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ABSTRACT

Among humans, teaching various tasks is a complex process which
relies on multiple means for interaction and learning, both on the
part of the teacher and of the learner. Used together, these modali-
ties lead to effective teaching and learning approaches, respectively.
In the robotics domain, task teaching has been mostly addressed
by using only one or very few of these interactions. In this pa-
per we present an approach for teaching robots that relies on the
key features and the general approach people use when teaching
each other: first give a demonstration, then allow the learner to
refine the acquired capabilities by practicing under the teacher’s
supervision, involving a small number of trials. Depending on the
quality of the learned task, the teacher may either demonstrate it
again or provide specific feedback during the learner’s practice trial
for further refinement. Also, as people do during demonstrations,
the teacher can provide simple instructions and informative cues,
increasing the performance of learning. Thus, instructive demon-
strations, generalization over multiple demonstrations and practice
trials are essential features for a successful human-robot teaching
approach. We implemented a system that enables all these capabil-
ities and validated these concepts with a Pioneer 2DX mobile robot
learning tasks from multiple demonstrations and teacher feedback.

1. INTRODUCTION

Robots that can successfully and efficiently interact with humans
require adaptation and learning capabilities for most non-trivial in-
teractions. This enables robots not only to adapt and improve their
performance, but also to be more accessible to a larger range of
users, from the lay to the skilled.

Designing controllers for robotic tasks is usually done by peo-
ple specialized in programming robots. Even for them, most often
this is a complicated process, and it essentially requires creating
by hand a new and different controller for each particular task. If
robots are to be effective in human-robot domains, even users with-
out programming skills should be able to interact with them and
“re-program” them.

Thus, automating the robot controller design process becomes of
particular interest. A natural approach to this problem, and one that
has most widely been used, is teaching by demonstration, but other
methods have been developed as well. Gestures [17], natural lan-
guage [11], and animal “clicker training” [9] are also natural tech-
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niques that have been successfully applied for teaching robots var-
ious tasks. However, the majority of robot teaching approaches to
date has been focused on learning policies [6, 16], or temporally ex-
tended sensory-motor skills [3]. Techniques for learning complex
task structures have also been presented [10], but they are highly
sensitive to the structure of the environment and of the demonstra-
tion, and do not allow for further improvement or adaptation if the
task is not learned correctly in the first trial.

Our goal is to develop a flexible mechanism that allows a robot to
learn and refine representations of high level tasks, from interaction
with a human teacher, based on a set of underlying capabilities
(behaviors) already available to the robot.

Since people are very good at learning from a teacher’s training,
we are interested in the key features that make this process effi-
cient, and seek to develop a similar robot teaching strategy. Human
teachers rely on concurrent use of multiple instructive modalities,
including primarily demonstration, verbal instruction, attentional
cues, or gestures. On the part of the learner, the process is also
more complex than a one-shot teaching experience. “Students” are
typically given one demonstration of the task and then they per-
form a set of practice trials under the supervision of the teacher, in
order to show what was learned. If needed, during these runs the
teacher provides feedback cues to indicate corrections (irrelevant
actions or missing parts of the task). Alternatively, the teacher may
also provide additional demonstrations that the learner could use
for generalization. Most of these aspects are generally overlooked
in the majority of robot teaching approaches, which focus mostly
on only one or very few of these instructive and learning modali-
ties. We believe that considering these issues makes significantly
easier and improves the learning process by conveying more infor-
mation about the task, while in the same time allowing for a very
flexible robot teaching approach.
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Figure 1: Learning and refining tasks through demonstrations,
generalization and teacher feedback

We propose a method for learning representations of high level
tasks, similar to the one people use when teaching each other. Our
overall strategy for learning and refining task representations is pre-
sented in Figure 1. The flexibility of this strategy consists in allow-
ing the teacher to choose the methods considered most appropriate
at any given time: after a first demonstration, either provide addi-
tional training examples or give feedback on what has been learned



during a practice trial. Our experiments show that similar effects
can be achieved by following different teaching approaches (i.e.
various combinations of demonstrations and feedback), allowing
the teacher to adapt his teaching techniques to each particular case.

