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ABSTRACT

Design of DNA arrays for very large-scale immobilized poly-
mer synthesis (VLSIPS) [8] seeks to minimize effects of unin-
tended illumination during mask exposure steps. [9, 14] for-
mulate this requirement as the Border Minimization Prob-
lem and give methods for placement (at array sites) and
embedding (in the mask sequence) of probes in both syn-
chronous and asynchronous regimes. These previous meth-
ods do not address several practical details of the appli-
cation and, more critically, are not scalable to the O(10®)
probes contemplated for next-generation probe arrays. In
this work, we make two main contributions:

e We give improved dynamic programming algorithms that
perform probe embedding to minimize the number bor-
der conflicts while accounting for distance- and position-
dependent border conflict weights, as well as the presence
of polymorphic probes in the instance.

o We describe and experimentally validate the “engineer-
ing” of a scalable, high-quality asynchronous placement
heuristic (which is moreover easily parallelizable) for DNA
array design. Our heuristic is enabled by a novel ap-
proach for simultaneous re-placement and optimal re-
embedding of an “independent set” of probes within a
small window of the array.

In the process, we draw a number of useful parallels from
the 40-year history of placement heuristics in VLSI CAD.
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Experimental results on both randomly generated and in-
dustry testcases confirm that our approach is highly scalable
and gives placements of higher quality compared to previous
methods.

Categories and Subject Descriptors

J.3 [Life and medical sciences]: Biology and genetics; J.6
[Computer-aided engineering]: Computer-aided design

General Terms

Algorithms, performance, design, experimentation

Keywords
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1. INTRODUCTION

DNA probe arrays are used in a wide range of genomic
analyses, including gene expression monitoring, single nu-
cleotide polymorphism (SNP) mapping, and sequencing by
hybridization (see, e.g., [16] for a survey). As described
in [8], during very large-scale immobilized polymer synthe-
sis (VLSIPS) the sites (cells) of a DNA probe array are
selectively exposed to light in order to activate oligonu-
cleotides for further synthesis. The selective exposure is
achieved by a sequence M1, M, ..., Mk of masks, with each
mask M; consisting of nontransparent and transparent re-
gions corresponding to the masked and exposed array sites.
Each mask induces deposition of a particular nucleotide s; €
{A,C,T,G} at its exposed array sites. The nucleotide de-
position sequence S = s1S2...sk corresponding to the se-
quence of masks is therefore a supersequence of all probe
sequences in the array. Typically, S is assumed to be peri-
odic, e.g., S = (ACGT)*, where (ACGT) is a period and k
is the (uniform) length of all probes in the array. The design
of DNA arrays raises a number of combinatorial problems,
such as probe selection [15, 18], probe placement [9, 14],
manufacturing quality control [1, 12, 19], etc.

Border minimization in DNA array design. We
study the Border Minimization Problem introduced in [9]
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Figure 1: (a) 2-dimensional probe placement. (b) 3-dimensional probe embedding. The nucleotide deposition
sequence S = (ACT) corresponds to the sequence of three masks M;, M> and M3. In each mask the masked
sites are shaded and the borders between exposed and masked sites are thickened. (c) Periodic nucleotide
deposition sequence S. (d) Synchronous embedding of probe CTG into S; shaded sites denote the masked
sites in the corresponding masks. (e-f) Two different asynchronous embeddings of the same probe.

and addressed further in [14]. Optical effects (diffraction,
reflections, etc.) can cause unwanted illumination at masked
sites that are adjacent to the sites intentionally exposed to
light - i.e., at the border sites of transparent regions in the
mask. This results in synthesis of unforeseen sequences in
masked sites and compromises interpretation of experimen-
tal data. To reduce such uncertainty, one can exploit free-
dom in how probes are assigned to array sites.! The Bor-
der Minimization Problem (BMP) [9, 14] seeks a placement
of probes that minimizes the sum of border lengths in all
masks.

As in [14], we view array design as a three-dimensional
placement problem (Figure 1(a-b)): two dimensions repre-
sent the site array, and the third dimension represents the
sequence S. Each layer in the third dimension corresponds
to a mask that induces deposition of a particular nucleotide
(A, C, G, or T); a probe is embedded within a “column”
of this three-dimensional placement representation. Border
length of a given mask is computed as the number of con-
flicts, i.e., pairs of adjacent exposed and masked sites in the
mask. Given two adjacent embedded probes p and p’, the
conflict distance d(p,p’) is the number of conflicts between
the corresponding columns. The border length of the em-
bedding is the sum of conflict distances between adjacent
probes.

