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POSTSCRIPT

'Canonical analysis of categorical data' is a corrected
version of my dissertation of february 1973. It was the
very first formal publication in the nonlinear multi-
variate analysis project of the Department of Datatheory,
and it summarized the results which had been obtained so
far, both by the members of the department and by others.
Its coverage of the literature up to 1973 is almost
complete. )

The book is also a program for research. It contains many
results which have not been worked out in detail or tested
for practical usefulness. The computer programs that were
used are rather primitive by present standards. In the ten
years since 1973 some of the ideas presented in this book
have been tried out in more detail, better programs have
been written, and additional theoretical results have been
derived. The programs have been distributed on a fairly
large scale, and much experience with +them has been
accumulated.

These new developments in the nonlinear multivariate
analysis project are described in the books by Albert
Gifi. Preliminary versions of his 'magnum opus' were
circulated by the Department of Datatheory in 1980 and
1981. The final version will be published by de DSWO-press
in 1984. 'Canonical analysis of categorical data' is the
optimal introduction to the Gifi-books, in the first place
from the historical point of view, in the second place
because this earlier book is more simple and more

straightforward.




The program for research outlined in this book has only
been carried out in part by Gifi. There are many results,
notably in the chapter on differencing-models and the
chapter on special topics, which have not yet been
followed up, neither by Gifi nor by others. Thus
'Canonical analysis of categorical data' is valuable, not
only from the historical or pegagogical point of view, but
also because large parts of its program must still be
investigated.

This new DSWO-press edition contains no major revisions.
1 simply corrected a number of small errors and tried to

improve the presentation in some places.

Jan de Leeuw
february 15, 1984
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DATA ANALYSIS 1
IN THE SOCIAL SCIENCES

1.0 Introduction

This chapter is a short introduction to some of the
current topics in psychometrics and data analysis in the
social sciences in general. Its purpose is to justify to
some extent the scaling techniques discussed in this
dissertation. We do this by discussing a number of more or
less recent controversies in the data analytic and related
methodological literature (some of these controversies are
more or less dramatized for the sake of the argument). In
some cases the discussion of these controversional points
is highly relevant for the evaluation of the particular
class of techniques discussed in our later chapters.

1.1 Clinical and statistical psychologists

Once upon a time there was a heated controversy between
'clinical' and 'statistical' psychologists. The discussion
(as far as there was any discussion) focused on such
notorious problems and pseudo-problems as the possibility
of measurement in the behavioural and social sciences, the
superiority of either the clinical or the statistical
methods of prediction, the possibility and the usefulness
of an ‘objective' or even 'objectivistic' approach to the
social sciences, the usefulness of ‘'hermeneutic' and
'phenomenological? methods, the distinction between
'Naturwissenschaften' and 'Geisteswissenschaften', and the
role of 'Verstehen' in the social sciences. Because we do
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not want to get mixed up in all of these problems we
separate them into three classes: philosophical, empiri-

cal, and mathematical-statistical.

The main problem is a philosophical one. It has to do with
the methodological value of understanding the behaviour of
individuals and/or social institutions by getting to know
the rules (and/or values) that govern this behaviour. This
problem has not been satisfactory solved, but as it is a
philosophical problem this is not exactly a surprise. We
can agree that it is not the function of science to give a
tcomplete' description of reality (cf Meehl 1954, p. 130),
and that it certainly is not the function of science to
give a partial sensory of emotional reproduction of
reality (cf Rudner 1966, p. 69-70, p. 81-83), but in the
last analysis this only seems to mean that we (a number of
scientists) agree about a particular definition of science
(cf Black 1954, p 3-23). Other scientists agree that
statistics is useless unless the persons applying it have
a real understanding of the area under consideration (cf
winch 1958, p 113), and that in some areas it may be
impossible to apply statistics at all.

Ultimately the controversy seems to amount to the fact
that some scientists think that the hermeneutic, under-
standing, rule-knowing aspects of science belong to the
context of discovery, which is only propedeutic to true
science, and in which there is a complete methodological
anarchy. Other scientists will argue that all the really
important ideas belong to that context of discovery, and
that the purely technological 'design' aspects of science
are essentially trivial. The first group says that
'Verstehen' is important but certainly not scientific, the
second group says that the results of the physicalistic
approach to the social sciences are scientific, but
certainly not important. At this point both groups get
very angry. This makes the controversy a question of

emphasis, a question of character, a question of taste,



and above all, a question of two groups of scientists
fighting a rather unreal fight over the ownership of the
labels 'science' and 'psychology', which are, as labels,
both not very important and not very scientific. It has
been convincingly argued by Black (1954) that all
definitions of 'scientific method' are essentially
persuasive in the sense of Stevenson (1938). wittgenstein
has even defended the more general point of view that all
statements of the form 'This is really only this' are
persuasive. They try to give attractive explanations that
destroy prejudices. This is true for Freud, for Darwin,
for materialism, and also for behaviourism and physi-
calism. Of course if you succeed in persuading your client
and this cures him, you win. In the same way 1if you
succeed in persuading your friend that psychology is only
badly formulated physics, and this solves his problems,
then you win (Wittgenstein 1966, p 23-28). Lord Rutherford
once said that science consists of physics and stamp
collecting, but nobody believes that anymore. Einstein
once said that it is not the task of science to give the
taste to the soup, but innumerable psychologists still
believe that the only respectable way to report experien-
ces 1s to recreate them in in the reader or hearer. Nobody
denies that physics is a science, but for some reason or
another there seem to be difficulties with psychology,
history, ethics, esthetics, philosophy, and mathematics
(the reasons are different in these different examples).
Nevertheless all these disciplines are practiced by people
who call themselves scientists, who are payed by
scientific institutions for doing scientific work, and who
are considered scientists by their friends, their
colleagues and by 1lots of other people. This may be a
better point to start than an Aristotelian definition of
science which leads to useless and slightly ridiculous

qguarrels.

Of course the empirical problems about the relative
efficiencies of clinical and statistical prediction are
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completely irrelevant to these philosophical guestions
(although not everybody seems to realize that they are).
It seems useful to analyze the clinical judgment process
as a psychological phenomenon, it seems interesting to
evaluate the predictions of the clinical psychologist (as
far as he wishes to make any predictions) by using
statistical optimality criteria. Of course it is both
circular and unfair to use these criteria to compare his
predictions with the optimal statistical procedures, and
to conclude that statistical procedures are better. It
seems equally natural to investigate the statistical
procedures and their predictions by using clinical
criteria of optimality. The idea that clinical criteria
and optimalization are more complicated, and less exact,
intersubjective, and rigorous 1is mnot a fact but a
philosophical point of view (cf Wittgenstein 1953, section
88; Wittgenstein 1956, section I-5, section V-12). One
should always ask what the predictions are going to be
used for, if they are only going to be used to evaluate
the efficiency of the clinician's predictions they have a

limited value anyway.

From our point of view the most interesting aspects of the
controversy are the arguments used by the clinical
psychologist (and his colleagues from the other social
sciences) against the use of mathematical (especially
statistical) methods. In the first place it has been
argued that in (clinical) psychology it is the (behaviour
of the) individual that counts, not the (average behaviour
of a) group. Most statistical techniques use measures of
central tendency computed for groups of people, and
consequently are not useful for the (clinical) psychol-
ogist. This argument seems to be based on a misunder-
standing of the nature of statistics, that can easily be
explained by the heavy emphasis on descriptive statistics
and associated tests and intervals in most behavioural
science courses. What really counts is the statistical

model for a particular situation. Even the clinical



psychologist will admit that the behaviour of a single
individual varies in certain aspects from one occasion to
another, even if the conditions under which the behaviour
is observed seem identical (and even if he does not want
to speak of behaviour in certain situations). Part of this
variation can be interesting and is capable of being
understood, but certainly another part of it is un-
interesting and influenced by so many factors that it
cannot possibly be understood. This means that the
behaviour of a subject (client) in a particular situation
has a component which we may consider as random fluctu-
ation, and for which particular stochastic model may or

may not be appropriate.

It is, of course, true that in a large number of situ-
ations it has been erroneously assumed that a group of
subjects has a typical behaviour and that the individual
deviations from this pattern are merely random (with
identical distributions). It is true that the psychol-
ogical journals are filled with articles in which
stochastic independence is implicitly assumed, while a
cursory inspection of the data (or even the experimental
conditions) shows that this is a patently false assump-
tion. It is also true that even experimental psychologists
use statistical techniques which are not appropriate in
the situation in which they are applied (analysis of
variance of distance measures, t-test on skew distribu-
tions, etc.). This does not exclude the fact that for some
situations in the social sciences there exist respectable
statistical techniques, that can even be used to describe
the properties of a single individual. As a matter of fact
I think that measurement of particular characteristics of
an individual (or group) and statistical operations
performed on these measurements can help the understanding
process (I take the description of Winch as representative
of this process), in the same way as the understanding
process can help in the construction of statistical models
(hypotheses). I do not believe that the object of psychol-
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j ogy is, in some sense, essentially different from the
b objects of the other sciences. My conception of science
lies somewhere between a particular way of thinking and a

particular way of making a 1living; the nature of the

object does not seem to be very relevant.

Another argument that has had some popularity is that
measurement is essentially a reductive process in which
1 the aspects which are most important for the psychologist
are lost. That measurement is a form of reduction is
obviously true, but so is language. An important function
of language (both scientific and common) is classifica-

tion, and classification is the basis of all measurement.

Another important function of language, and especially of
b scientific language, is the ordering of objects in terms
i of several different attributes, and order is the basis of
b all forms of measurement. The fact that in psychology the
concatenation operation, the basis for most of the
advanced forms of measurements, is lacking has created a
lot of confusion (Wittgenstein, 1966, p 42). Recent
developments in algebraic measurement theory have shown
that concatenation operations can be introduced into the
social sciences in a more abstract and roundabout way, and
that these new concatenation operations then allow for
most of the basic results of classical measurement. The
idea that in measurement process not only some aspects,
but the most important aspects of the phenomenon are lost
is, again, not a fact but a philosophical point of view.
Not my point of view. The difference between measurement
and description seems slight. Saying that it 1is not
possible to measure something does not mean a thing, we
must specify what forms of measurement are possible. If we
weaken the definition of measurement in such a way that it
applies to all classifications, then it is hard to see how
we can speak about something without being able to measure
it.




1.2 Qualitative and quantitative data

We use the term 'data' in its widest possible sense: data
are the product of a classification process. The investi-
gator has classified a number of objects (persons, things,
situations, groups) according to a number of different

criteria.

Example: We study a particular group of persons. Some
of them are neurotic, others psychotic, and still
others are sane. Moreover some of these persons are
more than five feet tall, others are less than three
feet. Some of them are babies, others are adults, some

are bright, others dull, and so on.

Example: We study the opinions of somebody about his
relatives by asking him if he thinks that his mother is
neurotic, that his sister is handsome, that his father
is brilliant, that his brother is weird, his aunt Betty
selfish, his grandmother selfish, and so on.

Example: We study reaction times of a single subject
under different conditions. Under condition so-and-so
his reaction time was approximately so-and-so many
milliseconds, under condition this-and-that it was

approximately so-and-so many milliseconds, and sc on.

Example: We ask a number of subjects to rank a number
of political parties with respect to some attributes
such as preference, or left- right, of fanatism, or

constructivety, or what have you.

It is clear from these examples that a rigorous distinc-
tion between qualitative and quantitative data is not
necessary for our purposes. It is the classification
process that is fundamental, and quantitative information
is only one possible means to define the categories of the
classification. We agree with Rasch (1966, p 3): ‘'That




science should require observations to be measurable
quantities 1is a mistake, of course; even in physics
observations may be qualitative (e.g. emission of radio-

active particles observed as scintillations on a screen)

as in least analysis they always are (e.g. reading off a
point as located between two marks on a measuring rod)'.
Recent developments in measurement theory have shown that

measurability (in the classical sense) is essentially a
scientific hypotheses about the kind of data that can be
obtained and about the structure of the universe (the
objects that can be classified using the attribute). The
classical physical continua suppose that a weak order can
be defined over the universe, and that a group operation
consistent with the order can be applied to all pairs of
i objects. Most of the psychological continua (pitch,
brightness, loudness, saturation, hue, etc.) satisfy these
axioms only approximately, and most psychological
attributes do not satisfy them at all. Sometimes there is
only order and no group structure, sometimes there is not
even order. We only suppose in this book that classifica-

tion can be unambiguously performed, i.e. a number of

equivalence relations (or partitionings) are defined on
the universe of classification objects.

There has been a certain controversy in the social
sciences about the value of gqualitative data (nominal
scales, classifications, etc.). The dominant influence of
experimental psychology in psychometrics, nicely illus-
trated in the book of Guilford (1954), has led people into

thinking that data must be at least ordinal in order to be

scalable. This idea 1is predominant, even in the more
recent books of Torgerson (1958) and Coombs (1964). The
psychophysical scaling '~ methods require qualitative

judgments, but these can be translated directly into
(probabilistic) ordinal judgments about the underlying
scale. Experimental psychologists and the methodologists
inspired by experimental psychology have (or had) a
tendancy to ignore and belittle the more diffuse and less




structured data collected by other social scientists. This
attitude is somewhat beside the point. 'Areas in which
measurement, and inferential classification in general, is
in terms of 'weaker' relational systems are called 'soft’
by some psychologists. Its usual use as a term of oppro-
brium for the area is quite unfair. Work in such areas
need not be any less rigorous or scientific; truth
statements in such weaker systems would merely tend to be
less specific' (Coombs, 1964, p 332). From a statistical
point of view this guotation can be translated as saying
that the statistical models in such 'soft' areas would
tend to have more parameters (as a consequence we usually
need larger samples). It would not make sense (histori-
cally) to maintain that the influence of experimental
psychology on psychometry (or data analysis for the social
sciences) has been harmful, but some of the habits and
prejudices that survive from these earlier periods are
certainly harmful and must be abandoned (the same thing is
true for the structured labyrinth of bad habits called
psychological factor analysis).

In multivariate analysis (especially as practised by
psychometricians) there is the same tendency to downgrade
the endless lists of cross tables and associate measures
of classification (sometimes ten different measures for
each table). Again the attitude is understandable, but
harmful and unnecessary. Multivariate statistical analysis
has been dominated by the multinormal distribution for a
number of obvious reasons. For multinormal distributions
some standard statistical optimization problems could be
solved relatively easily, the algebra seemed relatively
simple, and the multinormal distribution could be applied
to a very large number of data. Nevertheless not a single
statistician has ever maintained that multivariate
analysis 1is essentially multinormal, and essentially
limited to interval scale data. A sémewhat irritated
quotation of Guttman from 1944 (I repeat: 1944) is
relevant here. 'It is only that most of us have been




exposed exclusively to certain algebraic manipulations
that we conceive such manipulations to be the essence of
mathematics. A more sophisticated view 1is to regard
mathematics as unveiling necessary relationships that
arise from classifications. Much useless discussion of
mathematics as a 'tool' in social research could be saved
by recognition of the fact that qualitative classifica-
tions lead to just as rigorous implications as do quanti-
tative'. (Guttman 1944, p 193). Although it is true that

looking at isolated cross tables from a large body of

multivariate data can be misleading and not very instruc-

tive, it certainly is not true that nominal data cannot be

analyzed by multivariate techniques. In fact, twenty-two
years later, after the Shepard-Guttman computational
breakthrough, Guttman could remark (triumphantly): 'In

order to comprehend great complexities, it proves to be

effective and powerful to focus only on most gqualitative
features; from these can be derived actual metric conse-
quences, with no special assumptions.' (Guttman 1966, p.
495). In the next few sections of this chapter we shall
discuss some of the techniques that can be used, both for

explorative data analysis and for confirmatory analysis.

1.3 Data analysis and statistics

It is difficult to give a precise definition of the area
of data analysis. In his fundamental paper Tukey lists the
following things which must be included: '...procedures
for analyzing data, techniques for interpreting the
results of such procedures, ways of planning the gathering
of data to make its analysis easier, more precise or more
accurate, and all the machinery and results of (mathemat-
ical) statistics which apply to analyzing data' (Tukey
1962, p 2). Consequently he also thinks that statistics
has two different roles. 'As far as statistics apllies to
real data it can be judged by the standards of data ana-

lysis, as far as it does not apply to real data it must be
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criticized according to the standards of pure mathemat-
ics.' (l.c., p 3). At other places Tukey describes the
inferential (or confirmatory), the incisive (or explora-
tory), and the allocative (or design) aspects of data
analysis. Tukey's conception of data analysis as an
independent branch of science with its own (more or less
explicit) standards has not received the attention it
deserves.

Thinking about data analysis as an independent branch of
science is an important liberalization, especially for the
social sciences. I consider it a healthy modification,
Tukey considers it a healthy modification, but a number of
statisticians may very well consider it as a first step on
the road to complete anarchy. What I mean by liberaliz-
ation is, of course, that the problems of mathematical
statistics can be rigorously formulated as optimization
problems and the solutions offered by the statisticians
are optimal solutions to these problems (uniformly more
powerful tests, uniformly minimum variance unbiased
estimates, etc.). In other cases (due to computational
difficulties) the solutions are only approximate, but we
have a general idea how good they are in terms of the
original optimization problem. Notably there are a number
of solutions which are suboptimal in finite samples, but
which approach the optimal solution when the samples size
tends to infinity (maximum likelihood theory, likelihood
ratio theory). In the exploratory parts of data analysis,
however, the well-defined optimization problems are
missing, the criteria are vague, and the attempt at
optimizing something (anything!?) are not rigorous.
Moreover, the stochastic basis on which any statistical
procedure is built, is only implicit (to put it mildly).
It is consequently not very difficult to understand that
statisticians frown upon Kaiser's Little Jiffy & associ-
ated root-staring procedures, upon fhe hundreds of
'objective' rotational criteria, upon analysis of variance
applied in situations where the assumptions are obviously

11




violated. A somewhat irritated gquotation from Kendall &
Stuart (1966, III, p 311) illustrates the point. In their
discussion of factor analysis they say: 'Once again the
electronic computer has come to the aid of psychologists
by enabling them to specify sundry criteria to determinate
rotations or structural simplification and solve the
resulting equations, but even the computer may find it
hard to provide accurate information about the sampling
distributions of the resulting estimators'. From the point
of view of data analysis this is somewhat beside the
point. The rotational criteria are not necessarily used
for estimation purposes, and sampling distributions are
only one of the many tools of the data analyst. The image
of the dumb social scientist and his dangerous weapon, the
electronic computer, is somewhat misleading. In defence of
data analysis we must also say that the objective approach
has the problem that different criteria, all desirable,
lead to different solutions. This is called the ‘objec-
tivist's dilemma' by Schaafsma (1971) and it seems to be
especially serious if we try to generalize the Neyman-
Pearson approach (or the general decision theoretical
approach) to multiple decision problems. Now multiple de-
cision problems are formulated because the Neyman-Pearson
hypothesis testing situation is not very realistic, and
not very representative for the diverse things that are
actually done with data. It is consequently quite possible
that the objectivist's dilemma will turn into an objec-
tivist's nightmare if he tries to apply his objective
criteria to the complex, multivariate exploration situ-
ation which are very common in the social sciences.

On the other hand it is important that the fact that it is
still not possible to "justify, say, multidimensional
scaling in a statistically meaningful way does not imply
that the technique has no value. In fact it does not even
imply that the technique is incomplete in some sense.
Usually MDS is not used for inferential purposes and the

statistical questions are simply not relevant. If MDS

12



tries to argue from the sample to the population it is a
very incomplete and nonrigorous statistical technique,
which can consequently make only relatively imprecise and
unreliable statements about the population parameters. If
it is used as a transformation which makes a given data
set more easy to understand, and which gives some indica-
tions about further (possibly confirmatory, statistical)
research, then MDS has already proved to work very sat-
isfactory. Although it seems to be true that the distinc-
tion between good and bad procedures in data analysis is
usually more difficult to draw than the distinction
between good and bad procedures in statistics, this mainly
reflects the fact that the emphasis in data analysis is
more on the usefulness of procedures and not on their
optimality. There are no cut-and-dried criteria for
usefulness, and, in fact, in data analysis the user and
his habits have a very strong and often frustrating
influence on the procedures that are going to be used in
particular instances (even if the data analyst prescribes
other procedures which are better according to his
criteria).

How does this discussion apply to our problem of the
multivariate analysis of categorical data? The first
investigators who applied techniques of the kind we
propose were somewhat apologetic. '...if the statistician
has not as yet developed an appropriate method which he
can offer us, then the psychologist, however imperfectly,
must set to work to devise his own'. (Burt, 1950, p. 168).
As usual Guttman is somewhat more self-assured: 'We cannot
even begin to tackle sampling problems until we define
what the best answer would be for the population, for the
case where there are no sampling errors.' (Guttman 1941,
p 341). We can be less apologetic for several reasons. In
the first place it is possible and essentially trivial to
give asymptotic sampling distributions for our 'estimates!
using nothing but the assumption of independent, ident-
ically distributed successive observations (this could

13




easily be relaxed to Markov-dependence, as long as the
central limit theorem applies to the transition counts).
The formula's are complicated (cf section 6.8) but once
again the computer comes to the aid of the psychologist

and computes the standard errors of his estimators.

Nevertheless it must be emphasized that the statistical
models used are very primitive, and that the computed
approximate standard errors are only a mechanical type of
additional output that may or may not be used in the
exploration. This is important because since the early
fifties the statisticians have developed a number of
techniques for the multivariate analysis of categorical
data that use more explicit probability models and
gﬁncentrate on the same basic notions as we do (hetero-
geneity, independence, interaction). The most important
references are Mitra (1956), Roy & Mitra (1956), Roy and
Bhapkar (1960), Bhapkar (1961, 1966, 1969), Birch (1963,
1964, 1965), Good (1963), Lindley (1964), Caussinus
(1965), Benzécri (196.), Kullback, Kupperman, & Ku (1962),
Ku, Varner, & Kullback (1971), Plackett (1969), Berkson
(1968), Bock (1969), Grizzle, Starmer, & Koch (1969), and
especially Goodman (1968, 1970, 1971, 1972). The main
disadvantage of this class of methods is that they are
asymptotic as well, and use counts in all cells of the
multidimensional table. If we have more than three or four
variables with a moderate number of categories each this
means that the number of observations has to be enormous
(at least for some higher-order hypotheses). Our methods
only use bivariate and univariate marginals, and these
marginals are, of course, always larger than the frequen~
cies in the body of the table. In our examples in chapter
7 we show that even if the 'proper' multivariate tech-
niques can be applied, our procedures still can give

useful additional information.

For the general problem of multivariate categorical data

analysis a number of multidimensional scaling techniques

14



have been developed by Guttman (reported by Lingoes 1968),
and by De Leeuw (1969). They are based upon the pseudo-
topological notions of contiguity and separation, respect-
ively. These techniques are data analytic in an extreme
sense. Minimization of the 1loss function (measures of,
respectively, contiguity or the representation, and
smoothness of the separating boundaries) requires heavy
gradient-type computation, and sampling distributions are
not even mentioned. There may be serious local minimum
trouble, the uniqueness problem (admissable transform-
ations) is complicated, and the very weak nonmetric
requirements tend to produce degenerate solutions. Never-
theless Guttman's GL-MSA-I has been successfully applied
to a number of examples, and it certainly is based on some
beautiful ideas. It is clear that there is a lot of space
on the data analysis-statistics continuum between these
two approaches. The procedures in this book have an
intermediate position, and can be used in a 'tandem'
approach which considers data from a number of possible
angles, and applies techniques from different classes

(some of the examples in chapter 7 are analyzed in such a

way).