In the following sections we describe the specifics of our teach-
ing process, followed by the methods for refining learned task rep-
resentations through generalization and feedback. Next, we present
the robot experiments, and discussions of the obtained results and
of related work. We end with conclusions on the presented ap-
proach.

2. TEACHING PROCESS: EXPERIENCED
DEMONSTRATION AND INSTRUCTION

For our work, we assume that the robot is equipped with a set
of skills, in the form of behaviors [1], and we focus on a strategy
that would help a robot build a high-level task representation of a
more complex, sequentially structured task, built from the existing
behavior set. We do not attempt to reproduce exact trajectories or
actions of the teacher, but rather learn the task in terms of its high-
level goals.

The most common approach for robot teaching is through the use
of demonstrations, the same strategy we are also going to use as the
main modality for instruction. Two different methods for learning
from demonstration exist: learning by observation, in which the
learner passively observes the teacher performing a task, and learn-
ing by experience, in which the robot performs the task along with
the teacher during the demonstration.

In our particular approach to learning, we use learning by expe-
rienced demonstrations. This implies that the robot actively par-
ticipates in the demonstration provided by the teacher, and experi-
encing the task through its own sensors. This is an essential char-
acteristic of our approach, and is what provides the robot the data
necessary for learning. In the mobile robot domain the demonstra-
tions are achieved by following and interacting with the teacher.
We assume that the teacher knows what skills the robot has, and
also by what means (sensors) they can be detected. The ability to
learn from the observations gathered during the demonstration is
based on the robot’s ability to relate the observed states of the envi-
ronment to the known effects of its own skills (see Section 3). The
advantage of putting the robot through the task during the demon-
stration is that the robot is able to adjust its behaviors (through
their parameters) using the information gathered through its own
sensors. In addition to experiencing parameter values directly, ex-
ecuting the task during the demonstration provides observations
that contain temporal information for proper behavior sequencing,
which would be tedious to design by hand for tasks with long tem-
poral sequences.

Irrespective of the demonstration strategy being used, an impor-
tant challenge for these learning methods is to distinguish between
the relevant and irrelevant information being perceived. Putting the
entire responsibility on the learner to decide between relevant and
irrelevant observations, such as when learning solely by observa-
tion, increases the complexity of the problem and leads to more
complicated, sometimes ineffective solutions. During demonstra-
tions humans almost always make use of additional simple cues and
instructions that facilitate the learning process and bias the learner’s
attention to the important aspects of the demonstration (e.g. “watch
this, “lift that™, etc.). Although simple, these cues have a large
impact on the robot’s learning performance: by relating them with
the state of the environment at the moment when they are received,
the learner is provided with information that may otherwise be im-
possible or extremely hard to obtain only from the observed data.

For example, while teaching a robot to go and pick up the mail, the
robot can detect numerous other aspects along its path (e.g., pass-
ing by a chair, meeting another robot, etc.). These observations are
irrelevant for getting the mail, and simple cues from the teacher
could easily indicate that.

Therefore, in order for a robot to learn a task effectively, the
teacher also needs to provide it with additional information beyond
the perceived demonstration experience. To achieve this, we add
verbal instruction to the existing demonstration capabilities of our
system. With this, the teacher can provide the following types of
information:

e “HERE” - indicates moments in time during the demonstra-
tion when the environment presents aspects that are relevant for
the task. These indications are general (simple hints meaning ““pay
attention now’”) and by no means spell out for the robot the repre-
sentation of the presented task. While such indications allow the
robot to distinguish some of the irrelevant observations, they may
still not help it to perfectly learn the task. For this, generalization
techniques (Section 4) and feedback-practice runs (Section 5) will
be applied.

e “TAKE”, “DROP” - instructions that induce the robot into
performing certain actions during the demonstration (in this case
Pick Up and Drop small objects), actions that would be other-
wise impossible to trigger in a teacher-following-only learning ap-
proach. In our case, we instruct the robot to open and close its
gripper, when the task to be learned involves moving certain ob-
jects around.

e “START”, “DONE” - instructions that signal the beginning
and the end of a demonstration, respectively.

The next section presents the algorithm for learning task repre-
sentations, based on the observations and cues gathered during a
single demonstration.

