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Introduction 

This book is designed to give you the essential, nitty-gritty 
information typically covered in a first semester statis-

tics course. It’s bottom-line information for you to use as a 
refresher, a resource, a quick reference, and/or a study guide. 
It helps you decipher and make important decisions about 
statistical polls, experiments, reports and headlines with con-
fidence, being ever aware of the ways people can mislead you 
with statistics, and how to handle it.  

Topics I work you through include graphs and charts, descrip-
tive statistics, the binomial, normal, and t-distributions, two-
way tables, simple linear regression, confidence intervals, 
hypothesis tests, surveys, experiments, and of course the 
most frustrating yet critical of all statistical topics: sampling 
distributions and the Central Limit Theorem.

About This Book
This book departs from traditional statistics texts and 
reference/supplement books and study guides in these ways:

 ✓ Clear and concise step-by-step procedures that intui-
tively explain how to work through statistics problems 
and remember the process.

 ✓ Focused, intuitive explanations empower you to know 
you’re doing things right and whether others do it wrong. 

 ✓ Nonlinear approach so you can quickly zoom in on that 
concept or technique you need, without having to read 
other material first.

 ✓ Easy-to-follow examples reinforce your understanding 
and help you immediately see how to apply the concepts 
in practical settings.

 ✓ Understandable language helps you remember and put 
into practice essential statistical concepts and techniques.

              



2 Statistics Essentials For Dummies 

Conventions Used in This Book
I refer to statistics in two different ways: as numerical results 
(such as means and medians); or as a field of study (for exam-
ple, “Statistics is all about data.”).

The second convention refers to the word data. I’m going to 
go with the plural version of the word data in this book. For 
example “data are collected during the experiment” — not 
“data is collected during the experiment.”

Foolish Assumptions
I assume you’ve had some (not necessarily a lot of) previous 
experience with statistics somewhere in your past. For exam-
ple, you can recognize some of the basic statistics such as the 
mean, median, standard deviation, and perhaps correlation; 
you can handle some graphs; and you can remember having 
seen the normal distribution. If it’s been a while and you are 
a bit rusty, that’s okay; this book is just the thing to jog your 
memory. 

If you have very limited or no prior experience with statis-
tics, allow me to suggest my full-version book, Statistics for 
Dummies, to build up your foundational knowledge base. But 
if you are someone who has not seen these ideas before and 
either doesn’t have time for the full version, or you like to 
plunge into details right away, this book can work for you. 

I assume you’ve had a basic algebra background and can do 
some of the basic mathematical operations and understand 
some of the basic notation used in algebra like x, y, summa-
tion signs, taking the square root, squaring a number, and 
so on. (If you’d like some backup on the algebra part, I sug-
gest you consider Algebra I For Dummies and Algebra II For 
Dummies (Wiley)). 

              



3 Introduction

Icons Used in This Book
Here are the road signs you’ll encounter on your journey 
through this book:

 

Tips refer to helpful hints or shortcuts you can use to save 
time.

 

Read these to get the inside track on why a certain concept 
is important, what its impact will be on the results, and high-
lights to keep on your radar.

 

These alert you to common errors that can cause problems, 
so you can steer around them.

 

These point out things in the text that you should, if possible, 
stash away somewhere in your brain for future use.

Where to Go from Here
This book is written in a nonlinear way, so you can start 
anywhere and still be able to understand what’s happening. 
However, I can make some recommendations for those who 
are interested in knowing where to start. 

For a quick overview of the topics to refresh your memory, 
check out Chapter 1. For basic number crunching and graphs, 
see Chapters 2 and 3. If you’re most interested in common 
distributions, see Chapters 4 (binomial); 5 (normal); and 9 
(t-distribution). Confidence intervals and hypothesis testing are 
found in Chapters 7 and 8. Correlation and regression are found 
in Ch 10, and two-way tables and independence are tackled in 
Ch 11. If you are interested in evaluating and making sense of 
the results of medical studies, polls, surveys, and experiments, 
you’ll find all the info in Chapters 12 and 13. Common mistakes 
to avoid or watch for are seen in Chapter 14.

              



              



Chapter 1

Statistics in a Nutshell
In This Chapter
▶ Getting the big picture of the field of statistics

▶ Overviewing the steps of the scientific method

▶ Seeing the role of statistics at each step 

The most common description of statistics is that it’s the 
process of analyzing data — number crunching, in a 

sense. But statistics is not just about analyzing the data. It’s 
about the whole process of using the scientific method to 
answer questions and make decisions. That process involves 
designing studies, collecting good data, describing the data 
with numbers and graphs, analyzing the data, and then making 
conclusions. In this chapter I review each of these steps and 
show where statistics plays the all-important role.

Designing Studies
Once a research question is defined, the next step is designing 
a study in order to answer that question. This amounts to fig-
uring out what process you’ll use to get the data you need. In 
this section I overview the two major types of studies: obser-
vational studies and experiments. 

Surveys
An observational study is one in which data are collected 
on individuals in a way that doesn’t affect them. The most 
common observational study is the survey. Surveys are ques-
tionnaires that are presented to individuals who have been 
selected from a population of interest. Surveys take on many 

              



Statistics Essentials For Dummies 6
different forms: paper surveys sent through the mail; Web 
sites; call-in polls conducted by TV networks; and phone 
surveys. If conducted properly, surveys can be very useful 
tools for getting information. However, if not conducted 
properly, surveys can result in bogus information. Some prob-
lems include improper wording of questions, which can be 
misleading, people who were selected to participate but do 
not respond, or an entire group in the population who had 
no chance of even being selected. These potential problems 
mean a survey has to be well thought-out before it’s given. 

A downside of surveys is that they can only report relation-
ships between variables that are found; they cannot claim 
cause and effect. For example, if in a survey researchers 
notice that the people who drink more than one Diet Coke 
per day tend to sleep fewer hours each night than those 
who drink at most one per day, they cannot conclude that 
Diet Coke is causing the lack of sleep. Other variables might 
explain the relationship, such as number of hours worked per 
week. See all the information about surveys, their design, and 
potential problems in Chapter 12.

Experiments
An experiment imposes one or more treatments on the par-
ticipants in such a way that clear comparisons can be made. 
Once the treatments are applied, the response is recorded. 
For example, to study the effect of drug dosage on blood pres-
sure, one group might take 10 mg of the drug, and another 
group might take 20 mg. Typically, a control group is also 
involved, where subjects each receive a fake treatment (a 
sugar pill, for example).

Experiments take place in a controlled setting, and are 
designed to minimize biases that might occur. Some potential 
problems include: researchers knowing who got what treat-
ment; a certain condition or characteristic wasn’t accounted 
for that can affect the results (such as weight of the subject 
when studying drug dosage); or lack of a control group. But 
when designed correctly, if a difference in the responses is 
found when the groups are compared, the researchers can 
conclude a cause and effect relationship. See coverage of 
experiments in Chapter 13.

              



 Chapter 1: Statistics in a Nutshell 7
It is perhaps most important to note that no matter what the 
study, it has to be designed so that the original questions can 
be answered in a credible way. 

Collecting Data
Once a study has been designed, be it a survey or an experi-
ment, the subjects are chosen and the data are ready to be 
collected. This phase of the process is also critical to produc-
ing good data.

Selecting a good sample
First, a few words about selecting individuals to partici-
pate in a study (much, much more is said about this topic 
in Chapter 12). In statistics, we have a saying: “Garbage in 
equals garbage out.” If you select your subjects in a way that 
is biased — that is, favoring certain individuals or groups of 
individuals — then your results will also be biased. 

Suppose Bob wants to know the opinions of people in your 
city regarding a proposed casino. Bob goes to the mall with 
his clipboard and asks people who walk by to give their opin-
ions. What’s wrong with that? Well, Bob is only going to get 
the opinions of a) people who shop at that mall; b) on that 
particular day; c) at that particular time; d) and who take the 
time to respond. That’s too restrictive — those folks don’t 
represent a cross-section of the city. Similarly, Bob could 
put up a Web site survey and ask people to use it to vote. 
However, only those who know about the site, have Internet 
access, and want to respond will give him data. Typically, 
only those with strong opinions will go to such trouble. So, 
again, these individuals don’t represent all the folks in the city.

In order to minimize bias, you need to select your sample 
of individuals randomly — that is, using some type of “draw 
names out of a hat” process. Scientists use a variety of meth-
ods to select individuals at random (more in Chapter 12), 
but getting a random sample is well worth the extra time and 
effort to get results that are legitimate.

              



Statistics Essentials For Dummies 8

Avoiding bias in your data
Say you’re conducting a phone survey on job satisfaction of 
Americans. If you call them at home during the day between 
9 a.m. and 5 p.m., you’ll miss out on all those who work during 
the day; it could be that day workers are more satisfied than 
night workers, for example. Some surveys are too long — 
what if someone stops answering questions halfway through? 
Or what if they give you misinformation and tell you they 
make $100,000 a year instead of $45,000? What if they give you 
an answer that isn’t on your list of possible answers? A host 
of problems can occur when collecting survey data; Chapter 
12 gives you tips on avoiding and spotting them.

Experiments are sometimes even more challenging when it 
comes to collecting data. Suppose you want to test blood 
pressure; what if the instrument you are using breaks during 
the experiment? What if someone quits the experiment half-
way through? What if something happens during the experi-
ment to distract the subjects or the researchers? Or they 
can’t find a vein when they have to do a blood test exactly 
one hour after a dose of a drug is given? These are just some 
of the problems in data collection that can arise with experi-
ments; Chapter 13 helps you find and minimize them.

Describing Data
Once data are collected, the next step is to summarize it all to 
get a handle on the big picture. Statisticians describe data in 
two major ways: with pictures (that is, charts and graphs) and 
with numbers, called descriptive statistics.

Descriptive statistics
Data are also summarized (most often in conjunction with 
charts and/or graphs) by using what statisticians call descrip-
tive statistics. Descriptive statistics are numbers that describe 
a data set in terms of its important features. 

If the data are categorical (where individuals are placed into 
groups, such as gender or political affiliation) they are typically 

              



 Chapter 1: Statistics in a Nutshell 9
summarized using the number of individuals in each group 
(called the frequency) or the percentage of individuals in each 
group (the relative frequency). 

Numerical data represent measurements or counts, where the 
actual numbers have meaning (such as height and weight). 
With numerical data, more features can be summarized 
besides the number or percentage in each group. Some of 
these features include measures of center (in other words, 
where is the “middle” of the data?); measures of spread (how 
diverse or how concentrated are the data around the center?); 
and, if appropriate, numbers that measure the relationship 
between two variables (such as height and weight). 

Some descriptive statistics are better than others, and some 
are more appropriate than others in certain situations. For 
example, if you use codes of 1 and 2 for males and females, 
respectively, when you go to analyze that data, you wouldn’t 
want to find the average of those numbers — an “average 
gender” makes no sense. Similarly, using percentages to 
describe the amount of time until a battery wears out is not 
appropriate. A host of basic descriptive statistics are pre-
sented, compared, and calculated in Chapter 2.

Charts and graphs
Data are summarized in a visual way using charts and/or 
graphs. Some of the basic graphs used include pie charts 
and bar charts, which break down variables such as gender 
and which applications are used on teens’ cell phones. A bar 
graph, for example, may display opinions on an issue using 
5 bars labeled in order from “Strongly Disagree” up through 
“Strongly Agree.”

But not all data fit under this umbrella. Some data are numeri-
cal, such as height, weight, time, or amount. Data representing 
counts or measurements need a different type of graph that 
either keeps track of the numbers themselves or groups them 
into numerical groupings. One major type of graph that is 
used to graph numerical data is a histogram. In Chapter 3 you 
delve into pie charts, bar graphs, histograms and other visual 
summaries of data. 
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Analyzing Data
After the data have been collected and described using 
pictures and numbers, then comes the fun part: navigating 
through that black box called the statistical analysis. If the 
study has been designed properly, the original questions can 
be answered using the appropriate analysis, the operative 
word here being appropriate. Many types of analyses exist; 
choosing the wrong one will lead to wrong results.

In this book I cover the major types of statistical analyses 
encountered in introductory statistics. Scenarios involving a 
fixed number of independent trials where each trial results 
in either success or failure use the binomial distribution, 
described in Chapter 4. In the case where the data follow a 
bell-shaped curve, the normal distribution is used to model 
the data, covered in Chapter 5. 

Chapter 7 deals with confidence intervals, used when you 
want to make estimates involving one or two population 
means or proportions using a sample of data. Chapter 8 
focuses on testing someone’s claim about one or two popu-
lation means or proportions — these analyses are called 
hypothesis tests. If your data set is small and follows a bell-
shape, the t-distribution might be in order; see Chapter 9.

Chapter 10 examines relationships between two numerical 
variables (such as height and weight) using correlation and 
simple linear regression. Chapter 11 studies relationships 
between two categorical variables (where the data place indi-
viduals into groups, such as gender and political affiliation). 
You can find a fuller treatment of these topics in Statistics For 
Dummies (Wiley), and analyses that are more complex than 
that are discussed in the book Statistics II For Dummies, also 
published by Wiley.

Making Conclusions
Researchers perform analysis with computers, using formu-
las. But neither a computer nor a formula knows whether 
it’s being used properly, and they don’t warn you when your 
results are incorrect. At the end of the day, computers and 
formulas can’t tell you what the results mean. It’s up to you.
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One of the most common mistakes made in conclusions 
is to overstate the results, or to generalize the results to a 
larger group than was actually represented by the study. For 
example, a professor wants to know which Super Bowl com-
mercials viewers liked best. She gathers 100 students from 
her class on Super Bowl Sunday and asks them to rate each 
commercial as it is shown. A top 5 list is formed, and she con-
cludes that Super Bowl viewers liked those 5 commercials the 
best. But she really only knows which ones her students liked 
best — she didn’t study any other groups, so she can’t draw 
conclusions about all viewers.

Statistics is about much more than numbers. It’s important to 
understand how to make appropriate conclusions from study-
ing data, and that’s something I discuss throughout the book.
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Chapter 2

Descriptive Statistics
In This Chapter
▶ Statistics to measure center

▶ Standard deviation, variance, and other measures of spread

▶ Measures of relative standing 

Descriptive statistics are numbers that summarize some 
characteristic about a set of data. They provide you 

with easy-to-understand information that helps answer ques-
tions. They also help researchers get a rough idea about 
what’s happening in their experiments so later they can do 
more formal and targeted analyses. Descriptive statistics 
make a point clearly and concisely.

In this chapter you see the essentials of calculating and evalu-
ating common descriptive statistics for measuring center and 
variability in a data set, as well as statistics to measure the 
relative standing of a particular value within a data set. 

Types of Data
Data come in a wide range of formats. For example, a survey 
might ask questions about gender, race, or political affiliation, 
while other questions might be about age, income, or the dis-
tance you drive to work each day. Different types of questions 
result in different types of data to be collected and analyzed. 
The type of data you have determines the type of descriptive 
statistics that can be found and interpreted.

There are two main types of data: categorical (or qualitative) 
data and numerical (or quantitative data). Categorical data 
record qualities or characteristics about the individual, such 
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as eye color, gender, political party, or opinion on some issue 
(using categories such as agree, disagree, or no opinion). 
Numerical data record measurements or counts regarding 
each individual, which may include weight, age, height, or 
time to take an exam; counts may include number of pets, or 
the number of red lights you hit on your way to work. The 
important difference between the two is that with categorical 
data, any numbers involved do not have real numerical mean-
ing (for example, using 1 for male and 2 for female), while all 
numerical data represents actual numbers for which math 
operations make sense.

 

A third type of data, ordinal data, falls in between, where data 
appear in categories, but the categories have a meaningful 
order, such as ratings from 1 to 5, or class ranks of freshman 
through senior. Ordinal data can be analyzed like categorical 
data, and the basic numerical data techniques also apply when 
categories are represented by numbers that have meaning.

Counts and Percents
Categorical data place individuals into groups. For example, 
male/female, own your home/don’t own, or Democrat/
Republican/Independent/Other. Categorical data often come 
from survey data, but they can also be collected in experi-
ments. For example, in a test of a new medical treatment, 
researchers may use three categories to assess the outcome: 
Did the patient get better, worse, or stay the same?

Categorical data are typically summarized by reporting either 
the number of individuals falling into each category, or the 
percentage of individuals falling into each category. For 
example, pollsters may report the percentage of Republicans, 
Democrats, Independents, and others who took part in a 
survey. To calculate the percentage of individuals in a certain 
category, find the number of individuals in that category, 
divide by the total number of people in the study, and then 
multiply by 100%. For example, if a survey of 2,000 teenagers 
included 1,200 females and 800 males, the resulting percent-
ages would be (1,200 ÷ 2,000) * 100% = 60% female and 
(800 ÷ 2,000) * 100% = 40% male.
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You can further break down categorical data by creating 
crosstabs. Crosstabs (also called two-way tables) are tables 
with rows and columns. They summarize the information from 
two categorical variables at once, such as gender and political 
party, so you can see (or easily calculate) the percentage of 
individuals in each combination of categories. For example, 
if you had data about the gender and political party of your 
respondents, you would be able to look at the percentage 
of Republican females, Democratic males, and so on. In this 
example, the total number of possible combinations in your 
table would be the total number of gender categories times 
the total number of party affiliation categories. The U.S. gov-
ernment calculates and summarizes loads of categorical data 
using crosstabs. (see Chapter 11 for more on two-way tables.)

 

If you’re given the number of individuals in each category, 
you can always calculate your own percents. But if you’re 
only given percentages without the total number in the group, 
you can never retrieve the original number of individuals in 
each group. For example, you might hear that 80% of people 
surveyed prefer Cheesy cheese crackers over Crummy cheese 
crackers. But how many were surveyed? It could be only 
10 people, for all you know, because 8 out of 10 is 80%, just 
as 800 out of 1,000 is 80%. These two fractions (8 out of 10 
and 800 out of 1,000) have different meanings for statisticians, 
because the first is based on very little data, and the second is 
based on a lot of data. (See Chapter 7 for more information on 
data accuracy and margin of error.)

Measures of Center
The most common way to summarize a numerical data set is 
to describe where the center is. One way of thinking about 
what the center of a data set means is to ask, “What’s a typical 
value?” Or, “Where is the middle of the data?” The center of a 
data set can be measured in different ways, and the method 
chosen can greatly influence the conclusions people make 
about the data. In this section I present the two most common 
measures of center: the mean (or average) and the median.
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The mean (or average) of a data set is simply the average of 

all the numbers. Its formula is . Here is what you need 

to do to find the mean of a data set, : 

 1. Add up all the numbers in the data set.

 2. Divide by the number of numbers in the data set, n. 

When it comes to measures of center, the average doesn’t 
always tell the whole story and may be a bit misleading. Take 
NBA salaries. Every year, a few top-notch players (like Shaq) 
make much more money than anybody else. These are called 
outliers (numbers in the data set that are extremely high or 
low compared to the rest). Because of the way the average is 
calculated, high outliers drive the average upward (as Shaq’s 
salary did in the preceding example). Similarly, outliers that 
are extremely low tend to drive the average downward.

What can you report, other than the average, to show what 
the salary of a “typical” NBA player would be? Another sta-
tistic used to measure the center of a data set is the median. 
The median of a data set is the place that divides the data in 
half, once the data are ordered from smallest to largest. It is 
denoted by M or . To find the median of a data set:

 1. Order the numbers from smallest to largest.

 2. If the data set contains an odd number of numbers, 
the one exactly in the middle is the median.

 3. If the data set contains an even number of numbers, 
take the two numbers that appear exactly in the 
middle and average them to find the median.

For example, take the data set 4, 2, 3, 1. First, order the num-
bers to get 1, 2, 3, 4. Then note this data has an even number 
of numbers, so go to Step 3. Take the two numbers in the 
middle — 2 and 3 — and find their average: 2.5. 

Note that if the data set is odd, the median will be one of 
the numbers in the data set itself. However, if the data set is 
even, it may be one of the numbers (the data set 1, 2, 2, 3 has 
median 2); or it may not be, as the data set 4, 2, 3, 1 (whose 
median is 2.5) shows.

              



 Chapter 2: Descriptive Statistics 17
Which measure of center should you use, the mean or the 
median? It depends on the situation, but reporting both is 
never a bad idea. Suppose you’re part of an NBA team trying 
to negotiate salaries. If you represent the owners, you want 
to show how much everyone is making and how much you’re 
spending, so you want to take into account those superstar 
players and report the average. But if you’re on the side of the 
players, you want to report the median, because that’s more 
representative of what the players in the middle are making. 
Fifty percent of the players make a salary above the median, 
and 50% make a salary below the median. 

 

When the mean and median are not close to each other in 
terms of their value, it’s a good idea to report both and let the 
reader interpret the results from there. Also, as a general rule, 
be sure to ask for the median if you are only given the mean.

Measures of Variability
Variability is what the field of statistics is all about. Results 
vary from individual to individual, from group to group, from 
city to city, from moment to moment. Variation always exists 
in a data set, regardless of which characteristic you’re mea-
suring, because not every individual will have the same exact 
value for every characteristic you measure. Without a mea-
sure of variability you can’t compare two data sets effectively. 
What if in both sets two sets of data have about the same 
average and the same median? Does that mean that the data 
are all the same? Not at all. For example, the data sets 199, 
200, 201, and 0, 200, 400 both have the same average, which 
is 200, and the same median, which is also 200. Yet they have 
very different amounts of variability. The first data set has a 
very small amount of variability compared to the second. 

By far the most commonly used measure of variability is 
the standard deviation. The standard deviation of a data set, 
denoted by s, represents the typical distance from any point 
in the data set to the center. It’s roughly the average distance 
from the center, and in this case, the center is the average. 
Most often, you don’t hear a standard deviation given just by 
itself; if it’s reported (and it’s not reported nearly enough) it’s 
usually in the fine print, in parentheses, like “(s = 2.68).”
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The formula for the standard deviation of a data set is 

. To calculate s, do the following steps:

 1. Find the average of the data set, .

  To find the average, add up all the numbers and divide 
by the number of numbers in the data set, n.

 2. For each number, subtract the average from it.

 3. Square each of the differences.

 4. Add up all the results from Step 3.

 5. Divide the sum of squares (Step 4) by the number of 
numbers in the data set, minus one (n – 1). 

  If you do Steps 1 through 5 only, you have found 
another measure of variability, called the variance. 

 6. Take the square root of the variance. This is the stan-
dard deviation.

  Suppose you have four numbers: 1, 3, 5, and 7. The 
mean is 16 ÷ 4 = 4. Subtracting the mean from each 
number, you get (1 – 4) = –3, (3 – 4) = –1, (5 – 4) = +1, 
and (7 – 4) = +3. Squaring the results you get 9, 1, 1, 
and 9, which sum to 20. Divide 20 by 4 – 1 = 3 to get 
6.67. The standard deviation is the square root of 6.67, 
which is 2.58. 

Here are some properties that can help you when interpreting 
a standard deviation: 

 ✓ The standard deviation can never be a negative number.

 ✓ The smallest possible value for the standard deviation 
is 0 (when every number in the data set is exactly the 
same).

 ✓ Standard deviation is affected by outliers, as it’s based 
on distance from the mean, which is affected by outliers. 

 ✓ The standard deviation has the same units as the original 
data, while variance is in square units. 
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Percentiles
The most common way to report relative standing of a 
number within a data set is by using percentiles. A percentile 
is the percentage of individuals in the data set who are below 
where your particular number is located. If your exam score 
is at the 90th percentile, for example, that means 90% of the 
people taking the exam with you scored lower than you did 
(it also means that 10 percent scored higher than you did.)

Finding a percentile
To calculate the kth percentile (where k is any number 
between one and one hundred), do the following steps:

 1. Order all the numbers in the data set from smallest 
to largest.

 2. Multiply k percent times the total number of num-
bers, n. 

 3a. If your result from Step 2 is a whole number, go 
to Step 4. If the result from Step 2 is not a whole 
number, round it up to the nearest whole number 
and go to Step 3b. 

 3b. Count the numbers in your data set from left to right 
(from the smallest to the largest number) until you 
reach the value from Step 3a. This corresponding 
number in your data set is the kth percentile.

 4. Count the numbers in your data set from left to right 
until you reach that whole number. The kth percen-
tile is the average of that corresponding number in 
your data set and the next number in your data set.

For example, suppose you have 25 test scores, in order from 
lowest to highest: 43, 54, 56, 61, 62, 66, 68, 69, 69, 70, 71, 72, 
77, 78, 79, 85, 87, 88, 89, 93, 95, 96, 98, 99, 99. To find the 90th 
percentile for these (ordered) scores start by multiplying 90% 
times the total number of scores, which gives 90% × 25 = 
0.90 × 25 = 22.5 (Step 2). This is not a whole number; Step 3a 
says round up to the nearest whole number — 23 — then go 
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to step 3b. Counting from left to right (from the smallest to 
the largest number in the data set), you go until you find the 
23rd number in the data set. That number is 98, and it’s the 
90th percentile for this data set. 

If you want to find the 20th percentile, take 0.20 ∗ 25 = 5; this is 
a whole number so proceed to Step 4, which tells us the 20th 
percentile is the average of the 5th and 6th numbers in the 
ordered data set (62 and 66). The 20th percentile then comes 

to .

 

The median is the 50th percentile, the point in the data where 
50% of the data fall below that point and 50% fall above it. The 
median for the test scores example is the 13th number, 77.

Interpreting percentiles
The U.S. government often reports percentiles among its data 
summaries. For example, the U.S. Census Bureau reported the 
median household income for 2001 was $42,228. The Bureau 
also reported various percentiles for household income, 
including the 10th, 20th, 50th, 80th, 90th, and 95th. Table 2-1 
shows the values of each of these percentiles.

Table 2-1 U.S. Household Income for 2001

Percentile 2001 Household Income

10th $ 10,913

20th $ 17,970

50th $ 42,228

80th $ 83,500

90th $ 116,105

95th $ 150,499

Looking at these percentiles, you can see that the bottom half 
of the incomes are closer together than are the top half. The 
difference between the 50th percentile and the 20th percentile 
is about $24,000, whereas the spread between the 50th per-
centile and the 80th percentile is more like $41,000. And the 
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difference between the 10th and 50th percentiles is only about 
$31,000, whereas the difference between the 90th and the 50th 
percentiles is a whopping $74,000. 

 

A percentile is not a percent; a percentile is a number that is 
a certain percentage of the way through the data set, when 
the data set is ordered. Suppose your score on the GRE was 
reported to be the 80th percentile. This doesn’t mean you 
scored 80% of the questions correctly. It means that 80% of 
the students’ scores were lower than yours, and 20% of the 
students’ scores were higher than yours. 

The Five-Number Summary
The five-number summary is a set of five descriptive statistics 
that divide the data set into four equal sections. The five num-
bers in a five number summary are:

 1. The minimum (smallest) number in the data set.

 2. The 25th percentile, aka the first quartile, or Q1.

 3. The median (or 50th percentile).

 4. The 75th percentile, aka the third quartile, or Q3.

 5. The maximum (largest) number in the data set.

For example, we can find the five-number summary of the 
25 (ordered) exam scores 43, 54, 56, 61, 62, 66, 68, 69, 69, 70, 
71, 72, 77, 78, 79, 85, 87, 88, 89, 93, 95, 96, 98, 99, 99. The mini-
mum is 43, the maximum is 99, and the median is the number 
directly in the middle, 77. 

To find Q1 and Q3, you use the steps shown in the section, 
“Finding a percentile,” where n = 25. Step 1 is done since the 
data are ordered. For Step 2, since Q1 is the 25th percentile, 
multiply 0.25 ∗ 25 = 6.25. This is not a whole number, so Step 3a 
says round it up to 7 and proceed to Step 3b. Count from left 
to right in the data set until you reach the 7th number, 68; this 
is Q1. For Q3 (the 75th percentile) multiply 0.75 ∗ 25 = 18.75; 
round up to 19, and the 19th number on the list is 89, or Q3. 
Putting it all together, the five-number summary for the test 
scores data is 43, 68, 77, 89, and 99.
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The purpose of the five-number summary is to give descrip-
tive statistics for center, variability, and relative standing all in 
one shot. The measure of center in the five-number summary 
is the median, and the first quartile, median, and third quar-
tiles are measures of relative standing. To obtain a measure 
of  variability based on the five-number summary, you can find 
what’s called the Interquartile Range (or IQR). The IQR equals 
Q3 – Q1 and reflects the distance taken up by the innermost 
50% of the data. If the IQR is small, you know there is much 
data close to the median. If the IQR is large, you know the data 
are more spread out from the median. The IQR for the test 
scores data set is 89 – 68 = 21, which is quite large seeing as 
how test scores only go from 0 to 100. 

              



Chapter 3

Charts and Graphs
In This Chapter
▶ Pie charts and bar graphs for categorical data

▶ Time charts for time series data

▶ Histograms and boxplots for numerical data

The main purpose of a data display is to organize and 
display data to make your point clearly, effectively, and 

correctly. In this chapter, I present the most common data 
displays used to summarize categorical and numerical data, 
thoughts and cautions on their interpretation, and tips for 
evaluating them. 

Pie Charts
A pie chart takes categorical data and shows the percentage 
of individuals that fall into each category. The sum of all the 
slices of the pie should be 100% or close to it (with a bit of 
round-off error). Because a pie chart is a circle, categories can 
easily be compared and contrasted to one another. 

The Florida lottery uses a pie chart to report where your 
money goes when you purchase a lottery ticket (see Figure 3-1). 
You can see that half of Florida lottery revenues (50 cents of 
every dollar spent) goes to prizes, and 38 cents of every dollar 
goes to education.  
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Prizes
50¢

Education
38¢

Retailers
5.5¢

Ticket Providers
2.1¢

Advertising
1.6¢

Lottery Operations
2.8¢

Figure 3-1: Florida lottery expenditures (fiscal year 2001–2002).

To evaluate a pie chart for statistical correctness:

 ✓ Check to be sure the percentages add up to 100% or 
close to it (any round-off error should be very small).

 ✓ Beware of slices of the pie called “other” that are larger 
than many of the other slices. This shows a lack of detail 
in the information gathered.

 ✓ A pie chart only shows the percentage in each group, not 
the number in each group. Always ask for or look for a 
report of the total size of the data set.

Bar Graphs
A bar graph is another means for summarizing categorical 
data. Like a pie chart, a bar graph breaks categorical data 
down by group, showing how many individuals lie in each 
group, or what percentage lies in each group. 

Bar graphs are often used to compare groups by breaking 
down the categories for each and showing them as side-by-side 
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bars. For example, has the percentage of mothers in the work-
force changed over time? Figure 3-2 says yes and shows that 
the overall percentage of mothers in the workforce climbed 
from 47% to 72% between 1975 and 1998. Taking the age of the 
child into account, fewer mothers work while their children are 
younger and not in school yet, but the difference from 1975 to 
1998 is still about 25% in each case.
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Figure 3-2: Percentage of mothers in workforce, by age of child (1975 and 
1998 — data are from the U.S. Census).

Here is a checklist for evaluating bar graphs:

 ✓ Check the units on the y-axis. Make sure the are evenly 
spaced. 

