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a b s t r a c t

A new short-term time series forecasting method based on the identification of skeleton algebraic sequences

is proposed in this paper. The concept of the rank of the Hankel matrix is exploited to detect a base fragment

of the time series. Particle swarm optimization and evolutionary algorithms are then used to remove the

noise and identify the skeleton algebraic sequence. Numerical experiments with an artificially generated and

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Time series prediction, especially short time series prediction,
is a challenging problem in many fields of science and engineer-
ing. Many techniques exist for time series forecasting. In general,
the objective of these techniques is to build a model of the
process and then use this model on the last values of the time
series to extrapolate past behavior into future. Forecasting pro-
cedures include different techniques and models. The use of
general exponential smoothing to develop an adaptive short-term
forecasting system based on observed values of integrated hourly
demand is explored in [1]. A self-organizing fuzzy neural network
is used to predict a real-time short-peak and average load in [2].
Day-ahead prices are forecasted with genetic-algorithm-optimized
Support Vector Machines in [3]. Artificial neural networks (ANN) are
used for day-ahead price forecasting in restructured power systems
in [4]. A fuzzy logic based inference system is used for the prediction
of short-term power prices in [5]. A hybrid approach based on ANN
and genetic algorithms is used for detecting temporal patterns in
stock markets in [6]. Short-time traffic flow prediction based on
ll rights reserved.
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chaotic time series theory is developed in [7]. The radial basis
function ANN with a nonlinear time-varying evolution particle
swarm optimization (PSO) algorithm is used to forecast one-day
ahead and five-days ahead of a practical power system in [8]. PSO
algorithms are employed to adjust supervised training of adaptive
ANN in short-term hourly load forecasting in [9]. A new class of
moving filtering techniques and adaptive prediction models that are
specifically designed to deal with runtime and short-term forecast of
time series, which originate from monitors of system resources of
Internet based servers, is developed in [10]. A generalized regression
neural network based on principal components analysis is used
for electricity price forecasting in [11]. A technique based on
Self-Organizing Map neural network and Support Vector Machine
models is proposed for predicting day-ahead electricity prices in
[12]. Although the search for a best time series forecasting method
continues, it is agreeable that no single method will outperform all
others in all situations.

It is well known that the Hankel matrix, named after Hermann
Hankel, is widely used for system identification when given a
sequence of output data a realization of an underlying state-space
model is desired. A first solution to this challenging theoretical
problem that became known as the state-space realization
problem was provided in 1965 in [13]. The key tool for solving this
problem is the Hankel matrix, whose factorization into the product
of an observability matrix and controllability matrix is known as
the Ho–Kalman realization method [13]. The Hankel matrix-based
models are appropriate to describe linear input/output mappings by
infinitely many parameters, in general, since they might be
obtained directly from available input/output data on the system.
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It took years of research to go from the theoretical results described
in [13] to a numerically reliable realization algorithm [14]. The
combination of deterministic realization theory based on the
factorization of the Hankel matrix, with the theory of Markovian
and innovations representations, gave rise to the stochastic theory
of minimal realizations. The stochastic realization problem was
studied intensively during the early 1970s in connection with
innovations theory and spectral factorization theory [15,16].

Many new innovative applications based on the Hankel matrix
have been developed in diverse areas of science and engineering.
Gathering outputs from an impulse-response simulation into a
generalized Hankel matrix and its singular value decomposition
(SVD) helps to obtain reduced order models for high dimensional
linear dynamical systems [17]. Hankel matrix is used to expand
the original time series into the trajectory matrix of the system in
[18]; singular value decomposition of the trajectory matrix helps
to forecast paroxysmal events. Hankel transform of an integer
sequence is defined in [19] and used to classify certain integer
sequences. A Hankel matrix approach is used for dynamical
systems identification from time series data in [20]. All these
techniques are based on the assumption that the underlying
state-space realization of the system can be described by some
sort of analytical model of a dynamical system.

A new approach to the identification of a numerical sequence is
proposed in [21]. The concept of the Hankel rank of a sequence is
proposed in [21]. It is important to note that the Hankel rank of a
sequence is a concept independent from the state-space realization
of the system. The Hankel rank just describes algebraic relationships
between elements of the sequence without pretending to approx-
imate the analytical model of an underlying dynamical system;
moreover, these algebraic relationships are exact.

The Hankel rank is used to express solutions of nonlinear
differential equations in forms comprising ratios of finite sums of
standard functions [22–24]. We will exploit the Hankel rank for
the identification of the skeleton algebraic progression in the time
series and use this information to forecast future values of that
time series. This paper is organized as follows. The concept of the
algebraic progression is presented in Section 2; the forecasting
strategy is developed in Section 3; computational experiments
and the selection of parameters of the forecasting method is done
in Section 4; computational experiments are discussed in Section
5 and concluding remarks are given in the Section 6.
2. The definition of the rank of a sequence

Let S be a sequence of real or complex numbers:

S : ¼ ðx0,x1,x2,. . .Þ : ¼ ðxk; kAZ0Þ ð1Þ

A subsequence of S is denoted by Sj; j¼0,1,2,y:

ðxj,xjþ1,xjþ2,. . .Þ : ¼ Sj ð2Þ

It can be noted that S¼S0. The Hankel matrix H can be
constructed from the sequence S:

H : ¼

x0 x1 x2 � � �

x1 x2 x3 � � �

� � � � � � � � � � � �

2
64

3
75 ð3Þ

Minors HðmÞj of H are defined as follows:

HðmÞj : ¼ ½xrþ s�2þ j�1r r,srm ¼

xj xjþ1 � � � xjþm�1

xjþ1 xjþ2 � � � xjþm

� � �

xjþm�1 xjþm � � � xjþ2m�2

2
66664

3
77775 ð4Þ

Determinants of these minors are denoted by dðmÞj :
detHðmÞj ¼ dðmÞj .
Definition 1. The rank of a subsequence Sj is such that the natural
number mj satisfies the following condition (if the rank exists):

d
ðmjþkÞ

j ¼ 0 ð5Þ

for all kAN; when d
ðmjÞ

j a0.
We will use the following notation:

mj ¼Hrðxj,xjþ1,. . .Þ ¼HrSj ð6Þ

If such number mj does not exist, we will note that the
subsequence Sj does not have a rank: HrSj:¼þN.