3. LEARNING TASK REPRESENTATIONS

The ability of the robot to learn from experienced demonstra-
tions is enabled by the particular structure of our control architec-
ture. We use an extension of the standard Behavior-Based System
we developed, which provides a simple and natural way of repre-
senting complex tasks and sequences of behaviors in the form of
networks of abstract behaviors (Figure 2). In a behavior network,
the links between behaviors represent precondition-postcondition
dependencies, which can have three different types: permanent,
enabling and ordering. Thus the activation of a behavior is depen-
dent not only on its own preconditions (particular environmental
states) but also on the postconditions of its relevant predecessors
(sequential preconditions). More details on this architecture can be
found in [14].
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Within this architecture, behaviors are build from two compo-
nents: one related to perception (Abstract behavior), the other to
action (Primitive behavior). The abstract behavior is an explicit
specification of the behavior’s activation conditions (i.e., precondi-
tions), and its effects (i.e., postconditions). The behaviors that do
the work that achieves the specified effects under the given con-
ditions are called primitive behaviors. An abstract behavior takes
sensory information from the environment and, when its precon-




ditions are met, activates the corresponding primitive behavior(s),
which achieve the effects specified in its postconditions.

The abstract behaviors embed representations of a behavior’s
goals in the form of abstracted environmental states. This is a key
feature of our architecture, and a critical aspect for learning from
experience. In order to learn a task the robot has to create a link
between perception (observations) and the robot’s behaviors that
would achieve the same observed effects.

During the demonstration, while the robot follows the human
teacher, all its available behaviors continuously monitor the sta-
tus of their postconditions (without executing any of their actions).
Whenever the observations match a primitive’s goals, this repre-
sents an example of the robot having seen something it is also able
to do, and the corresponding abstract behaviors fires, allowing the
robot to identify during its experience the behaviors that are rele-
vant for the task being learned. The feedback cues received from
the teacher are used in conjunction with these observations, to elim-
inate any irrelevant observations.

The general idea of the algorithm is to add to the network task
representation an instance of all behaviors whose postconditions
have been detected as true during the demonstration, and during
which there have been relevance signals from the teacher, in the
order of their occurrence (on-line stage). At the end of the teach-
ing experience, the intervals of time when the effects of each of
the behaviors have been true are known, and are used to deter-
mine if these effects have been active in overlapping intervals or
in sequence. Based on the above information, the algorithm gener-
ates proper dependency links between behaviors (i.e., permanent,
enabling or ordering) (off-line stage). This one-shot learning pro-
cess is described in more detailed in [13]. The only differences
to the work presented here are that in that case teaching was per-
formed without any cues and verbal instruction from the teacher,
and the experiments were performed in “clean” environments, so
that all robot’s observations would be considered relevant for the
task. Also, the construction of the task representations was done
off-line.

The next section describes our approach for generalizing over
several task representations learned with the method described so
far.

4. GENERALIZATION FROM MULTIPLE
DEMONSTRATIONS

Another capability that allows humans to learn effectively is the
ability to generalize over multiple given demonstrations. For a
teaching by demonstration approach to be efficient, it is essential
that the robot learn from as few demonstrations as possible. A robot
house keeper is of little use if the owner must show it hundreds of
times how to bring in the mail. Therefore, statistical learning tech-
niques, which rely on a large number of training examples, are not
appropriate for our desired approach.

Given the directed acyclic graph (DAG)-like structure of the be-
havior network representation of the robot tasks, we consider the
topological representation of such a network to be a linked list of
behaviors, obtained by applying a topological sort on the behav-
ior network graph. By using the topological form of the networks
as training examples for our domain, the problem of generaliza-
tion from multiple demonstrations is equivalent to inferring a regu-
lar expression (Finite State Automaton (FSA) representation) from
a set of given sample words (Figure 3(a)). In this analogy, each
symbol in a given word corresponds to a behavior in a topological
representation.

Unfortunately, applying standard methods for regular expression

inference, such as the K-TSI Inference Algorithm [5], or Morphic
Generator Grammatical Inference (MGGI) [15], to this generaliza-
tion problem yields results that are too complex (in terms of the ob-
tained FSA representations) even for very simple examples. This
is due to the fact that these methods assume that all the training ex-
amples are correct and they try to fit them as well as possible. For
our robot domain, in which the inaccuracies in the training exam-
ples are exactly the problem we need to solve, these methods are
therefore not well suited.