 ✓ Be aware of the scale of the bar graph (the units in which 
bar heights are represented). Using a smaller scale (for 
example, each half inch of height representing 10 units 
versus 50) you can make differences look more dramatic. 

 ✓ In the case where the bars represent percents and not 
counts, make sure to ask for the total number of individu-
als summarized by the bar graph if it is not listed. 
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Time Charts
A time chart is a data display whose main point is to examine 
trends over time. Another name for a time chart is a line graph. 
Typically a time chart has some unit of time on the horizontal 
axis (year, day, month, and so on) and a measured quantity on 
the vertical axis (average household income, birth rate, total 
sales, and so on). At each time period, the amount is shown as 
a dot, and the dots connect to form the time chart.

You can see from Figure 3-3 that wages for production work-
ers, when adjusted for inflation, increased from 1947 until the 
early 1970s, declined during the 1970s, and basically stayed in 
the same range until the late 1990s, when a small surge began.

$15

$12

$9

$6
1947 1960 1973 1986 1998

Figure 3-3: Average hourly wage for production workers, 1947–1998 (in 
1998 dollars).

 

A time chart can present information in a misleading way, 
such as charting the number of crimes over time, rather than 
the crime rate (crimes per capita). Because the population 
size of a city changes over time, crime rate is the appropriate 
measure. Make sure you understand what statistics are being 
presented and examine them for fairness and appropriateness.
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Here is a checklist for evaluating time charts:

 ✓ Examine the scale on the vertical (quantity) axis as well 
as the horizontal (timeline) axis; results can be made to 
look more or less dramatic than they actually are simply 
by changing the scale.

 ✓ Take into account the units used in the chart and be sure 
they’re appropriate for comparison over time (for exam-
ple, are dollar amounts adjusted for inflation?).

 ✓ Watch for gaps in the timeline on a time chart. 
Connecting the dots across a short period of time is 
better than connecting across a long time.

Histograms
A histogram is the statistician’s graph of choice for numerical 
data. It provides a snapshot of all the data broken down into 
numerically ordered groups. Histograms provide a quick way 
to get the big idea about a numerical data set.

Making a histogram
A histogram is basically a bar graph that applies to numeri-
cal data. Because the data are numerical, the categories are 
ordered from smallest to largest (as opposed to categorical 
data, such as gender, which has no inherent order to it). To 
be sure each number falls into exactly one group, the bars 
on a histogram touch each other but don’t overlap. Each bar 
is marked on the x-axis (horizontal) by the values represent-
ing its beginning and endpoints. The height of each bar of a 
histogram represents either the number of individuals in each 
group (the frequency of each group) or the percentage of indi-
viduals in each group (the relative frequency of each group). 

Table 3-1 shows the number of live births in Colorado by age 
of mother for selected years from 1975–2000. The numerical 
variable age is broken down into categories of 5-year group-
ings. Relative frequency histograms comparing 1975 and 2000 
are shown in Figure 3-4. You can see more older mothers in 
2000 than in 1975.
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Table 3-1 Colorado Live Births by Mother’s Age 

Year Total 
births

10–14 15–19 20–24 25–29 30–34 35–39 40–44 45–49

1975 40,148 88 6,627 14,533 12,565 4,885 1,211 222 16

1980 49,716 57 6,530 16,642 16,081 8,349 1,842 198 12

1985 55,115 90 5,634 16,242 18,065 11,231 3,464 370 13

1990 53,491 91 5,975 13,118 16,352 12,444 4,772 717 15

1995 54,310 134 6,462 12,935 14,286 13,186 6,184 1,071 38

2000 65,429 117 7,546 15,865 17,408 15,275 7,546 1,545 93

* Note: The sum of births may not add up to the total number of births due to unknown or unusu-
ally high age (50 and over) of the mother.
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Figure 3-4: Colorado live births, by age of mother for 1975 and 2000.
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If a data point falls directly on a borderline between two 
groups, be consistent in deciding which group to place that 
value into. For example, if the groups are 0–5, 5–10, 10–15, and 
you get a data point of 10, you can include it either in the 5–10 
group or the 10–15 group, as long as you are consistent with 
other data falling on borderlines.

Interpreting a histogram
A histogram tells you three main features of numerical data:

 ✓ How the data are distributed (symmetric, skewed right, 
skewed left, bell-shaped, and so on)

 ✓ The amount of variability in the data

 ✓ Where the center of the data is (approximately)

The distribution of the data in a histogram
One of the features that a histogram can show you is the so-
called shape of the data (in other words, how the data are 
distributed among the groups). Many shapes exist, and many 
data sets show a combination of shapes, but there are three 
major shapes to look for in a data set:

 1. Symmetric, meaning that the left-hand side of the his-
togram is a mirror image of the right-hand side

 2. Skewed right, meaning that it looks like a lopsided 
mound with one long tail going off to the right

 3. Skewed left, meaning that it looks like a lopsided 
mound with one long tail going off to the left

Mothers’ ages in Figure 3-4 for years 1975 and 2000 appear 
to be mostly mound-shaped, although the data for 1975 are 
slightly skewed to the right, indicating that as women got 
older, fewer had babies relative to the situation in 2000. In 
other words, in 2000 a higher proportion of older women were 
having babies compared to 1975.

Variability in the data from a histogram
You can also get a sense of variability in the data by looking 
at a histogram. If a histogram is quite flat with the bars close 
to the same height, you may think it indicates less variability, 
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but in fact the opposite is true. That’s because you have an 
equal number in each bar, but the bars themselves represent 
different ranges of values, so the entire data set is actually 
quite spread out. A histogram with a big lump in the middle 
and tails on the sides indicates more data in the middle bars 
than the outer bars, so the data are actually closer together. 

Comparing 1975 to 2000, there’s more variability in 2000. This, 
again, indicates changing times; more women are waiting to 
have children (in 1975 most women had their children by 
age 30), and the length of time waiting varies. (Chapter 2 dis-
cusses measuring variability in a data set.)

 

Variability in a histogram should not be confused with vari-
ability in a time chart. If values change over time, they’re 
shown on a time chart as highs and lows, and many changes 
from high to low (over time) indicate lots of variability. So, a 
flat line on a time chart indicates no change and no variability 
in the values across time. But when the heights of histogram 
bars appear flat (uniform), this shows values spread out uni-
formly over many groups, indicating a great deal of variability 
in the data at one point in time. 

Center of the data from a histogram
A histogram can also give you a rough idea of where the 
center of the data lies. To visualize the mean, picture the data 
as people on a teeter-totter; the mean is the point where the 
fulcrum has to be in order to balance the weight on each side. 

Note in Figure 3-4 that the mean appears to be around 25 years 
for 1975 and around 27.5 years for 2000. This suggests that in 
2000, Colorado women were having children at older ages, on 
average, than they did in 1975. 

Evaluating a histogram
Here is a checklist for evaluating a histogram:

 ✓ Examine the scale used for the vertical (frequency or rel-
ative frequency) axis and beware of results that appear 
exaggerated or played down through the use of inappro-
priate scales.
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 ✓ Check out the units on the vertical axis to see whether 

the histogram reports frequencies (numbers) or rela-
tive frequencies (percentages), and then take this into 
account when evaluating the information.

 ✓ Look at the scale used for the groupings of the numeri-
cal variable (on the horizontal axis). If the range for each 
group is very small, the data may look overly volatile. 
If the ranges are very large, the data may appear to be 
smoother than they really are.

Boxplots
A boxplot is a one-dimensional graph of numerical data based 
on the five-number summary, which includes the minimum 
value, the 25th percentile (known as Q1), the median, the 75th 
percentile (Q3), and the maximum value. In essence, these five 
descriptive statistics divide the data set into four equal parts. 
(See Chapter 2 for more on the five-number summary.) 

Making a boxplot
To make a boxplot, follow these steps:

 1. Find the five number summary of your data set. (Use 
the steps outlined in Chapter 2.) 

 2. Create a horizontal number line whose scale 
includes the numbers in the five-number  summary. 

 3. Label the number line using appropriate units of 
equal distance from each other.

 4. Mark the location of each number in the five-number 
summary just above the number line. 

 5. Draw a box around the marks for the 25th percentile 
and the 75th percentile.

 6. Draw a line in the box where the median is located.

 7. Draw lines from the outside edges of the box out to 
the minimum and maximum values in the data set.
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Consider the following 25 exam scores: 43, 54, 56, 61, 62, 66, 
68, 69, 69, 70, 71, 72, 77, 78, 79, 85, 87, 88, 89, 93, 95, 96, 98, 99, 
and 99. The five-number summary for these exam scores is 
43, 68, 77, 89, and 99, respectively. (This data set is described 
in detail in Chapter 2.) The vertical version of the boxplot for 
these exam scores is shown in Figure 3-5. 
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Figure 3-5: Boxplot of 25 exam scores.

 

Some statistical software adds asterisk signs (*) to show num-
bers in the data set that are considered to be outliers — num-
bers determined to be far enough away from the rest of the 
data to be noteworthy.

Interpreting a boxplot
A boxplot can show information about the distribution, vari-
ability, and center of a data set.

Distribution of data in a boxplot
A boxplot can show whether a data set is symmetric (roughly 
the same on each side when cut down the middle), or skewed 
(lopsided). Symmetric data shows a symmetric boxplot; 
skewed data show a lopsided boxplot, where the median cuts 
the box into two unequal pieces. If the longer part of the box 
is to the right (or above) the median, the data is said to be 
skewed right. If the longer part is to the left (or below) the 
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median, the data is skewed left. However, no data set falls per-
fectly into one category or the other.

In Figure 3-5, the upper part of the box is wider than the lower 
part. This means that the data between the median (77) and 
Q3 (89) are a little more spread out, or variable, than the data 
between the median (77) and Q1 (68). You can also see this 
by subtracting 89 – 77 = 12 and comparing to 77 – 68 = 9. This 
indicates the data in the middle 50% of the data set are a bit 
skewed right. However, the line between the min (43) and Q1 
(68) is longer than the line between Q3 (89) and the max (99). 
This indicates a “tail” in the data trailing to the left; the low 
exam scores are spread out quite a bit more than the high 
ones. This greater difference causes the overall shape of the 
data to be skewed left. (Since there are no strong outliers on 
the low end, we can safely say that the long tail is not due to 
an outlier.). A histogram of the exam data, shown in the graph 
in Figure 3-6, confirms the data are generally skewed left.
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Figure 3-6: Histogram of 25 exam scores.

 

A boxplot can tell you whether a data set is symmetric, but 
it can’t tell you the shape of the symmetry. For example, a 
data set like 1, 1, 2, 2, 3, 3, 4, 4 is symmetric and each number 
appears the same number of times, whereas 1, 2, 2, 2, 3, 4, 5, 
5, 5, 6 is also symmetric but doesn’t have an equal number of 
values in each group. Boxplots of both would look similar in 
shape. A histogram shows the particular shape that the sym-
metry has.
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Variability in a data set from a boxplot
Variability in a data set that is described by the five-number 
summary is measured by the interquartile range (IQR — see 
Chapter 2 for full details on the IQR). The interquartile range 
is equal to Q3 – Q1. A large distance from the 25th percentile 
to the 75th indicates the data are more variable. Notice that 
the IQR ignores data below the 25th percentile or above the 
75th, which may contain outliers that could inflate the mea-
sure of variability of the entire data set. In the exam score 
data, the IQR is 89 – 68 = 21, compared to the range of the 
entire data set (max – min = 56). This indicates a fairly large 
spread within the innermost 50% of the exam scores.

Center of the data from a boxplot
The median is part of the five-number summary, and is shown 
by the line that cuts through the box in the boxplot. This 
makes it very easy to identify. The mean, however, is not part 
of the boxplot, and couldn’t be determined accurately from 
a boxplot. In the exam score data, the median is 77. Separate 
calculations show the mean to be 76.96. These are extremely 
close, and my reasoning is because the skewness to the right 
within the middle 50% of the data offsets the skewness to the 
left of the outer part of the data. To get the big picture of any 
data set you need to find more than one measure of center and 
spread, and show more than one graph, as the ideal report.

 

It’s easy to misinterpret a boxplot by thinking the bigger 
the box, the more data. Remember each of the four sections 
shown in the boxplot contains an equal percentage (25%) of 
the data. A bigger part of the box means there is more variabil-
ity (a wider range of values) in that part of the box, not more 
data. You can’t even tell how many data values are included in 
a boxplot — it is totally built around percentages.  

              



Chapter 4

The Binomial Distribution
In This Chapter
▶ Identifying a binomial random variable 

▶ Finding probabilities using a formula or table 

▶ Calculating the mean and variance 

A random variable is a characteristic, measurement, or 
count that changes randomly according to some set 

of probabilities; its notation is X, Y, Z, and so on. A list of all 
possible values of a random variable, along with their prob-
abilities is called a probability distribution. One of the most 
well-known probability distributions is the binomial. Binomial 
means “two names” and is associated with situations involv-
ing two outcomes: success or failure (hitting a red light or not; 
developing a side effect or not). This chapter focuses on the 
binomial distribution —when you can use it, finding probabili-
ties for it, and finding the expected value and variance.

Characteristics of a Binomial
A random variable has a binomial distribution if all of follow-
ing conditions are met:

 1. There are a fixed number of trials (n).

 2. Each trial has two possible outcomes: success or 
 failure.

 3. The probability of success (call it p) is the same for 
each trial.

 4. The trials are independent, meaning the outcome of 
one trial doesn’t influence that of any other.
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Let X equal the total number of successes in n trials; if all of 
the above conditions are met, X has a binomial distribution 
with probability of success equal to p.

Checking the binomial conditions 
step by step
You flip a fair coin 10 times and count the number of heads. 
Does this represent a binomial random variable? You can 
check by reviewing your responses to the questions and state-
ments in the list that follows:

 1. Are there a fixed number of trials?

  You’re flipping the coin 10 times, which is a fixed 
number. Condition 1 is met, and n = 10.

 2. Does each trial have only two possible outcomes — 
success or failure?

  The outcome of each flip is either heads or tails, and 
you’re interested in counting the number of heads, so 
flipping a head represents success and flipping a tail is 
a failure. Condition 2 is met.

 3. Is the probability of success the same for each trial?

  Because the coin is fair the probability of success (get-
ting a head) is p = 1⁄2 for each trial. You also know that 
1 – 1⁄2 = 1⁄2 is the probability of failure (getting a tail) on 
each trial. Condition 3 is met.

 4. Are the trials independent?

  We assume the coin is being flipped the same way 
each time, which means the outcome of one flip 
doesn’t affect the outcome of subsequent flips. 
Condition 4 is met.

Non-binomial examples
Because the coin-flipping example meets the four conditions, 
the random variable X, which counts the number of successes 
(heads) that occur in 10 trials, has a binomial distribution with 
n = 10 and p = 1⁄2. But not every situation that appears binomial 
actually is binomial. Consider the following examples. 
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No fixed number of trials
Suppose now you are to flip a fair coin until you get four 
heads, and you count how many flips it takes to get there. 
(That is, X is the number of flips needed.) This certainly 
sounds like a binomial situation: Condition 2 is met since 
you have success (heads) and failure (tails) on each flip; 
Condition 3 is met with the probability of success (heads) 
being the same (0.5) on each flip; and the flips are indepen-
dent, so Condition 4 is met. 

However, notice that X isn’t counting the number of heads, 
it counts the number of trials needed to get 4 heads. The 
number of successes (X) is fixed rather than the number of 
trials (n). Condition 1 is not met, so X does not have a bino-
mial distribution in this case.

More than success or failure
Some situations involve more than two possible outcomes yet 
they can appear to be binomial. For example, suppose you roll 
a fair die 10 times and record the outcome each time. You have 
a series of n = 10 trials, they are independent, and the probabil-
ity of each outcome is the same for each roll. However, you’re 
recording the outcome on a six-sided die. This is not a success/
failure situation, so Condition 2 is not met. 

However, depending on what you’re recording, situations 
originally having more than two outcomes can fall under 
the binomial category. For example, if you roll a fair die 10 
times and each time record whether or not you get a 1, then 
Condition 2 is met because your two outcomes of interest are 
getting a 1 (“success”) and not getting a 1 (“failure”). In this 
case p = 1/6 is the probability for a success and 5/6 for failure. 
This is a binomial.

Probability of success (p) changes
You have 10 people — 6 women and 4 men — and form a com-
mittee of 2 at random. You choose a woman first with proba-
bility 6/10. The chance of selecting another woman is now 5/9. 
The value of p has changed, and Condition 3 is not met. This 
happens with small populations where replacing an individual 
after they are chosen (to keep probabilities the same) doesn’t 
make sense. You can’t choose someone twice for a committee.

              



Statistics Essentials For Dummies 38

Trials are not independent
The independence condition is violated when the outcome 
of one trial affects another trial. Suppose you want to know 
support levels of adults in your city for a proposed casino. 
Instead of taking a random sample of say 100 people, to save 
time you select 50 married couples and ask each individual 
what their opinion is. Married couples have a higher chance 
of agreeing on their opinions than individuals selected at 
random, so the independence Condition 4 is not met.

Finding Binomial Probabilities 
Using the Formula

After you identify that X has a binomial distribution (the four 
conditions are met), you’ll likely want to find probabilities 
for X. The good news is that you don’t have to find them from 
scratch; you get to use previously established formulas for 
finding binomial probabilities, using the values of n and p 
unique to each problem.

Probabilities for a binomial random variable X can be found 

using the formula , where

 ✓ n is the fixed number of trials.

 ✓ x is the specified number of successes.

 ✓ n – x is the number of failures.

 ✓ p is the probability of success on any given trial.

 ✓ 1 – p is the probability of failure on any given trial. (Note: 
Some textbooks use the letter q to denote the probability 
of failure rather than 1 – p.)

These probabilities hold for any value of X between 0 (lowest 
number of possible successes in n trials) and n (highest 
number of possible successes). 

 

The number of ways to arrange x successes among n trials is 

 called “n choose x,” and the notation is . For example,  

 means “3 choose 2” and stands for the number of ways to get  
2 successes in 3 trials. In general, to calculate “n choose x,” 
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 you use the formula . The notation n! stands 

 for n-factorial, the number of ways to rearrange n items. To 
calculate n!, you multiply n(n – 1)(n – 2) . . . (2)( 1). For exam-
ple 3! is 3(2)(1) = 6; 2! is 2(1) = 2; and 1! is 1. By convention, 0! 
equals 1. To calculate “3 choose 2,” you do the following:

Suppose you cross three traffic lights on your way to work, 
and the probability of each of them being red is 0.30. (Assume 
the lights are independent.) You let X be the number of red 
lights you encounter and you want to find the probability 
distribution for X. You know p = probability of red light = 
0.30; 1 – p = probability of a non-red light = 1 – 0.30 = 0.70; and 
the number of non-red lights is 3 – X. Using the formula, you 
obtain the probabilities for X = 0, 1, 2, and 3 red lights:

 

  

  

The final probability distribution for X is shown in Table 4-1. 
Notice they all sum to 1 because every possible value of X is 
listed and accounted for.
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Table 4-1 Probability Distribution for X = Number  
 of Red Traffic Lights (n = 3, p = 0.30)

X P(x)

0 0.343

1 0.441

2 0.189

3 0.027

Finding Probabilities Using 
the Binomial Table

A large range of binomial probabilities are already provided 
in Table A-3 in the appendix (called the binomial table). In Table 
A-3 you see several mini-tables provided in the binomial table; 
each one corresponds with a different n for a binomial (various 
values of n up to 20 are available). Each mini-table has rows 
and columns. Running down the side of any mini-table, you see 
all the possible values of X from 0 through n, each with its own 
row. The columns of Table A-3 represent various values of p up 
through and including 0.50. (When p > 0.50, a slight change is 
needed to use Table A-3, as I explain later in this section.)

Finding probabilities 
when p ≤ 0.50
To use Table A-3 (in the appendix) to find binomial probabili-
ties for X when p < 0.50, follow these steps:

 1. Find the mini-table associated with your particular 
value of n (the number of trials).

 2. Find the column that represents your particular 
value of p (or the one closest to it).

 3. Find the row that represents the number of suc-
cesses (x) you are interested in.

 4. Intersect the row and column from Steps 2 and 3 in 
Table A-3. This gives you the probability for x  successes.
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For the traffic light example, you can use Table A-3 (appendix) 
to verify the results found by the binomial formula shown in 
Table 4-1 (previous section). In Table A-3, go to the mini-table 
where n = 3, and look in the column where p = 0.30. You see 
four probabilities listed for this mini-table: 0.3430; 0.4410; 
0.1890; and 0.0270; these are the probabilities for X = 0, 1, 2, 
and 3 red lights, respectively, matching those from Table 4-1.

Finding probabilities 
when p > 0.50
Notice that Table A-3 (appendix) shows binomial probabilities 
for several different values of n and p, but the values of p only 
go up through 0.50. This is because it’s still possible to use 
Table A-3 to find probabilities when p is greater than 0.50. 
You do it by counting failures (whose probabilities are 1 – p) 
instead of successes. When p ≥ 0.50, you know (1 – p) < 0.50.

To use the Table A-3 to find probabilities for X when p > 0.50, 
follow these steps:

 1. Find the mini-table associated with your particular 
value of n (the number of trials).

 2. Instead of looking at the column for the probability 
of success (p), find the column that represents 1 – p, 
the probability of a failure.

 3. Find the row that represents the number of failures 
(n–x) that are associated with the number of suc-
cesses (x) you want. 

  For example, if you want the chance of 3 successes in 
10 trials, it’s the same as the chance of 7 failures, so 
look in row 7.

 4. Intersect the row and column from Steps 2 and 3 
in Table A-3 and you see the probability for the 
number of failures you counted.

  This also equals the probability for the number of suc-
cesses (x) that you wanted.
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Once you’ve done Step 4, you’re done. You do not need to 
take the complement of your final answer. The complements 
were taken care of by using the 1 – p and counting failures 
instead of successes. 

Revisiting the traffic light example, suppose you are now driv-
ing on side streets in your city and you still have 3 intersections 
(n = 3) but now the chance of a red light is p = 0.70. Again, let 
X represent the number of red lights. Table A-3 has no column 
for p = 0.70. However, if the probability of a red light is p = 0.70, 
then the probability of a non-red light 1 – 0.70 = 0.30; so instead 
of counting red lights, you count non-red lights.

Let Y count the number of non-red lights in the three intersec-
tions; Y is binomial with n = 3 and p = 0.30. The probability 
distribution for Y is shown in Table 4-2. This is also the prob-
ability distribution for X, the number of red lights (n = 3 and 
p = 0.70), which is what you originally asked for.

Table 4-2 Probability Distribution for the 
 Number of Red Traffic Lights  
 (n = 3, p = 0.70)

X = number of red Y = number of non-red Probability

0 3 0.027

1 2 0.189

2 1 0.441

3 0 0.343

Finding probabilities for X 
greater-than, less-than, or 
between two values
Table A-3 (appendix) shows probabilities for X being equal to 
any value from 0 to n, for a variety of ps. To find probabilities 
for X being less-than, greater-than, or between two values, 
just find the corresponding values in the table and add their 
probabilities. For the traffic light example where n = 3 and  p = 
0.70, if you want P(X > 1), you find P(X = 2) + P(X = 3) and get 
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0.441 + 0.343 = 0.784. The probability that X is between 1 and 3 
(inclusive) is 0.189 + 0.441 + 0.343 = 0.973. 

 

Two phrases to remember: “at-least” means that number or 
higher; “at-most” means that number or lower. For example 
the probability that X is at least 2 is P(X ≥ 2); the probability 
that X is at most 2 is P(X ≤ 2).

The Expected Value and 
Variance of the Binomial

The mean of a random variable is the long-term average of its 
possible values over the entire population of individuals (or 
trials). It’s found by taking the weighted average of the x-val-
ues multiplied by their probabilities. The mean of a random 
variable is denoted by . For the binomial random variable 
the mean is . 

Suppose you flip a fair coin 100 times and let X be the number 
of heads; this is a binomial random variable with n = 100 and 
p = 0.50. Its mean is np = 100(0.50) = 50. 

The variance of a random variable X is the weighted average 
of the squared deviations (distances) from the mean. The 
variance of a random variable is denoted by .  The variance 
of the binomial distribution is . The standard 
deviation of X is just the square root of the variance, which in 
this case is .

Suppose you flip a fair coin 100 times and let X be the number 
of heads. The variance of X is np(1 – p) = 100(0.50)(1 – 0.50) = 
25, and the standard deviation is the square root, which is 5. 

 

The mean and variance of a binomial have intuitive meaning. 
The p is the probability of a success, but it also represents the 
proportion of successes you can expect in n trials. Therefore 
the total number of successes you can expect — that is, the 
mean of X — equals np. The only variability in the outcomes 
of each trial is between success (with probability p) and fail-
ure (with probability 1 – p). Over n trials, it makes sense that 
the variance of the number of successes/failures is measured 
by np(1 – p).
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Chapter 5

The Normal Distribution
In This Chapter
▶ Understanding the normal and standard normal distributions

▶ Going from start to finish with regular normal probabilities

▶ Working backward to find percentiles

There are two major types of random variables: discrete 
and continuous. Discrete random variables basically count 

things (number of heads on 10 coin flips, number of female 
Democrats in a sample, and so on). The most well known 
 discrete random variable is the binomial (see Chapter 4). 
A continuous random variable measures things and takes on 
values within an interval, or they have so many possible values 
that they might as well be deemed continuous (for example, 
time to complete a task, exam scores, and so on). 

In this chapter, you work on finding probabilities for the most 
famous continuous random variable, the normal. You also find 
percentiles for the normal distribution (where you are given 
a probability as a percent) and you have to find the value of X 
that’s associated with it.

Basics of the Normal 
Distribution 

We say that X has a normal distribution if its values fall into 
a smooth (continuous) curve with a bell-shaped, symmetric 
pattern, meaning it looks the same on each side when cut 
down the middle. The total area under the curve is 1. Each 
normal distribution has its own mean, , and its own standard 
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deviation, . For intro stat courses, the mean and standard 
deviation for the normal distribution are given to you.

Figure 5-1 illustrates three different normal distributions with 
different means and standard deviations.
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Figure 5-1: Three normal distributions.

Note that the saddle points (highlighted by arrows in Figure 5-1 
on either side of the mean) on each graph are where the graph 
changes from concave down to concave up. The distance from the 
mean out to either saddle point is equal to the standard deviation 
for the normal distribution. For any normal distribution, almost all 
its values lie within three standard deviations of the mean.

The Standard Normal 
 (Z) Distribution 

One very special member of the normal distribution family is 
called the standard normal distribution, or Z-distribution. The 
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Z-distribution is used to help find probabilities and solve other 
types of problems when working with any normal distribution. 

The standard normal (Z ) distribution has a mean of zero 
and a standard deviation of 1; its graph is shown in Figure 
5-2. A value on the Z-distribution represents the number of 
standard deviations the data is above or below the mean; 
these are called z-scores or z-values. For example, z = 1 on 
the Z-distribution represents a value that is 1 standard devia-
tion above the mean. Similarly, z = –1 represents a value that 
is one standard deviation below the mean (indicated by the 
minus sign on the z-value). 

–3 –2 –1 0

Z

1

1

2 3

μ = 0
σ = 1

Figure 5-2: The Z-distribution has a mean of 0 and standard deviation of 1.

Because probabilities for any normal distribution are nearly 
impossible to calculate by hand, we use tables to find them. 
All the basic results you need to find probabilities for any 
normal distribution can be boiled down into one table based 
on the standard normal (Z) distribution. This table is called 
the Z-table and is found in the appendix as Table A-1. All you 
need is one formula to transform your normal distribution (X) 
to the standard normal (Z) distribution, and you can use the 
Z-table to find the probability you need.

The general formula for changing a value of X into a value of 

Z is . You take your x-value, subtract the mean, and 

divide by the standard deviation; this gives you its corre-
sponding z-value.

For example, if X is a normal distribution with mean 16 and 
standard deviation 4, the value 20 on the X-distribution would 
transform into 20 – 16 divided by 4, which equals 1. So, the 
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value 20 on the X-distribution corresponds to the value 1 on 
the Z-distribution. Now use the Z-table to find probabilities for 
Z, which are equivalent to the corresponding probabilities for 
X. Table A-1 (appendix) shows the probability that Z is less 
than any value between –3 and +3. 

To use the Z-table to find probabilities, do the following: 

 1. Go to the row that represents the leading digit of 
your z-value and the first digit after the decimal point.

 2. Go to the column that represents the second digit 
after the decimal point of your z-value.

 3. Intersect the row and column.

  That number represents P(Z < z).

For example, suppose you want to look at P(Z < 2.13). Using 
Table A-1 (appendix), find the row for 2.1 and the column for 
0.03. Put 2.1 and 0.03 together as one three-digit number to 
get 2.13. Intersect that row and column to find the number: 
0.9834. You find that P(Z < 2.13) = 0.9834.

Finding Probabilities for X
Here are the steps for finding a probability for X:

 1. Draw a picture of the distribution.

 2. Translate the problem into one of the following: 
P(X < a), P(X > b), or P(a < X < b). Shade in the area 
on your picture.

 3. Transform a (and/or b) into a z-value, using the 

  Z-formula: .

 4. Look up the transformed z-value on the Z-table (see 
the preceding section) and find its probability.

 5a. If you have a less-than problem, you’re done. 

 5b. If you have a greater-than problem, take one minus 
the result from Step 4. 

 5c. If you have a between-values problem, do Steps 1–4 
for b (the larger of the two values) and then for a (the 
smaller of the two values), and subtract the results.
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You need not worry about whether to include an “equal to” in 
a less-than or greater-than probability because the probability 
of a continuous random variable equaling one number exactly 
is zero. (There is no area under the curve at one specific 
point.)

Suppose, for example, that you enter a fishing contest. The 
contest takes place in a pond where the fish lengths have a 
normal distribution with mean  = 16 inches and standard 
deviation  = 4 inches. 

Problem 1: What’s the chance of catching a small fish — say, 
less than 8 inches?

Problem 2: Suppose a prize is offered for any fish over 24 
inches. What’s the chance of catching a fish at least that size?

Problem 3: What’s the chance of catching a fish between 16 
and 24 inches?

To solve these problems, first draw a picture of the distribu-
tion. Figure 5-3 shows a picture of X’s distribution for fish 
lengths. You can see where each of the fish lengths mentioned 
in each of the three fish problems falls.

4 8 12 16
fish length (inches)

Problem 1

Problem 3

Problem 2

20

X

24 28

μ = 16
σ = 4

Figure 5-3: The distribution of fish lengths in a pond.

Next, translate each problem into probability notation. 
Problem 1 means find P(X < 8). For Problem 2, you want  
P(X > 24). And Problem 3 is asking for P(16 < X < 24). 
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Step 3 says change the x-values to z-values using the 

Z-formula, . For Problem 1 of the fish example, you 

have . Similarly for 

Problem 2, P(X > 24) becomes P(Z > 2). Problem 3 translates 
from P(16 < X < 24) to P(0 < Z < 2). Figure 5-4 shows a compari-
son of the X-distribution and Z-distribution for the values x = 8, 
16, and 24, which transform into z = –2, 0, and +2, respectively.