1.4 Data reduction and measurement theory

Another controversy, which 1is closely related to the
previous one, and which is of some independent interest,
is the controversy between data reductionists and measure-
ment theoreticians. A quotation from Krantz, who discusses
multidimensional scaling (MDS), illustrates the point.
Since Shepard's computational breakthrough fthis sort of
measurement has been widely practiced, with little concern
over appropriate foundations.' (Krantz, 1967, p 14). By
foundations Krantz means, of course, the approach to MDS
based on axiomatic ordinal characterizations of Minkovski
spaces or gdgeodetic spaces. The question is, however, in
how far these foundations are appropriate for the social
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scientist, and in what circumstances. The data reduc-
tionist approach to scaling (or the data analytic
approach, which is somewhat less narrow) does not fit an
explicit algebraic or stochastic model to the data by
estimating free parameters, but simply tries to replace a
lot of unstructured input data by a smaller amount of
possibly more structured output data (without too much
loss of information, or with maximum reproducibility).
This data reduction point of view has been defended, with
varying degrees of extremity, by people like Shepard,
Torgerson, and Guttman. Even Coombs tends more to the data
reductionist than to the measurement theoretical point of
view in his major work. Torgerson has argued, quite con-
vincingly, that the new MDS techniqgues 'will become most
useful in those very areas where a purist could argue that
they should not have been used at all.' (Torgerson, 1965,
p 393). And indeed MDS solutions are sometimes most
informative if the space turns out to be partially empty,
if there are some well-defined regions in which the
solution suggests that there cannot be any points
(possible stimuli in the domain). This is true for the
colour circle and for Dutch political parties, but even
more so for solutions which show us that some of the
dimensions are partly or completely gqualitative. As
Guttman has argued (especially since 1950, when he started
working on the radax) one must always emphasize the
systematic structural characteristics of the configuration
and not projections on arbitrary dimensions (this is
another bad habit 1left over from the factor analysis
days).

Guttman, who has defended the data reductionist point of
view in the most extreme way 1 know of, refuses to have
anything to do with G-spaces, untestable axioms, and the
like. He is also interested in representation theorems, it
is true, but only for the finite case, and only as dis-
playing a kind of perfect fit that is either trivial or
nonrealistic or both (cf Guttman, 1967). I think this
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attitude 1is somewhat too extreme. After all, our MDS
solutions may indicate that a well-filled psychological
space 1is behind the whole thing. At some place in our
theory formation process there may come a time when
assumptions like solvability are necessary or convenient.
At some place we may want to postulate a definite model of
which solvability is a part. That this is not often the
case, and that the naive data reduction point of view is
still the most fruitful in MDS and related areas is clear
from the testimony of people like Guttman, Torgerson,
Shepard, and Coombs, who have a lot of experience with

real psychological and sociological data.

The measurement theoretical 'purist' is undoubtedly more
right in the case of simple polynomial models (such as the
additive one). As soon as one can imagine psychological
continua, one can often also imagine additive combination
laws that make sense, and that have most of the properties
of their classical physical brethren. In such simple
additive situations we shall indeed find that even our
explorative techniques and the statistics computed by our
techniques have relatively straightforward statistical
interpretations. In more complicated situations (in which
less structure can be assumed) the interpretation in terms
of a model becomes more doubtful, and we must interpret
the results using other data analytic criteria. As a kind
of preliminary evaluation I would consider the claims of
the measurement theorist as not valid. There is no doubt
that additive conjoint measurement (ACM) and other simple
polynomial models are a valuable addition to the tool kit
of the experimental psychologist (and the social psychol-
ogist). This is sufficiently proved by the exellent papers
of Tversky, Coombs and others on decision making and risk
taking. But ACM seems to require controlled experimenta-
tion and balanced designs, and we have seen that tech-
niques which require that much have a limited value for
the social sciences in general. The same thing is true for

the studies in multidimensional psychophysics of Krant,
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Tversky, Wender, and others. Again this is limited to
'uninteresting' stimulus domains with obvious dimensions,
such as geometrical figures. And even in these artificial
or controlled context the thing that really counts 1is the
statistical model that is assumed, not a purely algebraic
analysis. The axioms are now merely gqualitative conse-
quences of the overall statistical model, which can be
used to test the model.

It may be the case that measurement theory loses a lot of
its 'exact' or 'rigorous' appeal, if translated into these
simple stochastic terms. The translation of ACM into
two~way analysis of variance, with an arbitrary monotone
transformation of the cell entries, shows what can be
expected. Of course we can test this model by deriving
monotonicity in rows and columns, and the various
cancellation conditions, but the only advantage of this is
that we can use nonparametric methods more easily. It has
been argued by Krantz (1968) that algebraic measurement
theory has only a philosophical relevance for the
physicist, but a very real scientific value for the social
scientist. This only seems to be true in a limited number
of cases; in most situations algebraic measurement theory
belongs to the philosophy of science for the social

scientist as well.

This discussion is closely related to a distinction made
by Coombs (1966). Scaling techniques can be used in two
different ways. Although the difference does not seem to
be very essential, we discuss it briefly. We remember
that, according to Coombs, a scaling theory is a triple
consisting of a measurement theory, an error theory, and
an algorithm (it follows from the above discussions that
the procedures discussed in this dissertation are not
scaling theories, and that I think that the concept of a
scaling theory is of limited value). In the first case a
scaling theory can be used, according to Coombs, as a

technique. It is assumed (more or less explicitely) that
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the deviations from the requirements of the measurement
theory are errors, and a function of the errors is mini-
mized. The main objective is data reduction, emphasis is
on the algorithm. A different use of scaling theories is
as criteria or tests of the measurement theory as a
descriptive model. This implies a different way of looking
at errors, and an emphasis on the measurement theory. In
general we may use a somewhat different algorithm in the
two cases, although some scaling theories may be used for
both purposes. One of the main differences between a
scaling technique and a scaling criterion is their degree
of wvulnerability (Coombs 1964, p 72-73, 82). A less
vulnerable technique yields a 'best' representation, no
matter how bad the data are from the measurement theoreti-
cal point of view. A highly vulnerable technigque will
break down in these cases. As Coombs (1964, p 81) points
out, there is a certain connection between vulnerability
and the theory of type I and type II errors in the Neyman-
Pearson theory. A highly vulnerable technique will
increase the likelihood of rejecting the hypothesis while
it is true, a stronger (more robust) method of scaling
will tend to increase the type II error and decrease the
type I error. We have argued in the previous pages that
for all practical purposes we can replace 'measurement
theory' by 'statistical model' in this discussion. The
Coombsian distinction between the two cases can now be
directly translated into the data analytic concepts
'exploration' and 'confirmation' with a considerable gain
in clarity. It is now obvious that exploratory techniques,
interpreted in terms of statistical models, have 1low
power, while confirmatory techniques which use all the
specific properties of the model have higher power. It is
also obvious that highly specific confirmatory techniques
break down (in terms of power) if the assumptions of the
model are seriously violated. This is not exactly what
Coombs had in mind. His vulnerable techniques are the
qualitative scaling methods discussed in his theory of
data which became out of date since the computational
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breakthrough.

It is well known that most of the problems of inferential
statistics can be formalized as decision problems. In De
Leeuw (1971) we have tried to liberalize this concept for
data analytic purposes. We introduced the concept of a
scaling theory in a more or less Coombsian way (without
assuming the existence of an explicit measurement theory).
The difference with a standard decision problem is that
there may be no stochastic structure. This makes it
difficult to order scaling theories in terms of a natural
performance criterion such as expected loss or risk.
Algebraic measurement theory is used only to describe the
region of perfect fit, i.e. in the Guttman sense. This may
be a useful approach when it is completely worked out. The
procedures discussed in this dissertation are scaling
theories in this new sense, but they are very incomplete
both as Coombsian scaling theories and as classical
decision problems. It is true, however, that at least some
of them can be interpreted in terms of algebraic or
geometrical measurement models, and in terms of definite
statistical models. Of course every data analyst is only
too glad when his procedure allows for a multitude of pos-
sible interpretations, although this may be bad for their

power in certain specific situations.

1.5 Some minor controversies

In this final section we discuss some controversies which
are essentially technical and really not very important.
They correspond with three possible options for the user.
He can treat his data metrically or nonmetrically, he can
use (multi)normal or nonparametric statistical (data
analytic) technigues, and he can choose a bivariate or
multivariate treatment. The first choice has provoked a
considerable amount of discussion in the past, the second

choice should provoke a considerable amount of discussion
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among social scientists but does not do so because of the
deplorable treatment of nonparametric statistics in most
textbooks and the fact that multinominal multivariate
analysis is not treated at all, and the third choice may
provoke some discussion in the near future when people
come to realize that program packages like CROSSTABS have
a limited data analytic value.

There has been a 1lot of confusion about the relative
usefulness of metric and nonmetric methods. The nonmetric
methods (originally developed mainly by Guttman and
Coombs) use only the ordinal properties of the data. Since
Shepard's computational breakthrough (Shepard, 1962a, b)
it proved to be possible to derive satisfactory metric
representations from ordinal data in a number of important
cases. As outlined by Guttman (1967) the nonmetric method
met with a considerable amount of hostility in the early
days (in fact Guttman reports triumphantly that one of his
earlier papers on the subject was turned down by Psycho-
metrika!). This has radically changed since the publica-
tions of Shepard and Kruskal (1964a, b). Since then large
numbers of very succesful applications of especially MDS
keep appearing in the journals. In methodological circles
the enormous initial enthusiasm for these very powerful
data analysis techniques begins to level off somewhat. The
idea that this was all we needed for similarity data
turned out to be too optimistic. As indicated already by
Torgerson, one of the pioneers, the nonmetric methods have
lots of advantages over the older metric methods, but
sometimes they throw away information that cannot be
dispensed with. The same thing applies, with even more
force, to nonmetric multidimensional techniques for factor
analysis, unfolding, component analysis, and scalogram
analysis. In our general approach to measurement (or
quantification) the choice between numerical, ordinal, or
nominal treatment of the data is not very fundamental. All
data are categorical, and prior numerical and ordinal

information may or may not be used in the analysis. The
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techniques do not really change 1if we use this extra
information, the choice is now completely in the hands of
the user, which is where it belongs. The arguments for
using metric/ ordinal information if it is at all present
are summarized by Coombs (1964, p. 284). Most of these
arguments are definitely out of data. Ease of computing is
still of some importance, however, mainly because using
metric information can reduce the storage requirements
considerably, and this may be important for large data
sets from survey analysis, for example. The argument that
numerical results are in a form which is easier to
communicate applies only to the pure (coordinate-free)
nonmetric scaling methods developed by Coombs and his
co-workers, and these techniques are almost completely
replaced by GL-SSA, GL-MSA, MINISSA, MDSCAL, KIST, POLYCON
and similar programs which generate numerical results from
ordinal assumptions. The final objection mentioned by
Coombs is that using or not using the metric information
gives no essential differences in the results. This
argument has some popularity with people accustomed to the
standard multivariate (metric) techniques. Nevertheless
the idea that the results will not differ much if the
model is approximately true is false (and even if it was
not false, the argument would be invalid, because only
nonmetric techniques can tell us if the metric assumptions
were correct). There are lots of examples from the MDS
area in which using only the ordinal information in the
data gives much more satisfactory representations than
using the full numerical information (cf Guttman, 1966).
The results of Torgerson (1965) show that the contrary
case can also occur: sometimes use of the metric informa-
tion improves the interpretability of the results. In our
class of techniques using or not using the metric informa-
tion does not change the technique, but it certainly
changes the way of looking at the output. The conclusion
is that we have to be careful about two bad habits which
have or had some popularity. The first one is to replace

nominal or ordinal information automatically by numerical
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information (for example by using integer scores), and the
second one is to replace numerical information automati-
cally by ordinal information. In the last case we throw
away information that may be useful (or even vital), in
the first case we use information that is not even there
(wve invent information). In some instances this may have
no damaging effects at all, in other examples it can be

guite misleading.

The prior information can be that the variables are
approximately normally distributed in the population from
which we are sampling. This information can be used to
apply a more specific class of techniques that the ones we
discuss. In fact we can apply maximum likelihoods methods
for the multinormal distribution right away. In De Leeuw
(1972) these methods are investigated from a data ana-
lytical point of view, and their exploratory aspects are
emphasized. Again we may or may not have the prior
information, and if we have it we may or may not use it.
The choice is closely related to the choice between para-
metric and nonparametric methods in inferential statis-
tics. It depends on our confidence in the multinormality
of our data, but also on the questions we want to ask. The
same types of errors can be made as before. We may apply
multinormal techniques while they are not appropriate, and
we may refuse to use our multinormal information where it

could have been useful.

We have already mentioned the endless 1lists of cross
tables in section 1.2. They stand for an essentially
bivariate treatment of multivariate categorical data,
corresponding with looking at a large correlation matrix
in the multivariate numerical case. The point of Guttman's
order analysis (1966b) is that lots of useful things can
be learned by merely looking at patterns in correlation
matrices, but sometimes there simply are no patterns, and
all we see 1is a large number of pairwise relationships

which are very difficult to integrate into a more complete
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picture of the data. Finding such patterns in large sets
of bivariate contingency tables is also possible in
principle, but it will be even more difficult and it can
be even more misleading. In this dissertation we study the
joint bivariate treatment of general categorical data,
corresponding with the multinormal analysis of means and
dispersions. There is, however, an essential difference.
In multinormal analysis joint bivariate analysis 1is
essentially multivariate analysis, all information about
the distributions is given by the first and second
moments. For general categorical data we ought to consider
higher order tables too in order to speak of multivariate
analysis, and this is exactly what is done in the methods
mentioned in 1.3. In this sense our joint bivariate
analysis, which uses the same data as the 'isolated’
bivariate approach, but combines them into a single joint
analysis, 1is somewhere between classical multinormal
analysis and a CROSSTAB type of analysis. We expect that
the method will be useful both for the highly structured
data sets of experimental psychology where they can
supplement the statistically more direct (multinormal or
multinomial) multivariate techniques and for the large,
mixed data sets from survey analysis, where they can

supplement the descriptive cross table analysis.

24



INDICATOR MATRICES 2
AND QUANTIFICATION

2.0 Notation

Capitals will be wused for matrices and supermatrices,
roman characters for vectors and supervectors. Greek
characters will be used for scalars, except for integer
constants which are denoted by k,1,m,n. Elements of the
vector x will be written as Xyo Rpreees X elements of
the matrix H by hll’ h12""’ hnm (the first subscript
referring to rows, the second one to columns). If a super-
vector x consists of n subvectors, we write Xyr Xpr o eeey
X for these subvectors (we always take care that there is
no confusion possible with elements of ordinary vectors).
For supermatrices H and C we use Hi and Cij for submg-
trices. The elements of submatrix Cij are written as cii,
of subvector X, as xi. We use a prime to denote transposi-
tion, column vectors are written without a prime, row
vectors with a prime. As special symbols we use I for the
unit matrix, and E for a matrix with all its elements
equal to unity. A vector with all its elements equal to
unity will be written as e, the number of elements in e
(and the order/dimensions of I and E) will always be clear
from the context. A vector with all its elements equal to
zero, except element i which is unity, will be written as
e,. Some abbreviations are iff for if and only if, wlg for
without loss of generality, dfr for degrees of freedom,

and df for distribution function.
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2.1 Indicator matrices

we shall be concerned with random samples of size m from
p-variate populations. Because we deal with finite samples
we can assume without loss of generality that the p random
variables ¢; assume only a finite number of different
values, even if the underlying 'population' variables are
really defined in such a way that their range is a real
interval. Moreover we also suppose that the m sample
elements are classified according to n-p deterministic
criteria; i.e. our sample is structured or stratified.
Consequently there is a total of (n-p)+p = n finite sets
T, with cardinalities ki. We record our multivariate
observations in a supermatrix H of dimension X ki x m (=K

X m, say). H is obtained by superimposing the n matrices

Hi of dimension ki X m, with hij = 1 iff wvariable ¢i
assumes the wvalue si for sample element j, and hﬁj = 0

otherwise. H is called the indicator matrix, the Hi are
marginal indicator matrices. Lingoes refers to H as the
attribute or trait matrix, but I don't like these terms
because they suggest particular applications (although
Yule already used the term attribute in this context in a
more abstract sense). In Guttman's terminology the sets T,
are called facets, and the elements si structs. The

sample elements (from I Tlx...xTn) are called structuples.

A useful distinction in this context is the one between
variates and factors. If a certain variable is a factor
this simply means that the classification of the sample
elements on this variable is not determined by the outcome
of the experiment, is a priori, a factor is an independent
variable. The classification of the sample elements on the
variates 1is a posteriori, a variate 1is a dependent
variable. The main point is, of course, that the variation
of a variate is random, the variation of a factor or
way of classification is nonrandom. This distinction plays
a major role in multivariate multinomial and multinormal
analysis. Instead of using facet as a single term for both
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vectors and variates, we use the more familiar word
variable, without specifying whether it is a dependent or
an independent variable we are talking about. Instead of

structs we use categories.

2.2 Types of variables

It seems as 1if we are dealing here exclusively with
so-called nominal variables. And, indeed, the matrix H
does not tell us whether there is any extra information
beside the purely nominal manifold <classification.
Nevertheless is it quite possible to incorporate numerical
variables into the analysis. If ¢i is numerical we simply
have a ki—element vector Yy of real numbers as extra
information. If o5 is ordinal, we have a different type of
additional information: a partial -order <; on Ti' Conse-~
guently our interpretation of multivariate measurement as
manifold classification takes the nominal variables as
basic (as it should do: all measurement is based, in the
last analysis, on qualitative judgments, cf chapter 1).
The fact that we may treat some of the variables as
numerical or ordinal is, indeed, additional information
which has nothing to do with the present classification
but is based on prior knowledge. To put it differently:
all variables are categorical, and among the things which
can be used to define categories are numbers and order
relations. I have previously used the word relational (in
stead of categorical) to describe this type of data,
because we basically study the 'belonging'-relation which
partitions the sample n times (and the matrix H is the
indicator of this relation, portrayed in matrix form). If

ki = 2 we shall follow the conventional usage by calling

oy

(dichotomous variable and dichotomy are also quite popular

a binary variable, inducing a twofold classification
terms). In a sense the binary case is the basic one: we
can always reduce a variable with ki categories to ki

variables with two categories. Observe that we have
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implicitly assumed that all variables have categories
which are mutually exclusive and exhaustive. This is no
real restriction of generality. We can always translate
non-exclusive cases into exclusive ones, and 1in most
practical situations I can think of the so-called non-
exclusive categories are simply compound binary ones in
which only the 'positive' responses are recorded. Alterna-
tive terms have been proposed by Burt, who borrowed them
from the logician W.E. Johnson. He calls variables
determinables, categories determinates. Another possibil-
ity, which we must also reject because it is suggestive of
a limited area of application, would be to use item and
alternative. We do adopt Yule's term manifold classifica-

tion for the process which produces the supermatrix H.

2.3 Examples

One of the most obvious examples of such a matrix H is the
one suggested by the use items for variables and alterna-
tives for categories. A multiple choice test can obviously
be scored 1like this. A dquestionnaire with yes - no
responses is a set of binary variables, a survey with both
numerical (income, age, number of children), nominal (sex,
religion, profession), and ordinal (attitude items with
categories like fully agree - agree - disagree - com-
pletely disagree) variables is a more complicated mixed
example. A test battery usually involves a number of
numerical variables (scores for subtests), although in the
last analysis these are often based on binary variables
(the score is the number of correct items in a subtest).
More complicated examples are paired comparisons (each
pair defines a binary variable), and factorial ANOVA with
a categorical dependent variable. In the data used for
ordinary discriminant analysis we have one binary factor
and a number of numerical variables, in canonical dis-
criminant analysis we have a nominal factor together with

a number of numerical variables. All these situations can
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"be scored as categorical data in an indicator matrix, and
in some of them we have additional information. There are,
of course, more efficient ways to portray our information.
If we deal with n numerical variables we can display our
data as an n x m matrix of real numbers, which contains
all the information in H plus the additional numerical
information (the reduced matrix). A binary variable can be
recorded in this matrix as a row of zeroes and ones, a
nominal variable by simply numbering the categories, an
ordinal variable by embedding the categories order-
isomorphically into the reals (supposing, of course, that
we are dealing with a weak order over the categories).
Because the reduced matrix is entirely numerical we only
need to remember which rows refer to nominal variables,
which rows to ordinal ones, and so on. We do not use H in

actual computation, only for theoretical purposes.

2.4 Quantification

A direct quantification of the possible values of variable
i is a real ki-element vector X;. Every direct quantifica-
tion of Ti defines an induced gquantification z; of the m

sample elements by the rule

. k. . .

le. =l§ x] hij . (1)
Observe that this merely implies that we replace every
category sisTi by a real number xi. Observe that the
direct quantification of all facets produces n induced
gquantifications of the sample elements. A direct guantifi-
cation of the sample elements is a real m-element vector
z, which defines an induced quantification X; of Ti by the

rule

i m i
= > 2., hi.. (2)
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Observe that a direct quantification of the sample

elements produces induced quantifications of all
variables. If we have direct quantifications Xy of the Ti

then the n x m matrix

. k. . .
_ i, _ i.i i
Z = {zj} = i X hlj' (3)
is called the induced matrix of scores. If we have a
direct quantification z of the sample elements, then the

supervector

X = {xi} = Izil z. hij. (4)
is called the induced vector of weights. Consequently we
may weight directly, which defines induced scores by (1}).
And we may score directly which defines induced weights by
(2). To preserve symmetry we also define an induced vector
of scores, which simply contains the column-sums of Z, the
induced matrix of scores. Verbally: the induced score of a
sample element is the sum of the weights of the categories
it is in, the induced weight of a category is the sum of

the scores of the sample4elements in that category.

2.5 Historical

This particular way of scoring categorical data is due,
independently, to Guttman (1941) and Burt (1950). The term
indicator matrix was coined by De Leeuw (1968), attribute
and trait matrix were used by Lingoes (1968). Yule's
contributions are contained in his famous textbook (1910),
the facet terminology of Guttman is explained, for
example, in Foa (1965) and Wish (1965). The distinction
between ways of classification and variates is familiar
from (factorial) analysis of variance, and from the
analysis of 2 x 2 tables where we distinguish the double

dichomoty and the comparative trial tables. For the
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general case see, for example, Roy and Mitra (1956) or
Bhapkar and Koch (1969). The parallel distinction between
dependent and independent variables 1is familiar from
regression analysis, and consequently these terms have a
numerical bias. The two dual ways of quantifying are due
to Guttman (1941), as are the terms 'weights! and
'scores'. The interpretation of numerical and ordinal
variates in this framework is more or less explicitely
contained in the work of Lingoes (1963, 1964) and Guttman
(1959).
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PRINCIPAL COMPONENT ANALYSIS 3

3.0 Introduction

As I have already outlined in the previous chapters one of
the main objects of this book is to extent all classical
explorative multivariate techniques in such a way that
they also apply to nominal variables. We start with
principal component analysis (PCA), which 1is the most
popular as well as the the simplest of these techniques.
it involves no partitioning of the variables in special
subsets, no partitioning of the sample elements, only
straightforward data reduction. In the terminology of
section 2.1 all variables are variates, there are no
factors. We want to explain the variance of a larger set
of numbers by a smaller set of numbers with nicer

properties.

3.1 Homogeneity

It is clear that we achieve a maximum amount of data
reduction 1if we <can show that all variables measure
essentially the same property, or operationality, if we
can assign weights to the categories in such a way that
all n induced vectors of scores are identical. We call
this maximum homogeneity. One way to measure homogeneity
is by using concepts and notation borrowed from the
analysis of variance (ANOVA, for short). The familiar

decomposition
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zyg =2z, +tlzy -z )r(z -2z )F

+ (zij -2, - z'j + z'.), {la)

can be simplified because we are not interested in the
means of the induced scores for each variable. Thus we may
choose our weights in such a way that z; = 0 for all i =
1, ..., n {(and consequently also z = 0 ). The decomposi-

tion becomes

zij = z.j + (zij - Z.j)’ (1b)

and the corresponding ANOVA table is

Source Sum of Squares
m
Between columns B=n 1z 2%,
D -3
]
(2)
n m
within columns W= 3z o (zys - 2 )2
i=1 j=1 Y J
n m
Total T= 3 3 z%.
i=1 j=1 *J

We could use B and W as measures of homogeneity or
heterogeneity, but because X, = 0 for all i would make B,
W, and T equal to zero, we measure homogeneity by the

correlation ratio

_B
A =5 (3)
(which is scale free in the sense that multiplying all X5
by a constant does not change A ). From (2) always O = A =
1, and (if T # 0)
A=0iff B =0 iff w=T iff z i =z for all j, (4a)
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A=11ff W= 0 iff B =T iff zij =z 5 for all i, j. (4b)

The usual variance-ratio would be

_ m(n-1) B
F==01 W > m-1 I-x (5)

and consequently maximizing A means maximizing F (as well
as minimizing W/B = (1-A)/A or W/T = 1 - A). It can also
be seen from (4) that maximizing the homogeneity of the
induced row scores is equivalent to minimizing the
homogeneity of induced column means (i.e. maximizing the

difference between the m column means). Observe that

. m-1
F <1l iff A < ==, (6)
. _ m-1
while tm e

is a bounded increasing sequence in m for fixed n, with
limit 1/n.