We also distinguish two types of DNA array synthesis. In
synchronous synthesis, the i** period (ACGT) of the peri-
odic nucleotide deposition sequence S synthesizes a single
(the **) nucleotide in each probe. This implies a unique
and trivially computed embedding of each probe p in the se-
quence S; see Figure 1(d). On the other hand, asynchronous
array synthesis permits arbitrary embeddings, as illustrated
in Figure 1(e-f).

Previous work. The work of [14] proposed an epitaz-
ial growth method for probe placement which improves over
the previous TSP + 1-threading heuristic of [9]. Epitaxial
growth places a “seed” probe at the center of the array and
adds probes around the seed to greedily minimize the num-

'Reducing unwanted illumination improves the signal to
noise ratio in image analysis after hybridization, and thus
permits smaller array sites or more probes per array [11].

ber of induced conflicts. Optimal dynamic programming
methods were also proposed which enable re-embedding of
one or two adjacent probes to minimize conflicts with al-
ready embedded neighbors. Together, these achieve up to
23-30% reductions in border length versus [9]. Finally, lower
bounds on optimum synchronous and asynchronous solu-
tions were given.

There are two main motivations for our present work.
First, previous methods [9, 14] have at least quadratic time
complexity and are hence not scalable. Scalable methods
for DNA array design are of great interest, since arrays with
up to half a million probes are currently in commercial pro-
duction, and up to 100 milion probes are envisioned for the
near future [16]. Second, previous methods fail to address
a number of very important practical details of the applica-
tion, such as distance- and position-dependent border con-
flict weights, or the presence of polymorphic probes in the
instance [11].

Our contributions. In this work, we develop high-
quality, scalable methods for designing large DNA arrays.
We give improved algorithms for the Border Minimization
Problem [9, 14] that can account for distance- and position-
dependent border conflict weights, as well as the presence of
polymorphic probes (SNPs) in the instance. These methods
allow more accurate modeling of the array design problem,
and hence form the basis of more practically relevant heuris-
tics. We also describe and experimentally validate the “engi-
neering” of a scalable, high-quality asynchronous placement
heuristic for DNA array design. We demonstrate the value
of simple ordering-based methods for initial placement. We
also propose the use of scalable sliding-window and row-
epitaxial techniques having antecedents in large-scale inte-
grated circuit placement [7, 10, 17, 21], as well as a local
improvement operator based on reassignment of an “inde-
pendent” set of probes. A recurring motif is the analogy
between silicon chip design and DNA chip design, point-
ing to the value of technology transfer between the 40-year
old VLSI CAD field and the newer realm of probe array
design. Experimental results confirm the linear scaling of
runtime complexity and better solution quality compared
to best previous methods.



Organization of the paper. In the next section, we
note several aspects of a practical array placement formu-
lation, and describe a dynamic programming algorithm for
optimum embedding of polymorphic probes given embed-
dings of the probes in their local neighborhood. In Section
3, we describe the engineering of a scalable, high-quality
placement method. Section 4 gives experimental results on
both randomly generated and industry data. We conclude
with directions for future research.

2. PROBE EMBEDDING ALGORITHMS

The following extensions to the border length minimiza-
tion problem are important in practice, but have not been
addressed by previous works on the problem [9, 14].

1. Distance-dependent border conflict weights. Back-
reflection of light affects not only adjacent array cells,
but also cells that are as far as 3 cells apart [11]. This
implies that we should weight conflicts according to the
distance between cells.

2. Position-dependent border conflict weights. The
weight of border conflicts depends on the position in the
probe since contamination errors are more harmful in the
middle of the probe [11]. Suggested weights are given by
the square root of the distance to the closer endpoint (so,
conflict weight varies from 1 to v/12 in a 25-mer).

3. Polymorphic probes. Some of the synthesized DNA
probes occur both unmodified and mutated in the middle
position (e.g., for detection of single nucleotide polymor-
phisms in the target DNA or for reliability of the hy-
bridization test). To minimize border length the SNPs
are placed together, so the general BMP requires plac-
ing and aligning a mixture of single probes, 2- and 4-
ominoes.