Definition 2. The rank of a sequence S is a number m0 if only
m0oþN:

HrS¼m0 ð7Þ

Otherwise, the sequence S does not have a rank:

HrS¼ þ1 ð8Þ

Comment 1. By definition we will assume that

Hrð0,0,0,. . .Þ : ¼ 0 ð9Þ

Example 1. Let S:¼(1,1,1,0,0,y). Then, HrS¼HrS0¼3; HrS1¼2;
HrS2¼1; HrSj¼0 for j¼3,4,y

Example 2. Let S:¼(j; jAZ0). Then, dð1Þj ¼ 9j9¼ j; dð2Þj ¼

j jþ1

jþ1 jþ2

�����
�����¼�1; but dðmÞj ¼ 0 for m¼3,4,y for all jAZ0. Therefore

HrS¼HrSj¼2 for all jAZ0.

Example 3. Let S:¼(j!; jAZ0). Then, HrS¼HrSj¼þN for all jAZ0.
Thus, the given sequence of factorials does not have a rank.

Theorem 1. Let us assume that the rank of the subsequence Sj is

HrSj¼m; moþN. Then it is possible to construct the characteristic

determinant of the subsequence Sj [21]:

DðmÞSjðrÞ : ¼

xj xjþ1 � � � xjþm

xjþ1 xjþ2 � � � xjþmþ1

� � �

xjþm�1 xjþm � � � xjþ2m�1

1 r � � � rm

������������

������������
ð10Þ

and the characteristic algebraic equation of the subsequence Sj [21]:

DðmÞSjðrÞ ¼ 0 ð11Þ

The roots of Eq. (11) can be calculated: rkAC; k¼1,2,y, r, where

recurrence indexes of these roots are nk; nkAN do satisfy the equality

n1þn2þ � � � þnr ¼m . Then the following equality holds true:

xn ¼
Xr

k ¼ 1

Xnk�1

l ¼ 0

mkl

n

l

� �
rn�l

k ; n¼ j,jþ1,jþ2,. . . ð12Þ

where coefficients mklAC; k¼1,2,y,r and l¼0,1,y,nk�1 can be

determined from a system of linear algebraic equations that can be

formed from equalities Eq. (12), assuming the expressions of elements

xn1,xn2,y,xnm of the subsequence Sj where indexes of these elements

satisfy inequalities jrn1on2o � � �onmoþ1 . Moreover, such

system of linear algebraic equations has one and only solution.

The rigorous proof of Theorem 1 is given in [21].

Definition 3. The set of elements xj, xjþ1, xjþ2,y,xjþm which does
satisfy Eq. (12) is called a fragment of algebraic progression.
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Algebraic progressions generalize arithmetic progressions
(a0þ jd; jAZ0) with Hr(a0þ jd; jAZ0)¼2 and geometric progres-
sions (a0lj; jAZ0) with Hr(a0lj; jAZ0)¼1.

Definition 4. A subsequence Sj is an algebraic progression if it’s
all elements satisfy equalities in Eq. (12).

Corollary 1. A random sequence does not have a rank.

The proof is straightforward. Let us assume that a random
sequence has a rank. Then, according to Theorem 1, it is an
algebraic progression. Thus, the dynamics of the sequence is
deterministic, which contradicts the definition of a random
sequence.

Corollary 2. Let the rank of a sequence (xk; kAZ0) is m and a

sequence (ek; kAZ0) is a random sequence. Then, Hr(xkþek;

kAZ0)¼þN.

The proof is straightforward. Let us introduce a sequence
yk:¼xkþek; kAZ0. Let us assume that the rank of this sequence
exists: Hr(yk; kAZ0)¼m1oþN. Now, let us construct the
sequence ((yk�xk); kAZ0). The multiplication of an algebraic
sequence by a finite scalar or the summation of two algebraic
sequences produces an algebraic sequence [21]. Thus, the
sequence ((yk�xk); kAZ0) is an algebraic sequence, which contra-
dicts the definition of a random sequence.
3. The forecasting strategy

Let us assume that 2nþ1 observations are available for
building a model of the process and then using this model to
extrapolate the past behavior into the future:

x0,x1,x2,. . .,x2n�1,x2n ð13Þ

where x2n is the value of the observation at the present moment.
Having an uneven number of observations one can construct a
Hankel minor Hðnþ1Þ

0 :

Hðnþ1Þ
0 ¼

x0 x1 � � � xn

x1 x2 � � � xnþ1

� � �

xn xnþ1 � � � x2n

2
66664

3
77775 ð14Þ

Let us assume that detHðnþ1Þ
0 a0 (�ıf detHðnþ1Þ

0 ¼ 0 then the
sequence could be an algebraic progression and the identification
of x2nþ1 would be straightforward). How one could build a model
of the process using Eq. (12) if the sequence in Eq. (13) is not an
algebraic progression?

Let us make another assumption. Let the sequence in Eq. (13)
is produced by adding noise to an algebraic progression. In other
words, we make a proposition that

xk : ¼ ~xkþek; k¼ 0,1,2,. . .,2n ð15Þ

where ek; k¼0,1,2,y,2n is an additive noise, and

det ~H
ðnþ1Þ

0 ¼ det

x0�e0 x1�e1 � � � xn�en

x1�e1 x2�e2 � � � xnþ1�enþ1

� � �

xn�en xnþ1�enþ1 � � � x2n�e2n

2
66664

3
77775¼ 0 ð16Þ

here

~H
ðmÞ

j : ¼ ½xrþ s�2þ j�erþ s�2þ j�1r r,srm ð17Þ

Moreover, we assume that the infinite sequence ~xk; k¼0,1,2,
y is an algebraic progression and this sequence is some sort of a
skeleton sequence determining the global dynamics of the time
series.
Natural is the question—how this additive noise ek; k¼0,1,2,
y, 2n can be identified?. Elementary reasoning indicates that
there exists an infinite number of solutions to this problem. Of
course, the goal is to minimize any distortions from the original
time series. Therefore, we introduce the fitness function for the
set of corrections {e0,e1,y,e2n}, which has to be maximized:

Fðe0,e1,. . .,e2nÞ ¼
1

a9detð ~H
ðnþ1Þ

0 Þ9þ
P2n

k ¼ 0 lk9ek9
; a40 ð18Þ

where

lk ¼
expðbðkþ1ÞÞP2n

j ¼ 0 expðbðjþ1ÞÞ
; k¼ 0,1,. . .,2n; b40 ð19Þ

It is clear that
P2n

k ¼ 0 lk ¼ 1; 0ol0ol1o � � �ol2n�1ol2n.