4 8 12 16 20

X

Z

24 28–4 0

–3 –2 –1 0 1 2 3–4 4

μ = 16
σ = 4

μ = 0
σ = 1

Figure 5-4:  Transforming numbers on the normal distribution to numbers on 
the Z-distribution.

Now that you have changed x-values to z-values, you move 
to Step 4 and find probabilities for those z-values using the 
Z-table (Table A-1 in the appendix). In Problem 1 of the fish 
example, you want P(Z < –2); go to the Z-table and look at 
the row for –2.0 and the column for 0.00, intersect them, and 
you find 0.0228 — according to Step 5a you’re done. So, the 
chance of a fish being less than 8 inches is equal to 0.0228.

For Problem 2, find P(Z > 2.00). Because it’s a “greater-than” 
problem, this calls for Step 5b. To be able to use the Z-table 
you need to rewrite this in terms of a “less-than” statement. 
Because the entire probability for the Z-distribution equals 
1, we know P(Z > 2.00) = 1 – P(Z < 2.00) = 1 – 0.9772 = 0.0228. 

              



 Chapter 5: The Normal Distribution 51
So, the chance that a fish is greater than 24 inches is 0.0228. 
(Note the answers to Problems 1 and 2 are the same because 
the Z-distribution is symmetric; see Figure 5-3.)

In Problem 3, you find P(0 < Z < 2.00); this requires Step 5c. 
First find P(Z < 2.00), which is 0.9772 from the Z-table, and then 
subtract off the part you don’t want, which is P(Z < 0) = 0.500 
from the Z-table. This gives you 0.9772 – 0.500 = 0.4772. So the 
chance of a fish being between 16 and 24 inches is 0.4772.

Finding X for a Given Probability
Another type of problem involves finding percentiles for a 
normal distribution (see Chapter 2 for the rundown on per-
centiles.) That is, you are given the percentage or probability of 
being below a certain x-value, and you have to find the x-value 
that corresponds to it. For example, say you want the 50th 
percentile of the Z-distribution. That is, you want to find the 
z-value whose probability to its left equals 0.50. Because P(Z < 
0) = 0.5000 (from Table A-1 of the appendix), you know that 0 is 
the 50th percentile for Z. But what about other percentiles? 

Here are the steps for finding percentiles for a normal distri-
bution X:

 1. If you’re given the probability (percent) less than x 
and you need to find x, you translate this as: Find a 
where P(X < a) = p (and p is given). That is, find the 
pth percentile for X. Go to Step 3.

 2. If you’re given the probability (percent) greater than 
x and you need to find x, you translate this as: Find b 
where P(X > b) = p (and p is given). Rewrite this as a 
percentile (less-than) problem: Find b where P(X < b) = 
1 – p. This means find the (1 – p)th percentile for X.

 3. Find the corresponding percentile for Z by looking 
in the body of the Z-table (Table A-1 in the appendix) 
and finding the probability that is closest to p (if 
you came straight from Step 1) or closest to 1 – p (if 
you came from Step 2). Find the row and column this 
number is in (using the table backwards). This is the 
desired z-value.
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 4. Change the z-value back into an x-value (original 

units) by using  (This is the Z-formula, 

  , rewritten so X is on the left-hand side.) 

  You have found the desired percentile for X.

For the fish example, the lengths (X) of fish in a pond have a 
normal distribution with mean 16 inches and standard devia-
tion 4 inches. Suppose you want to know what length marks 
the bottom 10 percent of all the fish lengths in the pond. Step 
1 says translate the problem; in this case you want to find x 
such that P(X < x) = 0.10. This represents the 10th percentile 
for X. Figure 5-5 shows a picture of what you need to find in 
this problem. Now to go Step 3.

16

fish lengths (inches)

Probability of
being less than x is

10% = 0.10

X

4 8 12 2820 24

μ = 16
σ = 4

x

find

Figure 5-5: Bottom 10 percent of fish in the pond, according to length.

Step 3 says find the 10th percentile for Z. (Although you don’t 
know the x-value that corresponds to a probability of 0.10, 
you are able find the value of Z that corresponds to 0.10, using 
the Z-table backwards.) Looking at the Z-table (Table A-1 in 
the appendix), the probability closest to 0.10 is 0.1003, which 
falls in the row for z = –1.2 and the column for 0.08. The 10th 
percentile for Z is –1.28. A fish at the bottom 10 percent is 1.28 
standard deviations below the mean.

But exactly how long is the fish? In Step 4, you change the 
z-value back to an x-value (fish length in inches) using the 
Z-formula solved for X; you get x = 16 + –1.28 ∗ 4 = 10.88 inches. 
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So 10.88 inches marks the lowest 10 percent of fish lengths. 
Ten percent of the fish are shorter than that.

Now suppose you want to find the length that marks the 
top 25 percent of all the fish in the pond. This means you 
want to find x where P(X > x) = 0.25, so skip Step 1 and go to 
Step 2. The number you want is in the right tail (upper area) 
of the X-distribution, with p = 25 percent of the probability to 
the right and 1 – p = 75 percent to the left. This represents the 
75th percentile for X.

 

Because the Z-table only uses less-than probabilities, you 
have to rewrite all greater-than probabilities as “one minus” 
their corresponding less-than probabilities. That is, write 
everything in terms of percentiles.

Step 3: The 75th percentile of Z is the z-value where P(Z < z) 
= 0.75. Using the Z-table (Table A-1 in the appendix) you find 
the probability closest to 0.7500 is 0.7486, and its correspond-
ing z-value is in the row for 0.6 and column for 0.07. Put these 
digits together and get a z-value of 0.67. This is the 75th per-
centile for Z. In Step 4, change the z-value back to an x-value 
(length in inches) using the Z-formula solved for X to get x = 
16 + 0.67 ∗ 4 = 18.68 inches. So, 25% of the fish are longer than 
18.68 inches (answering the original question). And it’s true, 
75% of the fish are shorter than that.

Normal Approximation 
to the Binomial 

Suppose you flip a fair coin 100 times, and you let X equal the 
number of heads. What’s the probability that X is greater than 
60? In Chapter 4, you solve problems like this using the bino-
mial distribution. For binomial problems where n is small, you 
can either use the direct formula (found in Chapter 4) or the 
binomial table (Table A-3 in the appendix). However, when n is 
large, the calculations get unwieldy and the table runs out of 
numbers. What to do? 

Turns out, if n is large enough, you can use the normal distri-
bution to get an approximate answer that’s very close to what 
you would get with the binomial distribution. To determine 
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whether n is large enough to use the normal approximation, 
two (not just one) conditions must hold:

 1. (n ∗ p) ≥ 10 

 2. n ∗ (1 – p) ≥ 10

In general, follow these steps to find the approximate prob-
ability for a binomial distribution when n is large:

 1. Verify whether n is large enough to use the normal 
approximation by checking the two conditions.

  For the coin-flipping question, the conditions are 
met since n ∗ p = 100 ∗ 0.50 = 50, and n ∗ (1 – p) = 
100 ∗ (1 – 0.50) = 50, both of which are at least 10. So 
go ahead with the normal approximation. 

 2. Write down what you need to find as a probability 
statement about X.

  For the coin-flipping example, find P(X > 60). 

 3. Transform the x-value to a z-value, using the 

  Z-formula, . 

  For the mean of the normal distribution, use  = n ∗ p 
(the mean of the binomial), and for the standard 
deviation , use  (the standard deviation 
of the binomial). 

  For the coin-flipping example, use  = n ∗ p = 100 ∗
  0.50 = 50 and  . 
  Now put these values into the Z-formula to get 

   = 2. Now find P(Z > 2).

 4. Proceed as you usually would for any normal dis-
tribution. That is, do Steps 4 and 5 described in the 
earlier section “Finding Probabilities for X.” 

  For the coin flips, P(X > 60) = P(Z > 2.00) = 1 – 0.9772 = 
0.0228. The chance of getting more than 60 heads in 
100 flips of a coin is about 2.28 percent.

 

When you use the normal approximation to find a binomial 
probability, your answer is an approximation (not exact), so 
be sure you state that. Also show that you checked the neces-
sary conditions for using the normal approximation.

              



Chapter 6

Sampling Distributions and 
the Central Limit Theorem

In This Chapter
▶ Understanding the concept of a sampling distribution

▶ Using the Central Limit Theorem

▶ Determining the factors that affect precision 

When you take a sample of data, it’s important to realize 
the results will vary from sample to sample. Statistical 

results based on samples should include a measure of how 
much they expect those results to vary from sample to sample. 
This chapter shows you how to do that by couching everything 
in terms of the sample means (for numerical data) and applying 
the same ideas to sample proportions (for categorical data).

Sampling Distributions 
Suppose everyone on the planet rolled a single die and 
recorded the outcome, X. With all those outcomes, we’d have 
an entire population of values. The graph of these outcomes 
in the population would represent the distribution of X. Now 
suppose everyone rolled their die 10 times (a sample of size 
10) and recorded the average, . With all those averages, we’d 
get an entirely new population — the population of sample 
means. The graph of this new population would represent the 
sampling distribution of . 

 

When you’re talking about a particular sample mean, use the 
notation . When you’re talking about the random variable 
representing any sample mean in general, use the notation .
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A distribution is a listing or graph of all possible values of a 
random variable or a population (such as X) and how often 
they occur. For example, if you roll a fair die and record the 
outcome and repeat an infinite number of times, the distribu-
tion of X = the outcome, with numbers 1, …, 6 appearing with 
equal frequency. The distribution of X in this case is shown in 
Figure 6-1a.

Now apply this idea to sample means. Take a sample of values 
from your random variable X (your population), find the mean 
of the sample, and repeat over and over again. You now have 
a new random variable called , which takes on a wide range 
of possible values and has its own distribution. 

A listing or graph of all possible values of the sample mean 
and how often they occur is called the sampling distribution of 
the sample mean. For example if you roll a die 10 times, find 
the average, and then repeat infinite times, the average will 
take on values fairly close to 3.5 (halfway between 1 and 6) 
with values near 3.5 occurring more often than values near 1 
or 6. Figure 6-1b shows the actual sampling distribution of , 
the average of 10 rolls of a die.

 

The term sampling distribution is used because data represent 
averages based on samples, not individual values from a pop-
ulation. As with any other distribution, a sampling distribu-
tion has its own shape, center, and measure of variability — 
the following sections discuss these features. 
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b

Average outcome

Sampling distribution of X-bar = average outcome of 10 rolls of a die
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Figure 6-1:  Distributions of a) individual rolls of one die; and b) average 
rolls of 10 dice.

The mean of a sampling 
distribution
In the die rolling example, the mean of X (the outcome of a 
single die) is  = 3.5, as seen in Figure 6-1a. The mean of , 
denoted , equals 3.5 as well. The average of a single roll is the 
same as the average of all possible sample means from 10 rolls. 

In general, the mean of this population of all possible sample 
means is the same as the mean of the entire population. 
Notationally speaking, you write . This makes sense; 
the average of the averages from all samples is the average of 
the population that the samples came from.

 

Using subscripts on  we can distinguish which mean we’re 
talking about. The mean of X (the individuals in the popula-
tion) or the mean of  (all possible sample means from the 
population) is denoted .

Standard error of a sampling 
distribution
The values in any population deviate from their mean (people 
have different heights, and so on). Variability in a population 
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of individuals (X) is measured in standard deviations (see 
Chapter 2). Sample means vary because you’re not sampling 
the whole population, only a subset. Variability in the sample 
mean ( ) is measured in terms of standard errors. 

 

Error here doesn’t mean there’s been a mistake — it means 
there is a gap between the population and sample results.

The standard error of the sample means is denoted by . Its 
formula is , where  is population standard deviation and 

n is sample size. In the next sections you see the effect each of 
has on the standard error.

Sample size and standard error
Because n is in the denominator of its formula, the standard 
error decreases as n increases. It makes sense that having more 
data gives less variation (and more precision) in your results.

A visual can help you see what’s happening here with respect 
to gaining precision in  as n increases. Suppose X is the 
time it takes for a worker to type and send 10 letters of recom-
mendation. Suppose X has a normal distribution with mean 
5 minutes and standard deviation 2 minutes. Figure 6-2a 
shows the picture of the distribution of X. 

Now take a random sample of 10 workers, measure their 
times, and find the average,  each time. Repeat this process 
over and over, and graph all of the possible results for all 
possible samples. Figure 6-2b shows the picture of the dis-
tribution of . Notice that it’s still centered at 10 (which we 
expected) and that its variability is smaller; the standard 

error in this case is . The average times are 

closer to 10 than the individual times shown in Figure 6-2a. 
That’s because average times for 10 individuals don’t change 
as much as individual times do.

Now take random samples of 50 workers and find their means. 
This sampling distribution is shown in Figure 6-2c. The varia-
tion is even smaller here than it was for n = 10; the standard 

error of  in this case is . The average times here 

are even closer to 10 than the ones from Figure 6-2b. Larger 
sample sizes mean more precision and less change from 
sample to sample.
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Figure 6-2:  Distributions of a) individual times; b) average times for 
10 individuals; c) average times for 50 individuals.
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Population standard deviation 
and standard error
In the standard error formula for ,  you see that the

population standard deviation, , is in the numerator. That 
means as the population standard deviation increases, the 
standard error of the sample means increases. Mathematically 
this makes sense; how about statistically?

Suppose you have two ponds of fish (call them Pond #1 and 
Pond #2), and you want to find the average length of all the 
fish in each pond. Suppose you know that the fish lengths in 
Pond #1 have a mean of 20 inches and a standard deviation 
of 2 inches (see Figure 6-3a). Suppose the fish in Pond #2 also 
average 20 inches, but have a standard deviation of 5 inches 
(see Figure 6-3b). Comparing Figures 6-3a and 6-3b you see 
they have the same shape and mean, but the fish in Pond #2 
are more variable than in Pond #1. 

Now suppose you take a sample of 100 fish from Pond #1, find 
the mean length of the fish, and repeat this process over and 
over. Then do the same with Pond #2. Knowing that the fish in 
Pond #2 have more variability than Pond #1 in the first place, 
the means of the samples from Pond #2 will have more vari-
ability compared to Pond #1 as well. It’s harder to estimate 
the population average when the population varies a lot to 
begin with — it’s much easier to estimate the population aver-
age when the population values are similar.
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Figure 6-3: Distributions of a) fish lengths in Pond #1; b) in Pond #2.

The shape 
Now that we know the mean and standard error of , the next 
step is to determine the sampling distribution of  (that is, 
the shape of the distribution of all possible ’s from all possi-
ble samples). There are two cases: 1) the original distribution 
for X (the population) is normal; and 2) the original distribu-
tion for X (the population) is not normal, or is unknown.

Case 1: Distribution of X is normal
If X has a normal distribution, then  does too. This is a math-
ematical statistics result and requires no additional tools to 
prove. Looking at Figure 6-2, you can see this result is true for 
the worker’s times. Since X is normal, the shape is the same in 
each graph; the only thing that changes is the amount concen-
tration around the mean.

Case 2: Distribution of X is unknown or not normal 
If the X distribution is any distribution that is not normal, or if its 
distribution is unknown, you can’t automatically say the sample 
means ( ) have a normal distribution. But you can approximate 

’s distribution with a normal distribution — if the sample size 
is large enough. This result is due to the Central Limit Theorem 
(CLT). The CLT says that the sampling distribution (shape) of  
is approximately normal, if the sample size is large enough. And 
the CLTdoesn’t care what the distribution of X is!
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Formally, for any population with mean  and standard devi-
ation , the CLT states that:

 ✓ If the distribution of  is non-normal or unknown, the 
sampling distribution of all possible sample means,  is 
approximately normal for a sufficiently large sample size.

 ✓ The larger the sample size (n), the closer the distribution 
of the sample means will be to a normal distribution. 

 ✓ Most statisticians agree that if n is at least 30, it will do a 
reasonable job in most cases.

 

Two common misconceptions about the CLT: 

 ✓ The CLT is only needed when the distribution of X is 
either non-normal or is unknown. It is not needed if X 
started out with a normal distribution. 

 ✓ The formulas for the mean and standard error of  are 
not due to the CLT. These are just mathematical results 
that are always true.

Finding Probabilities for 
After you’ve established through Case 1 or Case 2 (see previous 
section) that  has a normal or approximately normal distri-
bution, you can find probabilities for  by converting the -value 
to a z-value and finding probabilities using the Z-table (Table A-1 

in the appendix.) The general conversion formula is . 

Substituting the appropriate values of the mean and standard 

error of  the conversion formula becomes . 

Suppose X is the time it takes a worker to type and send 5 
letters of recommendation. Suppose X (the times for all the 
workers) has a normal distribution and the reported mean is 
10 minutes and the standard deviation 2 minutes. You take a 
random sample of 50 workers and measure their times. What 
is the chance that their average time is less than 9.5 minutes? 

This question translates to finding P(  < 9.5). As X has a 
normal distribution to start with, we know  also has a normal 
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distribution. Converting to z-value. we get . 

So we want P(Z < –1.77), which equals 0.0384 from the Z-table 
(Table A-1 in the appendix). So the chance that these 50 ran-
domly selected workers average less than 9.5 minutes to com-
plete this task is 3.84%. 

 

Don’t forget to divide by the square root of n in the denomina-
tor of Z. Always divide by square root of n when the question 
refers to the average of the X- values.

How do you find probabilities for  if X is not normal, or is 
unknown? As a result of the CLT, the distribution of X can be 
non-normal or even unknown and as long as n is large enough, 
you can still find approximate probabilities for  using the 
standard normal (Z) distribution and the process described 
earlier. (That is, convert to a Z-value and find probabilities 
using the Z-table (Table A-1, appendix).)

 

When you do have to use the CLT to find a probability for  
you need to say that your answer is an approximation and that 
you’ve got a large enough n to proceed because of the CLT. (If 
n is not large enough for the CLT, you use the t-distribution in 
many cases — see Chapter 9.)

The Sampling Distribution 
of the Sample Proportion

The Central Limit Theorem (CLT) doesn’t apply only to 
sample means. You can also use it with other statistics, 
including sample proportions. The population proportion, p, 
is the proportion of individuals in the population that have a 
certain characteristic of interest based on a binomial random 
variable (see Chapter 4). The sample proportion, denoted , 
is the proportion of individuals in the sample that have that 
same characteristic of interest. The sample proportion is the 
number of individuals in the sample who have that character-
istic of interest divided by the total sample size (n). If you take 
a sample of 100 students and find 60 freshman, the sample 
proportion for freshman is 60/100 = 0.60. This section exam-
ines the sampling distribution of all possible sample propor-
tions, , from samples of size n from a population.
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The sampling distribution of  has these properties:

 ✓ Its mean is the population proportion, denoted by p.

 ✓ Its standard error is . (Note that because n is 

  in the denominator, standard error decreases as n 
increases.)

 ✓ Its shape is approximately normal, provided that the 
sample size is large enough. This is due to the CLT. That 
means you can use the normal distribution to find prob-
abilities for . (See Chapter 5 for more.) 

 ✓ The larger the sample size (n), the closer the distribution 
of sample proportions is to a normal distribution. 

 

How large is large enough for the CLT to work for categorical 
data? Most statisticians agree that both np and n(1 – p) should 
be greater than or equal to 10. You want the average number 
of successes (np) and the average number of failures n(1 – p) 
to be at least 10. (Note the second condition involves n(1 – p), 
not np(1 – p), the variance of the binomial distribution.)

What proportion of students 
need math help?
Suppose you want to know what proportion of incoming 
college students would like help in math. A student survey 
accompanies the ACT test each year, and one of the questions 
is whether the student would like some help with math skills. 
Assume (through past research) that 38% of the students 
taking the ACT respond yes. That means p = 0.38 in this case.

The original data has a binomial distribution where success = 
would like help. The yes responses (p) and no responses 
(1 – p) for the population are shown in Figure 6-4 as a bar 
graph. (See Chapter 3 for more on bar graphs.) 
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Figure 6-4:  Population percentages for responses to ACT math-help 
question.

Now take all possible samples of size 1,000 from this popula-
tion and find the proportion in each who said they needed 
math help. The distribution of these sample proportions is 
in Figure 6-5. It has an approximate normal distribution with 
mean p = 0.38 and standard error equal to

(or about 1.5%). This approximation is valid because the 
two conditions for the CLT are met: 1) np = 1,000(0.38) = 380 
(which is at least 10); and 2) n(1 – p) = 1,000(0.62) = 620 (also 
at least 10). 
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Figure 6-5:  Proportion of students responding yes to ACT math-help 
question for samples of size 1,000.

Finding Probabilities for 
For the ACT test example, suppose it’s reported that 0.38 or 
38% of all the students taking the ACT test would like math 
help. Suppose you took a random sample of 1,000 students. 
What is the chance that more than 40 percent of them say 
they need help? 

What the question wants is the probability that the sample 
proportion,  is greater than 0.40; that is, P(  > 0.40).This 
question is answered using the normal approximation for  
described in the previous section, given the stated conditions 
are met. 

We first check the conditions: 1) is np at least 10? Yes because 
1,000 * 0.38 = 380 = 38; 2) is n(1 – p) at least 10? Again yes 
because 1,000 * (1 – 0.38) = 620 checks out. So you can use the 
normal approximation to answer the question.

We make the conversion of the -value to a z-value using 

 to get . Now we find 

P(Z > 1.30) = 1 – 0.9032 = 0.0968. So if 38 percent of students 
wanted help, the chance of taking a sample of 1,000 students 
and getting more than 40 percent needing help is approxi-
mately 0.0968 (by the CLT).
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Comparing sample results to a claim about the population is 
called hypothesis testing. Because the chance of getting more 
than 40% of the students in our sample who requested help 
is 0.0968, we wouldn’t reject the claim that 38% of the popula-
tion of all ACT takers request help. To reject this claim most 
statisticians would want this probability be less than 0.05 (see 
Chapter 8 for more on hypothesis testing).
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Chapter 7

Confidence Intervals
In This Chapter 
▶ Confidence interval components

▶ Interpreting confidence intervals

▶ Details of confidence intervals for one or two means/proportions

In this chapter, you find out how to build, calculate, and 
interpret confidence intervals, and you work through the 

formulas involving one or two population means or propor-
tions. You also get the lowdown on some of the finer points of 
confidence intervals: what makes them narrow or wide, what 
makes you more or less confident in their results, and what 
they do and don’t measure. 

Making Your Best Guesstimate
A confidence interval (abbreviated CI) is used for the purpose 
of estimating a population parameter (a single number that 
describes a population) by using statistics (numbers that 
describe a sample of data). For example, you might estimate the 
average household income (parameter) based on the average 
household income from a random sample of 1,000 homes (statis-
tic). However, because sample results will vary (see Chapter 6) 
you need to add a measure of that variability to your estimate. 
This measure of variability is called the margin of error, the 
heart of a confidence interval. Your sample statistic, plus or 
minus your margin of error, gives you a range of likely values for 
the parameter — in other words, a confidence interval.

The margin of error is the amount of “plus or minus” that is 
attached to your sample result when you move from discuss-
ing the sample itself to discussing the whole population that 
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it represents; that’s why the general formula for the margin of 
error contains a “±” in front of it.

For example, say the percentage of kids who like baseball is 
40 percent, plus or minus 3.5 percent. That means the per-
centage of kids who like baseball is somewhere between 
40% - 3.5% = 36.5% and 40% + 3.5% = 43.5%. The lower end 
of the interval is your statistic minus the margin of error, and 
the upper end is your statistic plus the margin of error.

 

The margin of error is not the chance a mistake was made; 
it measures variation in the random samples due to chance. 
Because you didn’t get to sample everybody in the popula-
tion, you expect your sample results to be “off” by a certain 
amount, just by chance. You acknowledge that your results 
could change with subsequent samples, and that they’re only 
accurate to within a certain range, which is the margin of error.

To estimate a parameter with a confidence interval: 

 1. Choose your confidence level and your sample size 
(see details later in this chapter).

 2. Select a random sample of individuals from the 
population.

 3. Collect reliable and relevant data from the individu-
als in the sample.

  See Chapter 12 for survey data and Chapter 13 for data 
from experiments.

 4. Summarize the data into a statistic (for example, a 
sample mean or proportion.)

 5. Calculate the margin of error. (Details later in this 
chapter.)

 6. Take the statistic plus or minus the margin of error 
to get your final estimate of the parameter. 

  This is called a confidence interval for that parameter.

For example, the formula for a confidence interval for the 
mean of a population is ; the statistic here is  (the 

sample mean), and the margin of error is the piece following 
the plus/minus sign:  . (This formula is fully broken down

in the section, “Confidence Interval for One Population Mean.”)
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The Goal: Small Margin of Error
The ultimate goal when making an estimate using a confidence 
interval is to have a small margin of error. The narrower the 
interval, the more precise the results are. 

For example, suppose you’re trying to estimate the percent-
age of semi trucks on the interstate between the hours of 12 
a.m. and 6 a.m., and you come up with a 95% confidence inter-
val that claims the percentage of semis is 50%, plus or minus 
40%. Wow, that narrows it down! (Not.) You’ve defeated the 
purpose of trying to come up with a good estimate — the con-
fidence interval is much too wide. You’d rather say something 
like: A 95% confidence interval for the percentage of semis 
on the interstate between 12 a.m. and 6 a.m. is 50%, plus or 
minus 3% (thus between 47% and 53%). 

How do you go about ensuring that your confidence interval 
will be narrow enough? You certainly want to think about this 
issue before collecting your data; after the data are collected, 
the width of the confidence interval is set. 

Three factors affect the size of the margin of error:

 ✓ The confidence level

 ✓ The sample size

 ✓ The amount of variability in the population

These three factors all play important roles in influencing the 
width of a confidence interval. In the following sections, you 
see how.

 

Note that the sample statistic itself (for example, 50% of 
vehicles in the sample are semis) isn’t related to the width of 
the confidence interval. The statistic only determines the mid-
point of the confidence interval, not its width.

Choosing a Confidence Level
Variability in sample statistics is measured in standard errors. 
A standard error is very similar to the standard deviation of 
a data set or a population. The difference is that a standard 
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error measures the variation among all the possible values of 
the statistic (for example all the possible sample means) while 
a standard deviation of a population measures the variation 
among all possible values within the population itself. (See 
Chapter 6 for all the information on standard errors.)

The confidence level of a confidence interval corresponds to 
the percentage of the time your result would be correct if you 
took numerous random samples. Typical confidence levels 
are 95% or 99% (many others are also used). The confidence 
level determines the number of standard errors you add and 
subtract to get the percentage confidence you want. 

When working with means and proportions, if the proper 
conditions are met, the number of standard errors to be 
added and subtracted for a given confidence level is based on 
the standard normal (Z-) distribution, and is labeled z*. The 
higher the confidence level, the more standard errors need 
to be added and subtracted, hence a higher z*-value. For 95% 
confidence, the z*-value is 1.96, and for 99% confidence, z*-
value is 2.58. Some of the more commonly used confidence 
levels, along with their corresponding z*-values, are given in 
Table 7-1.

Table 7-1 z*-values for Selected (Percentage) 
 Confidence Levels

Percentage Confidence z*-value

80 1.28

90 1.64

95 1.96

98 2.33

99 2.58

 

Using stat notation, you can write a confidence level as (1 – ), 
where  represents the percentage of confidence intervals 
that are incorrect (don’t contain the population parameter by 
random chance). So if you want a 95 percent confidence inter-
val,  = 0.05. This number  is also related to the chance of 
making a Type I error in a hypothesis test (see Chapter 8). 
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Factoring In the Sample Size
The relationship between margin of error and sample size 
is simple: As the sample size increases, the margin of error 
decreases. This confirms what you hope is true: The more 
information you have, the more accurate your results are 
going to be. (That of course, assumes that it’s good, credible 
information — see Chapters 12 and 13.)

Looking at the formula for standard error for the sample 
mean,  (from Chapter 6) notice that it has an n in the 

denominator of a fraction; this is the case for most any stan-
dard error formula. As n increases, the denominator of this 
fraction increases, which makes the overall fraction get 
smaller. That makes the margin of error, , smaller and 

results in a narrower confidence interval. 

Here’s where a large sample size really comes in handy. When 
you need a high level of confidence, you have to increase the 
z*-value and, hence, the margin of error. This makes your 
confidence interval wider (not good). But you can offset this 
wider confidence interval by increasing the sample size and 
bringing the margin of error back down, thus narrowing the 
confidence interval. The increase in sample size allows you to 
still have the confidence level you want, but also ensures that 
the width of your confidence interval will be small (which is 
what you ultimately want).

You can determine the sample size you need to achieve a cer-
tain margin of error before you start a study. When estimating 
a population mean, you can use the following sample size 

formula: , where MOE is your desired margin 

of error;  is the population standard deviation; and z* is the 
value on the Z-distribution that corresponds to the confidence 
level you want (Table 7-1). 

Notice that the bracket notation on the outside of the equa-
tion for n has a flat ledge on top and no ledge on the bottom. 
That means you are supposed to round up your result to the 
“next greatest integer.” In other words, always round up your 
answer to the next integer if you have anything after the 
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decimal point — even 107.01 is rounded up to 108. This 
ensures that you won’t exceed the margin of error you need.

 

If the population standard deviation,  is unknown, you can 
do a pilot study (a small study before the full blown study) 
and use its sample standard deviation (s) as a substitute for 

. At that point you would use the appropriate value on the 
t-distribution with n – 1 degrees of freedom, rather than z*. 
(See Chapter 9 for info on the t-distribution.)

When your statistic is a sample proportion or percentage 
(such as the proportion of females, or the percentage of semis) 
a quick-and-dirty way to figure margin of error is to take 1 
divided by the square root of n (the sample size). Try different 
values of n and see how the margin of error is affected. 

Approximately what sample size is needed to have a narrow 
confidence interval with respect to polls? Using the formula in 
the preceding paragraph, you can make some quick compari-
sons. A survey of 100 people will have a margin of error of about 

 = 0.10 or plus or minus 10% (which is fairly large.) However, 

if you survey 1,000 people, your margin of error decreases

dramatically, to plus or minus , or about 3%. A survey

of 2,500 people in the U.S. results in a margin of error of plus 
or minus 2%. This sample size gives amazing accuracy when 
you think about how large the U.S. population is (well over 
300 million).

Keep in mind, however, that you don’t want to go too high with 
your sample size because there is a point where you start having 
a diminished return. For example, moving from a sample size 
of 2,500 to 5,000 narrows the margin of error of the confidence 
interval to about 1.4%, down from 2%. Each time you survey one 
more person, the cost of your survey in terms of money and 
time increases, so adding another 2,500 people to the survey just 
to narrow the interval by less than six tenths of 1% may not be 
worthwhile. 

 

Real accuracy depends on the quality of the data as well as 
on the sample size. A large sample size that has a great deal 
of bias (see Chapter 12) may appear to have a narrow confi-
dence interval but actually means nothing. It’s better to have 
a smaller sample size that contains good data than a larger 
sample size with a lot of bias.
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Counting On Population 
Variability 

Another factor influencing variability in sample results is the 
variability (standard deviation) within the population itself. For 
example, in a population of houses in a large city like Columbus, 
Ohio, you see a large amount of variability in price. This vari-
ability in house price over the whole city will be higher than the 
variability in house price if your population was limited to a cer-
tain housing development in Columbus (where the houses are 
likely to be similar to each other). 