Extending the methods in [14] to handle the first two ex-
tensions is straightforward; we focus on the last extension.
Define a probe to be a set of 1, 2, or 4 k-mers (SNPs) which
differ only in the middle position. We first describe em-
bedding of a probe consisting of a single k-mer, and then
generalize to the case of two or four SNPs per probe.

In this paper we assume that the SNPs in a probe are
always placed in adjacent cells forming 1x1, 2x1, or 2x2
rectangles, respectively. Furthermore, we assume that the
SNPs in a probe are always aligned to each other except for
the single position where the mutation occurs. Although the
optimum solution may not always satisfy these constraints,
imposing them should only lead to a very small loss in solu-
tion quality. We use the following notations:

e S = s;...sx= nucleotide deposition sequence

e k= length of probes (typically k = 25)

e ||g||;= number of non-blank letters among the first j
positions of embedded probe ¢

e h(c,c')= horizontal distance between cells ¢ and ¢

e v(c, )= vertical distance between cells ¢ and ¢/

o w: Ny x Ny — [0,1], finite support function® giving the
conflict weight between a masked cell and an unmasked

cell as a function of the horizontal and vertical distances
between them

2The support of a function f is the subset of its domain
where f has non-zero values.

Input: Nucleotide deposition sequence S = s1s2...Sk,

si € {Av Cv GaT}: prObe P =Ppip2...Pk, Pi € {A,C, GaT}v
probe location ¢p, and probe embeddings gc, ¢ # ¢p
Output: Minimum conflict weight along with a minimum
conflict embedding of p

1. Compute x;; and y;; foreach i =1,...,kand j=1,..., K
using (1) and (2)

2. cost(0,0) = 0; For ¢ = 1,...,k, cost(:,0) = oo
3. Forj=1,...,K do
cost(0, j) = cost(0,j — 1) + x4
Fori=1,...,k do
If p; = s; then cost(s,j) =
min{cost(4,j — 1)+ x5, cost(i—1,5—1)+y;;}
Else cost(i, j) = cost(i,j — 1) + x5

4. Return cost(k, K) and the corresponding embedding of p

Figure 2: The embedding algorithm for a probe with
no mutations

® w;, i =1,...,k, non-negative conflict weight multipliers
depending on the position of the erroneously inserted

nucleotide, e.g., w(7) = 4/min{s, k — i}.

The embedding algorithm for a probe p = {p1...px}
with no mutations (see Figure 2) is essentially computing
a shortest path in a directed acyclic graph G1 = (V1, Eh1)
defined as follows (see Figure 3).> The vertex set of Gy
is Vi = {0,...,k} x {0,...,K}, where k is the length of
p and K is the number of masks, i.e., the length of the
nucleotide deposition sequence S. The edge set of G is
E1 = Eporiz U Ediag, with

Ehoriz = {(4,j —1) = (4,7) |0<i<k, 0<j< K}
and
Ediag = {(i—=1,j-1) = (4,j) |[0<i <k, 0<j < K, pi = s;}

Note that each directed path from (0, 0) to (k, K) consists of
K edges, k of which are diagonals. Furthermore, each such
path P corresponds to an embedding of p into S as follows.
If the j** arc of P is horizontal, the embedding has a blank
in j** position. Otherwise, the ji* arc must be of the form
(i—1,7—1) — (i,5) for some 1 <3 < k, and the embedding
of p corresponding to P has p; = s; in the 4t position.

Let ¢, the array cell assigned to p, and, for every array
cell ¢ # ¢y, let g. be the embedded probe placed in c. In
other words, every g¢. is a sequence of length K = |S| over
the alphabet {A, C, G, T, b}, with the j" letter of g, being
either b (blank) or s;. We define the cost of a “horizontal”
edge (4,5 — 1) — (4,7) to be

Tij = w(z) Z

c#cp, (qe)j7#b

w(h(cpac)’v(cpac)) (1)

and the cost of a “diagonal” edge (i —1,7—1) — (4, j) to be
vi= . wlllelwhic,e)vee) (2)
c#ep, (ge)j=b

It is easy to verify that the total cost of a path P from (0, 0)
to (k, K) equals the weighted number of conflicts between

3The same underlying graph but with different edge costs is
used in [14].
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Figure 3: Directed acyclic graph G: representing possible embeddings of probe p = ACT into the nucleotide

deposition sequence S = ACTATACT.

the corresponding embedding of p and the surrounding em-
bedded probes.

THEOREM 1. The algorithm in Figure 2 returns the min-
imum conflict weight along with a minimum conflict embed-
ding of p in O(kK + KW) time, where W is the size of the
finite support of w.