3.2 Matrix formulation

If we collect the Xy in the K-element supervector x, the

matrices

= .H!
Cij H1HJ, (7)

in the K x K supermatrix C, and the n diagonal blocks Cii
in the K x K diagonal matrix D, then our homogeneity

measure can be written simply as

X'Cx
nx'Dx’ (8)

where we assume, of course, that x satisfies

: = e'C..x. =
e'D.X. e C11x1 0 (9)

35



for all i = 1,...,n. We have to maximize (8) over all K-
element vectors x satisfying (9). The stationary equations

for the maximization problem without the restriction (9)

are

Cx=nADX. (10)
It is easy to see that x = e is a solution of (10) with
corresponding A = 1, but x = e obviously does not satisfy

(9). If we remove this 'improper' solution by Hotelling
deflation we find that the remaining solutions of (10) are

the solutions of
Cx = [C - % Dee'D] x = nA D x, (11)

and if A # 0, they automatically satisfy (9). It follows
that the stationary values of (8) over all x satisfying
(9) are the solutions of (11).

3.3 The number of solutions

For each Hi the last row is completely determined by the
other rows. The equations (10) have, therefore, in general
v £ min(K - n,m) solutions for which A is positive. Each
solution defines a different supervector of weights and,
consequently, a different induced matrix of scores. The
problem ‘'when to stop factoring' 1is analogous to the
similar problem in ordinary PCA. In fact psychometric
considerations suggest a similar bound as in PCA: we have
positive generalizability as long as A > 1/n. This follows
from applying Cronbach's coefficient ¢ in this context. We
have

X'Dx n niA-1

) (1 - 525 = 2p AR (12)

0
n-1

a =

where the rows of Z are interpreted as n parts of a test,
whose total score is the induced vector of scores (the
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column sums of Z2). It follows from (12), by the way, that
we can also interprete the PCA procedure as a maximization

(over weights) of the generalizability. It follows that
a2 01iff A 2 1/n (13)
(observe the similarity with (6) for m »w«).

Other interpretations of the generalizability are
discussed in chapter 6. If we use the distinction between

common and unique SCores we can use

o = (2 (1 - ER2x (14)

x'(C-U)x

where U is the dispersion of the unique scores. This
defines o-factor analysis. If we have partitions of the
variables into several subsets we can use the general form

of «

n sz
o = (:20) 11 - <2 (15)
to derive
X'D.x + ... + X'D X
_ n _ 1 s
a = (o) (1 1, (16)

X'Cx

where the D, are the within-subset parts of the matrix C

(cf. chapter 5). In this case the rule is

0 iff A 2 1/s, (17)

3
\%

with s the number of subsets. Of course o is only a lower
bound to the reliability of the composites, and the cutoff
rules (13) and (17) are somewhat ad hoc. Again this can be
related to the ambiguous role of statistical decision
procedures in this context. From the data analytical point
of view (13) and (17) may be of some help, but the

interpretability of the results is much more important.
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3.4 Discrimination

Consider the first variable only. It has k categories with
dl""’dk elements. We now use the ideas of discriminant
analysis. The k categories define sets Ak which form a
partition of the set of m sample elements. We want to
assign scores 1in such a way that we are able to
discriminate these groups as precisely as possible, or
(geometrically) they must be as far apart as possible. We

write my for the mean of the scores in category 1. The

ANOVA table is {(assuming z = 0 again)
Source Sum of squares
k
Between groups B=3 d,m?
_ 11
1=1
k
within groups W =2 2 (z. - ml)2
1=1 jaAl J
m
Total T = 2 z?
j=1 ] (18)

In matrix notation for variable 1

-1
- [RE X
Bi z HiDiiHiZ , (19%a)
T = 2'z, (19b)
W. = z'(I - HID  H.)z (19¢)
1 171171 :

For all n variables at the same time we take the average
correlation ratio as our scale-free index of discrimi-
nability

b3: Z'H'D “Hz

¢ = = . (20)
nT nz'z
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The stationary equations are

H'D lHz = noz (21)

Again (21) has an improper solution z = e with ¢ = 1. All
other solutions give stationary values of the average
correlation ration. Again there are v £ min (K-n,m)

positive proper solutions.

3.5 Internal consistency

Consider the matrix T = D‘%H. By a familiar theorem T can
be written uniquely as Q ¢ P', with Q and P square ortho-
normal and the K x m matrix ¢ diagonal in a generalized
sense (if K £ m then the first K columns are a diagonal
matrix while the other m-K columns contain zeroes, if
K > m then the first m rows form a diagonal matrix while
the other K-m rows contain zeroes). If we define
X = D—%Q and Z = P then we have the identities T = D* XyZ!'

and X'DX = I. It follows that

TT' = D EHH'D™ % = QUP'PY'Q' = Qui'Q' = D*Ryy'XDZ, (22a)
T'T = H'D H = Py'Q'QYP' = Py'yP'= Zy'¢Z'. (22b)
Moreover
HH'X = DXy ', (23a)
H'D IHZ = AR (23b)

If K £ m we define ¢y as the diagonal matrix consisting of
the first K columns of ¢, and we define Z as the first K
columns of Z, and X as X. Then

HH'X = DX¢2, (24a)
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lhz = zy2, (24b)

H'D
If K > m we define ¢ as the diagonal matrix consisting of
the first m rows of y, and we define X as the first m
columns of X, and Z as Z. Again (24a) and (24b) are valid.
These last two identities are exactly the stationary
equations (10) and (21) and consequently, by the
uniqueness properties of eigen-problems, we have proved
that nA = né = ¢2. Moreover the matrices X and Z defined
by the singular value decomposition of T = D_%H are
exactly the solutions of our maximization problems (10)
and (21). It follows that the solutions of these two

problems are related in a very simple way

-1 -1 -3 -1 -1
X = D “HZy = n °D "HZA =, (25a)
L | -1 -4
Z = H'D*Xy = n “H'XA . (25b)
Moreover
Y L
H = n“DXA?Z (26)

We can also formulate our technique more directly in terms
of the matrix H. A direct quantification of the attributes
is a K-element vector x. Replace each element in H egual
to unity by the weight corresponding to the category the
sample element it is in, i.e. replace hij by hij xi, and
consider the resulting matrix as a bivariate distribution.

The correlation ratio for weights is

_ xX'Cx
Mx = nx'Dx" (27)

Similarly we can directly quantify the sample elements and
replace each hij equal to unity by Zj‘ The correlation

ratio for scores is

2'H'D LHz

= (28)

NS
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Finally we <can gquantify both sample elements and
attributes at the same time (simultaneous direct
quantificatiop), and replace each hij equal to unity by
the pair (xi, zj). The correlation for the resulting
bivariate distribution is

x'Hz

p = nyx'Dxyz'z . (29)

Maximizing this correlation essentially means that,
whenever a sample element is in a category, we want the
gquantification of these two to be similar in a least
squares sense. The stationary equations for this

maximization problem are
Hz = pnDx, (30a)
H'X = pnz. 8 (30b)

All three functions (27), (28), and (29) have a stationary
value for the improper solution X = e, z = e, with
ni = ng = p? = 1. We have already described the solutions
of (27) and (28). Maximizing (29) gives x and z which are,
considered separately, the solutions of (27) and (28)
again, and which are related by (30). For the most
important part of our technique we do not strictly need
the matrix H. It suffices to know the bivariate marginals,
and apply (10) to find the weights. The scores for any
possible sample element can then be obtained by using
(25b), which means that the score for a particular sample
element 1is simply proportional to the average of the
weights of the categories this element falls in. More
generally: we have shown that maximization by finding
optimal weights and then computing the induced scores
gives the same result as finding optimal scores and
computing the induced weights. Up to a proportionality
factor the optimal direct scores are simply the average of
the rows of the score matrix induced by a direct optimal

quantification of weights, the optimal direct weight of a
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category is simply the average of the optimal direct

scores of the sample elements in that category.

3.6 Reproducibility

If we consider all components we can, as usual in PCA,
reproduce our manifold classification from the optimal
weights and scores. Rewriting (26) in scalar notation and

using the definition of the improper solution

i L i K-n b i Y i K-n 3 i
hlj =n dll tio Atxtl tj = n d (1 + til Atxtlztj) ,  (31)

where the extra index t refers to the number of the
component. For the reproduction of the bivariate marginals

we can write

C K-n
1) _ j
Cry = ndkkdll (1 + tzl A xtk tl) (32)
From (31)
i i Keno oy i
hlj > hlj' > til }\txtl (ZtJ th') > 0, (33)

and, consequently, in our geometrical discrimination model
the sample elements in a category and those not in that
category are separated by a hyperplane. For p < K-n we
approximate these linear separation boundaries. This
results relates our PCA of categorical data with the
techniques of Guttman and De Leeuw for categorical data

mentioned in chapter 1.
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3.7 Relations with chi-squared

As we have seen the system (10) has at most K-n + 1
solutions corresponding with nonzero AO, Al, ey AK—n
with A, =1 corresponding with the improper solution.
These roots have some interesting relations with the x2-
values that can be computed from our data. For the sum of

the roots we find

-1 S K
2 Ay =10 TTr(D D ?) = =, (34)
—_ n
t=0
and
K-n
5 oA = 5§E (35)
t=1

Interpret H as a K X m contingency table. Its chi-square
is
K-n

=1 -1
2 = mn [% Tr(D"2cD" 2) -~ 1] = m(K-n) = mn 3
t=1

e (36)

Next we compute the chi-squares for the subtables Cij
defined by (7). We find

n n IR By K-n
b3 b3 xi‘ =m [Tr(D “CD "CD “) - n2] = mn2 > A%. (37)
i=1 j=1 13 t=1
For Xii we find

x%; = m(k;-1). (38)
and

n

= - = 2
iil x%; = m(K-n)= xj- (39)
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Therefore

K-n
xé = 22 x%., =m 2z (nA

- 1)2. (40)
1#§ t=1

We can also interpret our improper solution in this
framework. Consider problem (10). We shall usually solve
this by computing the roots and vectors of Ty = %D—%CD—%.
The unit length vector corresponding with the dominant
root AO =1 is n—%D%e, and Hotelling deflation defines

=1 -1 1 1
T, =1/nD 3¢D 2 - 1/n DZee'DZ2, (41)

If we translate this by using the expected values on the
hypotheses of complete bivariate independence for each of
the subtables of C, we see that this equivalent to

removing the chance expectation from a x2-analysis.

3.8 The multinormal case

If m » » we can translate the problem into population
terminology. Although the matrix H is of little use, the
matrix ¢ = % C converges to the marginal bivariate and
univariate frequency functions. Consequently we can study
our technique in the case of populations too. Suppose, for
example, that we are dealing with an n-variate normal
distribution. We let ki > o for all i, and the weights are
replaced by real valued function ni(x) defined on the real
line (we assume that this new random variable has finite
expectation and variance). Then we can’expand the n; using
the Hermite-Tshebysheff polynominals wi (x) (¢t =0, 1, 2,
ved)e

g0 = 2 ol vix), (42)
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in which the series 2(&%)2 converges for each 1. Then

n n ¢} o2} . . . .
B= 3 3 3 3 azalff wg(x)¢%<y)nij(x,y) dx dy =
i=1 j=1 s=0 t=0

n n o .
2 > b3 a;aiyi. . (43)
i=1 j=1 s=0 J

tl

n [} . .
T=n 2 3 (a-)2 [ [¥2(x)]2 N,(x) dx =
< s s i
1=1 s=0
n ® i s
=n .E > (ozs)2 Yii . (44)
1=1 s=0

In formula's (43) and (44) we have used the notation Nij
and Ni for the bivariate and univariate normal densities,
we use yfj for the covariance between variates i and j to
the power s. These covariances to the power s can be
collected in a matrix Cs, its diagonal is the matrix Ds,
and the matrix of correlations to the power s is written
as R°. We assume that the «correlations satisfy the
condition pfj # 1 for all i # j. The stationary equations
for maximizing A = B/T are

s _ s

C as = nAD as (45)

for all s = 0,1,2,... We can number the stationary values
of (45) as A;, with A; the ith largest eigenvalue of
n~1rS. Consequently Aé = 1, and Aé = 0 for all i # 1,

which defines our improper solution. By considering the
off-diagonal elements only we derive the remarkable
result
n ® .
53 (nA; - 1)2 =33 (p2

.+p‘?.+...)=
i=1 s=1 izj Y

1]

pe.
1 _ 23z 62, (46)
Z.’:—lé“l-p Tizg b
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with ¢ij Pearson's contingency {(the population_analogon of
x2). It 1s easy to see that both ZZA; and ZZ(A;)Z diverge.
Under mild regularity copditiong the eigenelement that
gives a stationary value A; has at = 0 for all t # s. This
is because the stationary equation (45) has to be
satisfied for all s with the same value of A. If A is an
eigenvalue of RS, then it will in general not be an
eigenvalue of Rt with t # s, and consequently we can only
satisfy (45) by taking a, = 0. Consequently the ni(x)
corresponding with a stationary value are all polynominals
of the same degree. The linear elements correspond with
the principal components of the population correlation
matrix. This is important exactly in so far as the multi-
normal distribution is a normative model. If we can trace
from our components that there is one underlying
approximate linear system of n components, and all other
components are polynomial functions of the linear ones,
then we may use a multinormal linear scoring system of
just n components, reconstruct an estimate of the multi-
normal correlation matrix, and so on. It 1is an open
problem in how far these effects can be detected in real
data where we have sampling and grouping errors, and in
how far these results can be used as a test for multi-

normality.

3.9 Bivariate or multivariate

one of the things we have learned from the analysis in
sections 3.7 and 3.8 is that our PCA, 1like all of
classical multivariate analysis, is not strictly multi-
variate but actually joint bivariate analysis. Although it
is perfectly possible to reproduce the (multivariate)
manifold classification from our PCA, we do this by
operating on the bivariate marginals. Multivariate
reproducibility is merely a consequence of the fact that
we can find a corresponding system of scores. The

bivariate bias of classical multivariate analysis is
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easily explained by remembering that the multinormal
distribution is completely described by its moments up to
order two. For normal distributions we do not have to go
any further than wvariances and covariances (as our
analysis in section 3.8 shows). It is, consequently, not
surprising that most of the work on the more general types
of multivariate analysis has concentrated on the complex
contingency table. Here we do not record our manifold
classification in the essentially bivariate indicator
matrix, but in a k1 X k2 X ... X kn multiway table. These
complicated and very interesting extensions of the
classical cases are based again on orthonormal functions,
partitioning of chi-square and the 1likelihood ratio-
statistic, and on systematic investigation of the possible
hypotheses of independence in such a table. Although this
approach seems to be more promising in the long run,
especially for categorical data, we do not go into it in
this dissertation. One should consider the technique
presented here as a practical and quite useful 1link
between the classical, linear, joint bivariate analysis,
and the new form of multivariate analysis. In the case
that we are actually dealing with a multinormal
distribution (or: if we can find weights which transform
the margins to approximate multivariate normality) the
three types of techniques should give essentially
identical results, although possibly in quite a different

form.

3.10 The case n = 2

The remarks in the previous two sections suggest that our
technique may simplify considerably in the case n = 2.
Moreover we can expect new interpretations that may
generalize in some sense to the multivariate case. For
ease of notation we write, in this section N for C12, N1
for Dl’ N2 for D2, .5
x for X, Y for x2, n for kl, and m for k2 (and we suppose

1
n; for dii’ n for d%j’ n for m,
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wlg that m £ n). The stationary equations for the optimal

weights are

Z
4
»
zZ

X
-------- -1, (4a7)

2 Y

1
I
N
>

z
z
<
Z

This can be simplified by considering the two equations
Ny = (2A -~ 1) le, (48a)
N'x = (272 - 1) N2y. (48b)

Wwriting p for 2A - 1 we see that solving (48) is equival-

ent to the maximization of the correlation coefficient

¥
p = x Ny (49)

L 1
(x'N;x)3(y'Nyy)?

which has v £ m-1 proper solutions and one improper one.

The stationary values of (49) are Por Ppr e and

p ’
m-1
we can agree wlg that Pg 2 0 for all s. Then the station-

ary values of (47) are

Ao = - ; - ' pm-lz+ : = Ap-p (502)
and
Appoq = E—:EEQ Do 1—:—2315 = A (50b)
or, for s =1, ... , m,
Agymer = 1 = Apg- (50c)
If the solutions of (48) are (xo, yo), ey (xm_l, ym—l)’

then those of (47) corresponding with the roots (50b) are
(_XOI Yo): .o ey (_xm_ll Ym_1)~

Finally the system (47) has n-m solutions of the form
(x, 0) with eigenvalues A = %, corresponding with the n-m

Nl-orthogonal vectors x satisfying N'x = 0. This makes a
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total of (2m-2) + (n-m) = m + n-2 solutions with non-zero
eigenvalue (of which one is improper). The complete
solution of (47) can thus be easily derived from that of
(48). We also have the result from (48)

X2 = n b3 2, (51)

Another important consequence of (48) is

n. n . m-1
n,, = 2=—d 1+ p xtlyh, (52)
ij n‘. t=1 t71%]

which is the specialization of formula (32) in section

3.6. It is easy to see the roots of RS are

S S

Alzi__t_ﬂl)\2=_];;L. (53)
s 2 s 2 »

Consequently (46) reduces to

pZS = 2

1

2
s

™8

7557 = 202 (54)
The aé and ag corresponding to the roots (1 + ps)/2 are
all proportional to (1,1), and consequently the solutions
of (45) are the Hermite-Tshebysheff polynomials of the
first degree, of the second degree, and so on. We may
assume again wlg that p 2 0, and consequently
(1 + ps)/2 > (1 - pt)/z for all s,t. The other eigen-
element, corresponding with a« « (-1,1), need not enter
into the analysis at all. The relation (52) becomes in the

limit,
N(x,y) = (2n) lexp(-%(x2+y?)) {1 + 2 PSLNE(YE, (55)
S=

which is Pearson's polychoric expansion of the binormal
distribution which correlation parameter p. Equation (32)
shows that the same thing is true for the joint bivariate
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marginals in the multivariate case.

our technique linearizes the regressions in the sense that
for each component (x,Y)
-1.-1

N2 Nx = xy (56a)

=
|

X = p_lNI

Ny = 7, (56b)

where iy (or §x) stand for the conditional expectation of

X (or y) for fixed values of y (or x). The analogon of

(56) in the joint bivariate case is (for each component X)
z xt., (57)
j#i

1 1 1

X, = (nA=-1) jiiDi Cijxj = (nA-1)
where i; stand for the conditional expectation of xj for
a fixed value of X - In the bivariate case we maximize the
correlation, in the multivariate case the sum of the
covariances relative to the sum of the variances. This
does not make all bivariate regressions linear, because

that would require

X = pilelCijxj = %5 (58)
for all i, j. Consequently our multivariate components can
also be interpreted as weights which maximize the 'overall
linearity' of the regressions. Once again we point out
that our PCA of manifold classifications is bivariate in
the sense that we analyze H as if it was two-dimensional
contingency table.

3.11 Equality constraints

It is sometimes appropriate to interprete the Hi as if
they were replications of one another (in this case they
clearly must have the same number of categories). We can

gquantify the categories under the restrictions
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X, = X, = ... = X_ = X (say). (59)

1 2 n
Then
e
A :XSX ! (60)
X'Dx

with

C = 2304y, (6la)

D = nZDii. (61b)

Again maximizing A produces an improper solution with
A= 1.

Cases in which only some of the H, define replications
suggest the generalization in which each column of each H,
defines a discrete probability distribution (which may, of
course, be obtained either by 'objective' or by
'subjective' types of probability assessment methods). We
define Zij as before, i.e. as the expected value of the
weight function on the categories, and we maximize the
between-within homogeneity of these induced gquantifica-
tions. Our previous PCA technique is the special case in
which each of the distributions is of the one point type.

3.12 Another geometrical interpretation

We have already given a geometrical interpretation in
terms of the discrimination of sample elements in section
3.4, and in terms of 1linear separation boundaries in
section 3.6. There is a more direct way to get Euclidean
distances into the picture. Let Q be any symmetric
positive semi-definite (psd) matrix, and let e ej denote
unit vectors with one element equal to unity and all other
elements equal to zero.

Define
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Gij = (e; - ej)‘Q(ei - ej), (62)
then Gij is a pseudometric (it is a metric if for all
i # j the vector e; - ej is not in the null space of Q).
1f we write KAK' for the canonical form of Q, we can
define the vector ti by ti = eiKA%. Then the Euclidean
distance between the endpoints of the ti is given by the
square root of

2 = - . - . = .
dij (ti tj)'(t1 tJ) Gi]’ (63)

which means that the 'weighted' distance Gij between the
unit vectors e; and ej equals the ordinary Euclidean
distance between the vectors ti and tj. Moreover

! = L — 1 S
titi q; 3 and Ztiti A, If Kp are the p eilgenvector
of Q associated with the p largest eigenvalues (collected

1
in A_) then we can define t? = A2K'e., and

pp1l
(af,)2 = (tf - 5 (el - el =
= (ei - ej)' KpApK’p (ei - ej) =
= (e; - ey)' Q ey - e, (64)

where Qp is the optimal rank-p approximation to Q in the
2
least-squares sense. Obviously (dgj) < Gij for all i, j

and for all p.

Apply these principles to a metrization of the set of
lH in (62) and ti is
the 2z of (21). Geometrically we represent the sample

sample elements. Substitute Q = H'D”

elements as the points e; in m-dimensional space, and
define the metric (62). This metric can be interpreted
quite nicely by observing that

i _ i >
13 - Pry0)

1
dy

(h

(65)
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We interpret the set of all categories as a discrete
measure space 1in which each element has the measure
pi = (di)-l, then each sample element defines a subset Tj
with measure equal to the sum of the measure of the

elements contained in it, and

52,
33!

M (T]' UT]) - M (TJI nTJ) =

=p (Tj.) + (Tj) - 2y (Tj N Tj.) =

M (Tj. A Tj)’ (66)

(with A denoting the symmetric difference). It follows
that, in this particular case, not only 6ij but also Gij
defines a pseudometric. It is a metric if no two sample
elements are exactly the same. Of course we could have
modified our technique in such a way that identical sample
elements are replaced by one single element with weight
equal to the number of these elements. This would mean
using a D-matrix for the sample elements too, and because
we usually analyze (10) and not (21) this complicates the
analysis. The next step in the distance analysis is to
rotate the m-dimensional representation to principal
components and to discard the smaller roots, which means
that we optimally approximate the set~-theoretical
distances Gij in p < m dimensions by the Euclidean
distances dij.
A similar analysis is possible for the categories. Three

possible choices are

L 3
QA = HH' Ati = nzeiDXAz, (67a)
-1 -1 ORI VRS
Qg = D HH'D™Z, gty = nfelDZXA%, (67b)
- - 1 1
Qu =D lmrpt, oty = nrelXa?, (67¢)

With obvious notation, and with p as counting measure,

this gives

53




L L
62(s],87:) = H(s]As],), (68a)

b i 1t
1

201-u72shuest nsthuTH s, (68p)

C 1 i i dv. -1, 4
62(sy,/87,) = 1 (s]Iu(syasT I (s7)) (68c)

Possibility C seems the most interesting one and yields
our previous scaling of the solutions X. For a joint space

representation we define

p~lamp~t p~tu
= _ _ (69a)
grp-t g'D tH
_ .
nA + nin? 0
2r = . (69b)
0 nA - n3A?
L
X -X
Y = (69¢)
L.Z 2
1
Then [=] = xI'x', and we take ti = eixr2

3.13 Numerical variables

Suppose next that some (or all) of the variables are
numerical, i.e. for some of the i a vector y, of real
numbers is given. We incorporate this prior information
into the analysis by requiring that the weights Xy must be
proportional to the vector y,, or x; = &,;¥;. It is easy to
see that this makes column i of the induced score matrix 2
proportional to the vector of observed scores on that
variate in deviations from the mean. If all variates are

numerical our homogeneity criterion reduces to

A'Ca (70)

A= noa'Da '

with C the sample dispersion matrix of the observed
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scores, and D its diagonal. Consequently the stationary
values are simply the eigenvalues of the sample correla-
tion matrix (divided by n), and our analysis reduces to
scale-free ordinary PCA. This is of course one of the main
reasons why we use X; = o;y; as a restriction. Another
reason can be deduced from section 3.8. In the multinormal
population case the n solutions for ay turn out to be the
principal components of the population correlation matrix.
It is now also very easy to handle 'mixed' cases in which
some of the variables are numerical and others are
nominal. The information that some of the variables are
numerical is, computationally, always a simplification of
the analysis. It just means that we must replace the
matrix Hy by a single row of prior scores in deviations
from the mean (obviously the internal consistency analysis
applies here too). The result of this is that all optimal
weight vectors for a numerical variate are linear
functions of the original prior quantifications ;- If we
do not use the numerical information in the analysis they
are arbitrary functions of the Y; and it can, in some
cases, be very instructive not to use these prior weights

right away, and see what comes out (cf section 3.8).