If det ~H
ðnþ1Þ

0 ¼ 0, the fitness function reaches its maximum at

e0 ¼ e1 ¼ � � � ¼ e2n ¼ 0 and F(0,0, y, 0)¼þN then. The parameter
a determines the penalty proportion between the magnitude of
the determinant and the sum of weighted corrections (both
penalties have the same weight when a¼1). Coefficients

l0,l1,y,l2n determine the tolerance corridor for corrections
e0,e1,y,e2n. All corrections would have the same weight if b¼0.
The larger the b is, the higher is the weight for the correction of
the observation at the present moment compared to past
moments. In other words, the toleration of changes for the
present moment is smaller compared to the toleration of changes
for past moments. That corresponds to the supposition that the
importance of the observation depends on its closeness to the
present moment.

It is clear that the identification of the set of corrections
{e0,e1,y,e2n} is not a straightforward computational task. First of
all it should be noted that the above stated problem does not have
a unique solution. Of course, corrections must be minimal, but we
also allow the determinant of the corrected Hankel matrix to be
not exactly equal to zero (Eq. (18)). In other words, we compute
pseudoranks of the corrected sequence and try to balance
between the magnitude of the determinant and the corrections.
Soft computing techniques are exploited for the determination of
the optimal set of corrections based on the fitness function
described by Eq. (18).

As soon as the sequence is corrected, one can use Eq. (12) to
compute future values of the sequence (even if the determinant of
the corrected sequence is not strictly equal to zero).

It can be noted that the presented forecasting technique
(though based on the Hankel matrices) does not use the concept
of a state-space model, or the concept of a dynamical system. This
is a nonlinear algebraic technique because the concept of Hankel
rank comprises nonlinear algebraic relationships. In other words,
our method uses a nonlinear algebraic identification technique of
skeleton sequences. Another important feature of the presented
forecasting technique is the necessity to identify the base frag-
ment of the sequence. In other words, the parameter n must be
fixed before the correction procedure is commenced. It is clear
that corrections can be executed for sequences of different
lengths. The goal is to select such sequence length (the base
fragment) that the required corrections would be minimal. These
questions, together with detailed discussions on the soft comput-
ing strategies, are presented in the next sections.
4. Computational experiments with a test time series.

We will exploit evolutionary algorithms (EA) and particle
swarm optimization (PSO) algorithms for the identification of
the near-optimal set of corrections {e0,e1,y,e2n}. But initially we
construct an artificial test time series that will be used to tune
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parameters of these algorithms. First a periodic sequence is
formed (numerical values of seven elements in a period are
selected as 0.5; 0.7; 0.1; 0.9; 0.3; 0.2 and 0.8); this sequence
represents a skeleton algebraic sequence. Next, we add random
numbers uniformly distributed in the interval [�0.15;0.15] to all
elements of that sequence (Fig. 1). This test time series will be
used for testing the functionality of the proposed forecasting
method.

The first task is to identify the base fragment of the time series,
which will be used to reconstruct the skeleton algebraic sequence.
This would be a trivial problem for the constructed periodic
sequence (the H-rank would be equal to 8), but the H-rank must
be identified for the time series with the additive noise. Fig. 2
represents the relationship between the absolute value of the
determinant of the Hankel matrix and the dimension of the
Hankel matrix. It can be seen that the determinant is not equal
to zero when the dimension is 8 (due to the additive noise).
Nevertheless, we fix the dimension of the Hankel matrix to 8
(n¼7; the length of the base fragment of the time series is
2nþ1¼15). The functionality of the time series forecasting
method for other dimensions of the Hankel matrix (for the same
time series) will be discussed in the following sections.

4.1. The selection of parameters for the PSO algorithm

PSO is an evolutionary computation technique based on the
simulation of social behavior, first introduced by Eberhart and
Kennedy in 1995 [25]. Through cooperation and competition
among the population, PSO optimization approaches can find
good solutions efficiently and effectively. Each individual in PSO is
treated as a volume-less particle (a material point) in the
D-dimensional space (we will use D¼2nþ1). Each particle in
PSO flies in the search space with a velocity that is dynamically
adjusted both to its own flying experience and the group’s flying
experience. The ith particle is represented by its coordinates as
Xi¼(xi1,xi2,y,xiD), i¼1,2,y, m where m is the population’s size.
The previous position giving the best fitness value of the ith
particle in its flight trajectory is recorded and represented as
Pi¼(pi1,pi2,y,piD). The index of the best particle among all
particles in the population is represented by symbol g. The
velocity of the ith particle is represented as Vi¼(vi1,vi2,y,viD).
Eq. (20) describes the velocity and position update equations for
the PSO population:

vid ¼w vidþc1 r1ðpid�xidÞþc2 r2ðpgd�xidÞ;

xid ¼ xidþvid; i¼ 1,2,. . .,D ð20Þ
Fig. 1. The test time series (the solid line) and the periodic time series (the

dashed line).
where r1 and r2 are two random variables distributed evenly in
the interval [0,1]; c1 and c2 are two positive constants, called
acceleration constants, representing weightings of the stochastic
acceleration terms that pull each particle toward the particle’s best

and the global best; and w is the inertia weight balancing the
global and the local search.

Early experience with PSO optimization (trial and error,
mostly) led to set acceleration constants c1 and c2 equal to
2.0 and w¼1 for almost all applications [26]. The inertia weight
was brought in to control the balance between the global and the
local exploration abilities in [27]; the recommendation was to use
w¼0.9. A large inertia parameter facilitates a global search, while
a small inertia parameter facilitates a local search.

In 1999 Clerc indicated that the use of the constriction factor K

(Eq. (21)) may be necessary to ensure convergence of the PSO
[28]:

vid ¼ Kðvidþc1 r1ðpid�xidÞþc2 r2ðpgd�xidÞÞ ð21Þ

where K ¼ ð2=ð92�j�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2�4j

p
9ÞÞ and j¼c1þc2; j44.

In all cases, where Clerc’s constriction method was used, j
was set to 4.1 and the constant multiplier K is thus 0.729. Shi and
Eberhart [29] noted that this is equivalent to using Eq. (20) with
w¼0.729 and c1¼c2¼1.494.

Convergence analysis and stability studies of PSO have been
reported by Trelea [30], where the inertia weight 0.6 with
c1¼c2¼1.7 outperformed the selection of parameters recom-
mended by Shi and Eberhart.

Anyway, despite numerous research efforts, the selection of
the parameters remains mostly empirical and depends on the
topology of the target function and/or on the structure of the
fitness function. We have selected three sets of the PSO para-
meters according to the recommendations in [26,28,30]: the
parameter set 1 with w¼0.9 and c1¼c2¼2; the parameter set
2 with w¼0.729 and c1¼c2¼1.494 as recommended by Clerc;
and the parameter set 3 with w¼0.6 and c1¼c2¼1.7 as recom-
mended by Trelea.