PrOOF. The correctness follows by observing that the al-
gorithm implicitly computes a shortest path from the source
node (0, 0) to the sink node (k, K) using a topological traver-
sal of G1. Since steps 2—4 take O(kK) time, the runtime is
dominated by computing the O(kK) edge costs in Step 1.
Since each z;; is the product of two values, one depending
only on ¢ and the other only on j, calculating all values z;;
can be done in O(kK + KW) time. Similarly, y;;’s are in-
dependent of ¢ and can be computed in O(kK + KW) time
overall. []

‘We now consider a probe p consisting of two SNPs, namely,
P1---Pm—1PmPm+1---Pk and P1 ... Pm—1DmPm+1 - - - Pk- Let
¢p and ¢, be two adjacent array cells in which the two SNPs
must be placed. Besides embedding the two SNPs into the
nucleotide deposition sequence, embedding p also requires
deciding which SNP goes into ¢, and which one goes into
¢p. Finding the optimum embedding of p can be cast as a
shortest path problem in a new directed acyclic graph G»
(see Figure 4) obtained from G by

e Deleting vertices (m,j), 7 = 0,..., K and the edges in-
cident to them;

e Changing the cost of each remaining horizontal edge
(1,5 —1) = (3,5) to

w(t) Z (w(h(cp,c),v(cp, c)) +w(h(cp,c),v(ch,c))) (3)

where the sum is taken over all ¢ ¢ {cp,cp} such that
(ge); # b

e Changing the cost of each remaining diagonal edge (i —
1,7 —-1) — (3,j) to

w(llgelly) Y (wlh(e, cp), v(e, p)) +w(h(e, &), v(c, &)
(4)

where the sum is taken over all ¢ ¢ {cp,cp} such that
()i =0

e Inserting 6(K + 1) new vertices (o, 3,j), where a,8 €
{&,Pm,Pm}, @ # B,and j =0,...,K;

e Inserting, forevery j = 1,..., K, horizontal edges («, 8, j—
1) = (o, B, j) with cost

w(m—1+lal) Y w(h(cy,c),v(cp,c))

+ wim—1+8)) Y w(h(cy,0),v(c,¢))  (5)
where the sums are taken over all ¢ ¢ {¢cp, ¢, } such that
(ge); #b

e Inserting diagonal edges
- (m—1,5-1) = (pm, &, J), respectively (m—1,5—1) —
(Pin,€,7), for every j such that p, = s;, respectively
Pl = sj, each with cost
wo(m = Dw(h(ch, cp),(ch )

+ w(llgelli) Y w(h(e cp),v(e ) (6)
where the sum is taken over all ¢ ¢ {cp, c;,} such that
(ge); = b;

- (m_laj_l) - (€,pm,j), respectively (m_laj_l) -

(g,Pm,J), for every j such that p., = s;, respectively
Dh, = 8;, each with cost

w(m — Dw(h(cp, ¢p), v(cp, )
+ wllgelly) Yo wlhle &) 0(e ) (D)
where the sum is taken over all ¢ ¢ {cp, ¢, } such that

(ge)i = b;

- (Eap;'rnj - 1) - (pm:p;'naj): reSPeCtiVely (eipm)j -
1) = (Phn;Pm, j),for every j such that p, = s;, re-
spectively p,, = s;, each with cost

w(m)w(h(c;,, CP)1 ’U(C;, Cp))
+ w(llgell) Y w(b(e, cp),v(c,cp))  (8)
where the sum is taken over all ¢ ¢ {cp, ¢} such that
(ge)j = b

- (pfmasaj_l) - (pfmapm)a respectively (pma Eaj_]-) —
(Pm,Pim,J), for every j such that p., = s;, respec-
tively p, = s;, each with cost

w(m)w(h(cp, ¢p), v(cp, c))
+ w(llaelly) Y- wlhle, &) 0(ed)  (9)

where the sum is taken over all ¢ ¢ {cp, ¢, } such that
(ge)i = b



(0.0

(0.8)

NN N N

(Ce0) (Ce8)
N
(€10 (CT8)

(30)

(398

Figure 4: Directed acyclic graph G> representing possible embeddings of probe p = A{C|T'}T into the nucleotide

deposition sequence S = ACTATACT.

- (pmap{m,] - 1) — (m+ 1’.7) and (plmypmij - 1) -
(m + 1, ), both with cost given by (4), for every j
such that pm41 = s;.

