domain
decomposition. The input image is again being partitioned into p (# of processors) strips and
distribute over p processors, Figure-9. Only steps 4 to 7 (clustering) of the sequential K-Means
algorithm are parallelized because they dominate the total program execution time, Figure-
19. In step 6 of the sequential K-Means, the sum of all pixels in a subset and the total number
of pixels are used to calculate new centers. Since pixels belong to a subset might be
distributed across the image (which is distributed across processors), shared memory locations
are allocated to store those values. Any processor can update the sum of a subset by adding a
pixel to it, thus lock is used to prevent processors from writing to the same memory location.

Figure-19: Parallel K-Means

Experiments and Results

The Marvel machine is also used to conduct experiments and quantify the performance of
parallel K-Means algorithm. The images produced by both sequential and parallel K-Means are
almost the same, Figure-20.

(a) Taj Mahal (b) Sequential K-Means (c) K-Means, 5 processors

Figure-20: Sequential and parallel K-Means

Grayscale Image

Find min & max pixel values

Initialize K centers

Clustering

Output clustered image

Parallelized

The performance of the parallel K-Means is shown below in Figure-21; while the clustering
process appears to have a linear speedup, the whole program run time does not. The pie
charts in Figure-22 also shows that while the clustering take up most of the total program
execution time in the sequential case; overheads are significant when 5 processors are used.
These overheads are locks (upc_lock & upc_unlock) and synchronization (upc_wait). In order
to improve the performance of the parallel K-Means algorithm, it is necessary to reduce the
use of locks. Synchronization is a side effect of locks, thus reducing locks would effectively
reduce wait time as well. Scalability is also an issue. When more processors are used, more
contention would result because more processors would try to write to the same memory
location simultaneously. The overhead would dominate even if the clustering time shows a
linear speedup.

Figure-21: Performance analysis of sequential and parallel K-Means

1 processor 5 processors
Figure-22: K-Means

Clustering

Clustering

The use of locks is reduced by instead of updating shared variables when each pixel is
accessed, local variables are used and the accumulated local results are updated to the
shared variable after all pixels are processed. The results obtained after the optimization
show a significant reduction in overhead. Figure-23 compares the overhead with and without
lock optimization with the same number of processors. The synchronization overhead indeed
is significantly reduced as well with the reduction in lock overhead.

5 processors, before locks optimization 5 processors, after locks optimization
Figure-23: Overhead reduction with locks optimization

Performance analysis of the optimized parallel K-Means shows good scalability and almost
negligible overhead, Figure-24. Also, close to linear speedup is achieved by the optimized
parallel K-Means, Figure-25.

Figure-24: Optimized K-Means

Clustering

 1 2 3 4 5 6 10 15
 Number of Threads

K-Means Execution Time K-Means Speedup

Figure-25: K-Means Speedup

K-Watershed (K-Means Clustering + Watershed Transform)

The over-segmentation issue of Watershed is more apparent when it is applied to large images,
Figure-26. However, the issue of over-segmentation can be addressed by combining K-Means
with Watershed. K-Means is first applied to the grayscale image to reduce its gray levels, and
then Watershed is applied to the K-clustered image to produce a final segmented image,
Figure-27.

Taj Mahal (1236x1500) MatLab Watershed

Figure-26: Over-segmentation of Watershed

Taj Mahal (1236x1500) K-clustered Final Segmented Image

Figure-27: K-Watershed

K-Means Watershed

The performance of K-Watershed can be predicted from previous performance analyses of K-
Means and Watershed algorithms. The K-Means part would have a near linear speedup,
whereas the Watershed part would have a poor speedup, and Watershed would become the
bottleneck for the speedup of K-Watershed. The performance analysis of K-Watershed shows
that it is indeed the case, Figures 28 &29.

Figure-28: K-Watershed

(a) Clustering & Immersion Execution Time (b) Clustering & Immersion Speedup

(c) K-Watershed Total Program Execution Time (d) K-Watershed Total Program Speedup

Figure-29: Execution time and speedup

 1 2 3 4 6
 Number of Threads

Conclusion

K-Means Clustering and Watershed Transform image segmentation algorithms have been
studied and parallelized. The performances of these two parallel algorithms are also analyzed.
Optimizations are also attempted for both algorithms when non-ideal performances are
observed. Optimization for Watershed is attempted but without improvement in performance,
whereas optimization for parallel K-Means improve its performance significantly. As a result,
the parallel Watershed implementation exhibits poor scalability, while the parallel K-Means
implementation achieves a close to linear speedup. Lastly, the over-segmentation problem of
Watershed is addressed by combining K-Means and Watershed algorithms. The resulted
algorithm, K-Watershed, inevitably inherits the performances of its parent algorithms. The
speedup of K-Watershed is limited by the poor speedup of Watershed.

References

[1] T. Saegusa, T. Maruyama, “Real-Time Segmentation of Color Images Based on the K-Means
Clustering on FPGA”, International Conference on Field-Programmable Technology, 2007.
[2] S. Eom, V. Shin, B. Ahn, “Cellular Watersheds: A Parallel Implementation of the
Watershed Transform on the CNN Universal Machine”, ICICE Trans. Inf. & Syst., Vol.E90-D,
No.4 April 2007.
[3] A. Moga, A. Bieniek, H. Burkhardt, “Parallel Watershed Transformation Algorithms for
Image Segmentation”, Parallel Computing 24, 1998.
[4] D. Trieu, T. Maruyama, “A Pipeline Implementation of a Watershed Algorithm on FPGA”,
International Field Programmable Logic and Applications, 2007.
[5] H.P. Ng, S.H. Ong, K.W.C Foong, P.S. Goh, W.L. Nowinski, “Medical Image Segmentation
Using K-Means Clustering and Improved Watershed Algorithm”, IEEE Southwest Symposium on
Image Analysis and Interpretation, 2006.
[6] L. Vincent, P. Soille, “Watersheds in Digital Spaces: An Efficient Algorithm on Immersion
Simulations”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 13, No. 6,
June 1991.
[7] J. Roerdink, A. Meijster, “The Watersehd Transform: Definitions, Algorithms and
Parallelization Strategies”, Fundamenta Informaticae 41, 2001.
[8] S. Chauvin, P. Saha, F. Cantonnet, S. Annareddy, T. El-Ghazawi, “UPC Manual v1.2”, High
Performance Computing Laboratory, George Washington University.
[9] A. Leko, M. Billingsley, “Parallel Performance Wizard User Manual”, High-Performance
Computing & Simulation Research Lab, University of Florida, 2007.