There have been no definitive recommendations in the litera-
ture regarding the swarm size in PSO. Eberhart and Shi indicated
that the effect of the population size on the performance of the
PSO method is of minimum significance. Most researchers use a
swarm size of 10–60, but there are no established guidelines [31].
For the purpose of comparing PSO and GA efficiency, the swarm
size that is used for PSO is the same as the population size in their
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equivalent GA. PSO swarm size is fixed to 50 particles compared
to 50 chromosomes in the GA population.

4.2. Computational experiments with PSO

As mentioned previously, the goal of optimization algorithms is
to maximize the fitness function defined by Eq. (18). We fix a¼1 in
Eq. (18), thus equalizing the balance between the magnitude of the
determinant of the Hankel matrix and the magnitude of corrections.
det ~H
ð8Þ

0 ¼ det

0:2381 0:9879 0:1422 0:9229 0:4330 0:1523 0:8345 0:3684

0:9879 0:1422 0:9229 0:4330 0:1523 0:8345 0:3684 0:8105

0:1422 0:9229 0:4330 0:1523 0:8345 0:3684 0:8105 0:1476

0:9229 0:4330 0:1523 0:8345 0:3684 0:8105 0:1476 1:0165

0:4330 0:1523 0:8345 0:3684 0:8105 0:1476 1:0165 0:3975

0:1523 0:8345 0:3684 0:8105 0:1476 1:0165 0:3975 0:2700

0:8345 0:3684 0:8105 0:1476 1:0165 0:3975 0:2700 0:7716

1 r1 r2 r3 r4 r5 r6 r7

2
666666666666664

3
777777777777775

¼ 0 ð22Þ
It is clear that a new set of near-optimal corrections {e0,e1,y,e2n} is
generated every time when the PSO algorithm is executed. Thus we
execute PSO algorithm 100 times, compute the forecasted value of
x15 (100 different estimates of x15 are produced in the process) and
calculate root mean square errors (RMSE) between the true value of
x15 and 100 forecasted estimates of x15 (Fig. 3). Results of computa-
tional experiments are presented in the first three rows of Table 1.
Best results are achieved with the third set of parameters at b¼0.5.
Fig. 3. The base fragment of the test time series (the thick solid line) and 100

forecasts of x15 (thin solid lines).

Table 1
RMSE of prediction errors produced by different methods for the artificial time series; b

the fitness function. Bold numbers identify best values of b for each of the methods.

Method b

0 0.25 0.5 0.75 1

PSO, set 1 0.1952 0.1950 0.1997 0.2071 0.2030

PSO, set 2 0.1892 0.1912 0.1903 0.1931 0.1954

PSO, set 3 0.1889 0.1911 0.1883 0.1929 0.1926

GA, b¼0 0.1899 0.1916 0.1919 0.1939 0.1878

GA, b¼2 0.1870 0.1885 0.1886 0.1883 0.1861
In order to clarify the procedure of the computation of a single
forecast, we present a detailed sequence of computations (with
the parameter set 3 and b¼0.5).

Initially, 2nþ1¼15 values of lk are computed according to
Eq. (18) (the first column in Table 2). The skeleton of the test
time series is presented in the second column; the test time series
itself—in the third column of Table 2. A single execution of PSO
algorithm produces a set of corrections listed in the fourth
column of Table 2. The characteristic equation then reads
and seven roots are listed in the first column of Table 3. It can be
noted that all roots are different (all recurrence indexes ni¼1;
i¼1,2,y,7) and thus Eq. (7) takes the following form:

xn ¼
X7

k ¼ 1

mk0rn
k ; n¼ 0,1,2,. . . ð23Þ
is the parameter determining the tolerance corridor for corrections e0,e1,y,e2n in

1.25 1.5 1.75 2 3 4

0.2029 0.1997 0.2022 0.2010 0.2038 0.2017

0.1999 0.1890 0.1957 0.1979 0.2029 0.1953

0.1906 0.1953 0.1970 0.1994 0.1948 0.1955

0.1883 0.1886 0.1921 0.1948 0.1904 0.2061

0.1886 0.1893 0.1882 0.1896 0.1888 0.1893

Table 2

Weights of corrections lk; elements of the periodic time sequence sk; elements of

the test time series xk; corrections ek; elements of the identified skeleton sequence

xk�ek; and the length of the base fragment 2nþ1¼15.

k lk sk xk ek xk�ek

0 0.0003590 0.5 0.3515 0.1133 0.2381

1 0.0005919 0.7 0.8419 �0.1460 0.9879

2 0.0009759 0.1 0.0464 �0.0958 0.1422

3 0.0016089 0.9 0.9416 0.0188 0.9229

4 0.0026526 0.3 0.3353 �0.0976 0.4330

5 0.0043735 0.2 0.0663 �0.0860 0.1523

6 0.0072106 0.8 0.8884 0.0538 0.8345

7 0.0118883 0.5 0.4526 0.0841 0.3684

8 0.0196005 0.7 0.8421 0.0316 0.8105

9 0.0323158 0.1 0.1423 �0.0053 0.1476

10 0.0532798 0.9 0.9644 �0.0521 1.0165

11 0.0878435 0.3 0.3967 �0.0007 0.3975

12 0.1448294 0.2 0.2573 �0.0127 0.2700

13 0.2387833 0.8 0.7659 �0.0057 0.7716

14 0.3936871 0.5 0.5141 0.0017 0.5124



Fig. 4. Forecasts of the test time series (dashed lines) when the length of the base

fragment in the algebraic sequence is underestimated (n¼6; A), determined

correctly (n¼7; B) and overestimated (n¼8; C).