A less rigorous approach which may also be justifiable in
some cases 1is to use the requirements X, = oauys only for
the first nontrivial Fomponent One reason for doing this
is that we require Z(xl)'cll i = 6ts for two different
components xt and x°. If n = 2 we actually have

(x )'Cll i = 6ts for all t,s and for both i = 1,2. This

may be considered more satisfactory. We have components
which are not only D-conjugate over all n-variables, but

which are D, -conjugate for each varlable separately If we
t ' _ t
require X{ = oy y for all t, then (x ) Dlsl = nalalog

. \ . t ts
which 1s zero only when either af or aj is zero. In an

exploratory phase it may be quite useful to require
XE = afyi only for the first p dominant components,

because it is intuitively obvious that the smaller the
eigenvalues, the less reliable the components, and the
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more the possible multinormal effects will be disturbed.
1t is also very important how 'continuous' our numerical
variate is. If ki is large (close to m) then Hi will be
approximately a permutation matrix, and it will not make
much sense to restrict none or only a few of the
components. If ki is much smaller than m, then it may be
better not to use the restrictions right away and to do
some preliminary exploring before we require xf = uEyi for
all t.

3.14 The numerical case n = 2

If we have prior weights a and b for both of the
attributes, and we require (in notation of section 3.10)
X = ®¢a, y = Bb, then, from (49), p equals (plus or minus)
the sample correlation coefficient for all a, B.
Consequently there is nothing to maximize in this case.
what we can do is require x = a, y = b (with a and b
suitably standardized), compute the residual by deflating
out a and b, and finding the unrestricted components of
the residual matrix. The case becomes somewhat more
interesting if we restrict only x (or only y). Suppose
we require y = b, then the maximization of p leads to a
unique stationary value for
-1 -1

X =p N1 Nb, (71a)

with

p2 = n"'b'N'N]TND (71b)

3.15 Binary variables

If the ¢i are binary we can use the notation mT and m; for
+ -

i’ ii'’

for the bivariate marginals. The two

the univariate marginals, and the notation nq
-t -
..y, and m;.,,
ii ii + _
weights for attributive i are X, and X;. In order that

m

m
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+ + - -
mixi + mixi = 0, (72)

and consequently the vector (x;, XI) must be proportional

to the vector m, = (mI, - m;). Thus for all t, we require
xf = a}mi. We have a situation similar to the analysis of

numerical variates. If all ¢; are binary our homogeneity

measure reduces to

23b..,0. «

A = ii'vi it o, (73a)
n:b..a?
iita
with
_ ++ + +
bii' =mmyg, - omom,. (73b)

Consequently our method reduces to (scale free) PCA of
phi-coefficients. We also mention a notation which is more
natural from a statistical point of view, and which
readily generalizes to the general case. Suppose we have a
probability distribution {pi} on the set of all binary
vectors of n elenments {xi}, and a random sample of size m
according to this distribution. This gives our observed

distribution {pi}. We can write

v = Zpixi (74a)
S = Sp.x.x!
) Zpixlx1 (74b)
C =8 - 490 (74c)
D = diag (&) (744)
and
_ o'Ca
~  na'Da (75)

Observe that in this interpretation we have a definite
statistical model (independent, identically distributed
observations), and in this sense the notation is somewhat

less general.
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Although formally it amounts to the same thing to require
XF = aFyi for all t in the numerical case and to require

XE = u%mi for all t in the binary case, the reasons for
these requirements are quite different. In the binary case
no prior information is involved, no restrictions are
made, and we cannot choose whether to wuse these
requirements or not. In the numerical case we require that
xE must be a linear function of the Yy which are given
numbers, in the binary case we can choose any two-elements
vector y; and require that XE is a linear function of Yo
because we can always fit a straight line through two
points. This reduction of the order of the matrix from 2n
to n is done by a method which also geqeralizes to
categorical items with k. > 2. Suppose yi are ki—l
independent vectors with Zdilyil = 0 for all v. Then any
xi—part of a proper solution must be a linear combination
of the yi, and consequently we have rgduced the problem to
one with ki—l linear coefficients a} for each i, and C

v

j = YiCinj becomes of order K-n, and in
general nonsingular.

consisting of Ci

The new Dii = YiDiiYi will in general be nonsingular but
not diagonal. Therefore we restrict ourselves somewhat
more to those Y which have the property that Y!D..Y. is
diagonal, and that the'first column has all its elements
equal to unity, i.e. y%l = e. It is easy to find these Yi
by Gram-Schmidt orthogonalization (we use only the last
ki—l columns). It is a problem for further investigation
which of the methods is more efficient: the one that
operates on a matrix of order K which is easy to compute,
or the one that operates on the matrix of order K-n which
is more difficult to find. The computational efficiency
depends on the value of K/(K-n). If this is small the
efficiency of the second method, compared with the first
one, increases. But efficiency should not be defined
exclusively in terms of computational effort. If we choose
Y. in a rational way we may get a lot of useful extra

i
information at a relatively cheap price (cf chapter 5).
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In chapter 2 we mentioned the possibility of splitting up
an attribute with ki categories into ki attributes with
two categories. In the first case we put all rows of H, in
deviations from the mean, in the second case we have ki
matrices PH_ of order 2 x m, which are replaced by their
first rows in deviations from the mean. Those two
procedures consequently give the same matrix C, the
difference is in the matrix D, i.e. in the scaling of the
solutions. In the first case we use the ki X ki matrices
HiHi’ in the second case only their diagonal (because the
variance of the induced scores is defined differently).
Observe that this analysis also holds for the attributes
with non-exclusive categories. In chapter 5 we shall study
this idea in a more general sense. We shall discuss several
possible groupings of the variables, show that the matrix
C remains the same, and that the only effect of these

groupings 1is changing the structure of D.

3.16 Some order-reducing methods

The techniques discussed 1in the previous section,
especially for binary data, are also very important in the
general case. In this section we mention two special
choices of the matrices Yi which are attractive from a
computational point of view and/or from the point of view

of interpretation.

Let n .
variable with k categories. Define the k X k matrix Y by

Ny, «..y Dy be the marginal frequencies of a

n, -m n, n .o n,
n, n, - m n . n,
n, n, n, - m e nyp (76)
n n n, e n,
n n n ceee Dy =M
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Let N be the diagonal matrix with elements n;, on the

diagonal, n is the vector with the same elements. Then

Y = EN - ml (77)
For any k-element vector X

X'Y = sn' - mx', (78)

with s = in. Thus x'Y = 0 if x = an for some real o and

Y is of rank k-1. In the same way
Yx = te - mx, (79)

with t = inni. Thus Yx = 0 if X = oe for some real o. Any
k-1 columns of Y are linearly independent. It follows that
any vector x with inni = 0 can be written as a linear
combination of k-1 columns of Y. Thus any k-1 columns will
do for our purposes. Collect them in a k x (k-1) matrix ¥,
and use the linear restrictions Yo = x. If H is the k x m

indicator matrix of the variable, then
Y'H = NEH - mH = NE - mH, (80)

which means that the rows of Y'H are proportional to the
rows of H in deviations from the mean. For the matrix Y'H
we simply leave out the rows (for example the last one).
It follows that

Y'DY = Y'HH'Y = m2 N - m NEN, (81)
and Y'DY can be found by leaving out the proper row and
column. Obviously it is not diagonal. The columns of Y
contrast one particular category of the variable with the

others.

Another procedure, in which the computations are somewhat
different, is defined by taking Y as the Helmert-type
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matrix

1 —n2 -n -n4 ........ -nk
1 n1 -n —n4 ........ -nk
1 0 n1+n2 —n4 ........ -nk (82)
1 0 0] n1+n2+n3 ........ -nk
1 0 0 o .. nl+n2+..+nk_l

The matrix Y'DY 1s diagonal in this case, which is a
considerable advantage in PCA. If ¥ contains the last k-1
columns of Y, we can again use Yo = X. The matrix Y'H is a
bit more difficult to compute than in the previous case
although only addition and substraction of integers 1is
involved. The columns of Y contrast category i with cate-
gories 1, 2, ceey i-1, and consequently for the
interpretation the order of the categories is relevant.
The matrices ?i Cij?j ??n be used to obtain a Lancaster-
Irwin partition of X°. The same partition property
obtains, of course, for all Y such that Y'DY is diagonal.
For a numerical variable with k categories for example, it

seems very interesting to take in Y the orthogonal

polynomials of degree 1, 2, ..., k-1 with the first
polynomial a 1linear function of the prior numerical
scores. This 1is especially interesting if k/m is
relatively small, for example in the case of rating
scales.

3.17 The perfect scale

An important special case of n binary variates is the
perfect Guttman-scale, which can again serve as a pseudo-
normative model in the same way as the multinormal
distribution. In the case of a perfect scale we have n

variables, and there are only n+l possible score patterns.
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These patterns can be collected in the matrix G.

score patterns

1 2 2 n n+l
1 e i 1 v
1 e, 0 0 a
r
............ i (83)
............ a
1 0 e 0 0 n-1 i
0 e 0 n s
my m., My eeeevennncen m,oomo, m
Write for the weighted sum of the rows of G. Then
n+l n-i+l
t, = Im.g,. = I m.. (84)
17 42,3743 j=1 3

To obtain deviations from the mean we replace each gij by

hij = mg;s - t,. The cross-product of the deviations in
rows i and k is

n+l
v., =2 m:;h..h =
ik j=1 37137k]
mt. (m-t, ) for i z k.
= 1 k (85)
mtk(m-ti) for i < k.

The product-moment correlation (phi-coefficient) is,
defining

, (86)

given by
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v
o

ai/ak for 1
= (87)

ak/ai for 1 < k.

®ik

Matrices with the structure (correlation simplexes) have
a number of well known properties. If a; # 0 and ay # ay
for all i # k then they are nonsingular and all n latent
roots are different. Moreover their inverse is tri-
diagonal. Their eigenvectors are the (oscillatory)
discrete orthogonal polynomials. A very similar
development can be used for finding the direct optimal

scores.

3.18 Improper solutions

we have treated the introduction .of numerical and binary
variates in such a way as 1if the rows of the nominal
variables in the set were already in deviations from the
mean. This entails, however, that HiHi' = Di—m-lDiee'Di,
and consequently D is singular and not diagonal. In the
case in which all variables were nominal we could avoid
this difficulty by introducing the improper solution which
makes D both diagonal and non-singular. Fortunately such a
simplification is also possible when we have a mixed case
with numerical and/or binary variates. Suppose n £ n
variates are nominal with more than two categories. We
assume wlg that these are the first n variables. Suppose
they have a total of K categories. Replace the binary and
numerical variates in H by the single column containing
deviations from the mean, and do not substract out the
column means for the nominal variates. Then the product-

moment matrix C has the structure
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Cll ...... Clﬁ
21 o C3n s
................ (88)
Cﬁl ...... Cﬁﬁ
L s R]

where S contains n - n columns and R rows. Moreover
e'sj =ne'z. =0 for all columns sj, and even the n
subvectors sj with ki elements are in deviations from the
mean. Consequently, if t has its first K elements equal to
unity and the other n - n equal to zero, then

C t=1npDHt, (89)

and t satisfies (10) with A = n/n. Partialling out the

contribution of t means, obviously, replacing Ci by

_ - 3
Cij -m L Diee’Dj = Cij’ and everything is back to normal
again. Every other solution is proper, i.e. satisfies the
constraints 3 dixi =0 for all 1 =1, ..., n, and there

are in general v £ min (K - 2n + n,m) of these proper
solutions with A > 0. It is, indeed, true that introducing
numerical and/or binary variates simplifies the
computation. It reduces the order from K to R + n - n, and
it does not spoil any of the nice computational
properties. Some people may consider it a disadvantage
that the improper solution does not necessarily correspond
to the dominant eigenvalue, but even this can easily be
remedied. We do not, in fact, use C of (88) in the actual
computations, only its diagonal D. In C we replace Cij by

c..
1]
solution t does not enter our further considerations at

right away, which means that Ct = 0, and the improper

all. All other solutions remain the same. In the mixed
case the connections with X2 are less clear. For nominal-
nominal, nominal-binary, and binary-binary pairs we
partition the Xij in additive components. For binary-~
. . , > .
binary pairs this Xij is, of course, m¢ij, where ¢ij is

the phi-coefficient. For binary-numerical pairs we
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partition the squared point-biserial correlations, for
numerical-numerical pairs the squared product-moment
correlation. For numerical-nominal pairs, finally, we

partition the multiple discriminant correlation.

3.19 Ordinal variables

In recent psychometric literature ordinal variables have
received a great deal of attention. How do we incorporate
prior ordinal information about the weights into our
analysis? We only consider the case in which this prior
information can be expressed as a number of homogeneous
linear inequalities Ax £ 0, and in which x = e 1is a

solution of these inequalities. We must solve

X'Cx
= 1 ‘
A ) max! (90)

under the conditions

AXxz20, (91)
and for all i

e'Dixi =0 (92)

We replace Cij by Eij as usual. Now we can forget the
improper solution, maximize (90) under the condition (91),
and adjust the optimal solution afterwards in such a way
that it satisfies (92). The dgeneral problem of maximizing
(90) under the conditions (91) 1is perhaps most easily
solved by a cyclic-coordinate-ascend (CCA) method. Suppose
X is feasible. Thus AX = t 2 0, suppose A is p X K. We now

set s=1, replace the element xs by
X =X_+ 6, (93)

. + . L.
where 6 is chosen in such a way that A 1is maximized along

the coordinate direction (93) under the condition that x+
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remains feasible. The rest of the procedure is relatively
straightforward: replace X by x;, let s = s + 1, and
compute the relevant quantities all over again. If s =K
we have completed a cycle. If x has changed only a little
during this last cycle, we stop, if not we let s =1 again
and start a new cycle. It can be proved that under some
mild regularity conditions (do not start in a stationary
value of the unrestricted problem, assume D 1is non-
singular) the vector x converges to a local maximum of
(90) under the conditions (91). Consequently we have a
computational procedure which gives us the absolute

maximum.

How do we proceed from here on? The obvious thing to do is
to compute residuals and then to decompose them with our
usual unconstrained procedure. If we would maintain the
requirement AX z 0 for all components (together with the
usual orthogonality requirements) the result 1is not
satisfactory, since the two types of requirements are more

or less contradictory. In fact, if the ordinal restric-

tions are xi 2 xé 2 ... 02 xi for all i (which will be the
usual case), then for any two components x and X

satisfying these restrictions

-\ _ i.1i i i =i _ =i
T(x,X) = i %,dldl'(xl xl,)(xl Xl') 2 0, (94)

with equality iff for all i, 1, 1' for which xi > xi, it

1 and for all i, 1, 1' for which

; =1 _ =
is true that X] T X

ii > §i,, it is true that xi = xi,. By expanding (94) we
also see that

e T o idisi o oidgdl s ozigdy o oips s

5T (X, X) m ZZdlxlxl Z(ledl z xldl) mx'Dx 0, (95)

1

by orthogonality. Thus requiring both orthogonality and
AX 2 0 for all components means that strict inequalities
in any of the p solutions correspond with ties in all

other solutions. The successive solutions will contain
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more and more ties. If the dominant solution satisfies all
inequalities strictly, then the only other wvector
satisfying both orthogonality and Ax 2z 0 is the improper
solution x = e. If we compare this situation with the one

we had in the analysis of numerical variates we find we

required XE = afyi, but not u} 2 0 for all t. In the
ordinal situation this would mean requiring either Axf 20

or AXE £ 0 for all i, t. Computationally this represents

us with a very difficult ©problem. Ordinal ©prior
information will consequently be used in most cases for

the first component only.

We have warned 1in the numerical case against wusing

XE = ufyi too gquickly, we must repeat this warning even
more strongly here. In quite a number of cases the

inequalities Ax 2 0 come out approximately if we do not
use the restrictions at all. It does not make much sense
to apply an elaborate maximization procedure, create
boundary solutions which replace violations by ties, and
so on. The violations of monotonicity may even be quite
informative. I would recommend the procedure only if it is
clear from an unrestricted analysis that the monotone
component is there, but as a linear combination of, for
example, the first few orthogonal principal components. It
may then also be clear from inspection of the results
whether it makes sense to require Ax 2 0 or Ax £ 0 for
other variables and/or components. Another possible
procedure, which we have consistently ignored up to now,
is to find the optimal weights for one component only,
compute the induced matrix Z, and apply ordinary PCA to
this matrix. This can, of course, also be done for
nominal, binary, and numerical variables. May be this is
a useful ad hoc procedure, although our theoretical
analysis in this chapter indicates that internal
consistency is preserved by an ANOVA of Z and not by a PCA
(a centroid analysis seems even more justified). Carrying
this a step further we could do a separate PCA for each

direct quantification of the categories, and get a whole
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system of quantifications.

3.20 Population models

1t is very useful to consider some rational stochastic
models for categorical data and to apply our technique to
see how the principal components relate to the parameters
of the model. As an example consider a set of n binary
items and a one-dimensional latent structure model of the

form
pi(£) = £(0;,8) (96)

where £ is the one-dimensional subject parameter, and 65
are the one-dimensional item parameters. For the

population
p; = J£(6;, £) dF(E), (97)

where F is the distribution of the subject parameters.

Using the postulate of local independence

P

G = JEO;, E)E(0,, £) dF(£). (98)

For Guttman's deterministic model

0 if £ < ei (99a)
pl(g) =

1 if &£ > 8. (99Db)

Consequently
p; =1 - F(8;), (100)
o _ 1 - F(ei) if ei < ek (101a)
ik * .
1 - F(ek) if Gi > ek (101b)
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Defining

F(ﬁi)

a; = _ (102)
1 - F(0;)
We find for the phi-coefficients
A _ ak/ai 1f Bi < 0 {103a)
ik .
ai/ak 1f ei > ek (103b)

The matrix of phi-coefficients consequently has simplex
structure. The case treated in section 3.17 is the special
case in which F is the discrete rectangular df. Conversely
if, for binary data, the matrix of phi-coefficients has
simplex structure, then Guttman's model can be assumed to

hold for some F.

Alternatively we may be able to approximate f(6i,§) in the

region where there is a large population density by
Pi(i) = ei€ Yy (104)
It follows by local independence that if i # k
- = 2
Pix = PiPg = 038,0%, (105)

where 02 is the population variance of the random variable
corresponding with £. Let J{pi - pi} =8, and
My = oei/éi, then

MMy (1 # K) (106a)

®ik = .
1. (i = k) (106b)
This equivalent with the Spearman rank-one case of common
factor analysis, and we have a communality problem on our
hands. This can evidently be generalized to multi-

dimensional parameters. The proper generalization is

’ (107)
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where the are r functions of the (possibly multi-

¢

t
dimensional) subject parameter §. Using (second order)
local independence yields the common factor analysis model

of rank r.

As a final example we study a one-dimensional model which

has recently received a lot of attention. Suppose

14
Py () = ——— . (108)
6, + £

This is George Rasch's model. We assume that in the
population of subjects log § has the logistic distribution

with mean log go. Thus

14
F(§) = 77/5F' (109)
Eo * €
and the corresponding density is given by
gO
dF(§) = — d¢ (110)
(£, + £)2

Thus

go(‘go - 0.) - goel lOg(go/eQ , (111)
(go - ei)z

if 6, # go, and p; = L, otherwise. By local independence

3 3 £
Py = dg. (112)
o, +E 8, +E& (5, + E)2
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Defining Hy = ei/(éO - ei) we find for i # k, 6. # ©
log ei - log ek

Pip = P3P, = H,H 13 = -
ik 1%k itk 0] 90 ek
log go - log 6, log go - log CIN
£ £ =
0 0
80 = 95 €0 = Oy

= Loy = €00500k0)- (113)
In the same notation

p; = (1 - Pi) (1 - eiéio)' (114)

We can test our PCA of binary data on various sets of
variables with different ranges of 6, and see how our
eigenvectors are related to the LI

In a sense Guttman's deterministic model for binary
variables 1is the basic latent trait model. It can be
generalized in at least three directions. In the first
place it can be made probabilistic (in the sense that the
pi(g) are not step functions any more). This leads
directly to Lazarsfeld's polynomial models, to the normal
ogive model, and the Rasch-Birnbaum logistic model. In the
second place it can be generalized to multi-category
nominal items, and to ordered and continuous manifest
variates. The general LSA model will be discussed in
another publication. Using this general model one can
generate all kinds of population models and apply our PCA
technique to the values of N they yield.

3.21 Alternative scaling requirements

In some situations it seems advisable to maximize A under

the extra conditions that xiDixi =1 for all i. If Z is
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the induced score matrix, S the induced covariance matrix,
and R the induced correlation matrix, then our standard

-1
technique maximizes n~ tr(ES) under the condition that

1

tr(s) = n, and this modification maximizes n tr(ES) under

the more restrictive conditions that diag(s) =1 or,
=1 .

equivalently, it maximizes n tr(ER). This gives the

stationary equations

ZCikxk = nAi Dixi’ (115)
with

A = EXICL Xy, (116)

A= 3N = n~ tr(ER) (117)

Again this system has an improper solution with all X,

proportional to e, and all Ai equal to unity. A

0%

simplification is possible by defining y; < D
(115) reduces to

X.. Then
i

ZCikyk = nA.yi, (118)

with

~

Cip = D;%CikD_% (119)
In solving (118) we can require that y]!_yi = 1. The
equations can be solved by methods which strongly resemble
the ordinary power method, but a convergence proof cannot
be given. We norm all subvectors separately and the usual
convergence proof based on the canonical form of the
matrix does not apply. In fact one of the principal dis-
advantages of the method seems to be that a structural
algebraic theory comparable to eigenvector-eigenvalue
theory does not exist, although the method does lead to a
perfectly well-defined optimization problem.

After we have found the absolute maximum we want to

maximize A again, but this time over all sets of vectors
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z; satisfying zizi = 1 and ziyi = 0. The orthogonality
restrictions can be incorporated in the procedure by using
generalized inverses. If we define
¢V = (1 - vy, (1 - vy (120)
1k 141771k k“k
we do not have to worry about the orthogonality

requirements any more, and we can simply solve the

stationary equations

(l) -

1k zy = nAi z;- (121)
If the solution is not orthogonal with y; we can make it
orthogonal by replacing it by z; - (yizi)yi which gives
the same value of A. After this is done we scale back to

-l
the metric of the z; by premultiplying with Diﬁ. We can

evidently continue in this way, deining ‘'residual'
matrices C(z), (3), Because
1k
(1 (S)Yis) ) (1- y(S l)Yi(S-l)') (I_yi(l)Yi(l)')
- I'Yl(S)Yis)' yis-l)yis-l) - Yﬁl)Yil) , (122)

it follows that Cii)vanishes as soon as we have found ki

solutions (including the improper one). If this happens we
collapse the matrix and continue with the resulting non-
zero submatrices. Other possibilities to find the y(s)

the successive method without deflation but with ortho-

are

normalization with respect to the previous solutions, the
successive method with arbitrary orthonormal completion,
and the simultaneous method with orthonormalization of the
set after each powered-matrix iteration.

Although the scaling method discussed in this section
seems more natural for several important special cases of
the theory in this dissertation I would not recommend it
in general. This 1is not only because of the lack of
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structural algebraic properties but mainly because of the
interpretations in the previous sections (and most of the
interpretations of principal components in general) are no
longer valid any more. The basic difficulty with the
method, and the reason why it leads to nonstandard matrix
algebra, seems to be that our essentially bivariate
treatment of the problem conflicts with the multivariate
scaling requirements XiDixi = 1 for all i, except in the
special cases with n = 2 or with exact multinormality. In
this last case the analysis in 3.8 shows that we find the
same solutions in a more compact form. In the non-
parametric generalizations of multivariate analysis
mentioned in the first chapter we do use requirements
XiDixi =1 (without using the ideas of canonical
analysis) and there they cause no trouble at all. Again it
can be proved that in the multinormal case the results are
essentially identical to those in 3.8, although again they

come out in quite a different form.