In robotics, existing methods for generalization from demon-
strated examples are largely based on function approximation [8].
Since our tasks are encoded in graph-like representations, we need
a different method for generalizing across them.

4.1 Computing the common sequence

The reason we are interesting in giving a robot the ability to gen-
eralize over multiple teaching experiences is that its limited sensing
capabilities, the quality of the teacher’s demonstration, and partic-
ularities of the environment generally prevent the robot from cor-
rectly learning a task from only one trial. The two main inaccura-
cies that occur in the learning process are learning irrelevant steps
(false positives) and omission of steps that are relevant (false neg-
atives).

Our approach for generalization is to build a task representation
that encodes the specifics of each input example, but most impor-
tantly that points out the parts that are common to each of them.
As a measure of similarity we consider the longest list of common
nodes between the topological forms of the sample tasks. Based
on this information we further construct a generalized topology in
which nodes that are common to both tasks will be merged, while
the others will appear as alternate paths in the graph. For example,
for the examples presented in Figure 3(a), behaviors A, B and F
constitute the longest subsequence of common nodes. The repre-
sentation resulted after “merging” the initial graphs at their com-
mon nodes is shown in Figure 3(c).
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Figure 3: Generalization across multiple demonstrations. (a)
Training examples; (b) Longest common sequence table; (c)
Generalized topology

In order to find the similarity between the two inputs we rely
on a standard dynamic programming approach for computing the
longest common subsequence (LCS) [2] between two sequences of
symbols. If X = < z1,22,...,Zm >and Y =< y1,y2,...,Yyn >
are two sequences of symbols, and the prefix of a sequence is de-
fined as X; = < z1, x2, ..., £; >, the algorithm computes a longest
common subsequence table (Figure 3(b)) that encodes in each ele-
ment tbl[s, j]: i) the length of the longest common subsequence of
the sequences X; and Y}, and ii) a pointer to the table entry cor-
responding to the optimal subproblem solution chosen when com-
puting tbl[7, j]. The right bottom element of the table contains the
length of the LCS for the entire sequences X and Y. The running
time of the algorithm is O(mn), with m and n being the lengths of
the two sequences X and Y, typically small for our domain.



We obtain the generalized topology by traversing the LCS ta-
ble starting in the right bottom corner and following the arrows: an
“K.” arrow indicates nodes that are common to both training exam-
ples and that are merged, while “<-" and “1” arrows indicate nodes
that belong to only one sequence. These latter cases are added as
alternate paths of execution (Figure 3(c)).
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Figure 4: Incorporating new demonstrations: (a) Efficient
computation of a generalized topology; (b) Behavior precon-
ditions in a topological representation

The generalization process is incremental, meaning that each
newly acquired experience is incorporated into the existing topo-
logical task representation. If this topology is already the result of
a previous generalization, and has the form of a DAG with alter-
nate paths of execution (Figure 3(c)), in a simplistic approach, in-
corporating a new demonstration into the existing structure would
amount to running the same algorithm described above between
the new example and all the possible paths of that graph. Since a
LCS table encodes the common subsequences for all possible sub-
problems (LCS(X;,Y;), with¢ = [1,m] and j = [1, n]), we can
efficiently apply this algorithm without having to compute a dif-
ferent table for each path of the graph. For this, we construct a
structure that contains the LCS table in the form of a linked list
of rows computed as the ones above. Within this structure, each
node has associated a row for each different possible path from the
root(s) to that node (Figure 4(a)). Each of these rows points to the
row associated to the parent node on the corresponding path. As
a result, each path in the graph has associated a linked list of rows
that encodes the measure of similarity between that path and the
new given example. To compute the generalized topology from this
structure, we traverse the list that embeds the longest of the possible
subsequences, similarly with traversing the LCS table above. This
process is efficient in terms of both computational time and space,
as different paths “share” the parts of the table that are common to
each other. For our example, the obtained generalized topology is
not changed by incorporating the new example, as shown in Fig-
ure 4(b).