Table 3
Roots of the characteristic equation ri and coefficients mi0.

i ri mi0

1 �0.8856þ0.3868i 0.2106þ0.1458i

2 �0.8856–0.3868i 0.2106–0.1458i

3 �0.2407þ1.0041i 0.0236–0.0738i

4 �0.2407–1.0041i 0.0236þ0.0738i

5 1.0037 0.5216

6 0.5843þ0.6880i �0.0227–0.0656i

7 0.5843–0.6880i �0.0227þ0.0656i
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The system of linear algebraic equations for the identification
of parameters mk0; k¼1,2,y,7 reads

1 1 1 1 1 1 1

r1 r2 r3 r4 r5 r6 r7

r2
1 r2

2 r2
3 r2

4 r2
5 r2

6 r2
7

r3
1 r3

2 r3
3 r3

4 r3
5 r3

6 r3
7

r4
1 r4

2 r4
3 r4

4 r4
5 r4

6 r4
7

r5
1 r5

2 r5
3 r5

4 r5
5 r5

6 r5
7

r6
1 r6

2 r6
3 r6

4 r6
5 r6

6 r6
7

2
666666666664

3
777777777775

U
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m40
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2
666666666664
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¼

0:2381

0:9879

0:1422

0:9229

0:4330

0:1523

0:8345

2
666666666664

3
777777777775

ð24Þ
and values of parameters mk0; k¼1,2,y,7 are presented in the
second column of Table 3. Finally, the forecasted value:

x15 ¼
X7

k ¼ 1
mk0r15

k ¼ 0:6510

ðthe actual value of the test time series is x15 ¼ 0:6437Þ

The forecasting horizon is fixed to 1; the window of observa-
tion is set to the base fragment of the time series. We travel with
this fixed window length step by step into the future. For a fixed
window of observation we forecast the next value 100 times. As
soon as 100 forecasts are available (at every time step), we
compute the algebraic mean of those forecasts and assume that
this is the actual forecasted value. Forecasts of the test time series
are shown in Fig. 4B.

So far all computational experiments have been performed
with n¼7 (the length of the base fragment of the test time series
is 15). Changing the length of the base fragment is an important
issue. We perform computational experiments with n¼6 and
n¼8 (Fig. 4A and C). It can be clearly seen that our method does
not work when the length of the base fragment is shorter than the
minimum length of the skeleton time series required to make the
determinant of its Hankel matrix equal to zero (Fig. 4A). Really, it
is impossible to forecast anything if the model of the process is
not adequate. On the other hand, if the length of the base
fragment is longer than the minimum length of the skeleton
series, the forecasting results are not so bad (Fig. 4C), but still
considerably worse compared to the optimal length results. It can
be noted that an algebraic sequence can be not only a periodic,
arithmetic or geometric progression, but algebraic progressions
also cover a much wider area of time series (another question
what is the H-rank of this time series). In general, a time series is
an algebraic progression if its development in time is governed by
some sort of deterministic model. Thus in principle, such a
concept of forecasting based on the identification of algebraic
sequences should be widely applicable.

4.3. Enhancement of the forecasting by deleting most deviant trials

As mentioned previously, the forecasted value is calculated as
the arithmetic mean of 100 trials. It is quite natural that some of
those trials could be inaccurate due to unsuccessful allocation of
the initial population, for example. One of the possibilities could
be to collect all 100 trials, to interpolate the forecasted results by
a Gaussian density function and then to use 3s or 2s rule to
delete most deviant trials. Unfortunately, experiments with the
test time series show that a hypothesis of Gaussian distribution
cannot be statistically proved with a satisfactory reliability (that
can be observed by a naked eye in Fig. 3).

Moreover, one should consider the fact that the proposed
forecasting method tries to identify the skeleton algebraic
sequence by correcting values of the time series in the base
fragment. If those corrections are very large, the predictions can
be poor simply due to the fact that the identified skeleton
sequence is far away from the original time series. Therefore,
we nominate most deviant trials, such trials whose forecasted
numerical value is far away from the arithmetic mean of all trials,
or whose sum of absolute values of corrections in the base
fragment is high compared to other trials. It is clear that a
specialized algorithm is necessary for the identification of most
deviant trials.

We propose a rather simple algorithm that is illustrated in
Fig. 5 where 100 forecasts of x15 are shown. The e-axis stands for
the sum of absolute values of corrections e0,e1,y,e2n; the vertical
x-axis stands for the actual forecasted value of x15 in each trial.
Initially, the mean and the variance of the sum of corrections and
the forecasts are calculated for all 100 trials. Then the scale of the
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vertical axis is changed in order to equalize dispersions in
mathematical coordinates in both axes (physical coordinates do
not change) in Fig. 5. In other words, the shape of the cloud of
Fig. 6. Forecasts of the test time series when PSO (n¼7; the parameter set 3;

b¼0.5) is used for the identification of corrections e0,e1,y,e2n: A—no trials are

deleted; B—10% of most deviant trials are deleted, and C—25% of most deviant

trials are deleted.

Fig. 5. A schematic diagram illustrating the deletion of the most deviant trials; e
stands for the sum of absolute values of corrections e0,e1,y,e2n; x stands for the

actual forecasted value of x15; the thick cross corresponds to the mass center of

the cloud of 100 trials; the thick horizontal line corresponds to the actual value of

x15; radii r1, r2 and r3 correspond to the deletion of 50%, 25% and 10% of trials,

respectively; thin crosses denote 10% deleted trials; and computational results

correspond to data presented in Fig. 3.
trials in Fig. 5 is expanded into a more or less circular type object.
Next, the mass center of the cloud is computed (it is denoted by a
plus marker in Fig. 5). Then we draw such a radius from the mass
center that the ratio of trials in the region limited by the circle
and two horizontal lines and the total number of trials is equal to
a predefined fraction (the radius r1 corresponds to 0.5; r2 to 0.75;
r3 to 0.9 in Fig. 5).

Computational experiments with the test time series and PSO
(n¼7; the parameter set 3; b¼0.5) show that the deletion of a
limited number of the most deviant trials can improve the
forecasting accuracy (Fig. 6).
4.4. Evolutionary algorithms versus PSO

Natural is the question if other optimization techniques could be
used to identify a near-optimal set of corrections e0,e1,y,e2n. We
exploit evolutionary algorithms (EA) and compare their functionality
to results produced by PSO. Though application of EA is probably not
the best way to solve every problem, but some of the advantages of
EA include that it deals with a large number of variables, works with
experimental data and analytical functions and optimizes variables
with extremely complex cost surfaces [32].

Every chromosome in our computational setup comprises a set
of corrections (2nþ1 genes represented as real numbers). The
initial population comprises m chromosomes with randomly
generated values of genes (m¼50 is used in our experiments);
values of genes are limited in the interval [�0.2;0.2]. The fitness
function associated with every chromosome is defined by Eq.
(18). An even number of chromosomes is selected to the mating
population from the initial population. We use a random roulette
method for the selection of chromosomes [33]. The higher the
fitness value of a chromosome, the higher is a chance that this
chromosome will be selected to the mating population. Never-
theless, a probability that a chromosome with a low fitness value
will be selected is not zero. Also, several copies (clones) of the
same chromosome can be selected to the mating population. All
chromosomes are grouped into pairs after the selection process.