The definition of G2 ensures that each directed path from
(0,0) to (k,K) corresponds to an embedding of the two
SNPs of probe p. Since the costs of the O(kK) edges of
G2 can still be computed in O(kK + KW) time, it follows
that the minimum conflict embedding of a two SNP probe
can be computed in O(kK + KW) by an algorithm similar
to the one in Figure 2.

The optimal embedding of a probe with four SNPs can
be found by a shortest path computation in a graph that
similarly represents all possible assignments of the four SNPs
to the four array cells, as well as the possible embeddings
of the SNPs into the nucleotide deposition sequence. The
graph still contains O(kK) edges, and edge costs can still
be computed in O(kK + KW) time. Therefore, we get:

THEOREM 2. The minimum conflict embedding of a two
or four SNP probe can be computed in O(kK + KW) time.

3. ENGINEERING OF ASCALABLE, HIGH-
QUALITY PLACEMENT HEURISTIC

In this section, we describe the “engineering” of near linear-
time, yet high-quality probe placement heuristics. A recur-
ring motif in our discussion is the value of technology trans-
fer between the 40-year VLSI design literature and the newer
field of DNA chip design. We point out analogies that in-
spire useful heuristics, as well as distinctions that hamper
direct transfers.

We begin by noting two design goals: (i) to enable scal-
ing to 100 million or more placeable objects in the near
future (say, within the current or next generation of work-
stations), and (ii) to enable easy parallelism (implying near-
linear speedup on workstation clusters) wherever possible.
We next note that the placer design can be made according

to two basic functions [21]: initial placement and (iterative)
placement improvement. Each of these functions can apply
to (i) the assignment of probes to array sites, and/or (ii) the
embedding of probes in the mask sequence S. Within an
overall placement metaheuristic, the requirements for one
function are strongly dependent on the implementation of
the other function.

3.1 Scalable Initial Placement

The method of [9] uses multi-fragment greedy TSP and
“l-threading,” along with synchronous embedding (allow-
ing Hamming distance between probes to capture border
conflict cost), to place probes into array sites. Since the
TSP heuristic is based on a complete distance matrix, its
time complexity is quadratic in the number of probes. The
method of [14] is based on epitaxial growth, which also re-
quires quadratic time complexity since every unplaced probe
is a candidate for the site currently being filled. The con-
stant factor in the asymptotic analysis is quite large, since
border conflict costs are computed by dynamic program-
ming (asynchronous embedding) rather than by Hamming
distance (synchronous embedding).

o QObservation 1: Ezisting methods can be “trivially scaled.”
“Trivial scaling” partitions the set of probes and the
probe array each into K subsets (“chunks”), then solves
for K independent initial placements using a given previ-
ous method. While runtime remains linear in the number
of probes, two types of losses are incurred: (i) from lack
of freedom of a probe to move anywhere other than its
subset’s assigned chunk of array sites, and (ii) lack of
optimization on borders between chunks.

o Observation 2: Linear-time tours (orderings) are possi-
ble. Bounded probe length (e.g., 25-mers) and the fi-
nite alphabet from which probes are formed enable fast,
linear-time analogs of the TSP tour used by [9]. For
example, the spacefilling curve (Gray code) ordering of



[3] may be applied, and indeed has had success in the
VLSI context [2]. An even simpler ordering is found by
linear-time radix sort; after this “tour” has been found,
1-threading and succeeding steps may follow as in [9, 14].

o Observation 3: Probe array instances have no natural
topology or locality. Unlike VLSI placement, where the
placeable objects (Boolean gates) are connected by a
sparse “netlist” of logic signals, DNA placement instances
have no natural topology or locality in the probe sets.
Moreover, computing a useful topology (e.g., from clus-
tering or other analyses) is difficult to perform in near-
linear time. Thus, a large number of VLSI placement
methods such as force-directed, spectral (using eigenvec-
tors of the Laplacian of a weighted adjacency matrix),
etc. - as well as their well-scaling multilevel variants [5]
- are not obviously applicable to DNA arrays.!