The generalization between multiple learned tasks (encoded as
behavior networks) is performed at the level of their topological
representations and provides a generalized topology. The underly-
ing temporal dependencies between behaviors which are encoded
in the behavior networks have to be further used to construct the
generalized behavior network associated with it, as described in
the next section.

4.2 Updating the network dependencies

In order to ensure proper behavior sequencing we need to trans-
fer the temporal dependencies between behaviors to the generalized
behavior network.

For any behaviors A and B belonging to the generalized topol-
ogy, we compute the dependencies between them as follows:

e if A and B do not belong to the LCS, but are both part of the
same task, take the dependency they had between them in that task,

e if both A and B are part of the LCS, (i.e., there are dependen-
cies between them in both tasks), take the value that is the least
restrictive as shown in Figure 5,

e if A and B are each part of a different underlying task, and if
A is a predecessor of B in the topological representation, add an
ordering constraint from A to B.
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Figure 5: Updating temporal dependencies between behaviors

4.3 Computing behavior preconditions in
generalized topologies

In a simple behavior network (whose topology is only a sequence
of behaviors and not a DAG), the task-dependent preconditions for
a given behavior (the ones that depend on the execution of its pre-
decessors) have the form of a conjunction between the status of all
its predecessor behaviors.

In a generalized topology, since multiple alternate paths can exist
to a particular behavior, the preconditions are encoded as combina-
tions of conjunctions and disjunctions of the different paths. Thus,
computing the preconditions for each behavior becomes equiva-
lent to computing the regular expression from a FSA representation
(Figure 4(b)).

For example, evaluating the preconditions for behavior F' means
checking that either the goals of A and C and B or those of just A
and B are or have been true in accordance with the types of depen-
dencies between them and behavior F, as given by the generalized
behavior network computed above.

To summarize, the generalization process between two behavior
networks is performed at the level of their topological representa-
tions, resulting in a generalized topological structure. The tempo-
ral dependencies between behaviors in the generalized task repre-
sentation, which are encoded in a corresponding behavior network,
are computed from the information contained in the underlying be-
havior networks involved in the generalization.

5. PRACTICE AND TEACHER FEEDBACK

Generalization over several training examples helps in identify-
ing the steps that were observed most often and that most probably
are a part of the task. However, repeated observations of irrelevant
steps may inadvertently bias the learner toward including them in
the representation. Also, limitations in the sensing capabilities of
robots and particular structures in the environment may prevent the
robot from observing steps that are relevant.

The practice trials allow the teacher to observe the execution of
the robot and to point more accurately to where problems occurred.
The following feedback cues can be given, with the associated ef-
fects:

e “BAD” - indicates that the behavior that the robot is currently
executing, or the one that has just been finished (assuming a re-
sponse time of 10sec) is irrelevant for the task. This behavior is
then labeled as irrelevant and is removed from the task representa-
tion (Figure 6(a)).

e “COME” — “GO” - the robot has missed relevant steps of
the task during its previous learning experiences. At a “COME”
command the robot enters into the learning mode previously de-
scribed, and starts following the teacher who demonstrates again



the missing part of the task. When these parts have been demon-
strated, the teacher ends the short demonstration with “GO”, after
which the robot continues executing the remaining part of the task.
The newly learned steps are incorporated into the task represen-
tation as presented in Figure 6(b). The arrow next to behavior B
means that the “NEW” message was received while the behavior
was active, or shortly after the behavior finished its execution. By
intervening with feedback at this particular time, the teacher im-
plies that the steps to be added should have happened before B’s
execution, as represented in the final task structure. This assump-
tion is natural, since the teacher could not detect the problem until
after it occurred. Alternatively, if the robot’s actions carry enough
intentional information to show that the robot is going to do some-
thing wrong, the teacher can also give feedback before allowing the
robot to complete the current step.
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Figure 6: Using feedback for task refinement

Both types of instructions can be applied at any time during the
practice runs and and for as many times as the teacher considers it
needed. This will be shown by our experimental results on learning
from practice and teacher feedback (Section 6.2).