The crossover between two chromosomes in a pair is executed
for all pairs in the mating population. We use a one-point
modified b-crossover method [34] (the location of the point is
random for every pair). We not only exchange genes, but also let
two new offspring chromosomes to become more or less similar
to each other and to their parent chromosomes. The b-crossover
algorithm can be described by the following equations:

tðkþ1Þ
j,L � : ¼ round

b
bþ1

tðkÞj,L þ
1

bþ1
tðkÞj,R

� �
;

����
tðkþ1Þ

j,R � : ¼ round
1

bþ1
tðkÞj,L þ

b
bþ1

tðkÞj,R

� �
;

����
tðkþ1Þ

j,L þ : ¼ round
1

bþ1
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b
bþ1

tðkÞj,R

� �
;

����
tðkþ1Þ

j,R þ : ¼ round
b

bþ1
tðkÞj,L þ

1

bþ1
tðkÞj,R

� ����� ð25Þ

where k is the generation number; tðkÞj,L is a jth gene of the left

parent chromosome in the pair; tðkÞj,R is a jth gene of the right

parent chromosome in the pair; tðkþ1Þ
j,L is the jth gene of the left

daughter chromosome; tðkþ1Þ
j,R is the jth gene of the right daughter

chromosome; the minus sign in the subscript denotes that the jth
gene is above the crossover point; and the plus sign in the
subscript denotes that the jth gene is below the crossover point.
In any case, jth genes of daughter chromosomes will fit into

interval tðkÞj,L ; t
ðkÞ
j,R

h i
. The b-crossover algorithm converges to the
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classical crossover algorithm when b tends to zero or to infinity

(both offspring chromosomes are equal when b¼1).
The crossover operator is not usually applied to all pairs of

chromosomes in the intermediate population [35]. A crossover
coefficient k characterizes a probability that the crossover proce-
dure will be executed for a pair of chromosomes in the mating
population. A mutation procedure is used to prevent convergence
on one local solution and helps to seek the global solution. The
mutation parameter m (0rmo1) determines the intensity of the
mutation process [32]. We run through genes of all chromosomes
in the current generation and generate a random number evenly
distributed in an interval [�0.2;0.2] for every gene.

4.5. The selection of parameters of EA

In general, the selection of parameters of evolutionary algo-
rithms is an empirical process, though some common principles
are described in [23,36]. The following parameters of the evolu-
tionary algorithm must be pre-selected: the crossover coefficient
k; the mutation parameter m; the parameter of similarity b and
the number of generations. We will use recommendations for a
classical model of an evolutionary algorithm [33]. The crossover
coefficient k will be selected from an interval [0.6;0.8] and the
mutation parameter m from an interval [0;0.15]. As mentioned
previously, a numerical value of the parameter of domination
b¼N (or b¼0) corresponds to the classical model of evolutionary
algorithms. We will investigate the interval 1rbr5 instead.
There are no definitive methods of establishing how many
generations an evolutionary algorithm should run for. Problem
may converge on good solutions after only 80 generations; we use
40 generations in our computational experiments.

A single execution of an evolutionary algorithm produces one
set of corrections e0,e1,y,e2n. Clearly, the outcome depends on the
initial population of chromosomes (among other random factors).
Similarly to PSO, we execute EA (at fixed values of parameters) for
100 times, calculate 100 predictions of x15 and compute RMSE of
the prediction. We test the accuracy of the prediction by varying
parameters k, m and b (Table 4); the best result is achieved at
k¼0.7; m¼0.15 and b¼2. This set of parameters is fixed for
further experiments.

As mentioned previously, the functionality of the PSO based
prediction method can be enhanced by selecting appropriate value
of the parameter b in Eq. (18), which defines the tolerance corridor
for the set of corrections and deleting most deviant trials. Similar
Table 4
RMSE of prediction errors for the artificial time series when EA are used for the

identification of corrections e0,e1,y,e2n.

j l b¼0 b¼1 b¼2 b¼3 b¼4 b¼5

0.6 0.001 0.1992 0.1974 0.1973 0.1962 0.1967 0.1964

0.6 0.005 0.1960 0.1956 0.1955 0.1955 0.1946 0.1961

0.6 0.01 0.1941 0.1943 0.1939 0.1932 0.1935 0.1937

0.6 0.05 0.1910 0.1893 0.1897 0.1904 0.1912 0.1914

0.6 0.1 0.1891 0.1894 0.1888 0.1889 0.1902 0.1900

0.6 0.15 0.1903 0.1889 0.1891 0.1893 0.1903 0.1893

0.7 0.001 0.1952 0.1965 0.1970 0.1951 0.1959 0.1966

0.7 0.005 0.1963 0.1950 0.1948 0.1949 0.1951 0.1960

0.7 0.01 0.1953 0.1938 0.1937 0.1941 0.1949 0.1956

0.7 0.05 0.1927 0.1891 0.1882 0.1904 0.1906 0.1908

0.7 0.1 0.1904 0.1894 0.1896 0.1894 0.1911 0.1901

0.7 0.15 0.1899 0.1890 0.1888 0.1901 0.1886 0.1901

0.8 0.001 0.2000 0.1958 0.1967 0.1957 0.1965 0.1955

0.8 0.005 0.1961 0.1944 0.1957 0.1952 0.1953 0.1960

0.8 0.01 0.1935 0.1942 0.1940 0.1931 0.1948 0.1949

0.8 0.05 0.1935 0.1893 0.1910 0.1902 0.1907 0.1904

0.8 0.1 0.1889 0.1890 0.1906 0.1900 0.1896 0.1897

0.8 0.15 0.1894 0.1894 0.1893 0.1900 0.1891 0.1906
enhancements can be performed for the EA based prediction
method and are described below. Computational experiments with
the test time series confirm that best results are achieved at b¼1
(Table 1) and by deleting 10% of most deviant values (Fig. 7).

In principle, the process of the identification of the algebraic
sequence could be described using statistical techniques (Fig. 5).
But it is important to note that we do not filter the noise out of
the signal. The principle of noise removal is completely different
here. The general idea is to identify the nearest algebraic
sequence by making minimal deformations of the original signal
(Eq. (18)). Some sort of statistical analysis is possible for the test
time series (where the algebraic sequence is known beforehand).
But the statistical assessment of the noise removal becomes hard
when dealing with real-world time series because we do not
know how the base fragment of the algebraic sequence looks like
before the noise is removed. Moreover, one trial may lead to one
algebraic sequence and another trial may lead to a different
algebraic sequence even for the same initial conditions (Fig. 3).
We map the corrections and delete the most deviant trials using
previously described techniques instead. This procedure can be
considered as a generalized statistical analysis though it does not
require the identification of a particular probability density
function describing the distribution of trials. We leave the process
to evolutionary algorithms and tune parameters of these algo-
rithms, whereas the fitness function defined by Eq. (18) (and of
Fig. 7. Forecasts of the test time series when EA (n¼7; k¼0.7; m¼0.15; b¼2;

b¼1) are used for the identification of corrections e0,e1,y,e2n: A—no trials are

deleted; B—10% of most deviant trials are deleted; C—25% of most deviant trials

are deleted.
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course the RMSE of the prediction) measures the performance of
the method.