As a result, if you take a sample of houses from the entire city 
of Columbus and find the average price, the margin of error 
will be larger than if you take a sample from one single hous-
ing development in Columbus. So you’ll need to sample more 
houses from the entire city of Columbus in order to have the 
same amount of accuracy that you would get from a single 
housing development. 

You can also look at it mathematically. Variability is measured 
in terms of standard errors/deviations. Notice that the popu-
lation standard deviation,  appears in the numerator of the 
standard error of the sample mean, . As  (numerator) 

increases, the standard error (entire fraction) increases. A 
larger standard error means a larger margin of error and a 
wider confidence interval.

 

More variability in the original population increases the margin 
of error, making the confidence interval wider. However, don’t 
let that discourage you. This increase can be offset by increas-
ing the sample size. (Remember the sample size, n, appears 

 in the denominator of the standard error formula, , so an 

 increase in n results in a decrease in the margin of error.) 

Confidence Interval for 
a Population Mean

When the characteristic that’s being measured (such as 
income, IQ, price, height, quantity, or weight) is numerical, 
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people often want to estimate the mean (average) value for 
the population. You estimate the population mean by using a 
sample mean plus or minus a margin of error. The result is a 
confidence interval for a population mean, .

The formula for a CI for a population mean is 

where  is the sample mean;  is the population standard 
deviation; n is the sample size; and z* is the appropriate value 
from the Z-distribution for your desired confidence level (see 
Table 7-1 for values of z* for given confidence levels).

For example, suppose you work for the Department of Natural 
Resources and you want to estimate, with 95% confidence, the 
mean (average) length of the walleyes in a fish hatchery pond. 
(Assume the population standard deviation ( ) is 2.3 inches.) 
Because you want a 95% confidence interval, your z*-value 
is 1.96. Suppose you take a random sample of n = 100 wall-
eyes and find the average length ( ) is 7.5 inches. To find the 
margin of error, multiply 1.96 times 2.3 divided by the square 
root of 100 to get plus or minus 1.96 ∗ (2.3/10) = 0.45 inches. 

Your 95% confidence interval for the mean length of the wall-
eyes in this fish hatchery pond is 7.5 inches plus or minus 
0.45 inches. (The lower end of the interval is 7.5 – 0.45 = 7.05 
inches; the upper end is 7.5 + 0.45 = 7.95 inches.) You can 
say that a range of likely values for the average length of the 
walleyes in this entire pond is between 7.05 and 7.95 inches, 
based on your sample, with a confidence level of 95%.

 

When your sample size is small (under 30), you use the appro-
priate value on the  – distribution with  – 1 degrees of free-
dom instead of z*(see Table A-2 in the appendix).

 

You can also use a confidence interval for one population 
mean to analyze the average difference in paired data from 
one population. For example, suppose you want to estimate 
the average effect of a certain drug on blood pressure. You 
take one sample of patients, measure their blood pressure 
before and after taking the drug, and record the differences in 
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blood pressure. (This type of experiment is called a matched-
pairs design; see Chapter 13.) These differences represent a 
single sample from a single population, so a confidence inter-
val for one population mean can be used to estimate the aver-
age difference in blood pressure due to the drug.

Confidence Interval for a 
Population Proportion

When a characteristic being measured is categorical — for 
example, opinion on an issue (support, oppose, or are neu-
tral), or type of behavior (do/don’t wear a seatbelt while 
driving), people often want to estimate the proportion (or 
percentage) of people in the population that fall into a cer-
tain category of interest. Examples include the percentage of 
people in favor of a four-day work week, or the proportion of 
drivers who don’t wear seat belts. In each of these cases, the 
object is to estimate a population proportion using a sample 
proportion plus or minus a margin of error. The result is 
called a confidence interval for a population proportion, p.

The formula for a CI for a population proportion, p, is 

where  is the sample proportion; n is the sample size; and z* 
is the appropriate value from the standard normal (Z-) distri-
bution for your desired confidence level. (Note that a sample 
proportion is the proportion of individuals in the sample that 
had the characteristic of interest.)

For example, suppose you want to estimate the percentage of 
the time you get a red light at a certain intersection. If you want a 
95% confidence interval, your z*-value is 1.96. You take a random 
sample of 100 different trips through this intersection, and you 
find that you hit a red light 53 times, so  = 53/100 = 0.53. Take 
0.53 times (1 - 0.53) and divide by 100 to get 0.249/100 = 0.00249.
Take the square root to get 0.0499 or 0.05. The margin of error is, 
therefore, plus or minus 1.96 ∗ 0.05 = 0.098. 
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Your 95% confidence interval for the percentage of times you 
will ever hit a red light at that particular intersection is 0.53 
(or 53%) plus or minus 0.098. The lower end of the interval 
is 0.530 - 0.098 = 0.43 or 43%; the upper end is 0.530 + 0.098 
= 0.63 or 63%.) You conclude the overall percentage of the 
times you should expect to hit a red light at this intersection 
is somewhere between 43% and 63%, based on your sample, 
with a confidence level of 95%.

Confidence Interval for the 
Difference of Two Means

The goal of many surveys and medical studies is to compare 
two populations, such as males versus females or Republicans 
versus Democrats. When the characteristic being compared 
is numerical (for example, height, weight, or income) the 
object of interest is the amount of difference in the means 
(averages) for the two populations. For example, you may 
want to compare the difference in average age of Republicans 
versus Democrats, or the difference in average incomes of 
men versus women. You estimate the difference between two 
population means by taking a sample from each population 
and using the difference of the two sample means, plus or 
minus a margin of error. The result is a confidence interval for 

the difference of two population means, .

The formula for a CI for the difference between two popula-
tion means is 

where  and  are the sample means, respectively; n1 and n2 
are the sample sizes;  and  are the population standard 
deviations; and z* is the appropriate value from the standard 
normal (Z-) distribution for your desired confidence level (see 
Table 7-1 for values of z* for certain confidence levels).

 

If one or both of the sample sizes are small (less than 30) you 
use the appropriate value on the t-distribution with n1 + n2 – 2 
degrees of freedom instead of z* (see Table A-2 in the appendix).
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Suppose you want to estimate with 95% confidence the dif-
ference between the mean (average) lengths of cobs from 
two varieties of sweet corn (allowing them to grow the same 
number of days under the same conditions). Call the two vari-
eties Corn-e-stats and Stats-o-sweet.

Suppose your random sample of 100 cobs of the Corn-e-stats 
variety averages 8.5 inches, with a standard deviation of 2.3 
inches, and your random sample of 110 cobs of Stats-o-sweet 
averages 7.5 inches, with a standard deviation of 2.8 inches. 
That is,  = 8.5, s1 = 2.3, and n1 = 100 from the Corn-e-stats; and 

 = 7.5, s2 = 2.8, and n2 = 110 from the Stats-o-sweet. 

 

Notice the population standard deviations are unknown; when 
this is the case you substitute the appropriate value from the 
t-distribution with n

1
 + n

2
 – 2 degrees of freedom for z*.  In this 

case the degrees of freedom are 100 + 110 – 2 = 208; with this 
many degrees of freedom, the t- and Z-distributions are approxi-
mately equal (see Chapter 9), and we use 1.96 for the appropri-
ate value of t anyway (see last row of Table A-2 in the appendix).

The difference between the sample means  is 8.5 - 7.5 = +1 
inch. The average for Corn-e-stats minus the average for Stats-
o-sweet is positive, making Corn-e-stats the larger of the two 
varieties, in terms of this sample. Is that difference enough to 
generalize to the entire population, though? That’s what this 
confidence interval is going to help you decide.

To calculate the margin of error, square s1 (2.3) to get 5.29 
and divide by 100 to get 0.0529; then square s

2
 (2.8) and divide 

by 110 to get 7.84/110 = 0.0713. The sum is 0.0529 + 0.0713 = 
0.1242; the square root is 0.3524. Multiply 1.96 times 0.3524 to 
get 0.69 inches, the margin of error. 

Your 95% confidence interval for the difference between the 
average lengths for these two varieties of sweet corn is 1 inch, 
plus or minus 0.69 inches. (The lower end of the interval is 1 - 
0.69 = 0.31 inches; the upper end is 1 + 0.69 = 1.69 inches.) You 
conclude that the cobs of the Corn-e-stats variety are longer, 
on average, than the Stats-o-sweet variety, by between 0.31 
and 1.69 inches, with a 95% level of confidence. 

 

Notice all the values in this interval are positive. That’s why 
you conclude one brand is longer than the other (according 
to your data). If some of the values in the confidence interval 
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were positive and some were negative, you wouldn’t conclude 
one was longer than the other on average.

Also note that there is a difference between the “difference in 
the means” and the “mean of the differences.” If you’re look-
ing at pairs of data (such as pre-test versus post-test) and are 
examining the differences, you only have one data set and one 
population. Use the methods in the “Confidence Interval for 
a Population Mean” section to find a confidence interval for 
the “mean difference.” If you’re examining the difference in 
the means of two separate populations (such as males versus 
females) use the methods in this section to find a confidence 
interval for the “difference of two means.”

 

Notice that you could get a negative value for . For exam-
ple, if you had switched the two varieties of corn, you would 
have gotten -1 for this difference. That’s fine; just remember 
which group is which. A positive difference means the first 
group has a larger value than the second group; a negative 
difference means the first group has a smaller value than the 
second group. If you want to avoid negative values, always 
make the group with the larger value your first group — all 
your differences will be positive.

Confidence Interval for the 
Difference of Two Proportions

When two populations are compared regarding some categor-
ical variable (such as comparing males to females regarding 
their opinion of a four-day work week) you estimate the differ-
ence between the two population proportions. You do this by 
taking the difference in their corresponding sample propor-
tions (one from each population) plus or minus a margin of 
error. The result is called a confidence interval for the differ-
ence of two population proportions, p1 – p2.

The formula for a confidence interval for the difference 
between two population proportions is:
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where  and n1 are the sample proportion and sample size 
of the first sample;  and n2 are the sample proportion and 
sample size of the second sample; and z* is the appropriate 
value from the standard normal (Z-) distribution for your 
desired confidence level (see Table 7-1 for z*-values).

Suppose you work for the Las Vegas Chamber of Commerce 
and you want to estimate with 95% confidence the difference 
between the proportion of females versus males who have 
ever gone to see an Elvis impersonator. Suppose your random 
sample of 100 females includes 53 females who have seen an 
Elvis impersonator, so  is 53/100 = 0.53; and your random 
sample of 110 males includes 37 males who have ever seen an 
Elvis impersonator, so  is 37/110 = 0.34. Because you want 
a 95% confidence interval, your z*-value is 1.96. Using the 
formula for the confidence interval for the difference of two 
proportions, you get the following: 

which equals 0.19 plus or minus 0.13. 

 

While performing any calculations involving sample percent-
ages, you must use the decimal form. After the calculations 
are finished, you may convert to percentages by multiplying 
by 100.

Your 95% confidence interval for the difference between the 
percentage of females who have seen an Elvis impersonator 
and the percentage of males who have seen an Elvis imper-
sonator is 19% plus or minus 13%. The lower end of the inter-
val is 0.19 - 0.13 = 0.06 or 6%; the upper end is 0.19 + 0.13 = 
0.32 or 32%. You conclude that a higher percentage of females 
have seen an Elvis impersonator (compared to males), and 
the difference is somewhere between 6% and 32%, with a 95% 
level of confidence. (Note this interval is quite wide; if you 
increase the sample sizes, the margin of error will decrease 
because n1 and n2 are in the denominator of the formula for 
the margin of error.)
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Interpreting Confidence Intervals
The big idea of a confidence interval is that it presents a range 
of likely values for the population parameter, based on one 
random sample, with a certain confidence level (such as 95%). 
This sounds fairly straightforward, but there are some intrica-
cies that can lead to incorrect interpretation of the results. 
This section helps untangle the confusion that can occur 
when interpreting a confidence interval.

Consider a survey conducted by the Gallup Organization (a 
world leader in the survey business). Suppose they sample 
1,000 people at random from the United States, and the results 
show that 520 people (52%) think the president is doing a 
good job. Gallup reports this survey has a margin of error of 
plus or minus 3%. So far, you know that a majority of the 1,000 
people in this sample approve of the president, but can you 
say this opinion carries over to a majority of all Americans?

If 52% of those sampled approve of the president, you can 
expect the percentage of all Americans who approve of the 
president to be 52%, plus or minus 3.0%. That is, a range of 
likely values is between 52% – 3% = 49% and 52% + 3% = 55%. 
To report the results from this poll, you would say, “Based 
on my sample, 52% of all Americans approve of the president, 
plus or minus a margin of error of 3.0 percent, with a confi-
dence level of 95%.”

How does a polling organization report its results? Here’s how 
Gallup does it:

“Based on the total sample of adults in (this) survey, we are 
95% confident that the margin of error for our sampling proce-
dure and its results is no more than ± 3.0 percentage points.”

 

Notice that 49% (the lower end of the range of likely values) 
is less than 50%. So you really can’t say that a majority of the 
American people support the president, based on this sample. 
You can only say that between 49% and 55% of all Americans 
support the president.

Now comes the subtle but very important point regarding 
how to interpret a confidence interval. When one particular 
confidence interval is calculated, do not include a probability 
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statement about your particular result when you draw your 
conclusions. That is, it’s wrong to say “I am 95% confident 
that the population mean is between XXX and XXX.” Once 
your sample has been selected and your confidence interval 
is calculated, it either contains the population parameter or 
it doesn’t; there is no probability involved. Bottom line: The 
confidence level (in this case 95%) does not apply to a single 
confidence interval.

So how do you interpret the 95%? It goes back to the defini-
tion of a confidence level. A confidence level is the percentage 
of all possible samples of size n whose confidence intervals 
contain the population parameter. When taking many random 
samples from a population, you know that some samples (in 
this case 95% of them) will represent the population, and some 
won’t (in this case 5% of them) just by random chance. Random 
samples that represent the population will result in confidence 
intervals that contain the population parameter (that is, they 
are correct); and those that do not represent the population 
will result in confidence intervals that are not correct.

For example, if you randomly sample 100 exam scores from 
a large population, you might get more low scores than you 
should in your sample just by chance, and your confidence 
interval will be too low; or you might get more high scores 
than you should in your sample just by chance, and your 
confidence interval will be too high. These two confidence 
intervals won’t contain the population parameter, but with a 
95% confidence level this type of error (called sampling error) 
should only happen 5% of the time.

 

Confidence level (such as 95%) represents the percentage of 
all possible random samples of size n that typify the popula-
tion and hence result in correct confidence intervals. It isn’t 
the probability of a single confidence interval being correct. 

Another way of thinking about the confidence level is to say 
that if the organization took a sample of 1,000 people over and 
over again and made a confidence interval from its results 
each time, 95 percent of those confidence intervals would be 
right. (You just have to hope that yours is one of those right 
results.)

To correctly interpret your particular confidence interval you 
can say “A range of likely values for the population mean is 
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XXX to XXX, with a confidence level of 95%.” Or you could say 
it like the Gallup Organization does:

“For these results, one can say with 95% confidence that the 
maximum amount of sampling (margin of) error is plus or 
minus XXX.”

It’s all about the sampling process, not a single sample.

Spotting Misleading 
Confidence Intervals

There are two possible reasons that a confidence interval is 
incorrect (does not contain the population parameter). First, 
it can be incorrect by random chance because the random 
sample it came from didn’t represent the population; or 
second, it can be incorrect because the data that went into 
it weren’t any good. I discuss the first situation in the previ-
ous section, and it can’t be prevented. The second situation 
can be prevented (or at least minimized) through good data-
collection practices. 

A good slogan to remember when examining statistical results 
is “garbage in = garbage out.” No matter how nice and scien-
tific someone’s confidence interval may look, the formula that 
was used to calculate it doesn’t have any idea of the quality 
of the data that went into it. It’s up to you to check it out. For 
example, if the data for the confidence interval was based on 
a biased sample (one that favored certain people over others); 
a bad design; bad data-collection procedures; or misleading 
questions, the margin of error is suspect — if the bias is bad 
enough, the results will be bogus.

For example, suppose a total of 50,000 people were surveyed 
on a certain issue. This incredibly high sample size sounds 
great — until you realize they were all visitors to a certain 
Web site. The tiny reported margin of error is a result of the 
huge n, yet it means nothing because it is based on biased 
data that didn’t come from a random sample. Of course, some 
people will go ahead and report it anyway, so you’re left to 
determine whether the results are based on good information 
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or garbage. If garbage, you know what to do about the margin 
of error: Ignore it.

Before I get on too high of a horse here, it’s important to note 
that even the best of surveys can still contain a little bias. 
The Gallup Organization addresses the issue of what margin 
of error does and does not measure in the follow disclaimer 
added to its reports:

“In addition to sampling error, question wording and practi-
cal difficulties in conducting surveys can introduce error or 
bias into the findings of public opinion polls.”

What Gallup is saying is that besides the error that happens in 
random samples just by chance, surveys can have additional 
errors or bias due to things like missing data from people who 
don’t respond, or phone numbers no longer in service. Margin 
of error cannot measure the extent of those types of nonsam-
pling errors. However, a good survey design like Gallup does 
can go a long way toward helping minimize bias and get credible 
results. (See Chapter 12 for full details on doing good surveys.)
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Chapter 8

Hypothesis Tests
In This Chapter
▶ General ideas for a hypothesis test

▶ Type I and Type II errors in testing

▶ Specific hypothesis tests for one or two population means or 
proportions 

Hypothesis testing is a statistician’s way of trying to 
confirm or deny a claim about a population using data 

from a sample. For example, you might read on the Internet 
that the average price of a home in your city is $150,000 and 
wonder if that number is true for the whole city. Or you hear 
that 65% of all Americans are in favor of a smoking ban in 
public places — is this a credible result? In this chapter I give 
you the big picture of hypothesis testing as well the details for 
hypothesis tests for one or two means or proportions. And I 
examine possible errors that can occur in the process. 

Doing a Hypothesis Test
A hypothesis test is a statistical procedure that’s designed 
to test a claim. Typically, the claim is being made about a 
population parameter (one number that characterizes the 
entire population). Because parameters tend to be unknown 
quantities, everyone wants to make claims about what their 
values may be. For example, the claim that 25% (or 0.25) of all 
women have varicose veins is a claim about the proportion 
(that’s the parameter) of all women (that’s the population) 
who have varicose veins. 
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Identifying what you’re testing
To get more specific, the varicose vein claim is that the 
parameter, the population proportion (p), is equal to 0.25. 
(This claim is called the null hypothesis.) If you’re out to test 
this claim, you’re questioning the claim and have a hypoth-
esis of your own (called the research hypothesis, or alternative 
hypothesis). You may hypothesize, for example, that the actual 
proportion of women who have varicose veins is lower than 
0.25, based on your observations. Or, you may hypothesize 
that due to the popularity of high-heeled shoes, the propor-
tion may be higher than 0.25. Or, if you’re simply question-
ing whether the actual proportion is 0.25, your alternative 
hypothesis is, “No, it isn’t 0.25.” 

In addition to testing hypotheses about categorical variables 
(having or not having varicose veins is a categorical variable), 
you can also test hypotheses about numerical variables, such 
as the average commuting time for people working in Los 
Angeles or their average household income. In these cases, 
the parameter of interest is the population average or mean 
(denoted μ). Again, the claim is that this parameter is equal to 
a certain value, versus some alternative.

Setting up the hypotheses 
Every hypothesis test contains two hypotheses. The first 
hypothesis is called the null hypothesis, denoted Ho. The null 
hypothesis always states that the population parameter is 
equal to the claimed value. For example, if the claim is that the 
average time to make a name-brand ready-mix pie is five min-
utes, the statistical shorthand notation for the null hypothesis 
in this case would be as follows: Ho: μ = 5. 

What’s the alternative?
Before actually conducting a hypothesis test, you have to put 
two possible hypotheses on the table — the null hypothesis is 
one of them. But, if the null hypothesis is found not to be true, 
what’s your alternative going to be? Actually, three possibili-
ties exist for the second (or alternative) hypothesis, denoted 
Ha. Here they are, along with their shorthand notations in the 
context of the example: 
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 ✓ The population parameter is not equal to the claimed 

value (Ha: μ ≠ 5).

 ✓ The population parameter is greater than the claimed 
value (Ha: μ > 5).

 ✓ The population parameter is less than the claimed value 
(Ha: μ < 5).

Which alternative hypothesis you choose in setting up your 
hypothesis test depends on what you’re interested in conclud-
ing, should you have enough evidence to refute the null hypoth-
esis (the claim). For example, if you want to test whether or not 
a company is correct in claiming its pie takes 5 minutes to make, 
you use the not-equal-to alternative. Your hypotheses for that 
test would be Ho: μ = 5 versus Ha: μ ≠ 5. 

If you only want to see whether the time turns out to be 
greater than what the company claims (that is, the company 
is falsely advertising its prep time), you use the greater-than 
alternative, and your two hypotheses are Ho: μ = 5 versus 
Ha: μ > 5. Suppose you work for the company marketing the 
pie, and you think the pie can be made in less than 5 minutes 
(and could be marketed by the company as such). The less-
than alternative is the one you want, and your two hypoth-
eses would be Ho: μ = 5 versus Ha: μ < 5. 

Knowing which hypothesis is which
How do you know which hypothesis to put in Ho and which 
one to put in Ha? Typically, the null hypothesis says that noth-
ing new is happening; the previous result is the same now as 
it was before, or the groups have the same average (their dif-
ference is equal to zero). In general, you assume that people’s 
claims are true until proven otherwise.

 

Hypothesis tests are similar to jury trials, in a sense. In a jury 
trial, Ho is similar to the not-guilty verdict, and Ha is the guilty 
verdict. You assume in a jury trial that the defendant isn’t guilty 
unless the prosecution can show beyond a reasonable doubt 
that he or she is guilty. If the jury says the evidence is beyond a 
reasonable doubt, they reject Ho, not guilty, in favor of Ha, guilty. 

In general, when hypothesis testing, you set up Ho and Ha so 
that you believe Ho is true unless your evidence (your data 
and statistics) show you otherwise. And in that case, where 
you have sufficient evidence against Ho, you reject Ho in favor of 
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Ha. The burden of proof is on the researcher to show sufficient 
evidence against Ho before it’s rejected. (That’s why Ha is often 
called the research hypothesis, because Ha is the hypothesis that 
the researcher is most interested in showing.) If Ho is rejected 
in favor of Ha, the researcher can say he or she has found a sta-
tistically significant result; that is, the results refute the previous 
claim, and something different or new is happening.

Finding sample statistics
After you select your sample, the appropriate number- 
crunching takes place. Your null hypothesis makes a state-
ment about what the population parameter is (for example, 
the proportion of all women who have varicose veins or the 
average miles per gallon of a U.S.-built light truck). You need a 
measure of how much your results can be expected to change 
if you took a different sample. In statistical jargon, the data 
you collect measure that variable of interest, and the statis-
tics that you calculate will include the sample statistic that 
most closely estimates the population parameter. If you’re 
testing a claim about the proportion of women with varicose 
veins, you need to calculate the proportion of women in your 
sample who have varicose veins. If you’re testing a claim 
about the average miles per gallon of a U.S.-built light truck, 
your statistic should be the average miles per gallon of the 
light trucks in your sample. 

Standardizing the evidence: 
the test statistic
After you have your sample statistic, you may think you’re 
done with the analysis part and are ready to make your 
conclusions — but you’re not. The problem is you have no 
way to put your results into any kind of perspective just by 
looking at them in their regular units. The number of standard 
errors that a statistic lies above or below the mean is called a 
standard score. To interpret your statistic, you need to convert 
it from original units to a standard score. 

When finding a standard score for a sample mean or propor-
tion, you take your statistic, subtract the mean, and divide the 
result by the standard error. In the case of hypothesis tests, 
you use the value in Ho as the mean. (That’s because you 
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assume Ho is true, unless you have enough evidence against 
it.) This standardized version of your statistic is called a test 
statistic, and it’s the main component of a hypothesis test.

The general procedure for converting a statistic to a test sta-
tistic (standard score):

 1. Take your statistic minus the claimed value (given 
by H

o
).

 2. Divide by the standard error of the statistic (see 
Chapter 6).

Your test statistic represents the distance between your actual 
sample results and the claimed population value, in terms of 
number of standard errors. If you see that the distance between 
the claim and the sample statistic is small in terms of standard 
errors, your sample isn’t far from the claim and your data are 
telling you to stick with Ho. If that distance is large, however, 
your data are showing less and less support for Ho. The next 
question is, how large of a distance is large enough to reject Ho?

Weighing the evidence and 
making decisions: p-values
To test whether the claim is true, you’re looking at your test 
statistic taken from your sample, and seeing whether it sup-
ports the claim. And how do you determine that? By looking at 
where your test statistic ends up on its corresponding sampling 
distribution — see Chapter 6. In the case of means or propor-
tions (if certain conditions are met) you look at where your test 
statistic ends up on the standard normal (Z) distribution. The 
Z-distribution has a mean of 0 and a standard deviation of 1. 
If your test statistic is close to 0, or at least within that range 
where most of the results should fall, then you can’t reject the 
claim (Ho). 

If your test statistic is out in the tails of the standard normal 
distribution, far from 0, it means the results of this sample do 
not verify the claim, hence we reject Ho. But how far is “too 
far from 0”? If the null hypothesis is true, most (about 95%) of 
the samples will result in test statistics that lie roughly within 
2 standard errors of the claim. If Ha is the not-equal-to alterna-
tive, any test statistic outside this range will result in Ho being 
rejected (see Figure 8-1). 
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Reject HO Reject HO

0–2 +2

Fail to reject HO Fail to reject HO

Figure 8-1: Test statistics and your decision.

 

If your test statistic is close to 0, you can’t reject the claim 
shown in Ho. However, this does not mean you accept the 
claim as truth either. Because Ho is on trial, and the test sta-
tistic is the evidence, either there is enough evidence to reject 
Ho or there isn’t. In a real trial, the jury’s conclusion is either 
guilty or not guilty. They never conclude “innocent.” Similarly, 
in a hypothesis test we either say “reject Ho” or “fail to reject 
Ho” — we never say “accept Ho.”

Finding the p-value
You can be more specific about your conclusion by noting 
exactly how far out on the standard normal distribution the 
test statistic falls, so everyone knows where the result stands 
and what that means in terms of how strong the evidence is 
against the claim. In the case of means or proportions (if cer-
tain conditions are met), you do this by looking up the test 
statistic on the standard normal distribution (Z-distribution, 
Table A-1 in the appendix) and finding the probability of being 
at that value or beyond it (in the same direction). This p-value 
measures how likely it was that you would have gotten your 
sample results if the null hypothesis were true. The farther 
out your test statistic is on the tails of the standard normal 
distribution, the smaller the p-value will be, and the more evi-
dence you have against the null hypothesis being true. 

To find the p-value for your test statistic:

 1. Look up the location of your test statistic on the 
standard normal distribution (see Table A-1 in the 
appendix).
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 2. Find the percentage chance of being at or beyond 

that value in the same direction: 

 a. If Ha contains a less-than alternative (left tail), 
find the probability from Table A-1 in the appen-
dix that corresponds to your test statistic.

 b. If Ha contains a greater-than alternative (right 
tail), find the probability from Table A-1 in the 
appendix that corresponds to your test statistic, 
and then take 1 minus that. (You want the per-
centage to the right of your test statistic in this 
case, and percentiles give you the percentage to 
the left. See Chapter 2.)

 3. Double this probability if (and only if) Ha is the not-
equal-to alternative. 

  This accounts for both the less-than and the greater-
than possibilities.

 4. Change the probability to a percentage by multiply-
ing by 100 or moving the decimal point two places to 
the right.

Interpreting a p-value
To make a proper decision about whether or not to reject Ho, 
you determine your cutoff probability for your p-value before 
doing a hypothesis test; this cutoff is called an alpha level (α). 
Typical values for α are 0.05 or 0.01. Here’s how to interpret 
your results for any given alpha level:

 ✓ If the p-value is greater than or equal to α, you fail to 
reject Ho. 

 ✓ If the p-value is less than α, reject Ho. 

 ✓ p-values on the borderline (very close to α) are treated 
as marginal results. 

Here’s how you interpret your results if you use an alpha level 
of 0.05:

 ✓ If the p-value is less than 0.01 (very small), the results are 
considered highly statistically significant — reject Ho.

 ✓ If the p-value is between 0.05 and 0.01 (but not close to 
0.05), the results are considered statistically significant — 
reject Ho.
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 ✓ If the p-value is close to 0.05, the results are considered 

marginally significant — decision could go either way.

 ✓ If the p-value is greater than (but not close to) 0.05, the 
results are considered non-significant — don’t reject Ho.

 

When you hear about a result that has been found to be sta-
tistically significant, ask for the p-value and make your own 
decision. Alpha levels and resulting decisions will vary from 
researcher to researcher.

General steps for a hypothesis test 
Here’s a boiled-down summary of the steps involved in doing 
a hypothesis test. (Particular formulas needed to find test 
statistics for any of the most common hypothesis tests are 
provided in the rest of this chapter.)

 1. Set up the null and alternative hypotheses: H
o
 and H

a
.

 2. Take a random sample of individuals from the popu-
lation and calculate the sample statistics (means and 
standard deviations). 

 3. Convert the sample statistic to a test statistic by 
changing it to a standard score (all formulas for test 
statistics are provided later in this chapter).

 4. Find the p-value for your test statistic.

 5. Examine your p-value and make your decision.

Testing One Population Mean
This test is used when the variable is numerical and only one 
population or group is being studied. For example, Dr. Phil 
says that the average time that working mothers spend talking 
to their children is 11 minutes per day. The variable, time, is 
numerical, and the population is all working mothers.

The null hypothesis in the Dr. Phil example is Ho: μ = 11 
minutes. Note that μ represents the average number of min-
utes per day that all working mothers spend talking to their 
children, and the claim is that that mean is 11. The alterna-
tive hypothesis, Ha, is either: μ > 11, μ < 11, or μ ≠ 11. Let’s 
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suppose you suspect that the average time working mothers 
spend talking with their kids is more than 11 minutes, your 
alternative hypothesis would be Ha: μ > 11. 

The formula for the test statistic for one population mean is 

Z = . To calculate it, do the following:

 1. Calculate the sample mean, , and the sample stan-
dard deviation, s. Let n represent the sample size.

  See Chapter 1 for calculations of the mean and stan-
dard deviation.

 2. Find  minus . (Remember,  is the claimed value 
of the population mean.)

 3. Calculate the standard error: . 

 4. Divide your result from Step 2 by the standard error 
found in Step 3.

For the Dr. Phil example, suppose a random sample of 100 
working mothers spend an average of 11.5 minutes per day 
talking with their children, with a standard deviation of 2.3 
minutes. That means  is 11.5, where n = 100 and s = 2.3. Take 
11.5 – 11 = +0.5.Take 2.3 divided by the square root of 100 
(which is 10) to get 0.23 for the standard error. Divide +0.5 by 
0.23, to get 2.17. That’s your test statistic. 