6. EXPERIMENTAL RESULTS

We implemented and tested our concepts on a Pioneer 2-DX mo-
bile robot, equipped with two rings of sonars (8 front and 8 rear),
a SICK laser range-finder, a pan-tilt-zoom color camera, a gripper,
and on-board computation on a PC104 stack. We performed the ex-
periments in a 5.4m x 6.6m arena. The robot was programmed us-
ing AYLLU [19], an extension of C for development of distributed
control systems for mobile robots. For the voice commands and
feedback we used an off-the-shelf Logitech cordless headset, and
the IBM Via\oice software recognition engine.

The robot has a behavior set that allows it to track cylindrical
colored targets, to pick up, and drop small colored objects:

e PickUp(ColorOfObject) - the robot picks up an object of the
color ColorOfObject. The goal state is achieved when the robot
senses and has the object in the closed gripper.

e Drop - the robot drops what it has between the grippers. The
goal state is achieved when there is nothing breaking the IR beams
of the gripper.

e Track(ColorOfTarget, GoalAngle, GoalDistance) - the robot
tracks a cylindrical target of the color ColorOfTarget. The goal
state is achieved when the robot gets at GoalDistance and GoalAn-
gle to the target. The robot has the ability to track such targets
within a [0, 180] degrees field of view, by combining the informa-
tion from the camera and the laser rangefinder. This enables the
robot to track targets around it with the laser, even after they disap-
pear from its visual field.

We performed two sets of robot teaching experiments to validate
the key features of our proposed approach. First, we show how a
robot can learn an object transport task through multiple demon-
strations of the same task, in different environments, followed by a

practice run during which the teacher gave very simple feedback.
Second, we demonstrate how a similar transport task can be learned
in only two steps: an initial demonstration and a single practice run,
which in this case involves more complex teacher feedback. Sec-
tion 6.1 presents the results obtained after the generalization steps,
and Section 6.2 discusses the two different cases of task refinement
through practice and feedback. Videos of all the experiments pre-
sented in the paper are available on the web at:

http://robotics.usc.edu/~monica/Research/generalization.html

6.1 Learning by generalization from several
examples

We demonstrate the generalization abilities of the robot by teach-
ing it an object transport task in three consecutive demonstrations,
performed in different environmental setups (Figure 7), and pur-
posely designed to contain incorrect steps and inconsistencies. The
next section shows how already learned/generalized tasks can be
further refined through practice and feedback. As discussed above,
giving “HERE?” cues during the demonstrations, does not help the
robot in perfectly detecting the relevant parts of the task. In these
three training experiments, solely for the purpose of demonstrating
the generalization technique, we include all of the robot’s observa-
tions into the learned task representations, to simulate that the robot
was not able to discern the relevant aspects despite the teacher’s
instructions. The importance of such messages, however, will be
shown in the practice-feedback experiments.
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Figure 7: Structure of the environment and course of demon-

stration

The environment consists of a set of cylindrical targets, in colors
that the robot is able to perceive. The teacher leads the robot around
these targets, while also instructing it when it has to pick up or drop
a small orange box. The task to be learned is as follows: go to either
the Green (G) or the Light Green (LG) targets, then pick up an
Orange (O) box, go between the Yellow (Y) and Red (R) targets,
go to the Pink (P) target, drop the box there, then go to the Light
Orange (LO) target and come back to the target Light Green.

The sketched courses of the three demonstrations show that none
of them corresponds exactly to the target task. Besides containing
unnecessary steps (such as a final visit to a Green target in the first
trial), these training runs also contain inconsistencies, such as the
visits to the Light Orange target which happened at various stages
during the demonstrations. Figure 8 presents the task representa-
tions obtained after each “learning — generalization” process. For
all these experiments, in order to validate the correctness of the
learned/generalized representations, after each teaching experience
we had the robot execute them in the same environment in which
they had been demonstrated. In all cases the robot performed the
task correctly for the particular stage of the generalization process.

Each new demonstration is compared with the existing task struc-
ture, while computing their similarity in the form of their longest
common sequence. Common nodes are then merged, while the oth-
ers appear as alternate execution paths. Due to the generalization,
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the following types of alternative paths can be obtained:

e both paths contain actual behavior(s). For example, Figure 8(c)
encodes the fact that both going to the Green or to the Light Green
targets is acceptable for the task. For such alternate paths, the robot
will choose opportunistically between them, as induced by the state
of the environment (e.g., go to the target seen first).

e one path is a direct link to the end of the other alternate se-
quence. In Figure 8(c), there is a direct link from MT5(Red.,...)
to MT7(Pink,...), bypassing the behavior MT6(LOrange,...). For
such paths, the robot will automatically chose the direct path, short-
cutting the alternate sequence. These unattainable paths could be
removed from the graph, but we are keeping them for informative
purposes. Also, we can envision extensions in which teacher feed-
back could eliminate such direct links (“marking” as wrong certain
transitions from one step to another).