Finally, the overall design procedure of the proposed method
can be generalized by the following structural algorithm:
(0)
Tabl
RMS

Th
pr
me

RM
Identify the length of the base fragment of the skeleton
algebraic sequence (the parameter n).
(1)
 Check if the time series is longer than the base fragment (the
method cannot be used otherwise).
(2)
 Select the penalty proportion between the magnitude of the
determinant and the sum of weighted corrections in the
fitness function (we set a¼1).
(3)
 Determine the tolerance corridor for corrections (we set
b¼1).
(4)
 Forecast the next element of the sequence x2nþ1.
(4.1) Repeat 100 times:

(4.1.1) Compute a single set of corrections {e0,e1,y,e2n}
(parameters of EA are fixed to the following
values: k¼0.7; m¼0.15; b¼2).

(4.1.2) Construct the characteristic equation, compute
its roots.

(4.1.3) Compute a single forecast of x2nþ1 using Eq.
(12).

(4.2) Delete most deviant trials.
(4.3) Compute the averaged forecast of x2nþ1.
e 5
E of fo

e
edictio
thod

SE
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n
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me

0.1
(5)
 Shift the observation window by 1 step to the right and return
to step (4).
Fig. 8. Forecasts of the test time series by ARIMA(4,1,3) (A); the MA method (B);

the SES method (C) and the compound method (D).
5. Computational experiments

5.1. The test time series with uniform noise

We continue computational experiments with the test time
series and compare the functionality of our forecasting technique
with other methods. Experiments are carried out with Box–
Jenkins’s time series analysis procedure autoregressive integrated
moving average (ARIMA(4,1,3)) [37] as the experiments found the
4-1-3 architecture as the best model for the test time series (the
order of the autoregressive part is 4; the order of the integrated
part is 1 and the order of the moving average part is 3). RMSE of
the ARIMA prediction is 0.1307 (Table 5; Fig. 8A) and is about
1.3 times lower compared to our method (compared to Fig. 7B).
We start ARIMA predictions from the 15th element in order to
make better comparisons with our method.

It is apparent that ARIMA(4,1,3) outperforms our method.
Nevertheless, the ARIMA prediction (Fig. 8A) has an expressed
character of a moving average technique. Our method, on the
contrary, is based not on some sort of statistical algorithms but
performs local individual identification of the skeleton algebraic
progression for every time step. We have to admit that our
predictions are quite far from the real time series in some points
(what actually spoils the average assessment of the prediction
quality). But local fluctuations of the predicted time series by our
method give a much better representation of the character of the
real time series. For instance, our method would outperform
ARIMA if one would be interested to identify a day-ahead local
maximum and local minimum [2].
the test time series.

e proposed

thod

ARIMA(4,1,3) MA SES The

compound

method

776 0.1307 0.2602 0.3482 0.1290
On the other hand, it can be noted that the nature of the
method based on the identification of an algebraic sequence and
its extrapolation to future involve much more complex analysis
than a simple detection of a local maximum and a local minimum.
Our method cannot be compared to a primitive technique based
on bare looking at past minimum and maximum values of the
time series (after the noise is minimized). Such an approach based
on past minimum and maximum values could work for a periodic
sequence where the period is quite short. It is clear that periodic
sequences are algebraic sequences. But the set of algebraic
sequences is much wider; periodic sequences are just trivial
examples of algebraic sequences.

It could be possible to conciliate the moving average feature of
ARIMA(4,1,3) and the local variability of our method by calculat-
ing an arithmetic mean of predictions by both methods at each
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point; the results are presented in (Fig. 8D). The RMSE of such a
compound prediction is better compared to ARIMA(4,1,3)
(Table 5). But what is even more important, the variability of
the predicted time series is much closer to the real time series.

We also compare the functionality of our method with
predictors based on the moving average [38] and the exponential
Fig. 9. Forecasts of the test time series with Gaussian noise by the proposed

method (A); ARIMA(5,0,3) (B); the MA method (C); the SES method (D) and the

compound method (E).
smoothing [39]. An often used industrial technique to remove
inherent random variation in a collection of data is the simple
moving average smoothing (MA) [40]:

St ¼
1

k

Xk�1

i ¼ 0

xt�i ¼ St�1þ
xt�xt�k

k
ð26Þ

where St is a smoothed value at the moment t; and k is a predefined
constant. We set k¼2 because experiments found that RMSE of
prediction errors produced by MA method are lowest compared to
other values of k. The initial prediction of x2 is calculated from
(x0,x1). Then we shift the observation window incrementally and
compute subsequent predictions using Eq. (26). RMSE of prediction
errors produced by MA is 0.2602 (Table 5); the results are presented
in Fig. 8B. It is clear that simple smoothing of data cannot outper-
form our method in this situation.

Exponential smoothing is a simple and pragmatic approach to
forecasting, whereby the forecast is constructed from an expo-
nentially weighted average of past observations [39]. Single
exponential smoothing (SES) method assigns exponentially
decreasing weights as the observation gets older:

St ¼ axt�1þð1�aÞSt�1 ð27Þ

where t¼1,2,3,y; S1¼x0 and a is the smoothing factor, 0rar1
[38;41]. The selection of a best value of the parameter a is
discussed in [39]; we choose the default value a¼0.5. A single
smoothing may not excel if a trend or seasonality is present in
data; double or even triple exponential smoothing may produce
better results than [38]. The test series does not contain a clearly
expressed trend or seasonality. Therefore we run computational
experiments with a single exponential smoothing. The produced
RMSE is 0.3482 (Table 5); the results are presented in Fig. 8C.

5.2. The test time series with Gaussian noise

Computational experiments are repeated with the test series,
but we add Gaussian noise (zero mean and variance equal to 0.1)
instead of uniform noise to the same periodic sequence. The
H-rank of the updated test series is set to 8; the length of the base
fragment is 15 (n¼7;2nþ1¼15). Evolutionary algorithms are
used to identify skeleton algebraic sequences; the same set of
parameters is used as in previous experiments.