This means your sample mean is 2.17 standard errors above 
the claimed population mean. Would these sample results be 
unusual if the claim (Ho: μ = 11 minutes) were true? To decide 
whether your test statistic supports Ho, calculate the p-value. 
To calculate the p-value, look up your test statistic (in this case, 
2.17) on the standard normal distribution (Z-distribution) — see 
Table A-1 in the appendix — and take 100% minus the percen-
tile shown (since we are looking at the right tail), because your 
Ha is a greater-than hypothesis. In this case, the percentage 
would be 100% – 98.50% = 1.50%. So, the p-value is 0.0150 (1.50%). 

This p-value of 0.0139 (1.39%) is much less than 0.05 (5%). 
So, reject the claim (μ = 11 minutes) by rejecting Ho, and 
concluding Ha (μ > 11 minutes). Your conclusion: According 
to this (hypothetical) sample, Dr. Phil’s claim of 11 minutes 
is rejected; the actual average is greater than 11 minutes 
per day. 
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If the sample size, n, were less than 30 here, or the population 
standard deviation, σ, were unknown, you would look up your 
test statistic on the t-distribution with n – 1 degrees of free-
dom (see Chapter 9) rather than the (Z-distribution).

Testing One Population 
Proportion

This test is used when the variable is categorical (for example, 
gender or political party) and only one population is being 
studied (for example, all U.S. citizens). The test is looking at 
the proportion (p) of individuals in the population who have a 
certain characteristic — for example, the proportion of people 
who carry cell phones. The null hypothesis is Ho: p = po, where 
po is a certain claimed value. For example, if the claim is 20% 
of people carry cell phones, po is 0.20. The alternative hypoth-
esis is one of the following: p > po, p < po, or p ≠ po. 

The formula for the test statistic for a single proportion is 

. To calculate it, do the following:

 1. Calculate the sample proportion, , by taking the 
number of people in the sample who have the 
characteristic of interest (for example, the number 
of people in the sample carrying cell phones) and 
dividing that by n, the sample size. 

 2. Take  minus p
o
. (Remember p

o
 is the claimed 

number for the population proportion.)

 3. Calculate the standard error: . 

 4. Divide your result from Step 2 by your result from 
Step 3.

To interpret the test statistic, look up your test statistic 
on the standard normal distribution (see Table A-1 in the 
appendix) and calculate the p-value. For example, suppose 
Cavifree toothpaste claims that four out of five dentists rec-
ommend Cavifree toothpaste to their patients. In this case, 
the population is all dentists, and p is the proportion of all 
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dentists who recommended Cavifree to their patients. The 
claim is that p is equal to “four out of five,” which means 
that po is 4/5 = 0.80. You suspect that the proportion is actu-
ally less than 0.80. Your hypotheses are Ho: p = 0.80 versus 
Ha: p < 0.80. Suppose that 150 out of 200 dental patients sam-
pled received a recommendation for Cavifree. 

To find the test statistic, observe that the sample proportion 
 is 150/200 = 0.75. Since po = 0.80,take 0.75 – 0.80 = –0.05 as 

your numerator. Next, the standard error is the square root 
of [(0.80 ∗ [1 – 0.80])/200] = the square root of (0.16/200) = the 
square root of 0.0008 = 0.028.The test statistic is –0.05 divided 
by 0.028, which is –0.05/0.028 = –1.79. This means that your 
sample results are 1.79 standard errors below the claimed 
value for the population.

How often would you expect to get results like this if Ho were 
true? The percentage chance of being at or beyond (in this 
case to the left of ) –1.79, is 3.67% . (Look up –1.79 in Table 
A-1 in the appendix and use the corresponding percentile, 
because Ha is a less-than hypothesis. Now divide by 100 to 
get your p-value, which is 0.0367 . Because the p-value is less 
than 0.05, you have enough evidence to reject Ho. According 
to your sample, the claim of four out of five (80% of) dentists 
recommending Cavifree toothpaste is not true; the actual per-
centage of recommendations is less than that.

Comparing Two Population 
Means

This test is used when the variable is numerical (for example, 
income, cholesterol level, or miles per gallon) and two popula-
tions or groups are being compared (for example, cars versus 
SUVs). Two separate random samples need to be selected, 
one from each population, in order to collect the data needed 
for this test. The null hypothesis is that the two population 
means are the same; in other words, that their difference is 
equal to 0. The notation for the null hypothesis is Ho: μx – μy = 0, 
where μx is the mean of the first population, and μy is the 
mean of the second population.
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The test statistic comparing two means is:

To calculate it, do the following:

 1. Calculate the sample means (  and ) and sample 
standard deviations (sx and sy) for each sample sepa-
rately. Let n1 and n2 represent the two sample sizes 
(they need not be equal).

  See Chapter 1 for these calculations.

 2. Find the difference between the two sample means, 
 – .

 3. Calculate the standard error, . 

 4. Divide your result from Step 2 by your result from 
Step 3.

To interpret the test statistic, look up your test statistic on the 
t-distribution with n1 + n2 –2 degrees of freedom (see Table A-2 
in the appendix) and calculate the p-value. For example, sup-
pose you want to compare the absorbency of two brands of 
paper towels (call the brands Stats-absorbent and Sponge-o-
matic). You can make this comparison by looking at the aver-
age number of ounces each brand can absorb before being 
saturated. Ho says the difference between the average absor-
bencies is 0 (non-existent), and Ha says the difference is not 0. 
In other words, Ho: μx – μy = 0 versus Ho: μx – μy ≠ 0. Here, you 
have no indication of which paper towel may be more absor-
bent, so the not-equal-to alternative is the one to use. 

Suppose you select a random sample of 50 paper towels 
from each brand and measure the absorbency of each paper 
towel. Suppose the average absorbency of Stats-absorbent 
(x) is 3 ounces, with a standard deviation of 0.9 ounces, and 
for Sponge-o-matic (y), the average absorbency is 3.5 ounces, 
with a standard deviation of 1.2 ounces. 

Given these data, you have  = 3, sx = 0.9,  = 3.5, sy = 1.2, 
n1 = 50, and n2 = 50. The difference between the sample means 
for (Stats-absorbent – Sponge-o-matic) is (3 – 3.5) = –0.5 
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ounces. (A negative difference simply means that the second 
sample mean was larger than the first.) The standard error is 

. Divide the difference, –0.5, 

by the standard error, 0.2121, which gives you –2.36. This is 
your test statistic. 

To find the p-value, look up –2.36 on the Z-table (Table A-1 in 
the appendix). The chance of being beyond, in this case to the 
left of, –2.36 is equal to the percentile, which is 0.91%. Because 
Ha is a not-equal-to alternative, you double this percentage to 
get 2 × 0.91% = 1.82%. Change this to a probability by dividing 
by 100 to get a p-value of 0.0182 . This p-value is less than 0.05. 
That means you do have enough evidence to reject Ho. 

Your conclusion is that a statistically significant difference 
exists between the absorbency levels of these two brands of 
paper towels, based on your samples. Sponge-o-matic comes 
out on top because it has a higher average.

 

If either of the sample sizes is small (generally less than 30), 
you use the t-distribution with n1 + n2 – 2 degrees of freedom 
(see Chapter 9) instead of the standard normal distribution 
when figuring out the p-value. 

Testing the Mean Difference: 
Paired Data

This test is used when the variable is numerical (for example, 
cholesterol level or miles per gallon), and the individuals in 
the sample are either paired up in some way (identical twins 
are often used) or the same people are used twice (for exam-
ple, using a pre-test and post-test). Paired tests are used for 
comparisons where you want to minimize the chance of the 
treatment and control groups being too different (and hence 
biased). See Chapter 13 for details.

Suppose a researcher wants to see whether teaching students 
to read using a computer game gives better results than 
teaching with a tried-and-true phonics method. She randomly 
selects 20 students and puts them into 10 pairs according to 
their reading readiness level, age, IQ, and so on. She randomly 
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selects one student from each pair to learn to read via the 
computer game, and the other learns to read using the pho-
nics method. At the end of the study, each student takes the 
same reading test. The data are shown in Table 8-1.

Table 8-1 Reading Scores for Computer Game 
 versus the Phonics Method

Student 
Pair #

Reading Score 
for Computer 
Method

Reading Score 
for Phonics 
Method

Paired 
Differences 
(Computer Score – 
Phonics Score)

1 85 80 +5

2 80 80 +0

3 95 88 +7

4 87 90 –3

5 78 72 +6

6 82 79 +3

7 57 50 +7

8 69 73 –4

9 73 78 –5

10 99 95 +4

The data are in pairs, but you’re really interested only in 
the difference in reading scores (computer reading score – 
phonics reading score) for each pair, not the reading scores 
themselves. So, you take the difference between the scores for 
each pair, and those paired differences make up your new set 
of data to work with. If the two reading methods are the same, 
the average of the paired differences should be 0. If the com-
puter method is better, the average of the paired differences 
should be positive (because the computer reading score 
should be larger than the phonics score). 

Testing paired data amounts to testing one population mean, 
where the null hypothesis is that the mean (of the paired dif-
ferences) is 0, and the alternative hypothesis is that the mean 
(of the paired differences) is > 0; < 0, or ≠ 0. The notation for 
the null hypothesis is Ho: μd = 0, where μd is the population 
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mean of all paired differences. (The d in the subscript reminds 
you that you’re working with the paired differences.)

The formula for the test statistic for paired differences is 

. To calculate it, do the following:

 1. For each pair of data, take the first value in the pair 
minus the second value in the pair to find the paired 
difference. 

  Think of the differences as your new data set. 

 2. Calculate the mean, , and the standard deviation, 
s

d
, of all the differences in the pairs in the sample. 

  Let n represent the number of paired differences that 
you have.

 3. Calculate the standard error: . 

 4. Take  divided by the standard error from Step 3. 

Remember that μd = 0 if Ho is true, so it’s not included in the 
formula here.

For the reading scores example, you can use these steps to 
see whether the computer method is better at teaching stu-
dents to read. Calculate the differences for each pair; you can 
see those differences in column 4 of Table 8-1. Notice that the 
sign on each of the differences is important; it indicates which 
method performed better for that particular pair. 

The mean and standard deviation of the differences (column 4 
of Table 8-1) must be calculated. The mean of the differences 
is found to be +2, and the standard deviation is 4.64. Note 
that n = 10 here. The standard error is 4.64 divided by the 
square root of 10 (which is 3.16). So you have 4.64/3.16 = 1.47. 
(Remember that n is the number of pairs, which is 10.) For the 
last step, take the mean of the differences, +2, divided by the 
standard error, which is 1.47, to get +1.36, the test statistic. 
That means the average difference for this sample is 1.36 stan-
dard errors above 0. Is this enough to say that a difference in 
reading scores applies to the whole population?

Because n is less than 30, you look up 1.36 on the t-distribution 
with 10 – 1 = 9 degrees of freedom (see Table A-2 in the appen-
dix) to calculate the p-value (see Chapter 9). The p-value in 
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this case is greater than 0.05 because 1.36 is close to the value 
of 1.38 on the table, and, therefore its p-value would be about 
0.10 (the corresponding p-value for 1.38). That’s because 1.38 
is in the column under the 90th percentile, and because Ha is 
a greater-than alternative, you take 100% – 90% = 10% = 0.10. 
Since the p-value is clearly greater than 0.05, you conclude 
that there isn’t enough evidence to reject Ho, so the computer 
game can’t be touted as a better reading method. (This could 
be due to the lack of additional evidence needed to prove this 
with a smaller sample size.)

 

In many paired experiments, the data sets will be small due to 
costs and time associated with doing these kinds of studies. 
That means the t-distribution with n – 1 degrees of freedom (see 
Chapter 9) is often used instead of the standard normal distribu-
tion (see Table A-1 in the appendix) when figuring out the p-value. 

Testing Two Population 
Proportions

This test is used when the variable is categorical (for exam-
ple, smoker/nonsmoker, political party, support/oppose an 
opinion, and so on) and you’re interested in the proportion 
of individuals with a certain characteristic — for example, 
the proportion of smokers. In this case, two populations or 
groups are being compared (such as the proportion of female 
smokers versus male smokers). 

In order to conduct this test, two separate random samples need 
to be selected, one from each population. The null hypothesis is 
that the two population proportions are the same; in other words, 
that their difference is equal to 0. The notation for the null hypoth-
esis is Ho: p1 – p2 = 0, where p1 is the proportion from the first 
population, and p2 is the proportion from the second population.

Here is the formula for the test statistic comparing two 
proportions: 
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where  is the pooled sample proportion, aka the proportion 
of all individuals from the combined samples that have the 
characteristic of interest. To calculate it, do the following:

 1. Calculate the sample proportions  and .

  For each sample, let n1 and n2 represent the two 
sample sizes (they need not be equal). 

 2. Find the difference between the two sample propor-

tions, .

 3. Calculate the pooled sample proportion, , which is 
the total number of individuals from both samples 
who have the characteristic of interest (for example, 
the total number of smokers, male or female, in the 
sample), divided by the total number of individuals 
from both samples (n

1
 + n

2
).

 4. Calculate the standard error:

  

 5. Divide your result from Step 2 by your result from 
Step 4. 

  To interpret the test statistic, look up your test statis-
tic on the standard normal distribution (Table A-1 in 
the appendix) and calculate the p-value.

For example the maker of Adderall, a drug for attention deficit 
hyperactivity disorder (ADHD), reported that 26 of the 374 
subjects (7%) who took the drug experienced vomiting as a 
side effect, compared to 8 of the 210 subjects (4%) who were 
on a placebo (fake drug). Note that patients didn’t know which 
treatment they were given. In the sample, more people on the 
drug experienced vomiting, but is this percentage enough to 
say that the entire population would experience more vomit-
ing? You can test it to see. In this case you have Ho: p1 – p2 = 
0 versus Ha: p1 – p2 > 0, where p1 represents the proportion of 
subjects who vomited using Adderall, and p2 represents the 
proportion of subjects who vomited using the placebo. 

 

Why does Ha contain a “>” sign and not a “<” sign? Ha repre-
sents the scenario in which those taking Adderall experience 
more vomiting than those on placebo — that’s something the 
FDA would want to know about. 
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The next step is calculating the test statistic. First, 1 = 26/374 = 
0.07 and 2 = 8/210 = 0.04. The sample sizes are n1 = 374 and 
n2 = 210, respectively. Next, take the difference between these 
sample proportions to get 0.07 – 0.04 = 0.03. The overall sample 
proportion, , is (26 + 8)/(374 + 210) = 34/584 = 0.058. The 

standard error is  = 0.02. Finally, 

take the difference from Step 2, 0.03, divided by 0.02 to get 
0.03/0.02 = 1.5, which is the test statistic.

The p-value is the percentage chance of being at or beyond (in 
this case to the right of) 1.5, which is 100% – 93.32% = 6.68%, 
which is written as a probability as 0.0668. This p-value is 
greater than 0.05, so you don’t have enough evidence to reject 
Ho. That means vomiting is not experienced any more by 
those taking this drug when compared to a placebo.

You Could Be Wrong: Errors 
in Hypothesis Testing

After you decide whether to reject Ho, the next step is living 
with the consequences — after all, you could be wrong.

 ✓ If you conclude that a claim isn’t true but it actually is 
true, a lawsuit, fine, unnecessary changes in the product, 
or consumer boycotts that shouldn’t have happened 
could result. 

 ✓ If you conclude that a claim is true but it actually isn’t, 
what happens then? Undetected problems will continue 
and no action will be taken. Inaction has consequences 
as well. 

Rejecting Ho when you shouldn’t is called a Type-1 error. I 
don’t really like this name, because it seems so nondescript. 
I prefer to call a Type-1 error a false alarm. In the case of the 
packages, if the consumer group made a Type-1 error when 
it rejected the company’s claim, they created a false alarm. 
What’s the result? A very angry delivery company.
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A false alarm: Type-1 error
Suppose a company claims that its average package delivery 
time is 2 days, and a consumer group tests this hypothesis 
and concludes that the claim is false: They believe that the 
average delivery time is actually more than 2 days. This is a 
big deal. If the group can stand by its statistics, it has done 
well to inform the public about the false advertising issue. But 
what if the group is wrong? Even if the study is based on a 
good design, collects good data, and makes the right analysis, 
the group can still be wrong. 

Why? Because its conclusions were based on a sample of 
packages, not on the entire population. As Chapter 6 tells you, 
sample results vary from sample to sample. If your test statis-
tic falls on the tail of the standard normal distribution, these 
results are unusual, if the claim is true, because you expect 
them to be much closer to the middle of the standard normal 
distribution (Z-distribution). Just because the results from a 
sample are unusual, however, doesn’t mean they’re impos-
sible. A p-value of 0.04 means that the chance of getting your 
particular test statistic (out on the tail of the standard normal 
distribution), even if the claim is true, is 4% (less than 5%). 
That’s why you reject Ho in this case, because that chance is 
so small. But a chance is a chance! 

Perhaps your sample, while collected randomly, just hap-
pens to be one of those atypical samples whose result ended 
up far out on the distribution. So Ho could be true, but your 
results lead you to a different conclusion. How often does 
that happen? Five percent of the time (or whatever your given 
alpha level is for rejecting Ho). 

A missed detection: Type-2 error
Now suppose the company really wasn’t delivering on its 
claim. Who’s to say that the consumer group’s sample will 
detect it? If the actual delivery time is 2.1 days instead of 
2 days, the difference would be pretty hard to detect. If the 
actual delivery time is 3 days, a fairly small sample would 
show that something’s up. The issue lies with those 
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in-between values, like 2.5 days. If Ho is indeed false, you want 
to detect that and reject Ho. Not rejecting Ho when you should 
have is called a Type-2 error. I call it a missed detection. 

Sample size is the key to being able to detect situations where 
Ho is false and to avoiding Type-2 errors. The more informa-
tion you have, the less variable your results will be, and easier 
it will be to detect problems that exist with a claim. 

This ability to detect when Ho is truly false is called the power 
of a test. Power is a pretty complicated issue, but what’s 
important for you to know is that the higher the sample 
size, the more powerful a test is. A powerful test has a small 
chance for a Type-2 error.

 

Statisticians recommend two preventative measures to mini-
mize the chances of a Type-1 or Type-2 error:

 ✓ Set a low cutoff probability for rejecting Ho (like 5 per-
cent or 1 percent) to reduce the chance of false alarms 
(minimizing Type-1 errors).

 ✓ Select a large sample size to ensure that any differences 
or departures that really exist won’t be missed (minimiz-
ing Type-2 errors). 

              



Chapter 9

The t-distribution 
In This Chapter
▶ Characteristics of the t-distribution

▶ Relationship between Z- and t-distributions

▶ Understanding the t-table

Many different distributions exist in statistics, and 
one of the most commonly used distributions is the 

t-distribution. In this chapter I go over the basic characteristics 
of the t-distribution, how to use the t-table to find probabili-
ties, and how it’s used to solve problems in its most well-
known settings — confidence intervals and hypothesis tests.

Basics of the t-Distribution
The normal distribution is the well-known bell-shaped distri-
bution whose mean is  and whose standard deviation is . 
(See Chapter 5 for more on normal distributions.) The t-distribu-
tion can be thought of as a cousin of the normal distribution — 
it looks similar to a normal distribution in that it has a basic 
bell shape with an area of 1 under it, but is shorter and flatter 
than a normal distribution. Like the standard normal (Z) dis-
tribution, it is centered at zero, but its standard deviation is 
proportionally larger compared to the Z-distribution. 

As with normal distributions, there is an entire family of dif-
ferent t-distributions. Each t-distribution is distinguished by 
what statisticians call degrees of freedom, which are related 
to the sample size of the data set. If your sample size is n, the 
degrees of freedom for the corresponding t-distribution is n - 1. 
For example, if your sample size is 10, you use a t-distribution 
with 10 - 1 or 9 degrees of freedom, denoted t9.
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Smaller sample sizes have flatter t-distributions than larger 
sample sizes. And as you may expect, the larger the sample 
size is, and the larger the degrees of freedom, the more 
the t-distribution looks like a standard normal distribution 
(Z-distribution); and the point where they become very simi-
lar (similar enough for jazz or government work) is about the 
point where the sample size is 30. (This result is due to the 
Central Limit Theorem; see Chapter 6.)

Figure 9-1 shows different t-distributions for different sample 
sizes, and how they compare to the Z-distribution.

Z-distribution
= t30 (approximately)

t1

3210123

t5 t20

Figure 9-1: t-distributions for different sample sizes

Understanding the t-Table
Each t-distribution has its own shape and its own set of prob-
abilities, so one size doesn’t fit all. To help with this, statisti-
cians have come up with one abbreviated table that you can 
use to mark off certain points of interest on several different 
t-distributions whose degrees of freedom range from 1 to 30 
(see Appendix Table A-2). If you look at the column head-
ings in Table A-2, you see selected values from 0.40 to 0.0005. 
These numbers represent right tail probabilities (the 

              



 Chapter 9: The t-Distribution 109
probability of being larger than a certain value). The num-
bers moving down any given column represent the values 
on each t-distribution having those right tail probabilities. 
For example, under the “0.05” column, the first number is 
6.313752. This represents the number on the t1 distribution 
(one degree of freedom) whose probability to the right equals 
0.05. Further down that column in row 15 you see 1.753050. 
This is the number on the t15 distribution whose probability to 
the right is 0.05. 

You can also use the t-table to find percentiles for the t-dis-
tribution (recall that a percentile is a number whose area to 
the left is a given percentage). For example, suppose you have 
a sample of size 10 and you want to find the 95th percentile. 
You have n – 1= 9 degrees of freedom, so you look at the row 
for 9, and the column for 0.05 to get t = 1.833. Since the area to 
the right of 1.833 is 0.05, that means the area to the left must 
be 1 – 0.05 = 0.95 or 95%. You have found the 95th percentile 
of the t9 distribution: 1.833. Now, if we increase the sample 
size to n = 20, the 95th percentile decreases; look at the row 
for 20 – 1 = 19 degrees of freedom, and in the 0.05 column 
you find t = 1.729. Remember as n gets large, the values on a 
t-distribution are more condensed around the mean, giving it 
a more curved shape, like the Z-distribution. 

Notice that as the degrees of freedom of the t-distribution 
increase (as you move down any given column in Table 
A-2 in the appendix), the t-values get smaller and smaller. 
The last row of the table corresponds to the values on the 
Z-distribution. That confirms what you already know: As the 
sample size increases, the t- and the Z-distributions are more 
and more alike. The degrees of freedom for the last row of the 
t-table (Table A-2) are listed as “infinity” to make the point 
that a t-distribution approaches a Z-distribution as n gets infi-
nitely large.

t-distributions and 
Hypothesis Tests

The most common use by far of the t-distribution is in hypoth-
esis testing — in particular the case where you do a hypothe-
sis test for one population mean. (See Chapter 8 for the whole 
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scoop on hypothesis testing.) You use a t-distribution when 
you do not know the standard deviation of the population ( ) 
and you have to use the standard deviation of the sample (s) 
to estimate it. Typically in these situations you also have a 
small sample size (but not always). 

Finding critical values 
If you don’t know the population standard deviation and 
are using the sample standard deviation instead, you pay a 
penalty: a t-distribution with more variability and fatter tails. 
When you do a hypothesis test, your “cutoff point” for reject-
ing the null hypothesis Ho is further out than it would have 
been if you had more data and could use the Z-distribution. 
(For more information on hypothesis tests and how they are 
set up, see Chapter 8.)

For example, suppose you have a two-tailed hypothesis 
test for one population mean where  = 0.05 and you have a 
sample size of 100. If you are doing a two-sided hypothesis 
test for one population mean, you can use Z = plus or minus 
1.96 as your critical value to determine whether to reject Ho. 
But if n is, say, 8, the critical value for this same test would be 
t7 = plus or minus 2.365 ; see Table A-2, row 7, column “0.025” 
to obtain this number. (Remember a two-tailed hypothesis 
test with significance level 5% has 2.5% = 0.025 in each tail 
area.) This means you have to submit more evidence to 
reject Ho if you only have 8 pieces of data than if you have 100 
pieces of data. In other words, your goal line to make a touch-
down and find a “statistically significant result” is set at 2.365 
for the t-distribution versus 1.96 for the Z-distribution.

Finding p-values 
Recall from hypothesis testing (Chapter 8) that a p-value is 
the probability of obtaining a result beyond your test statis-
tic on the appropriate distribution. In terms of p-values, the 
same test statistic has a larger p-value on a t-distribution than 
on the Z-distribution. A test statistic far out on the leaner 
Z-distribution has little area beyond it. But that same test 
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statistic out on the fatter t-distribution has more fat (or area) 
beyond it, and that’s exactly what the p-value represents. 

Suppose your sample size is 10, your test statistic (referred to 
as the t-value) is 2.5, and your alternative hypothesis, Ha, is the 
greater-than alternative. Because the sample size is 10, you use 
the t-distribution with 10 – 1 = 9 degrees of freedom to calculate 
your p-value. This means you’ll be looking at the row in the 
t-table (Table A-2 in the Appendix) that has a 9 in the Degrees 
of Freedom column. Your test statistic (2.5) falls between 
two values: 2.262 (the “0.025” column) and 2.821 (the “0.01” 
column). The p-value is between 0.025 = 2.5% and 0.01 = 1%. 
You don’t know exactly what the p-value is, but because 1% 
and 2.5 % are both less than the typical cutoff of 5%, you 
reject Ho. 

 

The t-table (Table A-2 in the Appendix) doesn’t include all pos-
sible test statistics on it, so simply choose the one test statis-
tic that’s closest to yours, look at the column it’s in, and find 
the corresponding percentile. Then figure your p-value.

Note that for a less-than alternative hypothesis, your test 
statistic would be a negative number (to the left of 0 on the 
t-distribution). In this case, you want to find the percentage 
below, or to the left of, your test statistic to get your p-value. 
Yet negative test statistics don’t appear on Table A-2. Not to 
worry! The percentage to the left (below) a negative t-value is 
the same as the percentage to the right (above) the positive 
t-value, due to symmetry. So, to find the p-value for your nega-
tive test statistic, look up the positive version of your test 
statistic in Table A-2, and find the corresponding right tail 
probability. For example, if your test statistic is –2.5 with 9 
degrees of freedom, look up +2.5 on Table A-2, and you find 
that it falls between the 0.025 and 0.01 columns, so your 
p-value is somewhere between 1% and 2.5%. 

If your alternative hypothesis (Ha) has the not-equal-to alter-
native, double the percentage that you get to obtain your 
p-value. That’s because the p-value is this case represents the 
chance of being beyond your test statistic in either the posi-
tive or negative direction (see Chapter 8 for details on hypoth-
esis testing).
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t-distributions and Confidence 
Intervals

The t-distribution is used in a similar way with confidence 
intervals (see Chapter 7 for more on confidence intervals.) If 
your data have a normal distribution and either 1) the sample 
size is small; or 2) you don’t know the population standard 
deviation, , and you must use the sample standard deviation, 
s, to substitute for it, you use a value from a t-distribution with 
n – 1 degrees of freedom instead of a z-value in your formulas 
for the confidence intervals for the population mean.

For example, to make a 95% confidence interval for  where 
n = 9 you add and subtract 2.306 times the standard error of  
when you use the t-distribution versus adding and subtracting 
1.96 times the standard error when you use a z-value.

              



Chapter 10

Correlation and Regression
In This Chapter
▶ Exploring statistical relationships between numerical variables

▶ Distinguishing between association, correlation, and causation

▶Making predictions based on known relationships

In this chapter you analyze two numerical variables, X and
Y, to look for patterns, find the correlation, and make pre-

dictions about Y from X, if appropriate, using simple linear
regression.

Picturing the Relationship 
with a Scatterplot

A fair amount of research supports the claim that the fre-
quency of cricket chirps is related to temperature. And this
relationship is actually used at times to predict the tem-
perature using the number of times the crickets chirp per 15
seconds. To illustrate, I’ve taken a subset of some of the data
that’s been collected on this; you can see it in Table 10-1.

Table 10-1 Cricket Chirps and Temperature 
 Data (Excerpt)

Number of Chirps (in 15 Seconds) Temperature (Fahrenheit)

18 57

20 60

21 64

(continued)
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Table 10-1 (continued)

Number of Chirps (in 15 Seconds) Temperature (Fahrenheit)

23 65

27 68

30 71

34 74

39 77

Notice that each observation is composed of two variables that
are tied together, in this case the number of times the cricket
chirped in 15 seconds (the X-variable), and the temperature at
the time the data was collected (the Y-variable). Statisticians
call this type of two-dimensional data bivariate data. Each obser-
vation contains one pair of data collected simultaneously.

Making a scatterplot
Bivariate data are typically organized in a graph that statisti-
cians call a scatterplot. A scatterplot has two dimensions, a
horizontal dimension (called the x-axis) and a vertical dimen-
sion (called the y-axis). Both axes are numerical — each con-
tains a number line.

The x-coordinate of bivariate data corresponds to the first
piece of data in the pair; the y-coordinate corresponds to the
second piece of data in the pair. If you intersect the two coor-
dinates, you can graph the pair of data on a scatterplot. Figure
10-1 shows a scatterplot of the data from Table 10-1.

Interpreting a scatterplot
You interpret a scatterplot by looking for trends in the data as
you go from left to right:

✓ If the data show an uphill pattern as you move from left
to right, this indicates a positive relationship between X 
and Y. As the x-values increase (move right), the y-values
increase (move up) a certain amount.
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✓ If the data show a downhill pattern as you move from left
to right, this indicates a negative relationship between X 
and Y. That means as the x-values increase (move right)
the y-values decrease (move down) by a certain amount.

✓ If the data don’t resemble any kind of pattern (even
a vague one), then no relationship exists between X
and Y.

This chapter focuses on linear relationships. A linear rela-
tionship between X and Y exists when the pattern of x- and
y-values resembles a line, either uphill (with positive slope) or
downhill (with negative slope).

Looking at Figure 10-1, there does appear to be a positive
linear relationship between number of cricket chirps and the
temperature. That is, as the cricket chirps increase, you can
predict that the temperature is higher as well.

Number of Cricket Chirps (in 15 seconds)
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Figure 10-1: Scatterplot of cricket chirps versus outdoor temperature.

Measuring Relationships 
Using the Correlation

After the bivariate data have been organized, the next step is
to do some statistics that can quantify or measure the extent
and nature of the relationship.
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Calculating the correlation 
The pattern and direction of the relationship between X and
Y can be seen from the scatterplot. The strength of the rela-
tionship between two numerical variables depends on how
closely the data resemble a certain pattern. Although many
different types of patterns can exist between two variables,
this chapter examines linear patterns only.

Statisticians use the correlation coefficient to measure the
strength and direction of the linear relationship between two
numerical variables X and Y. The correlation coefficient for a
sample of data is denoted by r.