Based on Observation 1, we have implemented trivial scal-
ing with the best previous method of [14] and chunk sizes up
to 50x50. However, the results are worse than those of other
methods proposed below, and we do not consider trivial scal-
ing further. Based on Observation 2, we have implemented
a simple initial placement based on radix sort followed by
the 1-threading of [9].°

3.2 Scalable Placement Improvement

In the early VLSI placement literature, (iterative) place-
ment improvement methods relied on “weak” neighborhood
operators such as pair-swap, leveraged by metaheuristics
such as simulated annealing. More recently, “strong” neigh-
borhood operators have been proposed which improve larger
portions of the placement. For example, the DOMINO ap-
proach [7] iteratively determines an optimal reassignment of
all objects within a given “window” of the placement. The
“end-case” placer of [4] uses branch and bound to optimally
reorder small sub-rows of a row-based placement. Extend-
ing such improvement operators to full-chip scale, such that
placeable objects can eventually migrate to good locations
within practical runtimes, is typically achieved by shifting
a fixed-size “sliding window” [7] around the placement; cf.
“cycling and overlapping” [10], “row-ironing” [4], etc.

For DNA arrays, an initial placement (and embedding) of
probes in array sites may be improved by changing the place-
ment and/or the embedding of individual probes. Guided
by the VLSI experience,® we focus on “strong” operators.

o Observation 4: Optimal probe re-embedding by itself is
scalable, but ineffective. Using the probe alignment (i.e.,
embedding) algorithms in Section 2 as subroutines, the
post-placement optimization algorithms of [14] can be
modified to address the practical extensions (weighting,

*Scalable clustering methods have been developed for anal-
ysis of large literatures or information spaces (e.g., [6]); we
have not yet examined their relevance to clustering and even-
tual placement of large sets of probes.

SIn the experimental discussion, we refer to this as “sorting
+ 1-threading.” We sort probes lexicographically by posi-
tion 1, position 2, etc. Quality can be improved by using a
space-filling curve embedding and by ordering lexicographi-
cally with respect to the positions that have highest conflict
weights, but we do not discuss such refinements below.
5And the intuition that randomly chosen pairs of optimally-
embedded probes are extremely unlikely to be swappable
with reduction in border cost.

polymorphism, etc.) noted at the beginning of Section
2. In particular, dynamic programming methods for op-
timal alignment enable us to apply the linearly scaling
“chessboard” algorithm of [14].” However, chessboard
re-embedding is weak, achieving only 0.02% reduction in
border length when applied after other methods that we
describe.

e Observation 5: Simultaneous probe re-placement and re-
embedding of an entire “window” is mot practical. Be-
cause the optimal alignment of a probe depends on the
alignments of its neighbors, there is no practical way to
simultaneously re-place and re-embed, say, six probes
that are placed in a 2x3 array of sites. Thus, analogs of
the DOMINO [7] and end-case placer [4] VLSI placement
approaches are, to our knowledge, infeasible.

o Observation 6: Simultaneous probe re-placement and re-
embedding of an “independent set” within a window is
practical. Driven by Observation 6, we propose the fol-
lowing novel method of improving the placement solution
within a small region of the array. While improvements
are still possible, we choose a set of “independent” ar-
ray cells (i.e., a set for which every two cells ¢, ¢’ satisfy
w(h(c,c),v(c,c)) = w(h(cd,c),v(c,c)) = 0), then reas-
sign the probes in these cells according to a minimum-
cost assignment, where the cost of assigning probe p to
cell cis given by the minimum embedding cost computed
using the algorithms in Section 2. For a set of ¢ indepen-
dent cells, computing all minimum-cost embeddings re-
quires O(t* (kK + KW)) time, while computing the min-
imum cost assignment requires an additional O(¢%) time.
As noted above, full-chip application with practical run-
time is achieved by iteratively choosing the independent
set from a “sliding window” that is moved around the
array.® The matching approach is a reminiscence of the
early work on electronic circuit placement [20, 13].

3.3 The Sliding-Window Matching Algorithm

We have implemented the “sliding window” method de-
scribed above, as follows. (1) We first radix-sort all probes
into the obvious lexicographic order and then perform 1-
threading as in [9]. (2) Then, for each sliding Wy x Wy
window we choose one random maximal independent set of
sites and determine the cost of (asynchronous) reassignment
of each associated probe to each site, then reassign probes
according to the minimum weight perfect matching in the
resulting weighted bipartite graph. (3) The window slides in
“rows,” beginning in the top-left corner of the array; at each
step, it slides horizontally to the right as far as possible while
maintaining a prescribed amount of window overlap. After
the right side of the array is reached, the window returns
to the left end of the next row while maintaining the pre-
scribed overlap with the preceding row. When the bottom

"For a fixed coloring of the graph in which two probes are
adjacent iff they border one another, the chessboard algo-
rithm iteratively aligns all probes in each color class with
respect to their neighbors.