3.22 On the interpretation

The question whether it is appropriate to analyze
categorical data using principal component methodology is
somewhat ambiguous. In an algebraical sense it most
certainly is as appropriate as for ordinary product moment
matrices: our C is always positive semidefinite. In a
psychometric sense there is no problem too, the concepts
of homogeneity and discrimination apply as easily here as
in the classical context, and the geometry of the problem
is also very similar. Statistically the use of canonical
variates in this context is as defendable as in any other
context, and from the peint of view of reproducibility
again there 1is no difference. Consequently we can
summarize our answer as: the theory of principal
components can be generalized from the linear, numerical
case to the situation in which some of the variates are
categorical and/or ordinal. The use of PCA in this context
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is as appropriate as in any other context.

There 1is, however, a more important question from the
practical point of view. Can we interpret the results of
our PCA of categorical data in the same way as the results
of PCA for numerical data? We have taken the point of view
in this study that all data are basically categorical, and
that for some variates there is additional prior (ordinal,
numerical) information. This information can be
incorporated in the analysis by wusing it to define
suitable restrictions on the weights. There is nothing
spectacular or special about that, we can also refuse to
use this prior information and treat all variables as if
they were only nominal. Just as in the classical case PCA
is a linear model, in the sense of internal consistency
equations (25), and in the sense that the successive com-
ponents are combined in a linear way 1in the reproduc-
ibility equations (31) and (32). As pointed out by
Bartlett (1953) and McDonald (1968) in the classical case
we suppose, more or less implicitly, that the component
scores are stochastically independent. If they turn out to
be relatively simple nonlinear functions, then a more
parsimoneous description can be obtained by using non-
linear principal component analysis (NLPCA). Again we must
be careful not to confuse this with McDonald's nonlinear
factor analysis (NLFA), we mean by NLPCA the technique
outlined by Carroll (1969, 1971) under the somewhat
regrettable name of polynomial factor analysis. What we
can expect in the case of categorical PCA is that these
nonlinearities will become more frequent (cf the
discussion of the multinormal case and the perfect scale).
Consequently the question whether we can interpret our
components in the wusual way can be answered in the
affirmative. We only have to be careful, maybe even more
careful than in the analysis of numerical variates. In the
numerical case nonlinear systematic relationships between
the component scores also means that we cannot interpret

them in the usual, naive manner.
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Let us apply, for instance, our PCA to the analysis of
binary variates for which both the Rasch model and the
postulate of local independence hold. Then we have a non-
linear one-dimensional model, and our weighting function
will be orthonormal functions which are the components of
the nonlinear regression of the probability of a positive
response on the single latent trait. A standard interpre-
tation of these results (i.e. a standard PCA of the matrix
of phi-coefficients, with varimax rotation and the like)
will be extremely misleading. In fact it will lead to many
of the so-called difficulty factors, which have baffled
psychometricians for a long time (cf McDonald 1965). Their
conclusion was that the phi-coefficient is not the proper
correlation coefficient in this case (Henrysson & Thunberg
1965). This is obviously the wrong conclusion. If we can
conclude from our results that the Rasch model (or the
normal ogive or arcsine model) holds, we can find
estimates of all relevant item parameters. Nevertheless it
is of course perfectly true that, in the multinormal case
for example, if we had a proper procedure to estimate the
population correlation coefficients the results would come
out more directly. We can use the tetrachoric or poly-
choric correlation coefficients (Lancaster & Hamdan 1964),
but this has several drawbacks. In the first place we
assume outright that we are dealing with a multinormal
situation, in the second place some of the smaller roots
of the dispersion matrix may be negative (although I don't
think that to be very serious). Consequently the gquestion
whether we should use tetrachorics or phi-coefficients in
binary PCA can be very easily solved: wusing phi-
coefficients should tell us whether the use of tetra-
chorics is justified. This is, of course, an idealized
statement. It presupposes that there are no serious
sampling errors, and that the multinormal effects can be
perfectly detected. The same thing is true for general
categorical data. In the case where the multinormal effect
is present, one could use the polychoric series to

estimate pij for each pair of variables. If some of the
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variables do not fit in the multinormal pattern, further
analysis 1is required. In the case of the perfect scale the
regression line on the one-dimensional latent continuum is
a step function, and the principal components are the
orthogonal harmonics of this step function (Guttman 1950b,
McDonald 1968). In this final example the standard
interpretation of a PCA of phi-coefficients is again very
misleading, but a proper look at the results will show
where the jumps of the step functions are 1located, and
consequently will give estimates of all the relevant
parameters. The use of tetrachorics in this context is

obviously absurd {(cf Guttman 1950a).

3.23 Some criticisms

A critical discussion of the techniques outlined in this
chapter must take into account the criticisms that have
been used against classical PCA. In the first place people
have questioned PCA because it does not explicitly involve
a statistical model with parameters which are estimated by
some conventional technigue. It merely is a transformation
of the data, and because it is just a transformation it is
difficult to formalize the idea of some kind of error.
And, since the idea of error is not very clear, it is
difficult to give a rigorous justification of the idea of
dropping the smaller eigenvalues. In a sense these
criticisms are justified. PCA does not fit a statistical
model, it 1is a purely algebraic transformation of the
data. But this does not imply in any way that it cannot be
valuable as a technique in the exploratory phase of the
investigations (and a large part of the social sciences is
still in such a phase). PCA must be seen as a tool helpful
in structuring or even in plotting the data. A very
readible account of 1its use 1in this context is
Gnanadesikan & Wilk (1969), and another persuasive defense
of PCA as a useful exploratory technique is given by Rao
(1965).
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It is well known that principal components have a large
number of interesting optimality properties. our
homogeneity and discrimination indices are optimized by
principal components. In the numerical case this has
already been shown by Horst (1936), Edgerton & Kolbe
(1936), and Wilks (1936). A 1large number of other
optimality properties, starting with the ones discussed by
Pearson (1901), are collected in Rao (1966), and Okamoto &
Kanazawa (1968), and Okamoto (1969). They are very useful
in this connection. In fact each optimality property of
PCA can be used to define a new rationale for our
approach, and implies a new way of looking at our weights
and scores. The optimality properties are derived,
generally, for the components corresponding with the p 2 1
largest eigenvalues. A criticism of this approach is
contained in Bargmann (1969). He emphasizes the fact that
a principal component is a mathematical artefact, not an
observed variable, and not an underlying, latent, true
physical dimension. The first principal component (PC1)
usually has a clear optimality interpretation, but the
second one optimizes the same criterion after the
elimination of this artefact. Bargmann doubts whether this
is a wise procedure, and suggests to proceed stepwise
instead. We find PCl for all the variables, find the
correlations of the variables with PCl1l, form a subset of
the variables with low correlations, compute PCl for this
subset, and so on. This may be interesting, but I doubt
whether it is a true improvement. In fact I do not believe
that PCl has a different 1logical, mathematical, and/or
statistical importance and/or meaning than the other
components. PCl gives the best rank-one optimalization,
PCl1 and PC2 the best rank-two optimalization, and so on.
In this sense PC2 is not the optimal solution after the
elimination of an artefact, but the pair (PCl, PC2) is a
new artefact. The fact that the first component of this
new artefact is the same as the previous artefact is a
mathematical property of principal components, which does

not hold, for example, in the multi-way generalizations

78



discussed by Carroll & Chang (1970). Bargmann's
hierarchical procedure may have some advantages, but we
lose so much that I don't consider the gamble worthwhile
(for example what happens to the geometrical interpre-
tations we have considered?) Of course we fully agree with
Bargmann that PCA is an exploratory technique which works
with artificial variables, and that it is a common and
very serious mistake to consider these artefacts as
physical realities. Observe, moreover, that in the ideal
case in which each of the variables correlates with one
and only one component the procedures of Bargmann and the
deflation method are identical. This is the familiar

independent cluster case of simple structure theory.

It is also possible to attack the whole idea of
quantification. It can be said that the 1idea of
representing a category by a real number implies that we
suppose that basically (in some sense) we are dealing with
gquantitative variates; only, we do not know exactly what
the correct quantifications are. This point is made by
Lubin (1950), when he discusses the technique we discussed
in section 3.10. I think this criticism is invalid for
various reasons. In the first place it does not answer the
question whether it is legitimate to quantify the sample
elements. If it is (and I do not see how any psycho-
metrician can deny that) the optimal direct weights follow
by internal consistency as averages of scores 1in a
category (and again I do not see how anybody can object to
computing these averages). In the second place we have
seen that we can interpret our weights as defining a real
valued function on the set of categories, but we can also
interpret them as defining separation boundaries in the
space of scores. Finally, we have defined a set-
theoretical distance measure in section 3.12, which we
want to represent in low-dimensional Euclidean space in an
optimal way. Again Lubin's criticism (like Bargmann's)
seems to underestimate the value of exploring the data
from several angels, using all kinds of transformations
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and representations. The point is not that we are,
erroneously, representing categories as points on a linear
continuum (this is only one of the possible interpre-
tations), the point is how we arrive at these points and
in what ways we can interpret them. If someone objects to
the weights, then ask him if he objects to the scores. If
he does not, apply the analysis and the weights come out
anyway, and in such a way that he can hardly object to
them any more. If he objects to both, ask if he objects to
the geometry. If he does not, apply the analysis, and both
weights and scores come out again. Moreover it is hard to
see how anybody can object to our scores and use ordinary
PCA or FA, or to our separation geometry and use MSA, or

to our distance geometry and use multidimensional scaling.

We have already discussed a perfectly valid objection to
our PCA in the previous section. For some particular cases
the results may be misleading (essentially because we
stick to a linear, bivariate model where this is not
optimal). Because these cases are theoretically very
important as normative models we can expect that in almost
all cases some of these disturbing effects will be
present. Our task is to detect them, and to apply a
different technique if that really seems worthwhile. As
indicated in the previous section there has been some
controversy about the question whether one should 'factor'
qualitative data or not. People 1like Guttman (1950a,b,
1953) and Lazarsfield (1950) have defended the view that
FA and PCA are designed for quantitative variates only,
while Burt (1950, 1953) has pleaded to treat the two cases
alike, whenever possible. To defend this point of view
Burt refers to such examples as the Stieltjes integral,
the Daniels-Kendall generalized correlation coefficient,
or modern probability theory but I think these examples
miss the point. The main issue is that in the qualitative
case we have only frequencies, in the quantitative case we
have both scores and frequencies (and in the binary case

scores and frequencies happen to be the same thing). Our
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categorical PCA reproduces frequencies, and partitions the
frequency criterion x2. Ordinary PCA partitions squared
correlations, and reproduces scores and frequencies. Our
point of view is that in the nominal case we can use as a
substitute for the prior scores the posterior canonical
weights and scores, which also makes x2 into a sum of
squared correlations. Guttman (1950a) already observed
that factoring is joint bivariate technique, and that
categorical data in general need multi-variate techniques.
Partly the difference of opinion between Guttman and Burt
is due to the deplorable confusion over the word factor
analysis which still seemed to exist in the 1950's, but
this cannot be the main issue any more. More recently
Anderson (1959) and McDonald (1962) have constructed
general latent structure models, which are based only on
the assumption of local independence, and which apply to
all kinds of latent and manifest spaces. Factor analysis
is an incomplete version of a very special LSA model
(incomplete exactly because it <considers only the

variances and covariances, not moments of higher order).

Another controversy between Burt and Guttman was if one
should only consider PCl or also the other components,
Guttman argued for PCl only, Burt advocated a complete
PCA. One can ascribe this to different objectives: Guttman
was trying to scale a one-dimensional attitude, Burt was
factoring by weighted summation (i.e. doing a PCA). One
could also argue that Guttman was extrapolating his ex-
perience with the perfect scale which is really one-
dimensional (only one latent variable). Consequently,
Guttman was dealing with a one-dimensional model with non-
linear regressions on the latent variable (step
functions), Burt was thinking in terms of a linear model
(McDonald 1969). Guttman was well aware of the dangers
involved in interpreting PCA-results routinely if non-
linear regressions are present, Burt seems to step over
these difficulties somewhat too 1lightly. Since then,
however, McDonald (1968) has argued that nonlinear re-
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gressions are often present in numerical data as well,
and he has conjectured that it is quite probable that many
of the usual routine interpretations of FA and PCA
published in the 1literature (with simple structure
relations and the like) may be questionable because of

these non-linear effects.

Another objection, which may be heard from the more
advanced nonmetric devotees, 1is why we bother with
principal component type error theories if there are such
splendid new techniques as GL-MSA-I, and so on. In fact
Guttman (1968), who used a technique equivalent to our PCA
as early as 1941, now admits that he realized from the
start that this way was only approximate. This statement
is important, in the first place because it comes from a
psychometrician who ranks with Spearman, Thurstone and
Burt; in the second place because the 'nonmetric’ methods
are becoming more and more popular. From one point of view
these methods can be classified as (a) definitely very
useful such as the additive and linear programs (Kruskal
1965, De Leeuw 1969a), (b) probably quite useful such as
the standard MDSCAL and MINISSA programs for the complete
case, (c) not very safisfactory such as the unfolding
programs of Kruskal and Roskam, and as (d) rather
dangerous such as the GL-MSA programs. The linear and
additive models are straightforward extensions of standard
statistical models, and using normal theory assumptions
they produce maximum Jlikelihood estimates of both the
parameters of the models and the monotonic transform-
ations. The standard MDSCAL and MINISSA programs are, in
their 1latest versions, reasonably well-behaved with
respect to local minima, and the problem they try to solve
is reasonably well-defined with respect to uniqueness (De
Leeuw, 1970b). Consequently we may consider them as useful
data-reduction techniques for similarity data, although
further research is needed to compare their performances
with methods which apply the standard metric techniques to

a set of conventional numbers (such as rank numbers, or
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x2-order statistics). The techniques for unfolding and
multidimensional scalogram analysis are dangerous because
they put relatively few restrictions on the data, so that
a large set of quite different perfect solutions exists.
Moreover, the algorithms as such will concentrate on
possible degenerate solutions in order to minimize their
loss function, and one never knows how influential this
degenerating effect is (cf De Leeuw 1970a, 1970b).

Nonmetric technique (this is, by the way, a very un-
satisfactory name, cf De Leeuw 1970a) for the analysis of
indicator matrices have been produced by Guttman and
Lingoes (Lingoes 1967), and by De Leeuw (1969b). It is
possible to regard our PCA as an approximation to the
solution of these iterative programs (as Guttman seems to
do), it is also possible to regard it as an independent
solution of the same problem using a different type of
error theory. In the terminology of De Leeuw (1971a)
iterative programs like MSA-I and MSA-II have a loss
function and a solution map which are strongly
consistent, 1in our PCA the 1loss function 1-A and the
solution map are weakly consistent. This loss of
consistency is compensated by a gain in determinateness, a
gain in structural mathematical properties, and a gain in
alternative possibilities of interpretation. I would
consider Guttman's claim that he realized from the start
that these methods are only approximate as somewhat

premature from the point of view of methodology.

3.24 Historical remarks

Classical PCA has its mathematical roots in algebraic
eigenvalue theory, which dates back to Euler, Cauchy,
Jacobi, Cayley, and Sylvester. The first statistical use
of these algebraic results 1is Karl Pearson's WOrk on
dispersion matrices (1900), but as a data reduction
technique PCA must be credited to Hotelling (1933).
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British psychologists like Burt and Thompson advocated it
as one of the major approaches to factor analysis. The
fact that PCA can be derived from ANOVA-type homogeneity
and discrimination criteria was already known to Horst
(1936), Edgerton & Kolbe (1936), and Wilks (1938). The
pioneering paper in the analysis of categorical variates
is Guttman (1941). It is a direct logical extension of the
work of Horst et al to nominal attributes and it points
out the relevance of Hotelling's canonical analysis
(1936). Guttman derived (by using correlation ratio's)
equations (9) and (21), pointed out the nature and role of
improper solutions, derived the 'equations of internal
consistency' (25), and investigated the relationships with
x2. In a later series of papers (1950a, 1954, 1955), he
considered the application of these techniques to perfect
scales and derived the results mentioned briefly in
section 3.17. Especially the 1950 paper contains a
brilliant mathematical exposition of the principal
component properties of perfect scales. In a final paper
in the series (1959a) he sketched a system of scaling
methods based on facet theory, which is quite similar to
the basic idea of this book. The application of PCA to
categorical data was discovered, independently, by Burt
(1950). Compare also the discussion in Guttman (1953),
Burt (1953). Useful additional references are Mosteller
(1949), Lord (1958), Torgerson (1958, p 338-345), Bock
(1969), Lingoes (1963, 1968), and McDonald (1968).

The special case n = 2 has a complicated history. Various
aspects of this problem are studied by Hirschfeld (1936)
who discovered (56), Fisher (1941) who contributed (52),
and Lancaster (1957, 1958) who studied the more general
case leading to (54) and (55). Benzécri considered special
geometrical interpretations for n = 2 (cf Cordier 1963).
The case n = 2 is reviewed in a recent paper of De Leeuw
(1971b) and the work of Lancaster and his associates on
canonical decompositions of discrete and continuous

probability distributions is reviewed in Lancaster's
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recent book (Lancaster (1969)). Our systematic interpre-
tation of ordinal and numerical variates in this framework
is possibly new. The result in section 3.8 is new, but for
n = 2 these results have been discovered by Maung (1941)
and Lancaster (1957). The geometrical interpretation in
3.12 is new although inspired by BenZecri - Cordier. The
results in 3.14 are due to Yates (1948) and Williams
(1952). The history of the Helmert matrices (82) is
reviewed by Lancaster (1965). They were applied to the
partition of x2 by Lancaster (1949) and Irwin (1949).
Section 3.19 is closely related to some work by Bradley,
Katti, and Coons (1962).

The problem in 3.19 can also be treated by using monotone
regression (Kruskal 1965). Equations (94) and (95) were
discussed in another interesting paper by Guttman (1959b).
Section 3.20 is new in some respects, section 3.21 is
based on some work of Horst (196la,b, 1965). Closely
related discussions of the scaling requirements and of
other possible objective functions are Steel (1951),
Guttman (1959b), McDonald (1968), Van der Geer (1968),
Carroll (1968), and Kettenring (1971). Computational
aspects of procedures 1like the ones in 3.16 were
investigated by Doesborgh (1971), who also wrote a number
of computer programs in FORTRAN for the 360 series.
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DIFFERENCING MODELS 4

4.0 Introduction

In the previous chapter we have discussed some techniques
for incorporating prior ordinal information in a PCA. In
this chapter we describe an alternative way of dealing
with ordinal information of a somewhat different nature.
In particular the techniques in this chapter deal with
paired comparison data (or with  ordinal data which are

reduced to paired comparison form).

4.1 Paired comparisons

Consider a paired comparison experiment with n stimuli
and m subjects (or occasions). This defines N = n2 binary
variables (forced choice procedure, also for diagonal

pairs). The elements of the indicator matrix H can be
(1,%) ang n(1:K) ) yien n(1:k)
+3 - +3

prefers i to k (or thinks that i is heavier than k, or

coded as h = 1 1iff subject j
what have you). Applying the usual procedure for binary
variables from 3.15 quantifies the set of all N pairs,
which is not what we usually want. The familiar stochastic
theories for paired comparison experiments suggest using
the restrictions
(i,k) _

X, = Yi yk , (la)

x(f'k) =Yg - Yy oo (1b)
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for all i, k =1, ..., n. Observe that this implies
(i,k)_ _(1,k) - _ (1,k) - -
?Z 3 =n-, (yl yk) n-_ (yl yk) =
= (1,k) (i,k)
- [n + - n ](yl - Yk) ' (2)
which is usually not equal to zero. We investigate the
optimal direct quantification of the variables under the
conditions (1), i.e. the finding of an optimal y. We find

for the induced score vector

-1 (i,k)(1,k) (i,k), (1,k)
z.J— 52 z [x'] h 4 + X' h -5 ]
ik
=1 - (i,k) _ . (i.k)
=X ZZ(Yi Yk) {h +3 h -3 ] (3)
This can be simplified to
z . = N 15y.(a,, - b..) = 3y.c (4)
g7 ¥i1%45 ij Yi®ij -
with
- (i,k) _ (i,k)
aj5 = 2 [hiyy A (5a)
_ (k,1) (k,i)
b.,. = h' et 4 , 5b
iy = 2 (™)) h* 2370 (5b)
c.. =N 1(a,. - b,.) (5¢)
ij ~ ij iz’ -

Moreover, using (1),

- (i,k)y, - o vz sen(ik) (1K),
ST 3233 (z 3 )2 = Zz(yi yk) >(h 45 h -3 )
= - 2 = - 2] =
m ZZ(yi yk) 2m [nZyi (Zyi) ] ny'Qy, (6)
with
2m(n~1 . .o
N if 1 = Kk,
UGk ~ (7)
=z if i # k.
Clearly
z = y's, (8)
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with

_ -1

s; = m Zcij. (9)
Applying our usual procedures we find

B = Ny'CC'y, (10a)

W = Ny'(Q - CC")y, (10b)

T = Ny'Qy, (10c¢)
provided

2 =y's =0 . (11)
It is obvious from (5) that Zaij=2bi., and thus Zcij=0.
Consequently CC' is doubly cénteréd, and so is Q. It
follows that we can require y'e = 0, and that we can
replace Q by 9 = 2%2 I.

4.2 An alternative approach

An alternative and somewhat simpler approach can be based
on a slightly different way to define within and between.

Define

e = Zh(1,k)

ij +] ' (12a)

the number of times subject Jj Jjudges 1 higher than
something else, and

- _ (k,1)
tiy = sh 5 , (12b)
the number of times subject j judges something else higher
than i. The weighted mean of the scale values of the

things subject j ranks higher than other things is

+ .+ :
uj = Ztijyi/gj ' (13a)

with gj = Ztij = thj. In the same way the weighted mean
of the scale values of the things subject j ranks lower
than the other things is

T o= Sti.y./9s . 13b
uy = 2ty.v,/9; (13b)
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The corresponding weighted sums of squares around the

means are

+_ T R st +. 5
Sj Z(Yi uJ) tij zyitij gj(uj) ’ (14a)
T o= - u.)2 t,. = 2. - g.(uz)2 .
sj Z(yi uj) tlJ Zylt1:I gJ(uJ) (14b)
By letting
= s(th. + tI.) (15)
i~ ij ij’
e = e. , (16)

we can define the overall weighted mean by
u = Zeiyi/e , (17)
and the sum of sqguares
= .- 2 .= 2 . - 2
s Z(yl u) e; Zyl e; eu<. (18)

We now make the partition

Source Sum of Squares

wWithin columns W = Z(s; + s;)

Between columns B = Zgj [(u; - u)2 + (u; - u)?]

Total T = Z(yi - u)? ey (19)
and we maximize B/T under the condition u = 0. In matrix
notation we can write

T = y'Ey, (20a)
_ -1 -1
B=y'(I,D"T! + T_D "T!)y (20b)

with T, containing the t;j and T_ the tzj’ while D and E
are diagonal matrices having diagonal entries gj and e

respectively. Again there is an improper solution y = e,
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and all other solutions satisfy y = 0 automatically.

4.3 Some simplifications & complications

The analysis of section 4.1 becomes slightly more
complicated 1f we admit tied responses (equal; I don't

know; not definitely larger). Each variate now has three

possible values (+, -, and 0) and we require
(i,k) _
X 3 - Yl - Yk [ (Zla)
x(é’k) -0, (21b)
ik

X(i ) - Yy - ¥i (21c)

The formulas for z . and z , and for a.., b.., remain
.J .. 1] 1]

valid. The expression for the total sums of squares
changes to

’k) )2 =

- y.)2 s(nti
r = 22(y; - yp)® 2(h7 ]

%2}
it

£3(y; - y)2 (1K) Ry (22)

It is easy to derive matrix expressions for this sum.
Section 4.2 remains valid. Another complication arises in
incomplete paired comparison experiments in which we do
not compare all pairs, but only a specific set. This also
includes cases in which a specific set is replicated.
Nevertheless these complications are only relatively
slight if the same pairs are missing for each subject.
General formulas can easily be derived for balanced
incomplete designs, which are familiar from the
literature. There is one important kind of incompleteness
which must be mentioned. If we only investigate the (g)
pairs (i,k) with i > k then we can fill in the (g) pairs
(i,k) with i < k by assuming that the subject would have
given the opposite judgement here, and the n pairs (i,1)

by assuming that the subject would always give tied
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responses here. This amounts to

(i K) = e n(01) 2 (23a)
+3 -3
(i,k) _ e (K1) _

n(3: o iff niy; 0 (23b)
(i,1) _

niget) =1 (23¢)

for all i, k, j which implies

ntid) o 0o i), (24a)
(i, k) _ (k,1)

n', =N, . (24b)

n(é’i) = m, (24c)

for all i, k, and

ajy = _bij’ (25)

for all i, j. If in addition

h(é(k)= 0 iff i # k (26)
3
then
(i,k) _ , _ o(i, k) _ (k1)
hiypn? =1 - h sl = h et (27)

for all i # k and all j. The usual paired comparisons
experiments satisfy both (23a) and (26) (which obviously
implies (23b) and (23c)). In this case the treatment in
4.2 can be simplified by observing that

- + \
tij (n - 1) - tij , (28a,

|
il

+
€ 4tij -2 (n-1). (28b)

which means that the technigue in 4.2 is equivalent to
maximizing y'CC'y on the condition y'y = 1.