The generalization method has the advantage that it compactly
encodes (in the form of an acyclic graph) the actual “rules” that
can be drawn from the multiple demonstrations. The generalized
task captures the main structure of the task while at the same time
dealing with the irrelevant and inconsistent parts of the demonstra-
tions: both of these situations are captured as becoming a part of a
bypassed alternate paths which will never be executed. While it is
good that the irrelevant actions are thus pruned, the steps demon-
strated inconsistently but which are still necessary will have to be

included by different means. These results are to be expected: gen-
eralization alone, when provided with inconsistent examples, is
not enough for learning a correct representation. The next section
shows how practice and teacher feedback can be used for solving
this problem.

6.2 Learning from practice and teacher feed-
back

In order to demonstrate the robustness of our architecture to chang-
ing environments and the advantages of learning high-level repre-
sentations of tasks, we had the robot execute the last generalized
network (Figure 8(c)) in a different environment than any of the
three presented before (Figure 9(a)).

The robot correctly executed that task in the new setup. How-
ever, as mentioned before, the generalized network does not yet
represent the target task desired by the user. The missing part is a
visit to the Light Orange target, which should happen right after
dropping the box and before going to the Light Green target. Since
the generalization process already built the remaining of the task
structure, simple feedback during a robot practice run is enough for
refining it to the desired structure. We performed the practice run
in the newly changed environment: Figure 9(b) shows the robot’s
sketched trajectory and (dotted) the teacher’s intervention. After
dropping the box at the destination Pink target, the robot started
servoing toward the Light Green target. Observing this tendency,



the teacher intervened (“COME"): the robot switched to learning
mode, and followed the teacher who lead it to the missed Light Or-
ange target. The use of the informative feedback cues (“HERE”)
during this learning stage was essential, as the robot also passed by
and detected other targets (Pink and Yellow) while following the
teacher, and which thus have been ignored. After demonstrating
the missing step, the teacher signaled the end of the “learning” in-
tervention (“GO”) and the robot continued and finished the task by
going to the remaining Light Green target. Figure 10(a) shows the
structure of the task after this practice run. The newly added steps
are marked on the graph: they also include a Drop behavior, as the
robot had nothing in the gripper at the point of the demonstration,
and therefore the goals of this behavior have also been detected as
true. At the time of the execution, the existence of this behavior
will have no influence, since the robot would have already dropped
the object at this point.

@) Generalized (b) Feedback after (c) Feedback after
task: new environ- third demonstration first demonstration

ment
Figure 9: Structure of the environment and course of task exe-

cution during practice and feedback

We now consider an alternate approach for instruction, starting
from the first demonstration in the previous section. Let us as-
sume that for a second object transport task the teacher considers
as wrong the initial visit to a Green target, when a Light Green
target should be visited instead. Also, the visit to the Light Or-
ange target is wrong, and not a part of the task as well. Figure 9(c)
shows the trajectory of the robot and (dotted) the intervention and
messages of the teacher during the robot’s practice run. The effects
of this feedback are that: the visit to the Green target was replaced
by a visit to the Light Green target, and the visits to the Light
Orange and Green have been removed. Figure 10(b) presents the
structure of the task after this practice run.

To validate the correctness of the learned representations, we had
the robot execute the tasks learned after both of the practice runs de-
scribed above: in each case the execution proved that the robot cor-
rectly adapted its task representations according with the teacher’s
feedback, which thus matched the target tasks desired by the user.

We observe that the practice-feedback runs are a much faster and
precise method for refining previously learned tasks. Since feed-
back can be given at any step during the robot’s practice, wrong
steps can be marked immediately upon observing them being exe-
cuted, and missing steps can be added as soon as the teacher detects
that the robot had skipped to a future step in the task.