8We have carefully studied a number of methods for choos-
ing the independent set within a window: (i) random maxi-
mal independent set, (ii) chessboard based independent set
(white squares or black squares), (iii) best result from among
K different maximal independent sets, etc. We find that use
of a single random maximal independent set (K = 1) yields
the best solution quality vs. runtime tradeoff point.



side of the array is reached, the window returns to the top-
left corner. (4) The window-sliding continues until an entire
pass through the array results in less than 0.1% reduction
of border cost.’

Figure 5 illustrates the heuristic tuning with respect to
window sizes and window overlaps. We observe that (i)
larger window sizes and fewer passes lose out to smaller win-
dow sizes and more passes; and (ii) overlap size = half the
window size is a good tradeoff point. Thus, experimental
results below are obtained with window size = 6 (i.e., 6x6)
and window overlap = 3 (for these values, the typical size
of the random maximal independent set is around 13).

Other experiments have shown that (iii) more effort in
each window (and fewer cycles) loses out to less effort in
each window (and more cycles), i.e., being greedier within a
single window thwarts overall solution quality. Specifically,
using multiple iterations of independent-set matching within
a given window, or choosing the best of several attempted
independent-set matchings, worsens our results. Finally, we
examined interactions between effort level in initial place-
ment and in placement improvement. Among the more solid
observations is that (iv) it is not cost-effective to optimize
embedding (i.e., probe alignments) during initial placement.
Thus, we pass a synchronously embedded probe placement
to the placement improvement phase.

To further speed up placement we have also devised a
“synchronous variant” of Sliding-Window Matching that uses
a modified Step (2’): for each sliding Wy x Wy window we
choose one random maximal independent set of sites and
determine the cost of synchronous reassignment of each as-
sociated probe to each site, then reassign probes according
to the minimum weight perfect matching in the resulting
weighted bipartite graph. To compensate for the worsened
solution quality, we add a postprocessing Step (5): run
chessboard postplacement [14] on the synchronous place-
ment that results after window-sliding terminates. Last, we
emphasize that both the Sliding-Window Matching and its
Synchronous Variant are easily parallelizable after the initial
(linear-time) sorting and 1-threading step. Previous meth-
ods [9, 14] do not have this property.

3.4 The Row-Epitaxial Algorithm

Epitaxial, or “seeded crystal growth,” placement is a tech-
nique that has been well-explored in the VLSI circuit place-
ment literature [17, 21]. The technique essentially grows
a 2-dimensional placement around a single starting “seed.”
Intuitively, if more information (i.e., about placed neighbor-
ing probes) is available when a site is about to be filled,
we can make a better choice of the probe to be placed. In
epitaxial placement an average of 2 neighbors are already
known when choosing the probe to be assigned to a site.

The epitaxial algorithm (see [14]) places a random probe
in the center of the array, and then iteratively places probes
in sites adjacent to already-placed probes so as to greedily
minimize the average number of conflicts induced between
the newly created pairs of neighbors. In fact, a pair of a site
and a probe filling this site is chosen simultaneously. Al-
though this algorithm achieves better results comparatively
with other 2-dimensional placements, it becomes impractical
for DNA chips with dimensions more than 300 x 300.

9Faster variants can restrict the number of such passes to
a constant, e.g., 5. Typically, our implementation makes
around 20 passes.

In this paper we suggest a scalable variant of the orig-
inal version, so called the row-epitazial algorithm. There
are three main distinguished features of the row-epitaxial
variant:

(1) It reshuffles an already existing pre-optimized placement
rather than starting with an empty placement;

(2) The sites are filled with crystalized probes in a fixed
specified order, namely, row by row from left to right, so
that on average each next site is adjacent to two already
“crystalized” neighbors;

(3) The probe for filling the next site is chosen among limited
amount of not yet “crystalized” probes that lie in close
proximity, i.e., next ko rows, to this site.

Feature (1) allows to greatly improve the quality of the

row-epitaxial algorithm. The choice of the initial pre-optimized

placement is very limited, e.g., any 2-dimensional place-
ment based on computing pairwise distances between probes
such as TSP-based placement (see [9]) becomes impractical
for DNA chips of size more than 500 x 500. Instead we
found that an excellent substitution of TSP is lexicographi-
cal probe sorting.