An even more important simplification is possible if there
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exists a weak order zj on the set of stimuli such that

A I (29a)
(1,k) _ ' -

nigef) =1 iffi= (29b)
S N (29¢)

(i,k) (i,k) _ :
h +5 - h -3 = Oj (i,k) (30)
with
1 if i >. kK,
(1,k) = 0 if 1 =. Kk, 31
03( ) 1=y (31)
-1 if i <. k
J
Of course in this case we also have aij = _bij’ but more

explicit statements are possible. We have

aij = Zoj(l,k) = 2pij - (n + 1), (32)

where pij is the rank number of stimulus i in the weak
order Zj (ties get the average of the available rank
numbers). Observe that § pij = Ln(n+l), and thus
aij = 2(pij - p.j). The result (32) simplifies both the
computations and the interpretation. Moreover it is now
obvious how to apply the same technigues to experiments in
which any number of pairs is missing (the same pairs for
each subject). This includes all the rank k/n and pick k/n
data collection methods. A further simplification, which
is frequently useful, obtains if the set of stimuli can be
divided into two subsets Aj and Bj (having N(Aj) and N(Bj)

elements), and

i>. k iff ieAj A kij , (33a)
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i =j k iff i,ksAj v i,ksBj , (33b)
defines a weak order. In this case there exists a binary
vector uj such that ui = 1 for all isAj, and ui = 0 for
all ksBj. Obviously

N(Bj) if i€ A, ,
aij = (34)
-N(Aj) if ieB

4.4 Relationships

We have discussed two different techniques in the previous
sections. In the case where (23a) and (26) are true
technique A, based on (1), reduces to maximization of
y'CC'y on the condition that y'y = 1 and y's = 0.
Technique B, described in 4.2, maximizes y'CC'y on the
condition that y'y = 1. The relationships between the
techniques A and B are rather obvious. In the first place
it is true in most cases that the dominant eigenvector of
cCc' 1is very much 1like s. If this 1is true the two
techniques give highly éimilar results all the way. In the
second place multidimensional solutions of B can always be
made to satisfy y's = O approximately by orthogonal target
rotation and dropping one dimension. Observe that the
vector s is the best least squares approximation to the
columns of C simultaneously. In a sense we take the first
centroid in technique A and compute the principal
components of the residual. It is also possible to compare
A and B with the techniques known as ‘'nonmetric factor
analysis'. There we try to find an optimal monotonic
transformation and reduce by using principal components as
usual, while in A and B we use a prior, fixed monotonic
transformation. The relationship with classical paired
comparison analysis is also interesting. In the classical
analysis using discriminal dispersions and the like object

i gets score X5 from subject i. Each subject defines a
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random observation from population i, and we want to
estimate the mean over subjects. We use a least squares
type technique which minimizes the sum of squares of the
deviations of the differences, i.e. we want to find Yi and
wj such that

S = 555 | (xij - xkj) - vy (v; - vy) ]2 (35)

is as small as possible. The stationary equations can be

written as

Xw= ay, (36a)
X'y = Bw, (36b)
with X = {xij} = {xij - X.j}' a = w'w and B = y'y. It

follows that y is the eigenvector of C = XX' corresponding
with the largest root.
Taking expected values we find

E(cik) = m(oik -0, "0 4 + 0 )

tm(py; =R ) (M = 1) (37)

where we have used the familiar symbols for means and
covariances. It is obvious from (37) that when Oik is
constant for all i, k, then the dominant eigenvalue of C
is proportional to (pi - p.).

If we knew the values of the xij then the first eigen-
vector would be a consistent estimate of the means
(without assuming normality of logisticity). In analysis

B we substitute x.. = p and perform the eigen-analysis.

ij ij
In the same way as in section 3.20 it seems very useful to
relate our techniques to stochastic latent structure type

models like, for example,
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. _ 1
pj(l > k) = 1+ eXp(‘gj (Oi - Ok))

(38)

4.5 Further generalizations

An obvious and important generalization is obtained by
considering paired comparisons of sets of stimuli. A
comparison of the sets S, T defines a vector of weights

xS’T which can be restricted by

(s,T) _
X = 3 y. - I Y., (39a)
+ ies t ieT 1
X(f'T) = X ¥y - I ¥y (39b)
1eT 1eS
x(ng) = 0. (39c¢)
(s,T)

In all these models we can define vectors g in such a

way that all elements are equal to -1, 0, 1 and

x(f’T) = y'g(S’T). The n x 3 matrix 6{5'T) is defined as
G(S’T) = [g(S,T) 0 _g(S,T)] . (40)
Then
(xS T yr = yrglS T (41)
and
(Z(SIT))I - YIG(SIT) H(SIT) . (42)
Define
(s,T)
(s,T) (s,T)
and
= vTPY (43c¢)
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Then A is to be maximized under the condition that

y' o3 'S DIRSIT) o 2 yig =0 (a4)

(s,T)

if we use technique A. If we use B we do not require (44).
Of course H(S’T) (H(S’T))' = D(S’T) is diagonal.

Simplifying somewhat further

(s,T)

with

(ST L (8T, p(S,T) (46)

More generally

G(S/Ty(S.T) (5. T)y, (5, T)),

Q= 3 3
(S,T) (S,T)
- s 3 ¢SS DET T, o
(s,T) (S,T)
- 3 s fSDET) (S, T) (((5.T)), (47)
(s,T) (5,T)

with

($,T)(S,T) _ (S, T)(S,T)_ (S,T)(S,T)
t =1 - €13 +

(8, TS, T) _ (S, T)(5,T)

33 31 ' (48)

and 1n particular




(SIS, T) (S, T) |, ((5,T) (29)

Finally

_ (s,T) (S,T) (s,T)
s. = 3 g 3 (h'Z - n'% T, (50)
1 s,y * i M ~J

(s,T) _ 0 for all

(s,T)

In the more common cases we have e'g
(s,T). Then again P and Q are singular. In case g
contains exactly one element equal to +1 and one equal to
-1 the formulas reduce +to the ones in the previous
sections. This happens, for example, if S and T are of the
form U U {i} and U U {k} with i # k and U arbitrary (the
fact that the set U does not matter is a familiar axiom in
some stochastic theories of choice behaviour). We have
paired comparisons if U = @. The connection of the theory
in this section with the theory of additive conjoint
measurement and with the additive cardinal utility theory

of commodity bundles is clear.

As a final generalization we mention the case in which the
compared objects are arbitrary vectors of real numbers

with the same dimensionality n. We require

. n .
p___
. n N
X(f’k) = 21 Yp(g(g) - g(;)), (51b)
p‘_—
x(3K) = o (51¢)

With obvious modifications all formulas of this section
remain valid with this general form of g. Again this is
easily seen to be related to ordinal multiple linear

prediction.
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4.6 Maximum sum techniques

It can be argued that the essential part of our
homogeneity coefficients is the numerator, i.e. the same
numerator with a different denominator may also produce
reasonable loss functions (although not necessarily
variance ratios). This is the basic idea behind the
maximum sum principle. If we have a 'nonmetric' theory of

the type

H
i\

kK Aff 95(y;) 2 05(¥y) . (52)

.

then our numerator can be written as (compare formula 4)

(i,k)

i,k)]
+3 j

-
h‘J

222 |h [¢j(yi) - ¢j(yk)] - (53)
Add a scaling requirement shich makes the set of all
solutions bounded and maximize. Intuitively this means

that we replace (59) by the weaker set

>k > 0y5(yy) 2 05(yy) (54)

which is equivalent to

i, k)

. K)
+k j

(
(h 5

- nd -

h*~ ) (¢j(Yi) ¢j(Yk)) z 0. (55)
An approximate solution is found by maximizing the sum of
the left hand sides of these homogeneous inequalities over

a compact set of vectors y. We give some examples.

IRCN: Inner product model, rectangular, conditional

Observed: m paired comparisons of n objects
(j=1, ..., m; i, k=1, ..., n).
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Model: i zj k <> Sgl Xjs Yig 2 Sgl js¥ks (56a)
Sum: o(x,y) = ZZZolk (é jS is s szks) , (56b)
o = ) - h(ljk)) , (56¢)
Matrix form:
¢(x,y) = trace (X'ZY), (564d)
z4i T 207 - ol =l - ol; (56e)

IRCM: Inner product model, rectangular complete

Observed: N paired comparisons of nm objects with product

structure.
Indices: i, k=1, ..., n; j, 1=1, ..., m; t=1, ..., N.
Model:

(3,1) 2z, (1, k) «~» ZXJSYIS 2X 1 Yke v (57a)
Sum: .

— t -

0(x,y) = 2333230, Jkl(styls xlsyks) , (57b)

t - (1,3)(k,1) _ . (i,3)(k,1)

Oijk1 T (it bt ) (57¢)
Matrix form:

6(x,y) = Trace (X'ZY), (574)

Z.. = 3335(0C. . =~ 0C. ) =0l. =0 .. . (57€)

Jji ijkl klij ij.. ..13 °

ISCN: Inner product model, square, conditional

Observed: each of n elements orders the other n elements,

N replications.
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Indices: i, j, k=1, ..., n; t=1, ..., N.

Model:
. . . -
(3.1) it (J,k) <~ ijsxis 2 ijsxks , (58a)
Sum:
[ o
0(x) = Zz&liojik(xjsxis stxks) , (58b)

Matrix form:

I

¢ (xX) Trace(X'AX) = YTrace(X'(A + A')X), (58c)

a.. = 0.. = 0. . . (584)

ISCM: Inner product model, sguare, complete

Observed: N paired comparisons of n2 elements with product

structure.
Indices: i, j, k, 1=1, ..., n; t=1, ..., N.
Model: /
.. 5
(1,3) 2z (k1) <= ZXinjs 2 IRy Xyl (59a)
Sum:
_ t
0(x) = 2232333 Oijkl (xisxjs stxls) , (59b)
Matrix:
v(x) = Tr(X'AX) , (59¢c)
a.. = 0;. - 0" L. (594d)
ij ij.. ..1)

The next four models are very similar to the first four.
The difference is that we substitute squared euclidean
distances for inner products (of course this reverses the
order relations, but that is not important in maximum sum
models). In order to save space we only give the matrix
expressions. If only the diagonal elements of a matrix are
defined then the matrix is diagonal.

DRCM: Distance model, rectangular, conditional

d(X,y) = 2Tr(X'2Y) -« Tr(Y'DY) , (60a)
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z.. =g, =-ga3, , (60b)
ji i. .1

d.. = o. =-0". . (60c)
ii i. .1

DRCM: Distance model, rectangular, complete

P(x,y) = 2Tr(X'2Y) - Tr(Y'DY) - Tr(X'EX), (6la)

255 T 055, T 9 iy (61b)
d.,. = 0. -0 . (61c)
11 1l... PP N

e.. = 0. - o ., (61d)
ii 3. ]

DSCN: Distance model, square, conditional

6(x) = 2Tr(X'AX) - Tr(X'DX), (62a)
a.. = 0%, =0 . , (62b)
ji ji. j.i

d;jj =03, -9 .4 (62¢)

DSCM: Distance model, square, complete

0(x) = 2Tr(X'AX) - Tr(X'DX) , (63a)
aj5 T 054, T 9. 55 ¢ (63b)
i3 =95, .. YO0y TO i T i (63c)

Usually the simplifications in 4.3 apply here too, and the
elements of the matrices are simple functions of the rank
numbers. In fact IRCN is identical to our previous
procedures A and B. The techniques described in 4.5 can

also be interpreted as maximum sum techniques.
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LIRCN: Mixed linear-inner product model, rectangqular,

conditional

Observed: m paired comparisons of n real N-element

vectors g. .

i

Indices: i, k=1, ..., n; j=1, ..., m; t=1, ..., N.
Model:

95 zj Ik 7 ZXjs zytsgit 2 ZXjs Zytsgkt’ (64a)

s t s t
Sum:
_ j _

¢(X,Y) = 222220 lk(xjsytsgit stytsgkt)' (64b)
Matrix form:

o(x,y) = Tr(X'Z2Y) (64c)

- ] _
zjt Zgit(o i. o .i) . (644)

Special cases:

9; unit vectors: paired comparisons (IRCN),
g; are sums of a fixed number of unit vectors:

additive conjoint analysis.

Up to now we have discussed a number of models in which
the maximum sum principle results in the maximization of a
function of the form tr(X'AX) or tr(X'2Y), subject to some
scaling requirement. we did not specify these
requirements, but for all models there are a number of
natural choices which lead to more or less standard eigen-
value-eigenvector problems. Of course generalizations of
the type discussed in 4.3 are also possible here. If we
agree that 6Ejkl = 0 if the comparison by subject t of
(i,j) and (k,l1) is missing (either by design or by
accident) then we can write down general inner product
and distance models of which the four cases we discussed
previously are very special examples. The formula look
exactly the same as those of ISCM and DSCM with the

generalized missing-data definition of Ogjkl . We can also
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generalize the maximum sum method to three-way models.
This also tends to give surprisingly simple formules,
although somewhat less standard arithmetic. In the models
with replications the data were always pooled over
replications. In the three-way extensions we represent the
replications (subjects) as a set of points in Euclidean
space too.

TWWD: Three-way model, weighted distances

Each replication defines a set of weights. Dissimilarities

correspond with weighted squared distances:

t . P .
6ij - E Wes(Xig - xjs) (65)
s=1
We use the generalized signature OEjkl . Then
O(X, W) = 333(X,_~X._)2 2w (OF- —ot Do) (66)
! is 7Js ts'"ij.. ..1]
Letting
_t t t t
ai5¢ = 9%4.. Y %5i.. C.ij T 9051 (67a)
t t ot _ ot ., (67b)
diit oy . to7, o 5. g...1
Pije = 935t T %je - (67¢)
we find
o(x,w) = 232 b, (68)

1jtxisxjswts

TWWI: Three-way model, weighted inner products

Again each replication defines a set of weights. Now

similarities correspond with weighted inner products
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W, X. X._ . (69)

Again this works out as

o(x,w) = ZZZbijtxisxjswts , (70)
but now bijt has the much simpler form
_ t _ t
ijt = %ij.. T 90045 (71)

TWTI: Three-way model, translated inner products

Each replication defines a translation of the basic space

and a new origin from which the inner products are

computed:
t . P
6ij - E (x5 - Zts)(xjs T Zgg)- (72)
s=1
We find
6(x,2) = Tr(X'AX) - Tr(Z2'BX) (73)
with
aij = Oij.. - 0..ij , (74a)
_t t _ t _ t
by =05, .. YO0 T 4T (74b)

Models in which n-tuples of stimuli are compared can also

be constructed. An example is the following model.

TWHD: Three-way model, homogeneity, measured by distances

Each replication defines a set of weights. Heterogeneity

of a set of stimuli corresponds with the sum of the
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squared distances within the set, i.e.

P
nt(ry = & 3z =
iel jel s=1

(x: . - x._)2. (75)

wts 1s js

Observe that the TWWD model, and thus the DSCM model, is a

special case. And finally we can construct models which

permit asymmetry in square complete matrices.

TWDS: Three-way model, weighted distances, slide vector

Here

- - 2
wts(xis xjs Zts) : (76)

TWWD 1s the special case in which all slide vectors

vanish.

4.7 Generalized correlation coé&fficiénts

The maximum sum approach is only one way of approaching
differencing models. We can also wuse (generalized
correlation coefficients (GCC) which are defined as
follows. Let ¢ and ¢ be increasing real functions that
satisfy

¢(Yi - YJ) '¢(Yj = Yi)' (77a)

l1’(Yj_ - y:)

j "ll’(Yj - yi)' (77b)

for all i, j. This implies that
$(0) = ¢(0) =0 (78)

and
sign(o(y; - v3)) = sion(y; - v5), (792)
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sign(y(y; - v3)) = sign(y; - vy). (79b)

A GCC Fw ¢(x,y) is defined by letting

C¢,¢(x,y) = IEp(xy - xj)¢(yi - yj), (80a)
= 2(x. - X.
V¢(X) 224 (x1 xJ), . 80b)
Ve (¥) = 2202(y; - ¥4, (80c)
and
1 1
- * ]
F¢,¢(X,Y) C¢,¢(X,Y)/(V¢(X) V¢(Y))- (81)
Clearly
-1 £ F¢¢(x,y) < +1 (82)
and a necessary (but not sufficient) condition for I' = 1

is that, for all i, j,

51gn(xk - xj) = 51gn(yi - yj). (83a)
In the same way if [ = -1 then

51gn(xi - xj) = - 51gn(yi - yj) (83b)
for all i, j. In general

r ; # T 1 X)), 8

¢,¢(X Y) ¢,¢(y X) (84a)

r , T ’ 84b

¢,¢(x y) ¢,¢(x Y) ( )
A GCC 1is symmetric if ¢ = ¢. Familiar examples of

symmetric GCC's are Pearson's product moment coefficient
with

P(x, = X.) = X. - X2, (85a)

Spearman's rho with
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P(x; -~ x3) = p(x;) - p(xj), (85b)
and Kendall's tau with
qs(xi - xj) = sign(xi - xj) . (85c)

The asymmetric coefficient for which

1

P(x, - X.)

i i 51gn(xi - xj), (86a)

and

¢(Yi -y:)

NER AR (86b)

J

is very interesting in our case. It is easy to see that
maximizing the sum of squares of the GCC's that can be
formed in the case of m ranking of n objects is equivalent
to our procedure B if we use the functions (86). Moreover

the same thing is true if we use

<

]
1

]
I

p(x;) = p(x5), (87a)

(87b)

il
o

\
o

¢(Yi - Yj) i i
Or, as we may also put it, Spearman and Kendall weighting
of differences leads to identical results.

4.8 Some criticisms

The techniques outlined in this chapter are subject to
roughly the same criticisms as the PCA techniques in
chapter 3. The choice of requirements (1) may seem
somewhat arbitrary, but it is also suggested by the theory
of generalized Daniels-Kendall correlation coefficients,
which are natural measures of disarray. Moreover, the
resulting maximization problems prove to be comparatively
simple. The techniques in 4.6 are less well-defined in
terms of rational optimality criteria or between-within

variance decomposition. They are not extensions of
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classical componentwise multivariate analysis, they are
extensions of classical metric eigen-techniques. The main
criterion is ease of computation. The general impression
is that results are often as satisfactory (from the point
of view of recovery) as those of iterative gradient
programs for the same measurement model and sometimes the
maximum sum results are better (in terms of both recovery
and interpretation). Observe that we did not specify the
scaling requirements in 4.6. In general different scaling
requirements lead to different solutions, and it may take
some extra research to find out what the best policy is

for a particular model.

4.9 Historical

The techniques discussed in this chapter are discovered
every 10 years, presumably because there are so many
different methods to derive them. The earliest reference
seems to be Guttman (1946). Other discoverers and/or
contributors include Slater (1960), Carroll & Chang
(1964), Hayashi (1965), Benzécri (196?), De Leeuw (1968a),
Bechtel (1969). Most of these authors only discuss the
simplest case 1in which there are either m complete
rankings of n objects or m complete sets of paired
comparisons. Guttman also discusses the additive case from
4.5. Both the linear and the additive case were
investigated in De Leeuw (1968a) both in terms of
discrimination and in terms of generalized correlations
coefficients. The maximum sum techniques have been applied
to a number of interesting examples. An application of
IRCN to adjective-noun intersection data has been reported
by Levelt. De Leeuw (1968a) also has some applications of
IRCN. In De Leeuw (1968b) there are some applications of
DSCN and DSCM. The DSCM technique has also been described
by Guttman (1968). In De Leeuw (1970 a,b) there is a more
extensive discussion of these techniques. In De Klerk, De
Leeuw, Oppe (1968, 1970) there are a number of interesting

109




applications of the different versions of LIRCN. Pols and
vVan der Kamp (1971) applied DSCN to confusion matrices of
vowel sounds and compared it with Roskam's iterative
UNFOLD program. De Leeuw (1968b) compared DSCN with the
iterative NMSPOM program of politicological data. Both
authors found that maximum sum methods were not worse than
the iterative techniques. Carroll & Chang (1964) compared
IRCN with a POM type of technique and found that IRCN did

a better job in recovering data which were not errorfree.

The model TWwD is due to Douglas Carroll (cf Carroll and
Chang 1970). Carroll discusses only the metric version,
and the possibility of generalizing this to a two-stage
iterative nonmetrical algorithm. A number of very
interesting and very impressive applications has been
published (Carroll & Chang 1970, Carroll & Wish 1970, Wish
1970, Wish and Carroll 1971). The square conditional
version of TWWD has been used by Van der Kloot (1969).
Model TWWI is related to Tucker's multiway factor analysis
(with diagonal core matrix), but it is in 1its metric
version a straightforward generalization of PCA. It has
been discussed by a number of authors. Harshman (1970)
relates it to Cattell's parallel proportional profiles,
Carroll & Chang (1970) discuss it in the TWWD context, and
Slater (1969) mentions some work of Gower on this model. I
have used it in some unpublished studies and it seems to
give results which are as satisfactory as those of Carroll
and Wish. TWTI is new and had never been applied, as
far as I know. Generalizations of TWWI and TWWD have been
worked out by Harshman (1971) under the name of PARAFAC2,
and by Jennrich (1971) and Carroll (mentioned in Carroll &
Chang 1971) under the name of IDIOSCAL. In a factor
analysis context this model has already been proposed by
Rasch (1953) and Meredith (1964) as naturally following
from the Pearson-Aitken~Lawley selection theorem. TWHD has
also been used in some ad hoc studies. Its usefulness
clearly depends on the gquestion whether there exist

situations in which judgments of homogeneity or hetero-
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geneity are the natural thing to ask. The idea of using
the slide vector z to explain asymmetry is due to Kruskal
(personal communication). In general the mathematical
properties of TWTI, TWHD, and TWDS are interesting, but
the techniques are possibly not very useful. Generalized
correlation coefficients are due to Daniels (1944), and
have been discussed extensively by Kendall (1962). Their
use in this context was first studied by De Leeuw (1968a).
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PARTITIONING THE VARIABLES 5

5.0 Introduction

In chapter 3 we discussed the generalization of PCA to
categorical data, and some of the problems that arise with
the applications of this generalization. In this chapter
we generalize the rest of standard multinormal joint
bivariate analysis to categorical data in exactly the same
way. Because most of the problems have already been
discussed extensively in chapter 3, we give only short
indications of the extensions, and we show how the weak
aspects of this class of techniques become more apparent

in complicated cases.