7. DISCUSSION

The experimental results validated the ability of our approach to
incorporate multiple means for instruction and learning in order to
teach robots long, complex, and sequentially structured tasks.

Also, we showed that generalization and feedback can be used
interchangeably in various combinations, providing the teacher the
flexibility to instruct the robot in the manner considered most suited
for each case.

An important feature of the practice-feedback approach that we
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need to stress is the natural characteristic of this process. In order
to give the robot appropriate feedback, the teacher doesn’t need to
know the structure of the task being learned, and thus is shielded
from having to know any details about the robot’s control architec-
ture. Instead, he simply relies on observing the actions performed
by the robot: if they comply with the desired representation, no
feedback is given, and if they do not, the corresponding situations
are treated with appropriate feedback as described in our experi-
ments.

8. RELATED WORK

Successful approaches for acquiring high-level task information
from demonstration have been developed for robotic manipulators
learning assembly problems [10], [7]. Since they rely solely on pas-
sive observations of a teacher demonstration, these methods have
to make use of complex computer vision techniques, in carefully
structured environments, in order to infer all the information nec-
essary for the task.

In the mobile robot domain, the majority of the robot teaching
by demonstration approaches have mostly been focused on learning
reactive policies, collections of reactive rules that map environmen-
tal states to robot actions. [6] demonstrates learning to navigate a
maze (i.e., learning forward, left, and right turning behaviors). [12]
presents a behavior-based approach for learning reactive motor be-
haviors (door passage, wall following) and outlines a strategy for
learning history-dependent behaviors. A very interesting aspect of
this work is that “teaching” can be performed by an already exist-



ing behavior running on the robot: this enables behavior cloning,
in which the same functionality can be obtained by using different
sensors for input.

Similarly with our approach, [18] assumes the existence of a set
of primitive capabilities, from which a more complex controller can
be built through demonstration. Using PCA (Principal Component
Analysis), primitives such as guarded moves and edge-to-surface
alignment for a robotic arm can be learned and subsequently rec-
ognized during further demonstrations.

The above techniques, however, use demonstration as the only
means for teaching, and do not benefit from the advantages that
could be gained from using additional instruction abilities. Fur-
thermore, the complexity of the tasks that are learned is limited to
reactive policies or short sequences of sensory-motor primitives.
Our approach allows for learning of high-level tasks that involve
arbitrarily long sequences of behaviors.

Methods for robot task teaching that consider additional instruc-
tive modalities in addition to demonstration have also been pro-
posed. [8] presents an approach in which good/not good feedback
was given at the end of a run in which the robot performed the
demonstrated skill. This approach also considers the refinement of
learned skills by practice, by using an exploration element which
alters the skill during execution. The good/not good feedback was
used to assess the quality of the exploration. However, giving such
delayed reward generates problems of credit assignment. In con-
trast, by giving feedback during or right after a wrong task step
occurred, our approach enables the robot to precisely identify the
irrelevant actions.

[4] considers fusing user intention with demonstration informa-
tion as additional means for instruction. The approach enables the
robot to successfully learn the correct task, but may become bur-
densome for the teacher as he needs to provide (at each step) in-
formation on what goals he had in mind, and what actions/used
objects were relevant. In contrast, our approach relies solely on the
teacher’s observation of the robot’s execution during practice.

9. CONCLUSIONS

Learning capabilities are essential for successful integration of
robots in human-robot domains, so robots can learn from human
demonstrations and allow for natural interaction with people. Due
to inherent challenges of the learning process, it is also important
that robots be able to improve their capabilities by receiving ad-
ditional training and feedback. Toward this end, we presented an
approach for teaching by demonstration inspired from the one hu-
mans use with each other, to enable a robot to learn and refine rep-
resentations of complex tasks. By using simple relevant cues we
enable the robot to distinguish between relevant and irrelevant in-
formation during the learning process. Concise instructions allow
for a richer demonstration, by actively involving the robot in the
process. Through generalization, the robot can incorporate several
demonstrations of the same task into a single graph-like representa-
tion. Natural feedback cues provided by the teacher through speech
allow the robot to further refine this representation. We demon-
strated these concepts on a Pioneer 2DX mobile robot, learning
various tasks from demonstration, generalization, and practice.
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