Feature (2) reduces the runtime of row-epitaxial algorithm
by factor of O(n?) for an nx n array, since instead of the best
(site,probe) pair, it finds only the best probe for a certain
fixed site. The further reduction in runtime implied by fea-
ture (3) is very flexible: the number ko of the “look-ahead”
rows can be adjusted with respect to the array size n.

4. EXPERIMENTAL RESULTS

We have implemented the Sliding-Window Matching algo-
rithm of Section 3.3 and its synchronous variant. For com-
parison we also include results for the TSP+1-Threading
and Synchronous Epitaxial placements, followed by chess-
board postplacement alignment, from [14]. All algorithms
were coded in C and compiled using g++ version 2.95.3 with
-03 optimization. Placement algorithms were run on a dual-
processor 1.4GHz Intel Xeon server with 512MB RAM. Tim-
ing was performed under similar load conditions for all ex-
periments.

Table 1 gives the results of experiments performed on
arrays of random 25-mer probes, with array size ranging
from 20x20 to 1000x1000. As in [14], in these experiments
there are no SNPs, we do not consider conflicts between
non-adjacent probes, and we give equal conflict weight to
all positions in a probe. All reported numbers are averages
over 10 different randomly generated arrays of the given size.

The results indicate that our methods are very scalable
and compare very favorably to best previous results (epitax-
ial placement + chessboard alignment from [14]) in terms
of solution quality. At instance sizes of 500x500 probes,
the row-epitaxial algorithm and the asynchronous sliding-
window matching reduce border cost by 9%, respectively
7%, versus [9] while requiring a fraction of the runtime. The
synchronous variant is within a few percents of row-epitaxial
and asynchronous SWM, and requires only 1300 seconds for
million-probe arrays which previous methods cannot handle.
Parallelized execution can achieve further speedups and/or
permit the use of stronger local improvement operators, e.g.,
we estimate that increasing sliding window size to 12x12 will
improve solution quality by a further 5%.
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Figure 5: Solution quality vs. runtime for Synchronous Sliding-Window Matching with varying window size

and window overlap; array size = 100 x 100.

We have also run our methods on the set of probes for
an Affymetrix Humane Genome chip. This 712 x 712 DNA
chip is filled by pairs of SNP’s (each consisting of the original
probe and a copy with the middle nucleotide changed) and
small amount of control probes (< 1%) each having a pre-
determined placement. The (truncated) periodic nucleotide
deposition sequence used by Affymetrix (and in our exper-
iments) has length 74: this sequence is sufficiently long to
accommodate all probes and cheaper than the “universal”
100-long nucleotide sequence by 26%. The flow that gave the
best results consists of the following steps: (1) Probe embed-
ding using a SNP-aware version of rightmost embedding; (2)
Lexicographical sorting of the embedded probes followed by
1-threading; (3) Synchronous sliding window matching — we
used 48 x48 windows with overlap 24 — where “synchronous”
here refers to computing Hamming distances between em-
bedded probes rather than un-embedded probes; (4) Row-
epitaxial with ko = 80 rows of lookahead; and (5) A SNP-
aware version of the Chessboard alignment algorithm. The
final number of conflicts was reduced by 4.2% with respect
to the Affymetrix optimized placement.*®

10We understand [11] that Affymetrix uses placement tech-
niques that are similar to row-epitaxial placement combined
with rightmost alignment. This probably explains why the
improvement is relatively small. Furthermore, we note that
the reduction in number of masks from 100 to 74 also re-
duces somehow the freedom that can be exploited by our
dynamic programming alignment algorithms.

5. CONCLUSIONS

In this paper we have (1) extended dynamic programming-
based optimal alignment to address practical criteria (distance-
and position-dependent conflict weights, presence of poly-
morphism) and (2) described a highly-scalable heuristic for
asynchronous probe array placement. Our placement heuris-
tic gives improved solution quality while achieving large
speedups versus previous methods; it also gives opportu-
nities to trade CPU time and parallel implementation for
solution quality. Our approach compares favorably to com-
mercial array placements. We are currently optimizing our
implementation for multiprocessing and practical cost crite-
ria. Here, other metaheuristic frameworks (e.g., large-step
Markov chains) are of interest, as well as potential improve-
ments that our discussion has already noted. We also seek
to integrate probe selection and array reliability aspects into
our placement and embedding problem formulation.
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