5.1 ANOVA-formulation

Consider a partition of the n variables into N subsets,
subset I containing n variables (L = 1, ..., N). of

< < = <
course 1 £ N n, ZnL n, 1 = nL

notation we partition the index set {1, 2, ..., n} in N

< n. For ease of

L’ where NL contains the indices of subset L. In

the same way the rows of our induced score matrix Z (a

subsets N

function of the supervector of weights) can be partitioned
in N subsets. We also construct the induced matrix of

subset scores, this matrix S has N rows and m columns, and

its general element is defined as

s . =z Z. . (1)
L3 ieN 1]
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The sources of variation that interest us are again the
variance within sample elements and the variance between
sample elements, this time measured over the subset scores

in S. If we apply our homogeneity definition of section

3.1. to this matrix we have (assuming s = 0 once again)
Source Sum of Squares
Between columns B = Nis? j
Within columns W = Zz(sLj - s j)2 (2)
Total T = 33s2 .
L]

and again we are interested in maximizing A = B/T.

what does this mean? In the first place we do not
interpret the variables within the subsets as replications
of each other, which have to be homogeneous in some sense.
We interpret the subsets as multidimensional variables,
just as in MANOVA-type techniques. In the standard, metric
cases of multivariate analysis we make linear combinations
of the variables in the subsets and apply our homogeneity
ideas to these 1linear combinations. In our categorical
generalizations we make additive combinations of the
induced score vectors, which are linear combinations of
the original indicator vectors. In the second place we

have the identity

3

B(S)

!
2
H™MmB
_——
n
!
n
-
n
!
—_

j

N
(ﬁ) B(Z), (3)
which means that the numerator of A 1s essentially the

same, no matter how we define our partition of the

variables.
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5.2 Matrix formulation

If follows from (2) and (3) that

X'Cx

Nx'Dx (4)

where C 1s 1identical to our previous matrix C (section
3.2.), and D 1is defined in the following way: if an
element of D corresponds with categories of variables in
the same subset it is equal to the corresponding element
of Cc, if it corresponds with categories of variables in
different subsets it is equal to zero. Again we require
ZsLj = 0 for all L = 1, ..., N. To see how these
constraints can be incorporated in an easy way, observe
that the vector X,

which is the reciprocal of the number of variables in its

in which each category gets a weight

subset, satisfies

CxO = N on , (5)
i.e. X, satisfies the basic stationary equations with
A = 1. Remove X, by deflation, then
€=c-2bDx.x.'D (6)
m 070 !

where D is the diagonal matrix D used in chapter 3. Thus
€ is equal to our previous deflated C matrix of formula

3.11. Any vector satisfying

Cx = AN Dx (7)
m

automatically satisfies = SLj =0 for all L=1, ..., N
j=1
m

(although not necessary 32 zij = 0 for all i =1, ..., n).
i=1

By now the structure of both C and D should be clear. In C

the submatrices Cij can be divided into two classes: those
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within subsets and those between subsets. In D the within
matrices Cij (to which the diagonal submatrices Cii always
belong) are copied from C at the corresponding places.
Then the rest of D is filled up with zeroes. We know that
the rank of C satisfies

r(C) £ min(K - n + 1, m). (8a)
For the rank of D we find

r(b) € min(K - n + N, m). (8b)

Thus r(b) 2 r(C).

5.3 Linear restrictions

Consider the slightly more general problem: maximize

X'Cx
A = (9)
Nx'Dx
under the conditions Sx = 0, where S is a p X K matrix of
rank p £ K. Alternatively this can be written as x = Ty,

where T is an K x (K-p) matrix of rank K-p, satisfying
ST = 0. In general such a T can be found using the K-p
eigenvectors of S§'S corresponding with zero eigenvalues.

By substitution our problem reduces to the maximization of

y'T'CTy (10)
Ny'T'DTy

The matrices T'CT and T'DT are of order K-p. Moreover

r(T'DT) 2 r(T'CT) = min(K - p, r(C)) , (11)
and thus both matrices are nonsingular iff r(C) 2 K - p.
In the usual case r(C) = K - n + 1, and p 2 n - N

suffices. The matrix T'DT is nonsingular iff r(D) 2 K - p,
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and in the usual case p 2 n - N suffices. All of the
theory of linear restrictions treated in sections 3.11.,
3.13., 3.15., and 3.16. in a more or less disguised form
falls under this section, including the desirability of
choosing T in such a way that T'DT is diagonal and non-
singular, and in such a way that the vectors y are
directly interpretable. Consider, for example, a set of
discrete functions, orthonormal with respect to D. We can
easily restrict our weights x to be polynomials of a

specific degree.

on the other hand the vectors in T might be related to
measured 'independent' variables. In our problems with
ordinal restraints of the form Sx 2 0 we can also write
this as x = Ty, where T contains the edges of the cone
defined by Sx 2 0, and we require, in addition, that
y 2 0. Of course the restrictions

m

2 s..=0

j=1 3
for all L can also be incorporated in this form, but also

the more stringent ones

zij=0

Hms

j=1
for all i. The difference is that only the restrictions on
S are related in a simple way to a particular eigenproblem

without restrictions.

5.4 Special effects

It is interesting to find out what happens in the general
case to our 'special effects' like internal consistency,
the relationship with x2, the geometrical interpretations,
and so on. It is trivial to five a formal generalization

of the internal consistency equations (3.25.). We have
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()2 s, (12a)

If

H'x

Hs (NA )2 Dx, (12b)

1]

The interpretations of these equations is more difficult
than in the PCA case, but equation (12a) tells us that the
optimal direct scores are again the column means of the
induced score matrix S. If D is a generalized inverse of

D, then (12b) can be rewritten as
-1 - -
x= (NA) (D Hs + (1 - D D)y) , (13)

for some real vector y. If we substitute this in (12a) we
find

H'D Hs = NAs -~ H'(I - D D)y . (14)

It is not difficult to check that for the Moore-Penrose
inverse D' we have H'(I - D+D) = 0, and thus (14)

simplifies to the more familiar form

H'D'Hs = NAs | (15a)
which can be used in conjunction with

Cx = HH'x = NA Dx. (15b)

To derive optimal direct scores we can also use the

pseudometric (in the sense of section 3.12.)

— - * -
551 - (ej e;)' H'D'H (ej e;) (16)

and find multidimensional score vectors sj and Sy in such

a way that

d%l = (zl - zj)'(z1 - zj) (17)

optimally approximates 6%1 in a (generalized) least

squares sense. In most cases D is not diagonal and the
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simple set theoretical interpretation is not wvalid any
more. Observe that both H and D can be partitioned into
subsets corresponding with the N sets of variables. It is

easy to see that
inty = mnt ot
H'D H H1D1H1 + ... + HNDNHN, (18)

and thus Gij i?n be partitioned into N components too. The
components (Gjl)2 are Mahanalobis-type distances between
the vectors h? and h% in the space whose (obligue) axes

are defined by the dispersion matrices of the sets of
variables. Subsets with large variance contribute
relatively little to the overall distances. The reproduc-

ibility equations are

1 1 1
= 2 ] i 1 2 '
H N D(}\O X,S + Alxls1 + ... + Avxvsv), (19)
and
= t t
C N D(}\OxoxO + ... + Avxvxv) D. (20)

The separating hyperplane interpretation still holds.

Again

N23A2 = 33 Tr((D7)%c. DI ¢ (D7)%) (21)

L LMDM ML' L !
with CLM the cross-product matrices between subsets,
CLL = D;. It follows that the diagonal terms of this
summation are equal to the rank of the DL , 1.e.
2522 =
NesA 3 R(DL) + 3 2 Tr(QLM), (22)

L#¥M

with QLM the scaled cross product matrices from (21). The
nondiagonal terms in (22) are x2-analogues for a
complicated hypotheses of independence which says
(roughly) that CLM L
essentially bivariate treatment of the problem we have run

can be predicted from D_. and DM' By our

into complications once again, in the multinomial
extensions of multivariate analysis the X2 measures and

the hypotheses of independence and interaction come out
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much more elegantly.

By following the argument in section 3.8. it is easy to
see that the stationary equations in the multinormal case

can be derived from

B = (a!Ca, + alC0, + ... ), (23a)

T (23b)

1]
_
=3
(]
o
2
o
+
=3
o
=3
+

where C is the complete and D the within part of the
population covariance matrix, and superscripts denote
taking all elements to the power s (of course it only
makes sense to assume multinormality of the variates, not

for factors!). The stationary equations are
cSa_ = NA D% (24)
S s’

for all s = 0, 1, 2, .... Again s = 0 takes care of the
trivial solution, s = 1 is the multinormal solution we are
interested in, and for s > 1 we find further uninformative
solutions. Again we cannot expect the nice relationships
with contingency to hold, but in practice it still may be
possibie to detect and isolate multinormal effects.

5.5 Numerical and binary variables

If the categories of a numerical variable. have prior
scores y; satisfying e'Diyi = 0 we reduire xt = asyy for
all i, then A = (ao'Ca)/(No'Da), and C and D are the
ordinary dispersion matrices used 1in multivariate
apalysis. For binary variables we can require

x! = ui(—ni_ ni+) and we obtain the same result as in
3.15. Observe, however, that the restrictions for binary
variables in the general case are real restrictions unlike
those in PCA in which they were a means of simplifying the
computations. This is because the natural restriction in
the general case is ZsLj = 0 for all L, or
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.Z (ni+xi+ + ni_xi_) =0, (25a)
1eN
L
and not Zzij = 0 for all i, or
n, L X, + ng _X;_ = 0, (25b)

Of course the restrictions considered in this section are

part of the general theory in 5.3.

5.6 The case n = 2

In the case that there are only two subsets the problem
simplifies in the same way as in section 3.10. We can

order the variables in such a way that the stationary

equations are

and this simplifies in the usual way to the related system

Ey = upCX, (27a)
E'x = pDy, (27b)
with p = 2A - 1. Suppose for the moment that E is n x m

with m € n.

Again any one of the m solutions of (27) corresponds to a
pair of solutions of (26) whose values of A add up to one
(cf equation 3.50 and the discussion following it). Using
the linear restriction X = Ta and y = UB reduces the

second system to

T'EUB = uT'CTa, (28a)
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U'E'Te = p U'DUB. (28b)

5.7 Improper solutions

An interesting question in this context is what happens to
our improper solution if only for some of the variables we
use linear constraints, and not for others. The question
is in how far the analysis of section 3.18. generalizes.
Define a vector t with as elements the reciprocal of the
number of nominal variables in the subset on which no
linear restrictions are defined. The elements correspond-
ing to variables with linear restrictions are zero. Then
t is the improper solution with A = N/N, where N is the
number of subsets which contain variables without
restrictions. Moreover t'Dt = Nm, and thus the deflation
procedure replaces Cik by Eik = Cik - % Dtt'D. It follows
that we can replace Cik by Cik right away and leave D un-
changed. Observe, however, that this 1s not the same as
transforming the corresponding rows of H to deviations
from the mean, because this last procedure also changes
the cross products with the restricted variables. In most
cases, however, we do réquire Zzij = 0 for numerical and
binary variables, and in this case we can transform all

rows of H to deviations from the mean.

5.8 Some familiar special cases

In this section symbols like (nl)Nu(nZ)No(n3)Bi(n4)Or are
used to indicate a situation in which there are 4 sets,
the first set contains n; numerical variables, the second
set n., nominal ones, the third set n, binary ones, and the

2 3

fourth set n, ordinal ones. Examples:

Case (n-1)Nu(l)Nu : multiple linear regression.
Case (n-1)Nu(1l)Bi : discriminant analysis.

Case (n-1)Nu(l)No : canonical discriminant analysis.
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Case (n-1)No(l)Nu : analysis of variance.

Case (nl)Nu(nz)Nu : canonical analysis.

Case (nl)No(nz)Nu : multivariate analysis of variance.
Case (1)Nu(l)Nu...(l)Nu (n times) : principal component

analysis.

This covers most of the cases usually discussed in text-
books on multivariate analysis. The nonmetric breakthrough
has given us a number of techniques which result from the
classical cases by replacing Nu by Or. Thus we have non-
metric multiple regression (n-1)Nu(l)Or and monotone
analysis of variance (n-1)No(1)Or. In the analysis of
variance techniques, by the way, the nominal variables in
the first set are ways of classification. For a complete
factorial design each main effect and each interaction
defines a nominal variable, and the within matrices Cik
have a very simple structure. The same thing is true for
other balanced designs like Latin squares and BIBD's.
Another special case that is known in the literature is
N-set matching (nl)Nu(nz)Nu... (nN) Nu.

We have shown that the classical multivariate techniques
are special cases of our general subsets-of-variables set
up with linear restrictions. To make the relationships
somewhat clearer we emphasize that any nominal variable is
already treated as a subset of binary variables. In this
sense it is indeed true that binary variables are the most
basic type. A PCA of n nominal variables 1is already
equivalent to a n-set matching of sets of binary variables
(with the special property that the within set cross
product matrices are diagonal). The only techniques in
which there is no grouping of the variables in any sense
is the PCA of n binary or of n numerical variables with

restrictions xX. = a.VY..
ions X, iYi

123




5.9 Relations with PCA

In this section we show that using linear restrictions is
general enough to make the grouping of variables unneces-
sary. Suppose we have a subset of n nominal variables with

ki,.-..
1’ r
the Ti we can reduce this to one nominal variable with ﬂki

kn categories. By using the Cartesian product of

categories. Such a new category is indexed by (ll,...,ln)
with 1 < 1i < ki. We impose the linear restriction that

x(1 ey ln) = xi(ll) + ...+ xn(ln)' (29)

1’
It is easy to see that the matrix Z of induced scores is
identical to the matrix S of subset scores and
consequently the PCA analysis with linear restrictions
defined by (29) gives identical results as the subsets of
variables analysis outlined in this chapter. Of course a
PCA without the restrictions (29) in general gives a
different result, and I can imagine situations in which it
is preferable not to use these restrictions at all. If we
do not use the restrictions the relations with x2 discus-
sed in chapter 3 hold again and we 'test' the pairwise
independence of sets of variables. In the multinormal case

using or not using (29) makes no difference at all.

5.10 Historical

Again the main ideas in this section are not new. The fact
that all forms of classical multivariate analysis can be
interpreted as special cases of canonical analysis was
already emphasized by Bartlett in his famous paper of
1947, Special cases of our nominal variables incorporation
were already investigated by Fisher (1941), Johnson
(1950), Guttman (1959b), and Lingoes (1963). The case
(n1)No(l)No was studied by Fisher (1941) who called it
analysis of variance with optimal scoring and by Carroll
(1968) who called it categorical conjoint measurement.
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The (nl)No(1l)Or case was described by Kruskal (1965), and
implemented by him and Carmone in the program MONANOVA.
The special case (nl)No(l)Or in which the variables in the
first set are all replications was studied by Bradley,
Katti, and Coons (1962). The general case with (nl)Nu(1l)Or
and (nl)No(1l)Or was also studied by De Leeuw (1970) using
Kruskal-type techniques, the special cases (n-1)Nu(l)Bi
was treated in De Leeuw (1968). A related approach to
quantification, from the facet point of view, has been
given by Guttman (1959a). The use of symbols 1like
(4)Nu(1l)No to describe special cases 1s new. For our
purposes these symbols are general enough. In the computer
programs written by Doesborgh (1971) different types of
variables can occur in a single set. This can be described
by a more general notation in which we fix the order of
the types Nu, No, Bi, Or and describe each subset of
variables by a quadruple of indices. Thus PCA becomes
(1, 0, 0, 0)(1, 0, 0, 0) ... (1, 0, 0, 0) (n times) and

the classical multivariate linear model becomes (n}, né,

1 2
ny, 0) (nl, 0, 0, 0).
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SOME SPECIAL TOPICS 6

6.0 Introduction

In this chapter we shall discuss the application of our
general ideas to partial canonical correlation, to image
analysis, and to common factor analysis and its generaliz-
ations. Again the descriptions of the techniques will be
brief, partly because their usefulness has not been
proven, partly because the extensions are straightforward.
wWe conclude with some general remarks on statistical
inference in situations like the ones discussed in this
book, and with some general criticisms. The procedures
discussed in this chapter are not yet programmed for the
computer, and they have not been tried out on real data.
This chapter can be interpreted as a number of suggestions
for further research. Some of these suggestions have
already been partially worked out in a number of related
publications, others will be taken up in the future.

6.1 Partial canonical correlation

One of the things that remains to be done is a generaliz-
ation of the theory of partial correlation in this frame-
work. We shall suppose that the singularities are removed
by the familiar methods, and all we need is a theory of
partial canonical correlation between sets of variables.
As a first example we have sets X, Y, Z and we want to
partial out the contribution of X. The joint cross

products matrix of X, Y, Z is
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The multivariate regression equations are

Cll C
C21 Cc
C31 Cc

12

22

32

(1)

Y = AX + E, (2a)
Z = BX + E, (2b)
and the least squares solution for A and B is
A=c,, c, ¢ (3a)
21 "11 7
B=cC,, C., 1 (3b)
31 "11
and thus the residuals are
Yy=v-c, c.tx (4a)
21 711 !
2 =2 -C, C. 1 x (4b)
31 "11 !

and these residuals are used in a new canonical problem.

The new dispersions are

-1
! = = -
E(YY') = Cyy 1 T €y = Cp1 €11 7 Crov (5a)
E(ZZ') = C =c.. -c..c.. e (5b)
33.1 23 31 "11 13’
E(YZ') = C =c,.-cC.,c..tc
23.1 23 21 ~11 13. (5¢)
The PCA problem with X partialled out has stationary

equations
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= 2A , (6)
C32.1 C33.1 z 0 C33.1| |2
or, equivalently,
Cag3.1 2= HCyy 1 ¥V s (7a)

C32.1 ¥ S HC3p 1 2+ (7b)
Generalization to cases in which we want to partical out
the contributions of several sets of variables and study
the relationship between the others are obvious. 1In
particular this provides useful ways to generalize the
analysis of covariance. From the equations in this section
it is easy to see that only the sets that must be
partialled out should be nonsingular. In the analysis of
covariance, where we partial out numerical variables, this
is likely to be the case. Again the partial correlation
analogues in nonparametric multivariate analysis are quite
different from the ones used here (they are x2 measures
based on conditional probabilities). And again there is a
discrepancy between the psychometric approach to multi-
variate analysis which proceeds componentwise in order to
achieve optimal data reduction and interpretation, and the
statistical approach which concentrates on overall
determinantal criteria to test significance of the

dependencies.

6.2 Image analysis

The ideas of the previous section can also be used in
extending image analysis to sets of variables. Again we
suppose there are no singularities. For each subset the

basic equation is

X = X + X (8)
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Here X. is the part of x, that can be predicted by linear

L L
regression techniques from the remaining sets, and iL is
the residual. Of course it is also possible to do an image
analysis within each of the N sets X In that case we can

write

X, =X, + % +x +% (9)
In general the results for this fourfold partition will
not be identical to those of an ordinary image analysis

for the complete set of variables.

The relevant equations for the twofold partition ar the

following.
Images :
X = 3C. .Cou tx, - x (10)
L LK"KK “K L°
Anti-images:
% = 2 x. - 3C..C,. 1x (11)
L L LK"KK “K°
Image dispersions:
T =c. -2350.c. Yo sssec."le ¢ le (12)
KL KL KP“PP ~PL KP"PP ~“PQ QQ ~QL°
Anti-image dispersions:
¢ =ac.. -4asc,.c..te 4 ssc.c.."te ¢ e (13)
KL KL KP~PP ~PL KP"PP ~“PQ"QQ ~QL°
Mixed dispersions:
c. =20, -asc..Cc."Ye 4 sse.c.."le.c Tl (14)
KL KL KP~PP ~PL KP“PP ~“PQ QQ ~QL’

It follows that, for example,
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Analogues of most of the other identities of image

analysis can also be derived.

6.3 Linear structural models

In this section we study models of the type

xp = ALf + e, (16)
Here X is an observed, and f and e, are hypothetical
vector random variables, AL is 'a known or unknown
coéfficiént matrix. We suppose E(feL’) = 0 for all L, and

E(eLeK') = 0 for all L # K. This implies

E(XLXL') = AL' E(ff") AL' + E(eLeL'), (17a)

E(xLx = AL E(ff')) AK, (17b)

K’)

If we concatenate all vectors, write ¢ for E(ff'), 3 for
E(xx'), and A for the 'diagonal' supermatrix containing

all E(eLeL'), we can write this as
> = A ¢A' + A. (18)

Observe that a more general decomposition is also possible

here. We can write

xp = A f+ Bg +t., (19)
and assume that E(fgL’) = E(ftL’) = 0 for all L, that
E(tLtK') E(tLgK') = 0 for all K # L, and that E(tLtL')

is diagonal for all L. Write b, for E(ngL'), and T, for

L
E(tLtL'). Then (18) is true, and for all the diagonal
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submatrices of A we have

= 1
AL = B ¥ B!+ T, (20)
Restricting ourselves to the model (16) we want to make
linear combinations x'a and f'p that have maximal product
moment correlation. The stationary equations turn out to
be

AdB = A(AQA' + A) «a, (21a)

OA'a = A¢B. (21b)
Assume that ¢ is nonsingular, then

B =A " Ala, (22a)
and

2
(2 = A) a = 725 Aa. (22b)

If A, ¢, and A are all unknown, then we can require for
1

identification purposes that ¢ = I and that A'A A is
equal to a diagonal matrix Q. If we collect all solutions
to (22b) in the matrix A, then the equation

(AA' - A) A = AA A2 (I - A2)7L, (22¢)

1

has the solution A = AT"A and A2(I - A2) - = Q - I. The
-1

corresponding solutions to (22a) are B = A "Q.

1

6.4 Error-free subsets

Suppose that there are two sets of variables x and y such
that

X = Af + e, ’ (23a)
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y = Bf. (23b)

Then

1 1
I AGA' + A AYB
3 = = , (24)

1] 1
5,1 2y, BoA BB

The canonical problem (22b) transforms to

211 - A 212 ul L2 A 0 ul
= T-5 , (25)
221 222 o, 0 0 a,
It follows that
a, = =571 5.« (26)
2 22 2171’ :
and
- ~ A2
(211 - 4) (Xl S Y- A(Yl, (27)
with
< _ -1
211 T 211 T %12%22 221 (28)

Consequently if some of the variables are observed without
error then we can partial these variables out right away,
and restrict our attention to the others. This is of
special interest if some of the sets are factors.

6.5 An alternative approach

In 6.3. and 6.4. we maximize the homogeneity of linear
combinations of the observed scores X with linear
combinations of the structural parts ALf. This 1s a
natural approach, but an obvious alternative is to make

linear combinations B,'A f of the structural parts only,
L 'L
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and to maximize their internal homogeneity in the sense of

chapters 3 and 5. This gives the stationary equations
(2 - A) B=NAEO B, (29)

where © is the diagonal supermatrix with submatrices
OL = ZLL - AL. If some of the sets are error-free we can
make a partition as in 6.4., and we find

(le - Al) Bl = N)\(Z11 - Al)Bl. (30)
6.6 Some special cases

It 1is obvious that if AL is a square, nonsingular

transformation, then we can simply rewrite (16) as

x. = f + e

L L L’ (31)

3 A
with E(fLeK )

the familiar decomposition into true and error components.

= 0 for all L, K. This can be interpreted as

In this interpretation it is sometimes possible to
estimate the AL by split-half, test-retest, or parallel
forms. If each set contains only one variable the elements
of (the diagonal matrix) A are the error variances, and
applying the procedure in 6.5. means finding the
components of the correlation matrix corrected for’
attenuation. One interpretation is thus that we are
maximizing the homogeneity coefficient which is corrected
for attenuation. The procedures in 6.3. finds those linear
combinations of the observed variables which have maximum
reliability. If A, ¢, and A are all unknown, then (22b) 1is
the fundamental equation of canonical factor analysis,
while (29) defines alpha factor analysis. Sections 6.3. -
6.5. make it possible to define CFA and AFA versions of
all the multivariate procedures discussed in chapter 5,
including the case in which some of the sets are error-
free. This last specification, for example, defines two

different versions of MANOVA in the common factor or true
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SCore space.

6.7 Cluster analysis

In this section we discuss some simple versions of cluster
analysis that fit neatly into the framework of chapter 5.
Suppose we have a set of n nominal, numerical, or ordinal
variables in the first set (matrix X), and a single
nominal item with an unknown classification but a known
number of k categories in the second set (matrix Y). Our
general two-set rationale tells us to maximize w'SY'z over
w, 2z, and Y under the conditions that z'YY'z =wXX'w =1,
and that Y 1is a binary matrix corresponding with a
partition of the m objects into k subsets (we suppose that
all linear restrictions are incorporated into X, and
specially inj = 0 for all i). For fixed w and Y we find
that the optimal z satisfies

z = (YY') lyx'w. (32)

Thus we want to maximize

W'XY' (YY) lyxtw = A, (33)

on the condition that w'XX'w = 1 (or: maximize the between
cluster SSQ, with the total SSQ constant), and on the
condition that Y is a k-category classification matrix.
This problem can be solved for fixed w by fast and
reliable integer programming algorithms using the 'string
property’' of optimal solutions, for fixed Y the optimal w
is of course simply the dominant eigenvector of the B/T
maximization problem corresponding with (33). We alternate
minimization over (one-dimensional) w and over the binary
Y. If the maximum is reached (i.e. if Y does not change
from one cycle to the next) we compute the corresponding
z, which simply contains the within cluster means of the
induced score vector Xw. This 1is computationally a
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relatively simple procedure, it can be repeated by
requiring orthogonality over successive direct quantifi-
cations; i.e. we solve the problem all over again, but now
we also require v'XX'w = 0, and use generalized inverses

to remove the effect of w right away.