We compare the functionality of our method with ARIMA,
moving average, exponential smoothing and the compound
method (Fig. 9). Experiments show that the (5,0,3) architecture
is the best model for ARIMA (the order of the autoregressive part
is 5; the order of the integrated part is 0 and the order of the
moving average part is 3) and k¼2 is the best parameter for the
MA method. RMSE for different methods are presented in Table 6.
Again, ARIMA(5,0,3) outperforms our method, but the variability
of our method is better. Finally it can be noted that the compound
method would be a preferred one (from five methods shown in
Fig. 9) if day-ahead forecasts would be considered.

5.3. Anderson dry bulb temperatures time series.

The first task is to identify the length of the base fragment of
Anderson dry bulb temperatures time series [42]. The first
Table 6
RMSE of forecasts of the test time series with Gaussian noise.

The
prediction
method

The proposed

method

ARIMA(4,0,2) MA SES The

compound

method

RMSE 0.1771 0.1544 0.2523 0.3475 0.1288



Table 7
RMSE of forecasts of the Anderson dry bulb temperatures time series.

The
prediction

The proposed

method

ARIMA(3,0,3) MA SES The

compound
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minimum of the determinant of the Hankel matrix is reached
when the dimension of the Hankel matrix is equal to 11 (n¼10;
the length of the base fragment of the time series is 2nþ1¼21).
We fix this length of the base fragment for the whole time series,
Fig. 10. Forecasts of the Anderson dry bulb temperatures time series by the

proposed method (A); ARIMA(3,0,3) (B); the MA method (C); the SES method

(D) and the compound method (E).

method method

RMSE 0.9204 0.4556 0.6321 0.6117 0.6079
keep the parameters of the EA (selected for the test time series)
and perform iterative one-step forward predictions (Fig. 10A).

Experiments show that the (3,0,3) architecture is the best
model for ARIMA and k¼5 for the MA method. Forecasting results
are shown in Fig. 10; RMSE for different methods are given in
Table 7. ARIMA(3,0,3) outperforms our method again. But if
ARIMA(3,0,3) had an expressed character of a moving average
technique, it clearly averages all upper spikes of the Anderson
series. The SES method produces rather good results also, but one
can observe a definite phase delay between the original time
series and the forecasted series (what could be definitely a
negative factor if one-step-ahead forecasts would be considered).
Though the RMSE of the compound prediction is worse compared
to ARIMA(3,0,3) but the variability of the predicted time series is
much closer to the real time series.

5.4. Monthly basic iron production in Australia (thousand tones)

January 1956–August 1995

The first minimum of the determinant of the Hankel matrix of
monthly basic iron production in Australia (thousand tones) January
1956–August 1995 [42] is reached when the dimension of the
matrix is equal to 6 (n¼5; the length of the base fragment of the
time series is 2nþ1¼11). Parameters of the EA are kept unchanged;
iterative one-step forward predictions are shown in Fig. 11A (we
divide all elements of the original time series by 100).

Experiments show that the (5,1,4) architecture is the best model
for ARIMA and k¼9 for the MA method. Forecasting results are
shown in Fig. 11; RMSE for different methods are given in Table 8. In
general, our method performs well only in some subintervals of the
original time series. It seems that the algebraic relationships
governing the evolution of the time series exist only in some parts
of the data. There are some places where instantaneous errors
produced by our method are quite high. The performance of
ARIMA(5,1,4) is better in that respect (though it underestimates
local maximums and minimums). The compound method (the
average between the proposed method and the ARIMA(5,1,4))
shows good variability and the predicted time series follows the
dynamism of the original time series. It must be noted that the
RMSE of the SES method is comparable to the RMSE of the
compound method (Table 8), but still worse that the RMSE of
ARIMA(5,1,4). Thus it would not be advantageous to construct a
compound method by averaging predictions produced by our
method and the SES method.

In general, forecasting results could be further improved if few
instantaneous errors produced by our method could be decreased.
As mentioned previously, one of the possible reasons causing these
instantaneous errors could be an abrupt change of algebraic rules
defining the evolution of the original time series (and caused by
multiple seasonal and cyclic components). It can be noted that a
simple trend in the time series does not influence the functionality
of the method. Algebraic sequences generalize arithmetic and
geometric progressions (Definition 3). Therefore the computation
of the rank of a sequence produced by adding an arithmetic
progression and a stationary deterministic process does not cause
any problems. But we had fixed the length of the base fragment



Table 8
RMSE of forecasts of the the monthly basic iron production in Australia time

series.

The
prediction

method

The proposed

method

ARIMA(5,1,4) MA SES The

compound

method

RMSE 0.6727 0.4181 0.6403 0.4702 0.4759

Fig. 11. Forecasts of the monthly basic iron production in Australia time series by the

proposed method (A); ARIMA(5,1,4) (B); the MA method (C); the SES method (D) and

the compound method (E).

M. Ragulskis et al. / Neurocomputing 74 (2011) 1735–17471746
for the whole time series at the beginning of the experiment.
The ability of dynamical adaptation to the changing algebraic
environment (adaptive variation of the length of the base fragment)
could enhance the quality of the prediction by our method and is a
definite objective of future research.
6. Concluding remarks

A method for a short-term time series forecasting based on the
identification of skeleton algebraic sequences is proposed in this
paper. It can be noted that this method is especially effective
when the time series is short. There are not always sufficient data
to train the models, therefore such an approach when the
skeleton algebraic sequence is identified from a short time series
helps to extract as much information about the model of the
process as possible and then use this model to extrapolate past
behavior into future.

It is quite natural to expect that every method has a specific
application area where its strengths are unleashed in the optimal
manner. Our method is based on the proposition that a determi-
nistic law is embedded into every time series. It is clear that our
method would produce poor results for such time series where
the randomness is higher that the deterministic model of the
process and it becomes impossible to perform a reliable identi-
fication of algebraic sequences. Also, our method cannot be
effectively used if the available time series is shorter than the
minimum required length of a skeleton algebraic sequence that
determines the model of the process.

It is quite probable that the forecasting accuracy of the
proposed method can be improved by further advancement of
algorithms used to identify the skeleton sequence. Moreover, as it
is now, the length of the base fragment of the time series is fixed.
Thus the presented forecasting method is based on yet another
assumption that the process is stationary. Introduction of variable
lengths of base fragments at different locations of the forecasted
time series and advancements in the identification of the skeleton
sequences remain definite targets of the future research, while
the primary objective of this paper is to present the concept of an
algebraic sequence and its applicability in short-term forecasting
applications.
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