Although the street definition of correlation applies to any two
items that are related (such as gender and political affiliation),
statisticians only use this term in the context of two numeri-
cal variables. The formal term for correlation is the correlation 
coefficient. Many different correlation measures have been
created; the one in our case is the Pearson correlation coef-
ficient (I’ll just call it the correlation).

The formula for the correlation (r) is

where n is the number of pairs of data; and are the sample
means; and s

x
and s

y
are the sample standard deviations of the

x- and y- values, respectively.

To calculate the correlation r from a data set:

1. Find the mean of all the x-values ( ) and the mean of 

all the y-values ( ).

See Chapter 2 for information on the mean.

2. Find the standard deviation of all the x-values (call 
it s

x
) and the standard deviation of all the y-values 

(call it s
y
).

See Chapter 2 for information on standard deviation.
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3. For each (x, y) pair in the data set, take x minus  

and y minus , and multiply them together.

 4. Add up all the results from Step 3.

 5. Divide the sum by s
x
 ∗ s

y
.

 6. Divide the result by n – 1, where n is the number of 
(x, y) pairs.

This gives you the correlation r.

For example, suppose you have the data set (3, 2), (3, 3), and
(6, 4). Following the preceding steps, you can calculate the
correlation coefficient r via the following steps. (Note that for
this data the x-values are 3, 3, 6, and the y-values are 2, 3, 4.)

1.  is 12/3 = 4, and  is 9/3 = 3. 

 2. The standard deviations are calculated to be s
x
 = 

1.73 and s
y
 = 1.00. 

 3. The differences found in Step 3 multiplied together 
are: (3 – 4)(2 – 3) = (–1)(–1) = 1; (3 – 4)(3 – 3) = (–1)(0) 
= 0; (6 – 4)(4 – 3) = (+2)(+1) = +2.

 4. Adding the Step 3 results, you get 1 + 0 + 2 = 3.

 5. Dividing by s
x
 ∗ s

y
 gives you 3/(1.73 ∗ 1.00) = 

3/1.73 = 1.73. 

 6. Now divide the Step 5 result by 3 – 1 (which is 2) and 
you get the correlation r = 0.87. 

Interpreting the correlation
The correlation r is always between +1 and –1. Here is how
you interpret various values of r. A correlation that is

✓ Exactly –1 indicates a perfect downhill linear relationship.

✓ Close to –1 indicates a strong downhill linear relationship.

✓ Close to 0 means no linear relationship exists.

✓ Close to +1 indicates a strong uphill linear relationship.

✓ Exactly +1 indicates a perfect uphill linear relationship.
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How “close” do you have to get to –1 or +1 to indicate a strong
linear relationship? Most statisticians like to see correlations
above +0.60 (or below –0.60) before getting too excited about
them. Don’t expect a correlation to always be +0.99 or –0.99;
real data aren’t perfect.

Figure 10-2 shows examples of what various correlations look
like in terms of the strength and direction of the relationship.

r  +0.15 r  +0.85

r  +1.0r  0.50
Figure 10-2: Scatterplots with various correlations. 

For my subset of the cricket chirps versus temperature data, I
calculated a correlation of 0.98, which is almost unheard of in
the real world (these crickets are good!).

Properties of the correlation 
Here are two important properties of correlation:

✓ The correlation is a unitless measure. This means that
if you change the units of X or Y, the correlation doesn’t
change. For example, changing the temperature (Y) from
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Fahrenheit to Celsius won’t affect the correlation between
the frequency of chirps and the outside temperature.

✓ The variables X and Y can be switched in the data set,
and the correlation doesn’t change. For example, if height
and weight have a correlation of 0.53, weight and height
have the same correlation.

Finding the Regression Line
After you’ve found a linear pattern in the scatterplot, and the
correlation between the two numerical variables is moderate
to strong, you can create an equation that allows you to pre-
dict one variable using the other. This equation is called the
simple linear regression line.

Which is X and which is Y?
Before moving forward with your regression analysis, you
have to identify which of your two variables is X and which is 
Y. When doing correlations, the choice of which variable is X
and which is Y doesn’t matter, as long as you’re consistent for
all the data; but when fitting lines and making predictions,
the choice of X and Y makes a difference. In general, X is the
variable that is the predictor. Statisticians call the X-variable
(here cricket chirps) the explanatory variable, because if
X changes, the slope tells you (or explains) how much Y
is expected to change. The Y-variable (here temperature)
is called the response variable because if X changes, the
response (according the equation of the line) is a change in Y.
Hence Y can be predicted by X if a strong relationship exists.

Note: In this example, I want to predict the temperature based
on listening to crickets. Obviously, the real cause-and-effect is
the opposite: As temperature rises, crickets chirp more.

Checking the conditions
In the case of two numerical variables, it’s possible to come up
with a line that you can use to predict Y from X, if (and only if)
the following two conditions we examined in the previous sec-
tions are met: 1) The scatterplot must find a linear pattern; and 2)
The correlation, r, is moderate to strong (typically beyond ±0.60).
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It’s not always the case that folks actually check these condi-
tions. I’ve seen cases where researchers go ahead and make
predictions when a correlation was as low as 0.20, or where
the data follow a curve instead of a line when you make the
scatterplot! That doesn’t make any sense.

But suppose the correlation is high; do we need to look at the
scatterplot? Yes. There are situations where the data have a
somewhat curved shape, yet the correlation is still strong.

Understanding the equation
For the crickets and temperature data, you see the scatterplot
in Figure 10-1 shows a linear pattern. The correlation between
cricket chirps and temperature was found to be very strong
(r = 0.98). You now can find one line that best fits the data (in
terms of the having the smallest average distance to all the
points.). Statisticians call this technique for finding the best-
fitting line a simple linear regression analysis.

Do you have to try lots of different lines to see which one fits
best? Fortunately, this is not the case (although eyeballing a
line on the scatterplot does help you think about what you’d
expect the answer to be). The best-fitting line has a distinct
slope and y-intercept that can be calculated using formulas
(and, I may add, these formulas aren’t too hard to calculate).

The formula for the best-fitting line (or regression line) is
y = mx + b, where m is the slope of the line and b is the
y-intercept. (This is the same equation from algebra.) The
slope of a line is the change in Y over the change in X. For
example, a slope of 10/3 means as the x-value increases
(moves right) by 3 units, the y-value moves up by 10 units
on average.

The y-intercept is that place on the y-axis where the line
crosses. For example, in the equation y = 2x – 6, the line
crosses the y-axis at the point –6. The coordinates of this
point are (0,–6); when a line crosses the y-axis, the x-value is
always 0. To come up with the best-fitting line, you need to
find values for m and b that fit the pattern of data the absolute
best. The following sections find these values.
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Finding the slope 
The formula for the slope, m, of the best-fitting line is m = ,

where r is the correlation between X and Y, and s
x
 and s

y
are

the standard deviations of the x-values and the y-values . To
calculate the slope, m, of the best-fitting line:

1. Divide s
y
 by s

x
.

 2. Multiply the result in Step 1 by r.

The correlation and the slope of the best-fitting line are not
the same. The formula for slope takes the correlation (a unit-
less measurement) and attaches units to it. Think of s

y
/ s

x
as

the change in Y over the change in X, in units of X and Y; for
example, change in temperature (degrees Fahrenheit) per
increase of one cricket chirp (in 15 seconds).

Finding the y-intercept 
The formula for the y-intercept, b, of the best-fitting line is

b = – m , where and are the means of the x-values and
the y-values, respectively, and m is the slope (the formula
for which is given in the preceding section). To calculate the
y-intercept, b, of the best-fitting line:

1. Find the slope, m, of the best-fitting line using the 
steps listed in the preceding section.

 2. Multiply by .

 3. Subtract your result from .

To save a great deal of time calculating the best-fitting line,
keep in mind that five well-known summary statistics are all
you need to do all the necessary calculations. I call them the
“big-five statistics” (not to be confused with the five-number
summary from Chapter 2):

1. The mean of the x-values (denoted )

2. The mean of the y-values (denoted )

3. The standard deviation of the x-values (denoted s
x
)
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4. The standard deviation of the y-values (denoted s
y
)

5. The correlation between X and Y (denoted r)

(This chapter and Chapter 2 contain formulas and step-by-step
instructions for these statistics.)

Interpreting the slope 
and y-intercept
Even more important than being able to calculate the slope
and y-intercept to form the best-f tting regress on line is the
ability to interpret their values.

Interpreting the slope
The slope is interpreted in algebra as “rise over run.” If the
slope for example is 2, you can write this as 2/1 and say as
X increases by 1, Y increases by 2, and that’s how you move
along from point to point on the line. In a regression context,
the slope is the heart and soul of the equation because it tells
you how much you can expect Y to change as X increases.

In general, the units for slope are the units of the Y-variable
per units of the X-variable. It’s a ratio of change in Y per
change in X. Suppose in studying the effect of dosage level in
milligrams (mg) on blood pressure, a researcher finds that the
slope of the regression line is –2.5. You can write this as –2.5/1
and say blood pressure is expected to decrease by 2.5 points
on average per 1 mg increase in drug dosage.

Always remember to use proper units when interpreting
slope.

If using a 1 in the denominator of slope is not super-meaningful,
you can multiply the top and bottom by any number (as long
as it’s the same number) and interpret it that way instead. In
the blood pressure example, instead of writing slope as –2.5/1
and interpreting it as a decrease of 2.5 points per 1 mg increase
of the drug, we can multiply the top and bottom by ten to
get –25/10 and say an increase in dosage of 10 mg results in a
25-point decrease in blood pressure.
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Interpreting the y-intercept
The y-intercept is the place where the regression line y = mx + b
crosses the y-axis and is denoted by b (see earlier section “The
y-intercept of the regression line”). Sometimes the y-intercept
can be interpreted in a meaningful way, and sometimes not.
This differs from slope, which is always interpretable. In fact,
between the two elements of slope and intercept, the slope is
the star of the show, with the y-intercept serving as the less
famous but still noticeable sidekick.

There are times when the y-intercept makes no sense. For
example, suppose you use rain to predict bushels per acre
of corn; if the regression line crosses the y-axis somewhere
below zero (and it most likely will), the y-intercept will make
no sense. You can’t have negative corn production.

Another situation when it’s not okay to interpret the y-inter-
cept is if there is no data near the point where x = 0. For exam-
ple, suppose you want to use students’ scores on Midterm 1
to predict their scores on Midterm 2. The y-intercept repre-
sents a prediction for Midterm 2 when the score on Midterm 1
is zero. You don’t expect scores on a midterm to be at or near
zero unless someone did not take the exam, in which case
their score would not be included in the first place.

Many times, however, the y-intercept is of interest to you, it
has meaning, and you have data collected in that area (where
x = 0). For example, if you’re predicting coffee sales at Green
Bay Packer games using temperature, some games have tem-
peratures at or even below zero, so predicting coffee sales at
these temperatures makes sense. (As you might guess, they sell
more and more coffee as the temperature dips.)

The best-fitting line for the crickets
The “big-five” statistics from the subset of cricket data are
shown in Table 10-2.

Table 10-2 Big-Five Statistics for the Cricket Data

Variable Mean Standard Deviation Correlation

# Chirps (x)  = 26.5 s
x
 = 7.4 r = +0.98

Temp (y)  = 67 s
y
 = 6.8
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The slope, m, for the best-fitting line for the subset of cricket

chirp versus temperature data is m = = = 0.90.

So, as the number of chirps increases by 1 chirp per 15 sec-
onds, the temperature is expected to increase by 0.90 degrees
Fahrenheit on average. To get a more practical interpretation,
you can multiply the top and bottom of the slope by 10 to get
9.0/10 and say that as chirps increase by 10 (per 15 seconds),
temperature increases 9 degrees Fahrenheit.

Now, to find the y-intercept, b, you take – m ∗ , or 67 – (0.90)∗
(26.5) = 43.15. So the best-fitting line for predicting temperature
from cricket chirps based on the data is y = 0.90x + 43.15, or
temperature (in degrees Fahrenheit) = 0.90 ∗ (number of chirps
in 15 seconds) + 43.15. The y-intercept would try to predict
temperature when there is no chirping going on at all. However,
no data was collected at or near this point, so we can’t make
predictions for temperature in this area. You can’t predict
temperature using crickets if the crickets are silent.

Making Predictions
After you have a strong linear relationship, and you find the
equation of the best-fitting line y = mx + b, you use that line
to predict y for a given x-value. This amounts to plugging the
x-value into the equation and solving for y. For example, if
your equation is y = 2x + 1, and you want to predict y for x = 1,
then plug 1 into the equation for x to get y = 2(1) + 1 = 3.

Remember that you choose the values of X (the explanatory vari-
able) that you plug in; what you predict is Y, the response vari-
able, which totally depends on X. By doing this, you are using one
variable that you can easily collect data on, to predict a Y vari-
able that is difficult or not possible to measure; this works well as
long as X and Y are correlated. That’s the big idea of regression.

From the previous section, the best-fitting line for the crickets
is y = 0.90x + 43.15. Say you’re camping, listening to crick-
ets, and you remember that you can predict temperature
by counting chirps. You count 35 chirps in 15 seconds. You
put in 35 for x and find y = 0.90(35) + 43.15 = 74.65 degrees F.
(Yeah, you memorized the formula just in case you needed
it.) So, because crickets chirped 35 times in 15 seconds,
you figure the temperature is probably about 75 degrees
Fahrenheit.
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Avoid Extrapolation!
Just because you have a model doesn’t mean you can plug in
any value for X and do a good job of predicting Y. For exam-
ple, in the chirping data, there is no data collected for less
than 18 chirps or more than 39 chirps per 15 seconds (refer
back to Table 10-1). If you try to make predictions outside this
range you’re going into uncharted territory; the farther out-
side this range you go with your x-values, the more dubious
your predictions for y will get. Who’s to say the line still works
outside of the area where data were collected? Do you think
crickets will chirp faster and faster without limit? At some
point they would either pass out or burn up!

Making predictions using x-values that fall outside the range
of your data is a no-no. Statisticians call this extrapolation;
watch for researchers who try to make claims beyond the
range of their data.

Correlation Doesn’t Necessarily 
Mean Cause-and-Effect

Scatterplots and correlations identify and quantify relation-
ships between two variables. However, if a scatterplot shows
a definite pattern, and the data are found to have a strong cor-
relation, that doesn’t necessarily mean that a cause-and-effect
relationship exists between the two variables. A cause-and-
effect relationship is one where a change in X causes a change
in Y. (In other words, the change in Y is not only associated
with a change in X, it is directly caused by X.)

For example, suppose a well-controlled medical experiment is
conducted to determine the effects of dosage of a certain drug
on blood pressure. (See a total breakdown of experiments in
Chapter 13.) The researchers look at their scatterplot and see
a definite downhill linear pattern; they calculate the correlation
and it’s strong. They conclude that increasing the dosage of
this drug causes a decrease in blood pressure. This cause-and-
effect conclusion is okay because they controlled for other vari-
ables that could affect blood pressure in their experiment, such
as other drugs taken, age, general health, and so on.
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However, if you made a scatterplot and examined the correla-
tion between ice cream consumption versus murder rates,
you would also see a strong linear relationship (this time
uphill.) Yet no one would claim that more ice cream consump-
tion causes more murders to occur.

What’s going on here? In the drug example, the data were col-
lected through a well-controlled medical experiment, which
minimizes the influence of other factors that might affect
blood pressure changes. In the second example, the data were
just based on observation, and no other factors were exam-
ined. It turns out that this strong relationship exists because
increases in murder rates and ice cream sales are both related
to increases in temperature. (Temperature in this case is
called a confounding variable; it affects both X and Y but was
not included in the study — see Chapter 13.)

Whether two variables are found to be causally associated
depends on how the study was conducted. Only a well-
designed experiment (see Chapter 13) or a large collection of
several different observational studies can show enough evi-
dence for cause-and-effect.

Yet, this condition is often ignored as the media gives us
headlines such as “Doctors can lower malpractice lawsuits
by spending more time with patients.” In reality, it was found
that doctors who have fewer lawsuits are the type of doctor
who spends a lot of time with patients. But that doesn’t mean
taking a bad doctor and having him spend more time with his
patients will reduce his malpractice suits; in fact, spending
more time with him might create even more problems.

And we can’t say that crickets chirping faster will cause the
temperature to increase, of course, but we do know we can
count cricket chirps and do a pretty good job predicting tem-
perature nonetheless, through simple linear regression.

       



Chapter 11

Two-Way Tables
In This Chapter
▶ Organizing probabilities in two-way tables

▶ Figuring marginal, conditional, and joint probabilities

▶ Checking for independence  

Categorical variables place individuals into groups 
based on certain possible outcomes. For example, 

gender (male, female) whether you ate breakfast this morn-
ing (yes, no), or political affiliation (Democrat, Republican, 
Independent, Other). Oftentimes you look for relationships 
between two categorical variables; for example, “Are females 
more likely to eat breakfast than males?” A two-way table 
classifies individuals into groups based on all possible pairs 
of outcomes of two categorical variables (for example, male 
breakfast eaters, female breakfast eaters, and so on) In this 
chapter you see how two-way tables help you organize and 
figure probabilities and check for independence of two events.

Organizing and Interpreting 
a Two-way Table

Suppose you are a basketball nut and you love to watch your 
favorite player shoot free throws. After watching him shoot 
pairs of free throws for a long time, you notice two things. 
First, it seems like he makes the second shot more often than 
he makes the first. You also believe, based on your observa-
tions, that when he misses the first shot, he makes the second 
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one even more often. You always thought that free throw 
attempts were independent and that the outcome of one shot 
didn’t influence the outcome of another, but in this case, you 
suspect there is a relationship after all, for this player at least. 
So you launch your own statistical investigation to find out. 

Suppose you collect data on this player during 155 different 
trips to the free throw line. Each time he shoots a pair of free 
throws you record the outcomes. Examining your data you 
see he made the first shot and missed the second one 40 times; 
60 times he made both free throws; 10 times he missed both; 
and 45 times he missed the first one and made the second. 

The next step is to organize your data into a two-way table. 
The following sections take you through it.

Defining the outcomes
The first step in setting up a two-way table is to define the 
sample space and the outcomes of the experiment using prob-
ability notation. In the free throw example, your first categori-
cal variable is the outcome of the first throw. This variable 
has two possible outcomes: 1) he made the first free throw 
(indicated by Y1); or 2) he missed the first free throw (indi-
cated by N1). Similarly, the second categorical variable is the 
outcome of the second shot; its outcomes, Y2 and N2, repre-
sent making and missing the second shot, respectively. 

The sample space, S, lists all possible pairs of outcomes of 
this two-variable data. Because each variable has 2 possible 
outcomes, there are 2 ∗ 2 = 4 pairs of possible outcomes for 
the pair of free throws: 

S = {Y1Y2; Y1N2; N1Y2; and N1N2}

Setting up the rows and  columns
You can organize the two-way table using rows to represent 
one variable (the outcome of the first free throw) and col-
umns to represent the other variable (the outcome of the 
second free throw). Table 11-1 shows what the two-way table 
looks like.
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Table 11-1 Two-way Table Set-up for 
 Pairs of Free Throws

Made Second Free 
Throw (Y2)

Missed Second Free 
Throw (N2)

Made First Free 
Throw (Y1)

Y1  Y2 Y1  N2

Missed First 
Free Throw (N1)

N1  Y2 N1  N2

Notice the table has 2 ∗ 2 = 4 boxes in it. These boxes are 
called the cells of the two-way table. Each cell represents an 
intersection of a row and column. For example the cell in the 
upper right-hand corner of the table represents the outcome 
where the player made the first free throw and missed the 
second one. In probability notation, this represents the inter-
section of the outcomes Y1 and N2, written as Y1  N2. I wrote 
in the events represented by each cell of the free throw two-
way table in Table 11-1.

Inserting the numbers
Remember that the player made the first free throw and 
missed the second a total of 40 times; 60 times he made both 
free throws; 10 times he missed both; and 45 times he missed 
the first one and made the second. Now enter the basketball 
data into a two-way table and calculate probabilities. 

Looking at the labels on the rows and columns, you see 60 
goes into the upper left cell (represented by the event Y1  Y2), 
40 goes into the upper right cell (represented by the event 
Y1  N2), 45 is in the bottom left cell (represented by N1  Y2), 
and 10 is in the bottom right (represented by the event N1  N2). 
The number of individuals inside of a cell in row i and column 
j of a two-way table is called the cell count for the (i, j)th cell. 
Table 11-2 shows the two-way table with the cell counts.
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Finding the row, column, 
and grand totals
Once the cell counts are placed within a two-way table, it’s 
always a good idea to total the rows and columns and write 
those totals in the margins. These are aptly named marginal 
totals. You can see in Table 11-2 that the total for the first row, 
60 + 40 = 100, is written in the “Row Totals” column of the first 
row. This means the total number of times the first shot was 
successful was 100 (no matter what happened on the second 
shot). Similarly, the row total for row 2 represents the total 
number of times the first shot was missed regardless of what 
happened on the second shot (45 + 10 = 55). 

The column totals are also included, listed in the row at the 
bottom of Table 11-2. The first column total is 60 + 45 = 105, 
which represents the total number of times a basket was 
made on the second shot (whether or not a basket was made 
on the first shot.) The second column total represents the 
total number of times the second shot was missed (regardless 
of what happened on the first shot), 40 + 10 = 50. Notice that 
the row totals sum to the grand total of 155, the total number 
of pairs of shots attempted. Similarly the column totals sum to 
the grand total of 155. The row, column, and grand totals are 
all shown in Table 11-2.

Table 11-2 Two-way Table for of Cell Counts 
 for Pairs of Free Throws

Made Second 
Free Throw (Y2)

Missed Second 
Free Throw (N2)

Row Totals

Made First Free 
Throw (Y1)

60 40 60 + 40 = 100

Missed First 
Free Throw (N1)

45 10 45 + 10 = 55

Column Totals 60 + 45 = 105 40 + 10 = 50 Grand Total = 
155
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Finding Probabilities within 
a Two-Way Table 

Once the two-way table is set up, you can begin using it to 
calculate probabilities and answer important questions about 
various events. For example, what is the probability that a 
player makes both free throws? That he makes the first one? 
That he makes the second free throw given that he misses the 
first one? And if he misses the first free throw, does that affect 
his chances of making the second one?

Figuring joint probabilities
A joint probability is the probability of the intersection of 
two outcomes or events. For example, the probability that a 
player makes the first free throw and the second free throw 
is a joint probability and is denoted P(Y1  Y2). The word and 
provides a clue that it’s a joint probability, as in “A and B.”

Finding joint probabilities is easy using a two-way table, 
because the cells of the two-way table already show the 
number of individuals in each intersection. To find the prob-
ability of any intersection, take the number in that cell and 
divide by the grand total (found in the lower right corner of 
the two-way table). For example, the probability that a player 
makes the first free throw and the second, P(Y1  Y2) is the 
number in the upper left cell of the two-way table, 60, divided 
by the grand total, 155. That means the probability of making 
both free throws is 60/155 = 0.39, or 39%.

The general formula for finding a joint probability using a two-

way table is , where the cell in the ith row 

and the jth column is denoted by cell (i, j). 

Calculating marginal probabilities
A marginal probability is the probability of one outcome 
or event occurring, regardless of what happened with any 
other variables. For example, the probability that a player 
makes the first free throw (regardless of what happens on the 
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second shot) is the marginal probability of Y1 and is denoted 
P(Y1). And the probability that a player makes the second free 
throw (regardless of what happened on the first shot) is the 
marginal probability of Y2, denoted P(Y2).

To find the marginal probability of any single event, take the 
number in the corresponding row or column total and divide 
by the grand total. For example, look at the event that the 
player makes the first free throw (regardless of what happens 
on the second shot). This event is represented by row 1 of 
the two-way table, denoted Y1 (see Table 11-2). So the prob-
ability that a player makes the first free throw, P(Y1), is found 
by taking the row 1 total, 100, and dividing by the grand total, 
155, to get 0.65 or 65%. 

Now look at the event that the player makes the second 
free throw. (Notice there is no mention of what happens on 
the first shot, so that tells you it’s a marginal probability.) 
This event is represented in column 1 of the two-way table, 
denoted Y2 (see Table 11-2). So the probability that a player 
makes the second free throw, P(Y2), is found by taking the 
column 1 total, 105, and dividing by the grand total, 155, to 
get 105/155 = 0.68 or 68%. So your first observation is true; 
he makes the second free throw more often than the first one 
(68% compared to 65%).

The general formula for finding the marginal probability of an 

event in row i of the two-way table is P(row i event) = .

The general formula for finding the marginal probability of an 
event in column j of the two-way table is P(column j event) = 

.

Finding conditional probabilities
A conditional probability is the probability of one event hap-
pening, given that the outcome of another event is known. 
For example, the probability that a player makes the second 
free throw, given that he made the first one, is the conditional 
probability of Y2 given Y1 and is denoted P(Y2|Y1). And the 
probability that a player misses the second free throw given 
that he missed the first one is the conditional probability of 
N2 given N1 and is denoted P(N2|N1). 
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The formula for the conditional probability of A given B is 

P(A|B) = . You’re dividing by P(B) because you know 

event B has happened, making this the new sample space. 
But because the denominators of P(A  B) and P(B) both 
equal the grand total in the two-way table, you can find the 
conditional probability by just taking the number in the cell 
representing A  B, divided by the appropriate row or column 
total for event B. (The denominators for these probabilities 
are the same, the grand total, and they cancel out when you 
divide the probabilities, so you don’t have to include them in 
the calculations.)

For example, look at the event that the player makes the 
second free throw given he made the first one. This event is 
denoted Y2|Y1. (Y1 is the event that is known, so you use its 
marginal total in the denominator.) So the probability that a 
player makes the second free throw given he made the first 
one, P(Y2|Y1), is found by taking the number in the cell repre-
senting Y2  Y1, 60, and divide by the row total representing 
Y1, 100. So the probability of making the second shot, given he 
made the first, is 0.60 or 60%.

Now look at the event that the player misses the second free 
throw given he missed the first one. This event is denoted  
N2|N1. So the probability that a player misses the second free 
throw given he missed the first one, P(N2|N1), is found by 
taking the number in the cell for N2  N1, 10, and dividing by 
the second row total, 55, to get 0.18 or 18%. 

The general formula for finding the conditional probability of 
an event in row i given an event in row j of the two-way table 

is P(row i|column j) = . The general formula 

for finding the conditional probability of the event in column j 
given the event in row i of the two-way table is 

P(column j|row i) = .

 

A conditional probability is the probability of one event hap-
pening given another event is known to have occurred. Using 
a two-way table, to find the conditional probability of an event 
in a certain column of the table given an event in a row of the 
table, take the cell count for the intersection divided by the 
corresponding row total. To find the conditional probability 
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of an event in a certain row of the table given an event in a 
column of the table, take the cell count for the intersection 
divided by the corresponding column total. The clue that it’s 
a conditional probability is the fact that you know one event 
is known to have occurred. Words like given, knowing, and of 
are often used to mean conditional probability.    

Here is a summary of the conditional probabilities we can cal-
culate regarding the free throws example: 

 ✓ The probability of making the second shot given he made 
the first one, P(Y2|Y1), is 60/100 = 0.60 or 60%. 

 ✓ The probability of missing the second shot given he 
made the first one, P(N2|Y1), is 40/100 = 0.40 or 40%. 
Observe that this is 1 – 0.60, because you either miss the 
second or you don’t. (That is, making the shot and miss-
ing the shot are complements of each other.)

 ✓ The probability of missing the second shot given he 
missed the first one, P(N2|N1), is 10/55 = 0.18 or 18%.

 ✓ The probability of making the second shot given he 
missed the first one, P(Y2|N1), is 45/55 = 0.82 or 82%. 
Note this is the complement of the previous event, so 
their probabilities sum to one.

 

Once you’re given that event B has happened, A either hap-
pens or it doesn’t. So it is true that P(A|B) + P(Ac|B) = 1. But 
it is not true that P(A|B) + P(A|Bc) = 1 because in each term 
you are conditioning on a different event. This is a common 
mistake that you definitely want to avoid. (The notation statis-
ticians use for the event where A doesn’t happen is Ac. We call 
it “A complement.”)

Checking for Independence 
You know he makes the second free throw more often than 
the first, from the section on marginal probabilities. Now you 
are ready to answer your second question: In situations where 
he misses the first shot, does he make the second shot even 
more often? If the answer is yes, then we say the outcome of 
the second shot is related to, or is dependent, on, the outcome 
of the first shot. If the answer is no, then we say the outcome 
of the second shot is not related to, or is independent of, the 
outcome of the first. 
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Formally speaking, two events A and B are independent if 
P(A|B) = P(A). In other words, if the knowledge that B has 
happened does not change the probability of A happening, 
then events A and B are independent. Note this also means 
that if events A and B are independent, then P(A|B) = P(A|Bc), 
because both of these terms must be equal to P(A) in that 
case. 

To summarize these results, you can show events A and B are 
independent using two different methods:

 ✓ Method 1: If P(A|B) = P(A) then A and B are independent. 
If they are not equal, then we say A and B are dependent.

 ✓ Method 2: If P(A|B) = P(A|Bc) then A and B are indepen-
dent. If they are not equal, then we say A and B are 
dependent.

You only have to check for independence using one of those 
methods; you need not use both. 

Using method 1 to answer your question, you check for inde-
pendence by comparing his overall rate of making the second 
shot to his rate of making the second shot when you know 
he’s missed the first. That is, check to see if P(Y2) = P(Y2|N1). 
You know that P(Y2) is the overall chance of making the 
second shot, which equals 105/155 = 0.68 or 68%. Now if the 
first shot was missed, the probability of making the second 
shot increases to P(Y2|N1) = 45/55 = 0.82 or 82%. Because 0.68 
is not equal to 0.82, the outcomes of the two shots are depen-
dent. In situations where the first free throw is missed, he 
makes the second one more often than his overall rate.

Using method 2, you check to see if the probability of making 
the second shot is the same whether the first shot is made 
or missed. That is, check to see if P(Y2|Y1) = P(Y2|N1). When 
the first shot is made, the chance of making the second is 
P(Y2|Y1) = 60/100 = 0.60 or 60%; when the first shot is missed, 
the chance of making the second shot increases to P(Y2|N1) 
= 45/55 = 0.82 or 82%. Since these probabilities are not equal, 
the outcomes of the two shots are dependent. The probability 
of making the second shot is higher when he misses the first 
one than when he makes the first one.
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Although the pairs of probabilities being compared are dif-
ferent for the two methods of checking for independence, 
the overall conclusions should always agree. In this example, 
your suspicions were right — no matter how you slice it, your 
player is more likely to make the second shot when he misses 
the first than when he makes the first.

              



Chapter 12

A Checklist for Samples 
and Surveys 

In This Chapter
▶ Defining and getting good samples from the target population

▶ Crafting and administering good surveys

▶ Making appropriate conclusions

Surveys are all around you — I guarantee that at some 
point in your life, you’ll be asked to complete a survey. 

You’re also likely to be inundated with the results of surveys, 
and before you consume their information, you need to evalu-
ate whether they were properly designed. In this chapter, I 
present a checklist you can use to evaluate or plan a survey.

The survey process can be broken down into a series of ten 
elements that should be checked:

 1. Target population is well defined.

 2. Sample matches the target population.

 3. Sample is randomly selected.

 4. Sample size is large enough.

 5. Nonresponse is minimized.

 6. Type of survey is appropriate.

 7. Questions are well worded.

 8. Survey is properly timed.

 9. Personnel are well trained.

 10. Proper conclusions are made.
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This list helps you carry out your own survey or critique 
someone else’s survey. In the following sections I address 
each item and discuss its role in getting a good survey done. 

The Target Population 
Is Well Defined

The target population is the entire group of individuals that 
you’re interested in studying. For example, suppose you want 
to know what the people in Great Britain think of reality TV. 
The target population is all the residents of Great Britain. 

Many researchers don’t do a good job of defining their target 
populations clearly. For example, if the American Egg Board 
wants to say “Eggs are good for you!” it needs to specify who 
the “you” is. For example, is the Egg Board prepared to say 
that eggs are good for people who have high cholesterol? 
What if one of the studies the group cites is based only on 
young people who are healthy and eating low-fat diets — is 
that who they mean by “you”?

 

If the target population isn’t well defined, the survey results 
are likely to be biased. The sample that’s actually studied may 
contain people outside the intended population, or the survey 
may exclude people who should have been included.

The Sample Matches 
the Target Population

When you’re conducting a survey, you typically can’t ask 
every single member of the target population to provide the 
information you’re looking for. The best you can do is select a 
good sample (a subset of individuals from the population) and 
get the information from them. A good sample represents the 
target population. The sample doesn’t systematically favor 
certain groups within the target population, and it doesn’t 
systematically exclude certain people, either. 
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The best scenario for selecting a representative sample is 
to obtain a sampling frame — a list of all the members of the 
target population — and draw randomly from that. If such 
a list isn’t possible, you need some mechanism that gives 
everyone in the population an equal opportunity to be chosen 
to participate in the survey. For example, if a house-to-house 
survey of a city is needed, an updated map including all 
houses in that city should be used as the sampling frame.

The Sample Is Randomly 
Selected

An important feature of a good study is that the sample is ran-
domly selected from the target population. Randomly means 
that every member of the target population has an equal 
chance of being included in the sample. In other words, the 
process you use for selecting your sample can’t be biased. 

The biggest problem to watch for is convenience samples. A 
convenience sample is a sample selected in a way that’s easi-
est on the researcher — for example call-in polls, man-on-the-
street surveys, or Internet surveys. Convenience samples are 
totally nonrandom, and their results are not credible. 

For surveys involving people, reputable polling organizations 
such as the Gallup Organization use a random digit dialing 
procedure to telephone the members of their sample. This 
excludes people without phones, of course, so this kind of 
survey does have a bit of bias. In this case, though, most 
people do have phones (over 95%, according to the Gallup 
Organization), so the bias against people who don’t have 
phones is not a big problem. 

The Sample Size Is Large Enough
You’ve heard the saying, “Less is more”? With surveys, the 
saying is, “Less good information is better than more bad 
information, but more good information is better.” 
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If you have a large sample size, and the sample is representa-
tive of the target population (meaning randomly selected), 
you can count on that information to be pretty accurate. 
Exactly how accurate depends on the sample size, but in 
general a bigger sample leads to more accurate information 
(assuming the data is well collected).

 

A quick and dirty formula to calculate the accuracy of a 
survey is to divide by the square root of the sample size. For 
example, a survey of 1,000 (randomly selected) people is 

 accurate to within , which is 0.032 or 3.2%. This per-

 centage is called the margin of error. (Note that this formula 
is just a rough estimate.  A better estimate can be found using 
the formulas from Chapter 7.)

 

Beware of surveys that have a large sample size but it’s not 
randomly selected; internet surveys are the biggest culprit. A 
company can say that 50,000 people logged on to its Web site 
to answer a survey, but that information is biased, because it 
represents opinions of those who had access to the Internet, 
went to the Web site, and chose to complete the survey. 

Nonresponse Is Minimized
After the sample size has been chosen and the sample of 
individuals has been randomly selected from the target popu-
lation, you have to get the information you need from the 
people in the sample. If you’ve ever thrown away a survey or 
refused to answer a few questions over the phone, you know 
that getting people to participate in a survey isn’t easy.

The importance of following up
If a researcher wants to minimizes bias, the best way to 
handle nonresponse is to “hound” the people in the sample: 
Follow up one, two, or even three times, offering dollar bills, 
coupons, self-addressed stamped return envelopes, chances 
to win prizes, and so on. Note that offering more than a small 
token of incentive and appreciation for participating can 
create bias as well, because then people who really need the 
money are more likely to respond than those who don’t. 
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Consider what motivates you to fill out a survey. If the incen-
tive provided by the researcher doesn’t get you, maybe the 
subject matter piques your interest. Unfortunately, this is 
where bias comes in. If only those folks who feel very strongly 
respond to a survey, only their opinions will count; because 
the other people who don’t really care about the issue don’t 
respond, each “I don’t care” vote doesn’t count. And when 
people do care but don’t take the time to complete the 
survey, those votes don’t count, either. 

The response rate of a survey is a percentage found by taking 
the number of respondents divided by the total sample size 
and multiplying by 100%. The ideal response rate according 
to statisticians is anything over 70%. However, most response 
rates fall well short of that, unless the survey is done by a 
very reputable organization, such as Gallup. 

Look for the response rate when examining survey results. If 
the response rate is too low (much less than 70%) the results 
may be biased and should be ignored. Selecting a smaller ini-
tial sample and following up aggressively is better than select-
ing a bigger sample that ends up with a low response rate. 
Plan several follow-up calls/mailings to reduce bias. It also 
helps increase the response rate to let people know up front 
whether their results will be shared or not.

Anonymity versus confidentiality
If you were to conduct a survey to determine the extent of 
personal email usage at work, the response rate would prob-
ably be low because many people are reluctant to disclose 
their use of personal email in the workplace. You could 
encourage people to respond by letting them know that their 
privacy would be protected during and after the survey.

When you report the results of a survey, you generally don’t 
tie the information collected to the names of the respondents, 
because doing so would violate the privacy of the respon-
dents. You’ve probably heard the terms anonymous and con-
fidential before, but you may not realize that they have totally 
different meanings in terms of privacy issues. Keeping results 
confidential means that I could tie your information to your 
name in my report, but I promise that I won’t do that. Keeping 
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results anonymous means that I have no way of tying your 
information to your name in my report, even if I wanted to. 

If you’re asked to participate in a survey, be sure you’re clear 
about what the researchers plan to do with your responses 
and whether or not your name can be tied to the survey. (Good 
surveys always make this issue very clear for you.) Then make 
a decision as to whether you still want to participate. 

The Survey Is of the Right Type
Surveys come in many types: mail surveys, telephone surveys, 
Internet surveys, house-to-house interviews, and man-on-the-
street surveys (in which someone comes up to you with a 
clipboard and asks, “Do you have a few minutes to participate 
in a survey?”). One very important yet sometimes overlooked 
criterion of a good survey is whether the type of survey being 
used is appropriate for the situation. For example, if the 
target population is the population of people who are visually 
impaired, sending them a survey in the mail that has a tiny 
font isn’t a good idea (yes, this has happened!). 

When looking at the results of a survey, be sure to find out 
what type of survey was used and reflect on whether this type 
of survey was appropriate.

Questions Are Well Worded
The way in which a question is worded in a survey can affect 
the results. For example, while President Bill Clinton was in 
office and the Monica Lewinsky scandal broke, a CNN/Gallup 
Poll conducted August 21–23, 1998, asked respondents to 
judge Clinton’s favorability, and about 60% gave him a posi-
tive result. When CNN/Gallup reworded the question to ask 
respondents to judge Clinton’s favorability “as a person,” only 
about 40% gave him a positive rating. These questions were 
both getting at the same issue; even though they were worded 
only slightly differently you can see how different the results 
are. So question wording does matter. 

One huge problem is the use of misleading questions (in other 
words, questions that are worded in such a way that you 
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know how the researcher wants you to answer). An example 
of a misleading question is, “Do you agree that the president 
should have the power of a line-item veto to eliminate waste?” 
This question should be worded in a neutral way, such as 
“What is your opinion about the line-item veto ability of a 
president?” Then give a scale from 1 to 5 where 1 = strongly 
disagree and 5 = strongly agree.

 

When you see the results of a survey that’s important to you, 
ask for a copy of the questions that were asked and analyze 
them to ensure that they were neutral and minimized bias.

The Timing Is Appropriate
The timing of a survey is everything. Current events shape 
people’s opinions, and while some pollsters try to deter-
mine how people really feel, others take advantage of these 
situations, especially the negative ones. For example, polls 
regarding gun control often come out right after a shooting 
that is reported by the national media. Timing of any survey, 
regardless of the subject matter, can still cause bias. Check 
the date when a survey was conducted and see whether you 
can determine any relevant events that may have temporarily 
influenced the results. 

Personnel Are Well Trained
The people who actually carry out surveys have tough 
jobs. They have to deal with hang ups, take-us-off-your-list 
responses, and answering machines. After they do get a live 
respondent at the other end of the phone or face to face, the 
job becomes even harder. For example, if the respondent 
doesn’t understand the question and needs more information, 
how much can you say, while still remaining neutral? 

For a survey to be successful, the survey personnel must be 
trained to collect data in an accurate and unbiased way. The 
key is to be clear and consistent about every possible sce-
nario that may come up, discuss how they should be handled, 
and have this discussion well before participants are ever 
contacted. 
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You can also avoid problems by running a pilot study (a prac-
tice run with only a few respondents) to make sure the survey 
is clear and consistent and that the personnel are handling 
responses appropriately. Any problems identified can be fixed 
before the real survey starts. 

Proper Conclusions Are Made
Even if a survey is done correctly, researchers can misin-
terpret or over-interpret results so that they say more than 
they really should. Here are some of the most common errors 
made in drawing conclusions from surveys:

 ✓ Making projections to a larger population than the study 
actually represents

 ✓ Claiming a difference exists between two groups when a 
difference isn’t really there

 ✓ Saying that “these results aren’t scientific, but . . .” and 
then presenting the results as if they are scientific

To avoid common errors made when drawing conclusions:

 1. Check whether the sample was selected properly 
and that the conclusions don’t go beyond the popula-
tion presented by that sample.

 2. Look for disclaimers about surveys before reading 
the results, if you can. 

  That way, you’ll be less likely to be influenced by 
the results if, in fact, the results aren’t based on a 
scientific survey. Now that you know what a scientific 
survey (the media’s term for an accurate and unbiased 
survey) actually involves, you can use those criteria to 
judge whether survey results are credible. 

 3. Be on the lookout for statistically incorrect 
conclusions.

  If someone reports a difference between two groups 
based on survey results, be sure the difference is 
larger than the reported margin of error. If the dif-
ference is within the margin of error, you should 
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expect the sample results to vary by that much just by 
chance, and the so-called “difference” can’t really be 
generalized to the entire population; see Chapter 7.

 4. Tune out anyone who says, “These results aren’t 
scientific, but. . . .”

Know the limitations of any survey and be wary of any infor-
mation coming from surveys in which those limitations aren’t 
respected. A bad survey is cheap and easy to do, but you get 
what you pay for. Before looking at the results of any survey, 
investigate how it was designed and conducted, so that you 
can judge the quality of the results.
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Chapter 13

A Checklist for Judging 
Experiments

In This Chapter
▶ The added value of experiments 

▶ Criteria for a good experiment

▶ Action items for evaluating an experiment

In this chapter, you go behind the scenes of experiments — 
the driving force of medical studies and other investiga-

tions in which comparisons are made. You find out the dif-
ference between experiments and observational studies and 
discover what experiments can do for you, how they’re sup-
posed to be done, and how you can spot misleading results.

Experiments versus 
Observational Studies

Although many different types of studies exist, you can boil 
them all down to basically two different types: experiments 
and observational studies. An observational study is just what it 
sounds like: a study in which the researcher merely observes 
the subjects and records the information. No intervention 
takes place, no changes are introduced, and no restrictions 
or controls are imposed. For example, a survey is an obser-
vational study. An experiment is a study that doesn’t simply 
observe subjects in their natural state, but deliberately applies 
treatments to them in a controlled situation and records the 
outcomes (for example, medical studies done in a laboratory). 
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Experiments are generally more powerful than observational 
studies; for example, an experiment can identify a cause-and-
effect relationship between two variables, whereas an observa-
tional study can only point out a connection.

Criteria for a Good Experiment
To decide whether an experiment is credible, check the fol-
lowing items:

 1. Is the sample size large enough to yield precise 
results? 

 2. Do the subjects accurately represent the intended 
population?

 3. Are the subjects randomly assigned to the treatment 
and control groups?

 4. Was the placebo effect measured (if applicable)?

 5. Are possible confounding variables controlled for?

 6. Is the potential for bias minimized?

 7. Was the data analyzed correctly?

 8. Are the conclusions appropriate?

In the following sections I present action items for evaluating 
an experiment based on each of the above criteria.

Inspect the Sample Size
The size of a sample greatly affects the accuracy of the 
results. The larger the sample size, the more accurate the 
results are, and the more powerful the statistical analysis will 
be at detecting real differences due to treatments.

Small samples — small conclusions
You may be surprised at the number of research headlines 
that were based on very small samples. If the results are 
important to you, ask for a copy of the research report and 
find out how many subjects were involved in the study. 
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Also be wary of research that finds significant results based 
on very small sample sizes (especially those much smaller 
than 30). It could be a sign of what statisticians call data fish-
ing, where someone fishes around in their data set using many 
different kinds of analyses until they find a significant result 
(which is not repeatable because it was just a fluke).

Original versus final sample size
Be specific about what a researcher means by sample size. For 
example, ask how many subjects were selected to participate 
in an experiment and then ask for the number who actually 
completed the experiment — these two numbers can be very 
different. Make sure the researchers can explain any situa-
tions in which the research subjects decided to drop out or 
were unable (for some reason) to finish the experiment. 

An article in the New York Times entitled “Marijuana Is Called 
an Effective Relief in Cancer Therapy” says in the opening 
paragraph that marijuana is “far more effective” than any 
other drug in relieving the side effects of chemotherapy. 
When you get into the details, you find out that the results 
are based on only 29 patients (15 on the treatment, 14 on a 
placebo). To add to the confusion, you find out that only 12 of 
the 15 patients in the treatment group actually completed the 
study; so what happened to the other three subjects?

Examine the Subjects
An important step in designing an experiment is selecting the 
sample of participants, called the research subjects. Although 
researchers would like for their subjects to be selected ran-
domly from their respective populations, in most cases this just 
isn’t possible. For example, suppose a group of eye researchers 
wants to test out a new laser surgery on nearsighted people. 
To select their subjects, they randomly select various eye doc-
tors from across the country and randomly select nearsighted 
patients from these doctors’ files. They call up each person 
selected and say, “We’re experimenting with a new laser sur-
gery treatment for nearsightedness, and you’ve been selected 
at random to participate in our study. When can you come in 
for the surgery?” This may sound like a good random sampling 
plan, but it doesn’t make for an ethical experiment. 
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The point is, getting a truly random sample of people to par-
ticipate in an experiment would be great, but is typically not 
feasible or ethical to do. Rather than select people at random, 
experimenters do the best they can to gather volunteers that 
meet certain criteria so they’re doing the experiment on an 
appropriate cross-section of the population. The randomness 
part comes in when individuals are assigned to the groups 
(treatment group, control group, and so forth) in a random 
fashion, as explained in the next section.

Check for Random Assignments
After the sample has been selected, the subjects are assigned 
to either a treatment group, which receives a certain level of 
some factor being studied, or a control group, which receives 
either no treatment or a fake treatment. How the subjects are 
assigned to their respective groups is extremely important.

Suppose a researcher wants to determine the effects of exer-
cise on heart rate. The subjects in his treatment group run 
five miles and have their heart rates measured before and 
after the run. The subjects in his control group will sit on 
the couch the whole time and watch reruns of The Simpsons. 
If only the health nuts (who probably already have excel-
lent heart rates) volunteer to be in the treatment group, the 
researcher will be looking only at the effect of the treatment 
(running five miles) on very healthy and active people. He 
won’t see the effect that running five miles has on the heart 
rates of couch potatoes. This nonrandom assignment of sub-
jects to the treatment and control groups can have a huge 
impact on his conclusions.

To avoid bias, subjects must be assigned to treatment/control 
groups at random. This results in groups that are more likely 
to be fair and balanced, yielding more credible results.

Gauge the Placebo Effect
A fake treatment takes into account what researchers call the 
placebo effect. The placebo effect is a response that people 
have (or think they’re having) because they know they’re get-
ting some sort of “treatment” (even if that treatment is a fake 
treatment, aka placebo, such as sugar pills). 
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If the control group is on a placebo, you may expect them not 
to report any side effects, but you would be wrong. Placebo 
groups often report side effects in percentages that seem 
quite high; this is because the knowledge that some treatment 
is being taken (even if it’s a fake treatment) can have a psy-
chological (even a physical) effect. If you want to be fair about 
examining the side effects of a treatment, you have to take 
into account the side effects that the control group reports; 
that is, side effects that are due to the placebo effect. 

 

In some situations, such as when the subjects have very seri-
ous diseases, offering a fake treatment as an option may be 
unethical. When ethical reasons bar the use of fake treatments, 
the new treatment is compared to an existing or standard 
treatment that is known to be effective. After researchers have 
enough data to see that one of the treatments is working better 
than the other, they will generally stop the experiment and put 
everyone on the better treatment, again for ethical reasons.

Identify Confounding Variables
A confounding variable is a characteristic which was not 
included or controlled for in the study, but can influence the 
results. That is, the real effects due to the treatment are con-
founded, or clouded, due to this variable.

For example, if you select a group of people who take vitamin 
C daily, and a group who don’t, and follow them all for a year’s 
time counting how many colds they get, you might notice the 
group taking vitamin C had fewer colds than the group who 
didn’t take vitamin C. However, you cannot conclude that vita-
min C reduces colds. Because this was not a true experiment 
but rather an observational study, there are many confound-
ing variables at work. One possible confounding variable is 
the person’s level of health consciousness; people who take 
vitamins daily may also wash their hands more often, thereby 
heading off germs.

How do researchers handle confounding variables? Control 
is what it’s all about. Here you could pair up people who 
have the same level of health-consciousness and randomly 
assign one person in each pair to taking vitamin C each day 
(the other person gets a fake pill). Any difference in number 
of colds found between the groups is more likely due to the 
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vitamin C, compared to the original observational study. Good 
experiments control for potential confounding variables.

Assess Data Quality
To decide whether or not you’re looking at credible data from 
an experiment, look for these characteristics:

 ✓ Reliability: Reliable data get repeatable results with sub-
sequent measurements. If your doctor checks your weight 
once and you get right back on the scale and see it’s dif-
ferent, there is a reliability issue. Same with blood tests, 
blood pressure and temperature measurements, and the 
like. It’s important to use well-calibrated measurement 
instruments in an experiment to help ensure reliable data.

 ✓ Unbiasedness: Unbiased data contains no systematic 
favoritism of certain individuals or responses. Bias is 
caused in many ways: by a bad measurement instrument, 
like a bathroom scale that’s sometimes 5 pounds over; a 
bad sample, like a drug study done on adults when the 
drug is actually taken by children; or by researchers who 
have preconceived expectations for the results (“You feel 
better now after you took that medicine don’t you?”)

  Bias is difficult, and in some cases even impossible, to 
measure. The best you can do is anticipate potential 
problems and design your experiment to minimize them. 
For example, a double-blind experiment means that 
neither the subjects nor the researchers know who got 
which treatment or who is in the control group. This is 
one way to minimize bias by people on either side.

 ✓ Validity: Valid data measure what they are intended 
to measure. For example, reporting the prevalence of 
crime using number of crimes in an area is not valid; the 
crime rate (number of crimes per capita) should be used 
because it factors in how many people live in the area.

Check Out the Analysis
After the data have been collected, they’re put into that mys-
terious box called the statistical analysis. The choice of analy-
sis is just as important (in terms of the quality of the results) 
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as any other aspect of a study. A proper analysis should be 
planned in advance, during the design phase of the experi-
ment. That way, after the data are collected, you won’t run 
into any major problems during the analysis. 

As part of this planning you have to make sure the analysis 
you choose will actually answer your question. For example, 
if you want to estimate the average blood pressure for the 
treatment group, use a confidence interval for one popula-
tion mean (see Chapter 7). However, if you want to compare 
the average blood pressure for the treatment group versus a 
control group, you use a hypothesis test for two means (see 
Chapter 8). Each analysis has its own particular purpose; this 
book hits the highlights of the most commonly used analyses.

You also have to make sure that the data and your analysis 
are compatible. For example, if you want to compare a treat-
ment group to a control group in terms of the amount of 
weight lost on a new (versus an existing) diet program, you 
need to collect data on how much weight each person lost 
(not just each person’s weight at the end of the study). 

Scrutinize the Conclusions
Some of the biggest statistical mistakes are made after the 
data has all been collected and analyzed — when it’s time to 
draw conclusions, some researchers get it all wrong. The three 
most common errors in drawing conclusions are the following:

 ✓ Overstating their results

 ✓ Making connections or giving explanations that aren’t 
backed up by the statistics

 ✓ Going beyond the scope of the study in terms of whom 
the results apply to

Overstated results
When you read a headline or hear about the big results of 
the latest study, be sure to look further into the details of the 
study — the actual results might not be as grand as what you 
were led to believe. For example, suppose a researcher finds 
a new procedure that slows down tumor growth in lab rats. 
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This is a great result but it doesn’t mean this procedure will 
work on humans, or will be a cure for cancer. The results have 
to be placed into perspective. 

Ad-hoc explanations
Be careful when you hear researchers explaining why their 
results came out a certain way. Some after-the-fact (“ad-hoc”) 
explanations for research results are simply not backed up 
by the studies they came from. For example, suppose a study 
observes that people who drink more diet cola sleep fewer 
hours per night on average. Without a more in-depth study, you 
can’t go back and explain why this occurs. Some researchers 
might conclude the caffeine is causing insomnia (okay…), but 
could it be that diet cola lovers (including yours truly) tend to 
be night owls, and night owls typically sleep fewer hours than 
average? 

Generalizing beyond the scope
You can only make conclusions about the population that’s 
represented by your sample. If you want to draw conclusions 
about the opinions of all Americans, you need a random 
sample of Americans. If your random sample came from a 
group of students in your psychology class, however, then the 
opinions of your psychology class is all you can draw conclu-
sions about. 

Some researchers try to draw conclusions about populations 
that have a broader scope than their sample, often because 
true representative samples are hard to get. Find out where the 
sample came from before you accept broad-based conclusions. 

              



Chapter 14

Ten Common Statistical 
Mistakes

In This Chapter
▶ Recognizing common statistical mistakes 

▶ How to avoid these mistakes when doing your own statistics

This book is not only about understanding statistics that 
you come across in your job and everyday life; it’s also 

about deciding whether the statistics are correct, reasonable, 
and fair. After all, if you don’t critique the information and ask 
questions about it, who will? In this chapter, I outline some 
common statistical mistakes made out there, and I share ways 
to recognize and avoid those mistakes.  

Misleading Graphs
Many graphs and charts contain misinformation, mislabeled 
information, or misleading information, or they simply lack 
important information that the reader needs to make critical 
decisions about what is being presented. 

Pie charts
Pie charts are nice for showing how categorical data is broken 
down, but they can be misleading. Here’s how to check a pie 
chart for quality:

 ✓ Check to be sure the percentages add up to 100%, or 
close to it (any round-off error should be small). 
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 ✓ Beware of slices labeled “Other” that are larger than the 

rest of the slices. This means the pie chart is too vague.

 ✓ Watch for distortions with three-dimensional-looking pie 
charts, in which the slice closest to you looks larger than 
it really is because of the angle at which it’s presented.

 ✓ Look for a reported total number of individuals who 
make up the pie chart, so you can determine “how big” 
the pie is, so to speak. If the sample size is too small, the 
results are not going to be reliable.

Bar graphs
A bar graph breaks down categorical data by the number 
or percent in each group (see Chapter 3). When examining a 
bar graph:

 ✓ Consider the units being represented by the height of the 
bars and what the results mean in terms of those units. 
For example, total number of crimes verses the crime 
rate (total number of crimes per capita). 

 ✓ Evaluate the appropriateness of the scale, or amount of 
space between units expressing the number in each group 
of the bar graph. Small scales (for example, going from 1 
to 500 by 10s) make differences look bigger; large scales 
(going from 1 to 500 by 100s) make them look smaller.

Time charts
A time chart shows how some measurable quantity changes 
over time, for example, stock prices (see Chapter 3). Here are 
some issues to watch for with time charts:

 ✓ Watch the scale on the vertical (quantity) axis as well 
as the horizontal (timeline) axis; results can be made to 
look more or less dramatic by simply changing the scale.

 ✓ Take into account the units being portrayed by the chart 
and be sure they are equitable for comparison over time; 
for example, are dollars being adjusted for inflation?

 ✓ Beware of people trying to explain why a trend is occur-
ring without additional statistics to back themselves up. 

              



 Chapter 14: Ten Common Statistical Mistakes 157
A time chart generally shows what is happening. Why it’s 
happening is another story.

 ✓ Watch for situations in which the time axis isn’t marked 
with equally spaced jumps. This often happens when 
data are missing. For example, the time axis may have 
equal spacing between 1971, 1972, 1975, 1976, 1978, when 
it should actually show empty spaces for the years in 
which no data are available. 

Histograms
Histograms graph numerical data in a bar-chart type of graph 
(seen in Chapter 3). Items to watch for regarding histograms:

 ✓ Watch the scale used for the vertical (frequency/relative 
frequency) axis, especially for results that are exagger-
ated or played down through the use of inappropriate 
scales.

 ✓ Check out the units on the vertical axis, whether they’re 
reporting frequencies or relative frequencies, when 
examining the information.

 ✓ Look at the scale used for the groupings of the numerical 
variable on the horizontal axis. If the groups are based 
on small intervals (for example, 0–2, 2–4, and so on), the 
data may look overly volatile. If the groups are based on 
large intervals (0–100, 100–200, and so on), the data may 
give a smoother appearance than is realistic.

Biased Data
Bias in statistics is the result of a systematic error that either 
overestimates or underestimates the true value. Here are 
some of the most common sources of biased data:

 ✓ Measurement instruments that are systematically off, 
such as a scale that always adds 5 pounds to your 
weight. 

 ✓ Participants that are influenced by the data-collection 
process. For example, the survey question, “Have you 
ever disagreed with the government?” will overestimate 
the percentage of people unhappy with the government.
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 ✓ A sample of individuals that doesn’t represent the popu-

lation of interest. For example, examining study habits 
by only visiting people in the campus library will create 
bias. 

 ✓ Researchers that aren’t objective. Researchers have a 
vested interested in the outcome of their studies, and 
rightly so, but sometimes interest becomes influence 
over those results. For example, knowing who got what 
treatment in an experiment causes bias — double-blind-
ing the study makes it more objective.

No Margin of Error
To evaluate a statistical result, you need a measure of its 
precision — that is, the margin of error (for example “plus or 
minus 3 percentage points”). When researchers or the media 
fail to report the margin of error, you’re left to wonder about 
the accuracy of the results, or worse, you just assume that 
everything is fine, when in many cases it’s not. Always check 
the margin of error. If it’s not included, ask for it! (See Chapter 
7 for all the details on margin of error.)

Nonrandom Samples
A random sample (as described in Chapter 12) is a subset of 
the population selected in such a way that each member of 
the population has an equal chance of being selected (like 
drawing names out of a hat). No systematic favoritism or 
exclusion is involved in a random sample. However, many 
studies aren’t based on random samples of individuals; for 
example, TV polls asking viewers to “call us with your opin-
ion”; an Internet survey you heard about from your friends; 
or a person with a clipboard at the mall asking for a minute of 
your time. 

What’s the effect of a nonrandom sample? Oh nothing, 
except it just blows the lid off of any credible conclusions the 
researcher ever wanted to make. Nonrandom samples are 
biased, and their data can’t be used to represent any popula-
tion beyond themselves. Check to make sure an important 
result is based on a random sample. If it isn’t, run — and don’t 
look back!
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Missing Sample Sizes
Knowing how much data went into a study is critical. Sample 
size determines the precision (repeatability) of the results. A 
larger sample size means more precision, and a small sample 
size means less precision. Many studies (more than you 
would expect) are based on only a few subjects.

You might find that headlines and visual displays (such as 
graphs) are not exactly what they seem to be when the details 
reveal either a small sample size (reducing reliability in the 
results) or in some cases, no information at all about the 
sample size. For example, you’ve probably seen the chewing 
gum ad that says, “Four out of five dentists surveyed recom-
mend [this gum] for their patients who chew gum.” What if 
they really did ask only five dentists?

 

Always look for the sample size before making decisions 
about statistical information. Larger sample sizes have more 
precision than small sample sizes (assuming the data is of 
good quality). If the sample size is missing from the article, 
get a copy of the full report of the study or contact the 
researcher or author of the article.

Misinterpreted Correlations
Correlation is one of the most misunderstood and misused 
statistical terms used by researchers, the media, and the gen-
eral public. (You can read all about this in Chapter 10.) Here 
are my three major correlation pet peeves:

 ✓ Correlation applies only to two numerical variables, 
such as height and weight. So, if you hear someone say, 
“It appears that the voting pattern is correlated with 
gender,” you know that’s statistically incorrect. Voting 
pattern and gender may be associated, but they can’t be 
correlated in the statistical sense.

 ✓ Correlation measures the strength and direction of a 
linear relationship. If the correlation is weak, you can 
say there is no linear relationship; however some other 
type of relationship might exist, for example, a curve 
(such as supply and demand curves in economics).
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 ✓ Correlation doesn’t imply cause and effect. Suppose 

someone reports that the more people drink diet cola, 
the more weight they gain. If you’re a diet cola drinker, 
don’t panic just yet. This may be a freak of nature 
that someone stumbled onto. At most, it means more 
research needs to be done (for example, a well-designed 
experiment) to explore any possible connection.

Confounding Variables
Suppose a researcher claims that eating seaweed helps you 
live longer; you read interviews with the subjects and dis-
cover that they were all over 100, ate very healthy foods, slept 
an average of 8 hours a day, drank a lot of water, and exer-
cised. Can we say the long life was caused by the seaweed? 
You can’t tell, because so many other variables exist that 
could also promote long life (the diet, the sleeping, the water, 
the exercise); these are all confounding variables.

A common error in research studies is to fail to control for 
confounding variables, leaving the results open to scrutiny. 
The best way to head off confounding variables is to do a well-
designed experiment in a controlled setting.

 

Observational studies are great for surveys and polls, but not 
for showing cause-and-effect relationships, because they don’t 
control for confounding variables. A well-designed experiment 
provides much stronger evidence. (See Chapter 13.)

Botched Numbers
Just because a statistic appears in the media doesn’t mean it’s 
correct. Errors appear all the time (by error or design), so look 
for them. Here are some tips for spotting botched numbers:

 ✓ Make sure everything adds up to what it’s reported to. 
With pie charts, be sure the percentages add up to 100% 
(or very close to it — there may be round-off error).

 ✓ Double-check even the most basic of calculations. For 
example, a chart says 83% of Americans are in favor of an 
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issue, but the report says 7 out of every 8 Americans are 
in favor of the issue. 7 divided by 8 is 87.5%. 

 ✓ Look for the response rate of a survey — don’t just be 
happy with the number of participants. (The response 
rate is the number of people who responded divided by 
the total number of people surveyed times 100%.) If the 
response rate is much lower than 70%, the results could 
be biased, because you don’t know what the nonrespon-
dents would have said.

 ✓ Question the type of statistic used to determine if it’s 
appropriate. For example, the number of crimes went 
up, but so did population size. Researchers should have 
reported crime rate (crimes per capita) instead.

 

Statistics are based on formulas and calculations that don’t 
know any better — the people plugging in the numbers should 
know better, though, but sometimes they either don’t know 
better or they don’t want you to catch on. You, as a consumer 
of information (also known as a certified skeptic), must be the 
one to take action. The best policy is to ask questions.

Selectively Reporting Results
Another bad move is when a researcher reports a “statisti-
cally significant” result but fails to mention that he found it 
among 50 different statistical tests he performed — the other 
49 of which were not significant. This behavior is called data 
fishing, and that is not allowed in statistics. If he performs each 
test at a significance level of 0.05, that means he should expect 
to “find” a result that’s not really there 5 percent of the time 
just by chance (see Chapter 8 for more on Type I errors). In 50 
tests, he should expect at least one of these errors, and I’m bet-
ting that accounts for his one “statistically significant” result.

How do you protect yourself against misleading results due 
to data fishing? Find out more details about the study: How 
many tests were done, how many results weren’t significant, 
and what was found to be significant? In other words, get the 
whole story if you can, so that you can put the significant 
results into perspective. You might also consider waiting to 
see whether others can verify and replicate the result.
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The Almighty Anecdote
Ah, the anecdote — one of the strongest influences on public 
opinion and behavior ever created, and one of the least statis-
tical. An anecdote is a story based on a single person’s experi-
ence or situation. For example: 

 ✓ The waitress who won the lottery

 ✓ The cat that learned how to ride a bicycle

 ✓ The woman who lost 100 pounds on a potato diet

 ✓ The celebrity who claims to use an over-the-counter hair 
color for which she is a spokesperson (yeah, right) 

An anecdote is basically a data set with a sample size of one — 
they don’t happen to most people. With an anecdote you have 
no information with which to compare the story, no statis-
tics to analyze, no possible explanations or information to 
go on. You have just a single story. Don’t let anecdotes have 
much influence over you. Rather, rely on scientific studies 
and statistical information based on large random samples of 
individuals who represent their target populations (not just a 
single situation).

              



Appendix

Tables for Reference

This appendix provides three commonly used tables for 
your reference: the Z-table, the t-table, and the Binomial 

table. 

Because the first table won’t fit on this page, I’d like to invite 
you to use this space to write down your innermost feelings 
about statistics. 
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Table A-1 The Z-Table

    z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

–3.6 .0002 .0002 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001

–3.5 .0002 .0002 .0002 .0002 .0002 .0002  .0002 .0002 .0002 .0002

–3.4 .0003 .0003 .0003 .0003 .0003  .0003 .0003 .0003 .0002 .0002

–3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0003 .0003

–3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 0005 .0005

–3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007

–3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010

–2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014

–2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019

–2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026

–2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036

–2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048

–2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064

–2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084

–2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110

–2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143

–2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183

–1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233

–1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294

–1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367

–1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455

–1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559

–1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681

–1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823

–1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985

–1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170

–1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379

–0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611

–0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867

–0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148

–0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451

–0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776

–0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121

–0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 3483

–0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859

–0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247

–0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641

Number in the

table represents

P(Z � z)

0z
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Table A-1 (continued) The Z-Table

  z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359

0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753

0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141

0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517

0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224

0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549

0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852

0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133

0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621

1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830

1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015

1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177

1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441

1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545

1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633

1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706

1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817

2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857

2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890

2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916

2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952

2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964

2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974

2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981

2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990

3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993

3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995

3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997

3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998

3.5 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998

3.6 .9998 .9998 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999

0

Number in the

table represents

P(Z � z)

z
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Table A-2 The t-Table

0.40 0.25 0.10 0.05

t-distribution showing area to the right

0.025

t (p, df)

0.01 0.005 0.0005

1

df/p

0.324920 1.000000 3.077684 6.313752 12.70620 31.82052 63.65674 636.6192

2 0.288675 0.816497 1.885618 2.919986 4.30265 6.96456 9.92484 31.5991

3 0.276671 0.764892 1.637744 2.353363 3.18245 4.54070 5.84091 12.9240

4 0270722 0.740697 1.533206 2.131847 2.77645 3.74695 4.60409 8.6103

5

6

0.267181 0.726687 1.475884 2.015048 2.57058 3.36493 4.03214 6.8688

0.264835 0.717558 1.439756 1.943180 2.44691 3.14267 3.70743 5.9588

7 0.263167 0.711142 1.414924 1.894579 2.36462 2.99795 3.49948 5.4079

8 0.261921 0.706387 1.396815 1.859548 2.30600 2.89646 3.35539 5.0413

9 0.260955 0.702722 1.383029 1.833113 2.26216 2.82144 3.24984 4.7809

10 0260185 0.699812 1.372184 1.812461 2.22814 2.76377 3.16927 4.5869

11 0259556 0.697445 1.363430 1.795885 2.20099 2.71808 3.10581 4.4370

12 0259033 0.695483 1.356217 1.782288 2.17881 2.68100 3.05454 43178

13 0.258591 0.693829 1.350171 1.770933 2.16037 2.65031 3.01228 4.2208

14 0.258213 0.692417 1.345030 1.761310 2.14479 2.62449 2.97684 4.1405

15 0.257885 0.691197 1.340606 1.753050 2.13145 2.60248 2.94671 4.0728

16 0257599 0.690132 1.336757 1.745884 2.11991 2.58349 2.92078 4.0150

17 0.257347 0.689195 1.333379 1.739607 2.10982 2.56693 2.89823 3.9651

18 0.257123 0.688364 1.330391 1.734064 2.10092 2.55238 2.87844 3.9216

19 0.256923 0.687621 1.327728 1.729133 2.09302 2.53948 2.86093 3.8834

20 0.256743 0.686954 1.325341 1.724718 2.08596 2.52798 2.84534 3.8495

21 0.256580 0.686352 1.323188 1.720743 2.07961 2.51765 2.83136 3.8193

22 0256432 0.685805 1.321237 1.717144 2.07387 2.50832 2.81876 3.7921

23 0256297 0.685306 1.319460 1.713872 2.06866 2.49987 2.80734 3.7676

24 0.256173 0.684850 1.317836 1.710882 2.06390 2.49216 2.79694 3.7454

25 0.256060 0.684430 1.316345 1.708141 2.05954 2.48511 2.78744 3.7251

26 0.255955 0.684043 1.314972 1.705618 2.05553 2.47863 2.77871 3.7066

27 0.255858 0.683685 1.313703 1.703288 2.05183 2.47266 2.77068 3.6896

28 0.255768 0.683353 1.312527 1.701131 2.04841 2.46714 2.76326 3.6739

29 0.255684 0.683044 1.311434 1.699127 2.04523 2.46202 2.75639 3.6594

30 0.255605 0.682756 1.310415 1.697261 2.04227 2.45726 2.75000 3.6460
∞ 0.253347 0.674490 1.281552 1.644854 1.95996 2.32635 2.57583 3.2905
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Table A-3 The Binomial Table

n x 0.1 0.2 0.25 0.3 0.4 0.5

2 0 0.810 0.640 0.563 0.490 0.360 0.250
1 0.180 0.320 0.375 0.420 0.480 0.500
2 0.010 0.040 0.063 0.090 0.160 0.250

3 0 0.729 0.512 0.422 0.343 0.216 0.125
1 0.243 0.384 0.422 0.441 0.432 0.375
2 0.027 0.096 0.141 0.189 0.288 0.375
3 0.001 0.008 0.016 0.027 0.064 0.125

4 0 0.656 0.410 0.316 0.240 0.130 0.063
1 0.292 0.410 0.422 0.412 0.346 0.250
2 0.049 0.154 0.211 0.265 0.346 0.375
3 0.004 0.026 0.047 0.076 0.154 0.250
4 0.000 0.002 0.004 0.008 0.026 0.063

5 0 0.590 0.328 0.237 0.168 0.078 0.031
1 0.328 0.410 0.396 0.360 0.259 0.156
2 0.073 0.205 0.264 0.309 0.346 0.312
3 0.008 0.051 0.088 0.132 0.230 0.312
4 0.000 0.006 0.015 0.028 0.077 0.156
5 0.000 0.000 0.001 0.002 0.010 0.031

6 0 0.531 0.262 0.178 0.118 0.047 0.016
1 0.354 0.393 0.356 0.303 0.187 0.094
2 0.098 0.246 0.297 0.324 0.311 0.234
3 0.015 0.082 0.132 0.185 0.276 0.313
4 0.001 0.015 0.033 0.060 0.138 0.234
5 0.000 0.002 0.004 0.010 0.037 0.094
6 0.000 0.000 0.000 0.001 0.004 0.016

7 0 0.478 0.210 0.133 0.082 0.028 0.008
1 0.372 0.367 0.311 0.247 0.131 0.055
2 0.124 0.275 0.311 0.318 0.261 0.164
3 0.023 0.115 0.173 0.227 0.290 0.273
4 0.003 0.029 0.058 0.097 0.194 0.273
5 0.000 0.004 0.012 0.025 0.077 0.164
6 0.000 0.000 0.001 0.004 0.017 0.055
7 0.000 0.000 0.000 0.000 0.002 0.008

Entry is
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Table A-3 (continued) The Binomial Table

8 0 0.430 0.168 0.100 0.058 0.017 0.004
1 0.383 0.336 0.267 0.198 0.090 0.031
2 0.149 0.294 0.311 0.296 0.209 0.109
3 0.033 0.147 0.208 0.254 0.279 0.219
4 0.005 0.046 0.087 0.136 0.232 0.273
5 0.000 0.009 0.023 0.047 0.124 0.219
6 0.000 0.001 0.004 0.010 0.041 0.109
7 0.000 0.000 0.000 0.001 0.008 0.031
8 0.000 0.000 0.000 0.000 0.001 0.004

9 0 0.387 0.134 0.075 0.040 0.010 0.002
1 0.387 0.302 0.225 0.156 0.060 0.018
2 0.172 0.302 0.300 0.267 0.161 0.070
3 0.045 0.176 0.234 0.267 0.251 0.164
4 0.007 0.066 0.117 0.172 0.251 0.246
5 0.001 0.017 0.039 0.074 0.167 0.246
6 0.000 0.003 0.009 0.021 0.074 0.164
7 0.000 0.000 0.001 0.004 0.021 0.070
8 0.000 0.000 0.000 0.000 0.004 0.018
9 0.000 0.000 0.000 0.000 0.000 0.002

10 0 0.349 0.107 0.056 0.028 0.006 0.001
1 0.387 0.268 0.188 0.121 0.040 0.010
2 0.194 0.302 0.282 0.233 0.121 0.044
3 0.057 0.201 0.250 0.267 0.215 0.117
4 0.011 0.088 0.146 0.200 0.251 0.205
5 0.001 0.026 0.058 0.103 0.201 0.246
6 0.000 0.006 0.016 0.037 0.111 0.205
7 0.000 0.001 0.003 0.009 0.042 0.117
8 0.000 0.000 0.000 0.001 0.011 0.044
9 0.000 0.000 0.000 0.000 0.002 0.010

10 0.000 0.000 0.000 0.000 0.000 0.001

12 0 0.282 0.069 0.032 0.014 0.002 0.000
1 0.377 0.206 0.127 0.071 0.017 0.003
2 0.230 0.283 0.232 0.168 0.064

0.142
0.016

3 0.085 0.236 0.258 0.240 0.054
4 0.021 0.133 0.194 0.231 0.213 0.121
5 0.004 0.053 0.103 0.158 0.227 0.193
6 0.000 0.016 0.040 0.079 0.177 0.226
7 0.000 0.003 0.011 0.029 0.101 0.193
8 0.000 0.001 0.002 0.008 0.042 0.121
9 0.000 0.000 0.000 0.001 0.012 0.054

10 0.000 0.000 0.000 0.000 0.002 0.016
11 0.000 0.000 0.000 0.000 0.000 0.003
12 0.000 0.000 0.000 0.000 0.000 0.000

n x 0.1 0.2 0.25 0.3 0.4 0.5
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Table A-3 (continued) The Binomial Table

15 0 0.206 0.035 0.013 0.005 0.000 0.000
1 0.343 0.132 0.067 0.031 0.005 0.000
2 0.267 0.231 0.156 0.092 0.022 0.003
3 0.129 0.250 0.225 0.170 0.063 0.014
4 0.043 0.188 0.225 0.219 0.127 0.042
5 0.010 0.103 0.165 0.206 0.186 0.092
6 0.002 0.043 0.092 0.147 0.207 0.153
7 0.000 0.014 0.039 0.081 0.177 0.196
8 0.000 0.003 0.013 0.035 0.118 0.196
9 0.000 0.001 0.003 0.012 0.061 0.153

10 0.000 0.000 0.001 0.003 0.024 0.092
11 0.000 0.000 0.000 0.001 0.007 0.042
12 0.000 0.000 0.000 0.000 0.002 0.014
13 0.000 0.000 0.000 0.000 0.000 0.003
14 0.000 0.000 0.000 0.000 0.000 0.000
15 0.000 0.000 0.000 0.000 0.000 0.000

20 0 0.122 0.012 0.003 0.001 0.000 0.000
1 0.270 0.058 0.021 0.007 0.000 0.000
2 0.285 0.137 0.067 0.028 0.003 0.000
3 0.190 0.205 0.134 0.072 0.012 0.001
4 0.090 0.218 0.190 0.130 0.035 0.005
5 0.032 0.175 0.202 0.179 0.075 0.015
6 0.009 0.109 0.169 0.192 0.124 0.037
7 0.002 0.055 0.112 0.164 0.166 0.074
8 0.000 0.022 0.061 0.114 0.180 0.120
9 0.000 0.007 0.027 0.065 0.160 0.160

10 0.000 0.002 0.010 0.031 0.117 0.176
11 0.000 0.000 0.003 0.012 0.071 0.160
12 0.000 0.000 0.001 0.004 0.035 0.120
13 0.000 0.000 0.000 0.001 0.015 0.074
14 0.000 0.000 0.000 0.000 0.005 0.037
15 0.000 0.000 0.000 0.000 0.001 0.015
16 0.000 0.000 0.000 0.000 0.000 0.005
17 0.000 0.000 0.000 0.000 0.000 0.001
18 0.000 0.000 0.000 0.000 0.000 0.000
19 0.000 0.000 0.000 0.000 0.000 0.000
20 0.000 0.000 0.000 0.000 0.000 0.000

n x 0.1 0.2 0.25 0.3 0.4 0.5
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• Symbols and 
Numerics •
α (alpha level), 93–94
* (asterisk), 32
b (y-intercept), 120–123
Ha (alternative hypothesis), 88–90
Ho (null hypothesis), 88–90
m (slope), 121–122
n (sample size). See sample 

size (n)
n! (n-factorial), 39
p (probability). See probability (p)
μ (population mean), 75–77, 

94–99, 112
σ (population standard deviation), 

60–61, 71–72
p-value, 92–94, 111–112
Q1 (fi rst quartile), 21, 31
Q3 (third quartile), 21, 31
r (correlation). See correlation (r)
s (sample standard deviation), 

17–18
t-distribution. See t-distribution
t-table, 109, 166
t-value, 111
x-axis, 114
x-coordinate, 114
X-variable (explanatory 

variable), 119
y-axis, 114
y-coordinate, 114
y-intercept (b), 120–123
Y-variable (response variable), 119
z*-value, 72

Z-distribution (standard normal 
distribution), 46–48, 
108–109, 111

Z-formula, 47–48, 54
z-score, 47, 54
Z-table, 47–48, 53, 164–165
25th percentile, 21, 31
50th percentile, 16–17, 20, 34
75th percentile, 21, 31

• A •
ACT math-help question, 64–67
Adderall side effects, 103–104
ad-hoc explanation, 154
alpha level (α), 93–94
alternative hypothesis (Ha), 88–90
analysis, statistical, 10, 152–153
anecdote, 162
anonymity, 141–142
asterisk (*), 32
average, 16–17, 34, 43

• B •
b (y-intercept), 120–123
bar graph, 9, 24–25, 156. See also 

histogram
basketball free throw example, 

127–136
best-fi tting line. See regression line
bias

in data, 8, 152
defi ned, 7
in experiments, 152
margin of error, compared to, 

84–85

Index

              



bias (continued)
in sample selection, 7
sample size, compared to, 74
sources, 157–158
in surveys, 140–141

big-fi ve statistics, 121–123
binomial distribution

binomial table, use of, 40–43
characteristics, 35–38
formula, use of, 38–40
non-binomial, compared to, 36–38
normal approximation to, 53–54
traffi c lights example, 39–42
value, expected, 43
variance of, 43

binomial random variable, 43
binomial table, 40–43, 167–169
births in Colorado example, 27–30
bivariate data, 114
boxplot, 31–34. See also fi ve-

number summary

• C •
categorical data, 13–15
cause-and-effect relationship, 

125–126, 160
cell count, 129–130
center, measures of, 15–17
center of data, 30, 34
Central Limit Theorem (CLT), 61–66
chart

about, 9
pie, 23–24, 155–156
time, 26–27, 30, 156–157

checklist
experiment, 147–154
survey, 137–145

CI. See confi dence interval (CI)
Clinton, Bill (president), 142
CLT (Central Limit Theorem), 

61–66
CNN/Gallup survey, 142

Colorado live births example, 
27–30

Columbus, Ohio, house prices, 75
conclusions, making, 10–11, 

144–145, 153–154
conditional probability, 132–134
confi dence interval (CI)

about, 69–70
choosing, 71–72
difference of two means, 78–80
difference of two proportions, 

80–81
goal, 71
interpreting, 82–84
misleading, 84–85
parameter estimation with, 70
polls, 74
population mean, 75–77, 112
population proportion, 77–78
purpose, 69
sample size effect on, 73–74
t-distribution with, 112

confi dence level, 72, 83
confi dentiality, 141
confounding variable, 

126, 151–152, 160
continuous random variable, 45
control group, 6, 150
convenience sample, 139
correlation (r)

calculating, 116–117
cause-and-effect, compared to, 

125–126, 160
defi ned, 116
interpreting, 117–118
measuring relationships using, 

115–119
misinterpreted, 159–160
properties, 118–119
on scatterplots, 118

counts, 14–15
cricket/temperature example

correlation, 118–120
extrapolation, 125
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 Index 173
predicting temperature with 

cricket chirps, 124–125
regression line, 119, 123–124
scatterplot, 113–115

crime rate, 26, 152, 156, 161
critical value, 110
crosstabs. See two-way table

• D •
data

analyzing, 10, 152–153
bias in, 8, 152
bivariate, 114
categorical, 13–15
center of, 30, 34
collecting, 7–8
describing, 8–9
distribution, 29, 32–33
numerical, 9, 14–17
ordinal, 14
qualitative, 13–15
quality, 152
quantitative, 9, 14–17
skewed left, 29, 32–33
skewed right, 29, 32
symmetric, 32, 33
as term, 2
types, 13–14

data fi shing, 149, 161
degrees of freedom, 107, 109
descriptive statistics, 8, 13. See 

also specifi c types
dice rolling example, 56–57
disclaimer, survey, 144
discrete random variable, 45
distribution. See also binomial 

distribution; normal 
distribution; t-distribution

data, 29, 32–33
defi ned, 56
sampling, 55–56, 61–62, 63–66

double-blind experiment, 152, 158

• E •
ethics, 149, 151
experiment, 6, 8, 147–154, 160
explanatory variable 

(X-variable), 119
extrapolation, 125

• F •
failure, probability of, 38
false alarm, 104–105
fi rst quartile (Q1), 21, 31
fi ve-number summary, 21–22. 

See also boxplot
Florida lottery example, 23–24
frequency, 9, 27, 31

• G •
Gallup Organization, 82, 84–85, 

139, 142
garbage in = garbage out, 7, 84–85
graph

about, 9
bar, 9, 24–25, 156
line, 26–27, 30, 156–157
misleading, 155–157

greater-than alternative 
hypothesis, 89, 93, 95, 102, 111

• H •
Ha (alternative hypothesis), 88–89, 

89–90
histogram, 27–31, 33, 157. See also 

bar graph
Ho (null hypothesis), 88–90
household income example, 20–21
hypothesis testing

defi ned, 67, 87
errors in, 104–106
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hypothesis testing (continued)

false alarm in, 104–105
hypotheses, setting up, 88–90
identifying what you’re testing, 88
mean difference, 99–102
missed detection in, 105–106
population mean, one, 94–96
population means, comparing 

two, 97–99
population proportion, one, 

96–97
population proportions, two, 

102–104
p-value for test statistic, fi nding, 

92–93
p-value for test statistic, 

interpreting, 93–94
sample statistic, fi nding, 90
steps, 88–94
t-distribution in, 110–112

• I •
icons, explained, 3
independence, checking for, 

134–136
Internet survey, 140
interquartile range (IQR), 22, 34

• J •
joint probability, 131

• L •
less-than alternative hypothesis, 

89, 93, 97, 111
line graph, 26–27, 30, 156–157
linear relationship, 115, 159

• M •
m (slope), 121, 122
margin of error

about, 69–70
bias, compared to, 84–85
missing, 158
sample size effect on, 73–74
size of, factors affecting, 71
survey, 140

marginal probability, 131–132
marginal totals, 130
marijuana for chemotherapy side 

effects study, 149
matched-pairs design, 76–77, 

99–102
maximum, in fi ve-number 

summary, 21, 31
mean, 16–17, 34, 43. See also 

population mean (μ); sample 
mean

mean difference, testing, 99–102
median, 16–17, 20, 31, 34
minimum, in fi ve-number 

summary, 21, 31
misleading question, 142–143
missed detection, 105–106
mistakes, common, 155–162
mothers in workforce examples, 

25, 94–95

• N •
n (sample size). See sample 

size (n)
NBA salaries, 16–17
negative relationship, 115
New York Times, 149
n-factorial (n!), 39
nonrandom sample, 158
nonresponse to survey, 

minimizing, 140–142
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normal distribution

about, 45–46
approximating to the binomial, 

53–54
fi nding for given probability, 

51–53
fi nding probabilities for, 48–51
standard (Z-distribution), 46–48, 

108, 109, 111
not-equal-to alternative 

hypothesis, 89, 91, 98–99, 112
null hypothesis (Ho), 88–90
numbers, botched, 160–161
numerical data, 9, 14–17

• O •
observational study, 5–6, 

147–148, 160
ordinal data, 14
outcomes, defi ning in two-way 

table, 128
outlier, 16, 18, 32
overgeneralizing results, 11, 154
overstating results, 11, 153–154

• P •
p (probability). See probability (p)
paired test, 76–77, 99–102
Pearson correlation coeffi cient. 

See correlation (r)
percent, 14–15, 21
percentile, 19–21, 51–53, 109. 

See also specifi c percentiles
phone survey, 139
pie chart, 23–24, 155–156
pilot study, 74, 144
placebo, defi ned, 103
placebo effect, 150–151
poll, 74
population mean (μ)

comparing two, 78–80, 97–99
confi dence interval for, 75–80, 112
testing one, 94–96

population proportion
confi dence interval for, 77–78, 

80–81
difference of two proportions, 

80–81
testing one, 96–97
testing two, 102–104

population standard deviation (σ), 
60–61, 71–72

population variability, 75
positive relationship, 114–115
prediction, making, 124–125
probability (p)

conditional, 132–134
of failure, 38
fi nding for normal distribution, 

48–51
fi nding for sample mean, 62–63
fi nding for sample proportion, 

66–67
fi nding normal distribution for, 

51–53
fi nding within two-way table, 

131–134
joint, 131
marginal, 131–132

probability distribution, 35. See 
also binomial distribution

p-value, 92–94, 111–112

• Q •
Q1 (fi rst quartile), 21, 31
Q3 (third quartile), 21, 31
qualitative data, 13–15
quantitative data, 9, 14–17
question

ACT math-help, 64–67
wording of, 142–143

• R •
r (correlation). See correlation (r)
random selection, 7
random variable, 35, 43, 45
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reading instruction methods 

example, 99–102
regression line

conditions, checking, 119–120
cricket/temperature example, 

123–124
fi nding, 119–124
formula, 120
slope, fi nding, 121
slope, interpreting, 122
X- and Y-variables, 119
y-intercept, fi nding, 121–122
y-intercept, interpreting, 123

relationship
cause-and-effect, 125–126, 160
linear, 115, 159
measuring using correlation, 

115–119
negative, 115
positive, 114–115

relative frequency, 9, 27, 31
reliability, 152
research hypothesis, 88–89, 89–90
response rate, survey, 141, 161
response variable (Y-variable), 119
results

overgeneralizing, 11, 154
overstating, 11, 153–154
selectively reporting, 161

rounding up sample size, 73–74

• S •
s (sample standard deviation), 

17–18
saddle point, 46
sample

defi ned, 138
nonrandom, 158
selecting, 7
target population, matching to, 

138–139
target population, randomly 

selecting from, 139–140

sample mean, 55, 57–58, 62–63. See 
also sampling distribution

sample proportion
fi nding probabilities for, 66–67
sampling distribution of, 63–66

sample size (n)
bar graph, 25
bias, compared to, 74
confi dence interval, effect on, 

73–74
experiment, 148–149
formula, 73
margin of error, effect on, 73–74
missing, 159
original, compared to fi nal, 149
pie chart, 156
poll, 74
rounding up, 73–74
standard error, effect on, 58–59
statistical meaning, 15
survey, 139–140

sample standard deviation (s), 
17–18

sample statistic, 90–91
sampling distribution, 55–56, 61–66
sampling error, 83
sampling frame, 139
scale

bar graph, 25, 156
histogram, 30, 31, 157
time chart, 27, 156

scatterplot, 114–115, 118
scientifi c survey, 144
score, standard, 90–91
selectively reporting results, 161
shape

of data in histogram, 29
of sampling distribution, 61–62

simple linear regression line. See 
regression line

skewed left data, 29, 32–33
skewed right data, 29, 32
slope (m), 121, 122
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standard deviation. See also 

variability
population, 60–61, 71–72
sample, 17–18

standard error, 57–61, 71–72
standard normal distribution 

(Z-distribution), 46–48, 
108–109, 111

standard score, 90–91
statistical analysis, 10, 152–153
statistics

big-fi ve, 121–123
descriptive, 8, 13
as term, 2

statistics process overview
conclusions, making, 10–11
data, analyzing, 10
data, collecting, 7–8
data, describing, 8–9
study, designing, 5–7

study design, 5–7
subject, experiment, 149–150
subjectivity, researcher, 158
survey

anonymity, compared to 
confi dentiality, 141–142

benefi ts, 6
bias, minimizing, 8
checklist, 137–145
CNN/Gallup, 142
conclusions from, 144–145
defi ned, 5
disclaimer, 144
following up, 140–141
Internet, 140
nonresponse, minimizing, 140–142
phone, 139
problems, potential, 6
questions, wording of, 142–143
response rate, 141, 161
sample, matching to target 

population, 138–139
sample, randomly selecting from 

target population, 139, 140

sample, selecting, 7
sample size, 139–140
scientifi c, 144
study design, 5–6
target population, 138
timing, 143
training survey personnel, 143–144
types, 5–6, 142

symmetric data, 32–33
symmetric distribution, 29

• T •
table. See also two-way table

binomial, 40–43, 167–169
t-, 109, 166
Z-, 47–48, 53, 164–165

target population, 138–140
t-distribution

about, 107–108
confi dence intervals with, 112
critical values, fi nding, 110
in hypothesis testing, 110–112
p-value, fi nding, 111–112
t-table, 109, 166
Z-distribution, compared to, 

108–109, 111
test statistic, 90–94
third quartile (Q3), 21, 31
time chart, 26–27, 30, 156–157
traffi c lights example, 39–42
treatment group, 150
t-table, 109, 166
t-value, 111
two-tailed hypothesis test, 110
two-way table

about, 15
conditional probabilities, 

calculating, 132–134
defi ned, 127
independence, checking for, 

134–136
joint probabilities, fi guring, 131
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two–way table (continued)

marginal probabilities. 
calculating, 131–132

numbers, inserting, 129
outcomes, defi ning, 128
probabilities within, fi nding, 

131–134
rows and columns, setting up, 

128–129
totals, fi nding, 130

Type-1 error, 104–105
Type-2 error, 105–106

• V •
validity, 152
variability

in boxplot, 34
in histogram, 29–30
measures, 17–18, 22
population, 75
in time chart, 30

variable
binomial random, 43
confounding, 126, 151–152, 160
continuous random, 45
discrete random, 45
explanatory, 119
random, 35, 43, 45
response, 119
X-, 119
Y-, 119

variance of binomial distribution, 43
varicose veins example, 87–88, 90
Vitamin C study example, 151–152

• X •
x-axis, 114
x-coordinate, 114
X-variable (explanatory variable), 

119

• Y •
y-axis, 114
y-coordinate, 114
y-intercept (b), 120–123
Y-variable (response variable), 119

• Z •
z*-value, 72
Z-distribution (standard normal 

distribution), 46–48, 
108–109, 111

Z-formula, 47–48, 54
z-score, 47, 54
Z-table, 47–48, 53, 164–165
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         Open the book and find:

•  Descriptive stats, charts, and 
graphs

•  Binomial, normal, and 
t-distributions

•  The Central Limit Theorem 

•  Correlation and regression

•  Hypothesis tests and confidence 
intervals

•  Probabilities for two-way tables 

•  Checklists for evaluating surveys 
and experiments

•  Ten common statistical mistakes
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Go to Dummies.com®

for videos, step-by-step photos, 
how-to articles, or to shop!

This practical guide sticks to the point with discrete 
explanations of essential concepts taught in a typical 
first semester statistics course. From graphs and 
confidence intervals to regression and hypothesis 
testing, the nitty-gritty information presented here is 
perfect to use in studying for exams, doing homework, 
or as a quick reference.

•  Chart your statistics course — get a handle 
on charts, graphs, and descriptive stats from 
standard deviations to correlations 

•  Know your distributions — understand the 
probabilities for the normal, binomial, and t 

•  Do the analysis — handle hypothesis tests, 
confidence intervals, regression, and two-way 
tables with ease

•  Take it to the limit — get the lowdown on 
sampling distributions and the Central Limit 
Theorem

•  Roll up your sleeves — discover the many 
experiments, surveys, and tests you’ll encounter 
in statistics

Just the essential
concepts you need
to get ahead in statistics 
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