A much more complicated procedure is to maximize

1

trf () By (vyr) "l (xxt) 7y, (34a)

or

“lyxr(xx1)"% (34b)

(Xx') TRy (YY)
directly over Y, and compute all orthogonal solutions w
and z for this single optimal clustering. This procedure
is computationally very demanding and requires complicated
and not necessarily convergent search procedures over the
discrete set of all k-category classifications. If we
maximize (34a) a good initial approximation can be
computed by relaxing the requirements to the single one
that YY' is diagonal (and not necessarily binary). In this
case it is easy to see that the optimal solution for
Y'(YY')_% consists of the k dominant normalized eigen-
vectors of the matrix X'(Xx')-l

starting point for our previous cluster procedures, for

X. This may provide a good

example by using an apporpriate rounding algorithm that
transforms the solution to the closest binary matrix.

Finally we observe that single partitions are the
simplests forms of clusters we have. We can define much
more general forms of clustering procedures by using
essentially the same ideas. The second set can consist of
several partitions, of trees or hiérarchical clustering
schemes, of lattices or partial orders, and so on. In
general this defines very complicated computational
procedures, which may or may not be worthwhile. Of course
it is also perfectly possible that the vectors in X
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contain independent error in the sense outlined earlier
in this chapter. This complicates the algorithms even

further.

6.8 Statistical procedures

In chapter 1 we have already indicated in which sense
statistical inference procedures are important in our
class of techniques. We do not have very specific models,
we usually do not want to assume multinormality (if we
want to assume multinormality more powerful statistical
techniques are available, also for exploratory purposes).
This means that the model for the indicator matrix is
usually a product multinomial model. The ways of
classification are used to structure the product, the
variates define the multinomial distributions. The multi=-
variate vectors of frequencies are asymptotically jointly
multinormally distributed, and the elements of the
matrices that enter into the generalized eigenproblems are
linear functions of these frequencies (even in the general
setup with 1linear restrictions from chapter 5). Two
obvious generalizations, which will not be discussed, are

Markov dependence and loglinear models.

In the first class of statistical problems we are
interested in we have two random square symmetric matrices

¢ and D whose elements satisfy the structural equations

_sak g 0
Sij = Zaij Xy + aij’ (35a)
sk 0
9ij = Thyj E¢ * Pyj, (35b)

The a5 and bij are known real numbers, the X, are jointly
asymptotically multinormal with means Hy and covariances

Ok We are interested in the asymptotic distribution of
the eigenvalues and the left and right eigenvectors of the

matrix D_lC. Throughout this section we assume that all
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eigenvalues are simple. We use the standard results from

perturbation theory. Let

* kl
X, = xk + 677, (36)
then
Y= + car 37
Ci3 = Sij €ay 4. (37a)
dr. = d.. + ebt 37b
ij = 935 * ebiye (37b)
or
*
c = C + 5A1, (38a)
*
D = D + eBl. (38b)
If ¢ is small enough we may write
L - - - -
(0"t =™ - ep7lB D7t 4+ L. (39)
and thus
K - * - - -
(0 )7lc* =plc - edlc v e D7TAL + ... (40)
Suppose
plcz =a_z, (41a)
s s “s
t =
zg z 1, (41b)
cp~t y. =AY (41lc)
s sisg’
] —
Yo Y 5 1. (414)
It follows that
-1
z, « D Y- (42)

According to standard perturbation theory
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-1 -1 -1
' -
CIN Y (D""A; = D "B,DC) z _
]
axl ys zs
t
— Zs (Al AsBl) Zs _ s
- 2 'Dz =g, (43)
s s
and
' -
92is = s Ze' (A~ AgBy) 2z z. = nis (44)
9 X it 1 -

- ]
1 t#s (As At) zs Dzs

The 6&-method gives that the Xs and the 2is are jointly
asymptotically normal. We find, for example,

. t
ACOV (R, A, ) =3 I g° g: 0,4, (45a)
s' "e! T2 12 Tk 91 %kl
. . _ is . jt
ACOV (2o, 254) —kil 121 h® hi" oy, (45b)

In the general case we do not simplify this any further.

In a more complicated case we have (C not necessarily

symmetric)
c.. = saf, x, +a%,, (46a)
~ij ij Tk 1)
diy = IbE; %+ BYS, (46b)
o5 = TELS X+ £55 (46C)
and the eigenproblem is
E-lepTiez = Ay 2, (47a)
zs'zS =1, (47b)
co ey, = A v, (a7¢)
vg'vg = 1. (474)

Again
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z_ <« E Ty, (48)

s s
Letting
* _ kl
X = X + €677, (49)

we now find
")y Ly o leh =

1 1 1 1 1

- - - -1 - -
- 1 1 -
(E"7=¢E"F D "+...)(C'+eA;')(D "-¢D "BD +...)
(C + sAl) =
glcplc + s(E'lc'D'lA1 + E'Al'D'lc -
E'lc'D’lBlD’lc - E’lFlE'lc'D'1C) + ..., (50)
Letting
u =Dtcz (51)
s s’
we find
1 - t - '
BAS _ 2 ug AlzS ug Blus AS zg FlzS ) (52)
X z 'Ez
1 s s

and so on. Again we do not simplify these formula's
because very specific simplifications are possible in

special cases.

As a simple example we consider a general form of the
techniques discussed in chapter 4. We suppose that there
is a number of fixed symmetric matrices Al’ ey Am.
wWe define

(53)
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where ﬁl is the proportion of the n subjects (occasions,
replications, etc.) that respond with (produce) the
outcome corresponding with the matrix A, . If the A, are

the observed matrices we can obviously also write
N 1 B
¢ =z i A., (54)

I1f the yy are the normalized eigenvectors of C and As the
corresponding eigenvalues, then

== =y ' A v, (55)

Assuming a simple multinomial model over the matrices we
find

S

AcOV(A_, X)) (Yg'B Y (Y "A Y ) Py -

[~ ]

Mg

m
(vg'A¥g) Py 1i1 (Y¢'AY¢) Pyr (56a)

=R Lo
|

1

We can estimate this covariance by

¢

i

Sl
h~Mg

ECOV(A_, &) . (95'A;9) (9, 'R 9. )/n - A A}, (56b)

Needless to say that we expect that this is only a fair
approximation if n is very large (much larger than m). In
the procedure of 4.2. the Al are equal to the major
product moments of the centered vectors of ranks, i.e.
Ay
m = %K!. In the same way in a paired comparison experiment

= rlrl', and if K is the number of ranked objects then
the method of chapter 4 generates a set of possible

matrices, and in a similarity experiment the same thing is

true.
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As a more complicated example we discuss the technique

from 3.10. The problem is

ce™ict z_ =A_Dz_, {(57a)
s s s

r -—

z 'zg = 1. {57b)

Define

_ _l|

yS = E °C Zg, (58a)
= 1

Yg zS Dzs, (58b)

Here C contains the cell probabilities pij’ and D and E
contain the marginal probabilities. After a lot of algebra

we find

- 2 - - 2
8As (1 As)zks (yls st) (59)

apkl ¥s

It follows that

3> = 0. (60)

N Pri

Detailed formula's for this and other special cases will
be worked out in further publications. The same thing is
true for the more complicated techniques in chapter 4 and
5, and for the essentially different techniques of this
chapter. The asymptotic distribution of the AS and z;  can
of course be used to construct asymptotically optimal
tests in the sense of Wald, and asymptotic optimal
confidence regions in the sense of Wald or Wilks. The
hypotheses we test will mostly be of the form AS = At for
all s, t in a subset of the eigenvalues, or As = ¢ for all
s in a subset. These hypotheses often have no clear
interpretations in terms of a relatively simple
statistical model for the observed frequencies, but this
is of course, unavoidable in explorative situations like

ours. Assuming stochastic independence of the individual
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observations, and assuming a structure in terms of
variates and ways of classification is often about all we

can do.

6.9 Criticisms

The extension of image analysis and common factor analysis
to sets of numerical variables seems straightforward
enough, and there seem to be no extra problems with
respect to interpretation. If some of the variables are
nominal the interpretation becomes much more difficult,
however. In the first place a purely linear model for
probabilities seems to have at most a limited descriptive
value, because of the natural boundaries of probabilities
between zero and one. This is not, as serious as it seems,
because most of our procedures can also be interpreted in
the framework of nonlinear factor analysis (McDonald 1962,
1967, 1968).

Nonlinear factor analysis is, however, a very problematic
class of techniques. The fundamental weakness of classical
Spearman-Thurstone common factor analysis is the indeter-
minacy in the model x = Af + e, investigated by Thomson
(1935), Ledermann (1938), Kestelmann (1952), Guttman
(1955), Heerman (1964,1966), and Schénemann & Wang (1972).
There are no respectable statistical techniques to
estimate factor 1loadings, factor scores, and unique
variance simultaneously (except under highly restrictive
assumptions), and the indeterminacy problem makes the
scientific value of factor scores doubtful. This has as a
practical consequence that from most points of view it
seems better to work directly with the structural co-

variance model

2 = A ¢A' + A, (61)

and to remember (16) only as a possible justification for
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(61). The distinction between linear and nonlinear factor
analysis does not make much sense without reference to the

factor scores.

The problem to describe individuals in common factor space
remains unsolved, although there is always the possibility
to do a Q-type technigue. The model (61) can be used in
the context of nominal variables, it simply decomposes the
deviations from bivariate independence of the nondiagonal
submatrices. The idea of interpreting the diagonal sub-
matrices differently from the rest is, of course,

perfectly natural.

6.10 Historical

Partial canonical correlation analysis is a familiar
extension of both canonical correlations analysis and
partial regression. A satisfactory description of the
various statistical aspects is the article by Rao (1969).
I do not know any practical applications. Image analysis
in the form in which we use it has been proposed by
Guttman (1953). Importaﬁt further contributions have been
made by Guttman (1960), Harris (1962), and Kaiser (1963).
A closely related statistical model is described by
Joéreskog (1963, 1969).

The generalizations of common factor analysis discussed in
6.3 - 6.5 are partly due to McDonald. In McDonald (1968b)
he discussed the general problem of canonical analysis in
terms of maximizing ratios of quadratic forms that can be
interpreted as variance ratios of linear combinations in
models such as (16), (19), (23), and (31). In McDonald
(1969a) he applies the results to the problem of defining
a principal factor analysis (PFA) of n nominal variables,
and in McDonald (1970) he studies the general case of
groups of variables using the Lawley-Whittle equal

residual variance model, the Guttman-Jéreskog image model,
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and the CFA model. In McDonald (1970) the PFA, CFA, and
AFA approaches are discussed and contrasted for the
classical case of one and only one variable in each group.
His conclusion is that CFA has more useful structural
properties than AFA and PFA. This is in agreement with the
conclusions of McDonald & Burr (1967), and Browne (1969).
In McDonald (1969b) the model (61) is generalized to the
case where A can be a general symmetric matrix with zeroes
at specified places. De Leeuw (1972) discusses several

algorithms for this and even more general cases.

McDonald (1970) also describes the procedures discussed in
the first paragraph of 6.6. Meredith (1964) discusses an
AFA-type matching technique which is the special case of
6.5. with N = 2 and Al, A2 both diagonal. The CFA-type
procedure of finding linear combinations that maximize the
reliability is due to Thomson (1940), Mosier (1943), Peel
(1948), and Green (1950). The CFA-model in the classical
case 1is due to Rao (1955), the AFA model to Kaiser &
Caffrey (1965). The CFA equations turn out to be identical
to those for maximum likelihood factor analysis (Lawley,
1940), and minimum determinant factor analysis (Howe,
1955; Bargmann, 1957). CFA can easily be extended to the
more general individual differences models discussed in
4.9.. This has be done by Joreskog (1971).

Structural models of the form (61) with A known have as
familiar special cases the wvariance component models in
ANOVA and MANOVA, the quasi-simplex models investigated by
Mukherjee (1966, 1969) and Joreskog (1970b), and several
others of the general type discussed by Bock and Bargmann
(1966), Srivastava (1966), Anderson (1966, 1968),
Mukherjee (1970), and Joreskog (1970a).

The 'string property' of optimal solutions of cluster
problems is due to Fisher (1958), and it is used by Vinod
(1969) and Rao (1971) to devise efficient integer
programming algorithms. The alternative approach based on

145




(34a) or (34b) is discussed by Friedman & Rubin (1967).
The first eigenvector approximation to these solutions was
discussed by Wiley (1967) wunder the name of latent
partition analysis. Perturbation theory is discussed, for
example, in Wilkinson (1965, p. 62-70). In a psychometric
context it was used by Derflinger (1968) and Clarke (1970)
to compute the first and second partials in ML and LS
factor analysis. The &-method is discussed by Doob (1935),
Mann & Wald (1943), Hsu (1949). The relevant theorems are
beautifully summarized in Rao (1965, section 6a.2, pp.
319-322). The relevant asymptotical statistical theory is
almost completely discussed in Wald (194la, 1941b, 1942,
1943).
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EXAMPLES 7

7.0 Introduction

In this chapter we give examples of some of the procedures
discussed in the previous chapters. We used PL/I programs
from the old CDARD series, from the more recent CARDP
series, a very general new program CANON1l, and some ad hoc
programs written in APL. The procedures discussed in
chapter 6 are not yet programmed for the computer. Wwe
supplement some of the output of the canonical techniques
by results obtained using other techniques. We tried to
select a small number of interesting examples, which do
not offer too much interpretational or computational
difficulties, and which are consequently not completely
representative for the types of data to which our
procedures can be applied. Large scale applications in
traffic research and in a survey of Dutch parliament
members are 1in preparation and will be published
separately. A large series of FORTRAN programs is prepared
in cooperation with the computing center of the
university. We want to thank professor Lammers and
professor Daalder for their permission to use their data

in this chapter.
7.1 Data 1: students and politics
The first set of data (provided by prof. Lammers) is given

in table 1.1.a - 1.1.1. The Dutch student council NSR
collected in 1968 first choices among the five major
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political parties of 1616 university students. The sample
was stratified over 12 universities and 13 faculties (i.e.
the total number of students in each university-faculty
combination was fixed, universities is a factor, only
political choice is a random variable). The three marginal
two-dimensional tables are given in 1.2.a - 1.2.c (observe
that 1.2.a is completely fixed, 1.2.b and 1.2.c are of the
comparative trial type, i.e. one marginal is fixed), the

abbreviations used are:

Faculties Political parties

JUR Law. CONF Denominational

MED Medicin parties (KVP, ARP,

W&N Math. & physics, CHU, GPV, SGP).
chemistry. VVD Conservatives.

SOC Social sciences. PvdA Socialists.

LET Literature, language. PACO Pacifists, communists.

TEC Technical. D'66 Pragmatists.

PSW Political & social.
VEE Veterinarians.

TND Dentists.

THE Theology.

LBW Agriculture.

CIF Philosophy.

ECO Economy.

I think that most political scientists (cf. Stapel 1968,
Daalder & Rusk 1971) would agree on the following order of
the parties on the (conceptual) left-right dimension

PACO ~~» PVvdA =--» D'66 --> CONF --»> VVD,

and the following partial order on the conceptual

dimension of religious affiliation

148



VVD

,//////’ \\\\\\\*

CONF ——— D'66 ————» PACO

\\\\\\\\*>PvdA

(cf. also De Leeuw 1968, De Gruyter 1967).

As a first result we have analyzed the marginal tables
1.2.b and 1.2.c with the techniques from section 3.10
(results previously reported in De Leeuw 1971a, 1971b).
We used the program CARDO1P. The first two components are
given in tables 1.3.a and 1.3.b, and plotted in figures
l.4.a and 1.4.b. The corresponding partition of the total
x2 of the tables is given in 1.5.a and 1.5.b (observe that
the three components are not independent x2, not even on
the hypothesis of complete homogeneity of rows). The
interpretation of the results is beautifully clear. If we
compare the projections and the rank orders we find that
in 1.3.b the first dimension is left-right, the second is
religious affiliation. In 1.3.a the role of these two
dimensions 1is interchanged, i.e. students pooled within
faculties over universities use the left-right dimension
in their political <choices, students pooled within
universities over faculties use the religious dimension.
Of course the fit to the conceptual order can be improved
by using oblique nonmetric Procrustus rotation (De Leeuw

1969a), but this is hardly necessary.

Lammers (1969) used prior integer scores for parties
corresponding with the linear order we discussed for left-
right. This defines an induced quantification for
faculties which corresponds closely with our computed
direct canonical quantification (plot in figure 1.6). The
corresponding partition of x2 is given in table 1.7.a. The
main difference between the two quantifications is the
score for theology, which is not surprising because of our
second dimension. In Lammers'scoring system theology is a
faculty somewhere in the middle of the scale, in our

quantification it is clearly on the left side of the scale
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(and, in fact, this supports Lammers' conclusions from his
data even better than his own scores seem to do). In a
factor analysis terminology there is only one common
factor, and theology has a large unigue variance. Because
of the results of our second canonical analysis it is also
not very surprising that Lammers' scores perform poorly on
table 1.2.c. The partition of x2 is given in table 1.7.b.

In table 1.8.a we have formed all possible combinations of
parties and computed the within group x2 (the order here
is CONF =--» VVD --»> PvdA --» PACO --» D'66, and thus 10010
means the group CONF - PACO). Of course the within group
x2 of 11111 is equal to the total x2, and the within group
x2 of groups consisting of a single party is zero. In
table 1.8.b these within components are used to make
additive within-between partitions of x2. In a sense the
ideal situation in a parliamentary democracy is a
governmental coalition that is as homogeneous as possible
and an opposition that is as homogeneous as possible. This
implies that government and opposition must be as
different as possible from each other. The student data
imply that the best possible situation is a government
consisting of CONF - PvdA - PACO - D'66, and an opposition
that consists of VVD only. The second best situation is
close to the actual situation in The Netherlands. We have
CONF - VVD in government and PvdA - PACO - D'66 in the
opposition. If the opposition is divided into two groups
we find another situation close to the actual one (CONF -
VVD in govermment, PvdA - D'66 in opposition 1, PACO in
opposition 2) also satisfactory in terms of homogeneity.
Due to more recent political developments it may be
interesting to observe that
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10101
01000
00010

is even better.

We also analyzed table 1.1 with a PCA program for three
categorical variates called CARDO4P. Observe that this is
not the correct probabilistic interpretation of these
data, and the consequences of this are interesting. In
table 1.9 all weights which are in absolute value at least
.010 are given for the first seven components. The

interpretation is

I TECHNICAL wuniversities can -be found in DELFT,
DRIENENOORD, EINDHOVEN.

11 An AGRICULTURAL university can be found in
WAGENINGEN.

IIT ECONOMICAL universities can be found in ROTTERDAM,
TILBURG.

v POLITICAL dimension 1.

v POLITICAL dimension 2.

VI You can only become a VETERINARIAN in UTRECHT.

VII 7?27?72

Factors I, 1I, 1II, 1V, and possible VII are almost
completely determined by the peculiarities of the (non-
random) table 1.2.a. Only factors IV and V seem to have
some political relevance. It can be seen that IV contrasts
the left with the denominational right, and V contrasts
the denominational right with the non-denominational right
(i.e. V contrasts the two meanings of the word 'right! in
political language, cf. Stapel, 1968).
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7.2 Data 2: leaving primary school

The second set of data is given in table 2.1.a - 2.1.h. In
1970 we collected data in eight GLO schools in Leiden. For
each of the pupils of the 6th grade we recorded the
occupation of the father and the type of secondary
education the pupil was going to have after leaving
primary school. Previous analysis of similar, more
extensive, data indicate that all types of secondary
schools «could be <classified without much loss of

information as

A: HAVO, MAVO, VWO.
B: LTS, LHNO.
C: LAVO, LEAO.
D: BTS, INOM, MEL.

The implied partial order (either in terms of difficulty,
or intelligence, or expected later income, or social

status, or what have you) is

The occupation of the father was classified into five

categories (a linear order is implied).

o: Academic, directors,...

B: Higher white collar, army officers,...
y: white collar, shop keepers, ...

6: Lower white collar, skilled labour, ...
€ Unskilled labour.

The information was collected directly by the principals
of the schools who also did the classifying of the fathers
{the social status scale is, of course, a rather weak

point in the data gathering procedure). In table 2.1 rows
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refer to occupations, columns to school types. The bi-
variate and univariate marginals are given in 2.2.a -
2.2.c.

Previous analysis of similar data had given us the idea
that almost all variation in the marginal table 2.2.c is
due to the distinctions (a, B, A) versus (6, €), and A
versus (B, C, D, E). Accordingly we have defined the
4 x 4 = 16 contrasts displayed in table 2.3. The last two
columns of 2.3 contain an exact and an asymptotic
partition on x2. The only significant single degree of
freedom chi-squares seem to be: (a, B, A) go more to A
than (6, €); (a, B) go more to A than A; 6 goes more to A
than ¢; and, possibly, of all (8, &) not going to A, §
goes more to (B, C) and & goes more to (D, E). The simple
partition A versus BCDE explains about 80% of the total
x2, and the within BCDE component is not even significant
(table 2.4.b). This seems to suggest that our school
system concentrates on separating the A candidates from
the rest, and that the choice between BCDE is considered
less important. On the other hand the data set is small,
the number of people not going to A is even smaller, the
number of zeroes 1in table 2.2.c 1is large, and the
asymptotic distribution theory may be gquite misleading.
This means that we must be careful with our interpre-
tations of the BCDE effects. That the linear order on the
occupations is there in an overwhelming way (with respect

to A-going or not-A-going) is obvious enough.

A more refined analysis, at 1least from the data
theoretical point of view, 1is the canonical method of
section 3.10. Using the APL program CACTOl we found that
the first component had a x2 of 85.756 (corresponding with
a canonical correlation of p = .593). The joint scale in
figure 2.5 shows that our prior orderings are reproduced
quite nicely. The most remarkable features are the large
distance between A and BCDE (remember that x2 for this
prior contrast was 82.374,very close to the optimum), and
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the large distance between A, 6, and &. Our ‘'crude'
conclusion that the differentiation between BCDE is more
or less random does not seem to be completely wvalid.
Another interesting question is in how far we can predict
choice of secondary education from the two remaining
variables. The technique is discussed in chapter 5, the
program used was CACT02, written in APL. There are two
significant components with squared canonical correlations
pi = .516 and p% = .231. The joint plot is given in figure
2.6. Again the main effects appear to be A vs BCDE and BC
vs DE. They are closely related to aBA vs 6e, and § vs €.
Again it is remarkable that the cluster A/upA/OP,LO,LL,DR

is very homogeneous, much more so than the other clusters.

7.3 Data 3: political preference

In 1968 prof. Hans Daalder and his collaborators asked the
150 members of the Dutch Lower House (Second Chamber) and
the 75 members of the Dutch Upper House (First Chamber)
for their preference rank orders of the twelve most
important Dutch political parties. Only 141 out of 150
members of the Second Chamber and only 70 out of 75
members of the First Chamber actually responded. We
analyzed both sets :using the CARDO2P program in two
dimensions, the technique is the one discussed in section
4.2. A plot of the projections on the first two principal
components for the Lower House data is given in figure
3.1.a. Results for the upper house are almost identical,
the plot is given in figure 3.1.b. For the interpretations
it is useful to draw the two arrows representing the two
large clusters PvdA-PPR-D'66 and KVP-ARP-CHU-VVD.
Projections on these arrows (directions) represent the
typical patterns of people in these clusters. Observe that
it is impossible to accomodate the preference rank orders
of the members of SGP, GPV, CPN, PSP, and BP in this way.
In this preference space the fact that there are two

homogeneous clusters, consisting of the progressive (P)
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and conservative (C) parties, and a heterogeneous cluster
of small extremist (E) parties leads automatically to
something closely related to the curved left-right
dimensions discussed by De Gruyter (1967), De Leeuw (1968,
1969b), Van de Geer (1970). The major preference patterns
are (P)(C)(E) and (C)(P)(E), and they can be accomodated

in two dimensions by the vector model as follows

(for the distance model basically the same thing is true).
Observe that the curved dimension necessarily has some
holes. If we plot the induced scores for individual
members of parliament the heterogeneity within parties
will tend to take care of filling these holes. In figure
3.2 we have plotted the 141 members of the lower house
(the scales of 3.1 and 3.2 are not directly comparable, we
could make them so and draw a joint plot). Observe that
the hole between the clusters is still not completely
filled. The code used in 3.4 is: PSP = p; PvdA = qg;
D'66 = d; PPR = r; KVP = k; ARP = a; CHU = c; VVD = v;
BP = b; SGP = s; GPV = g.

We compare the CARDO2P output with a number of related
results. In the first place Daalder and Rusk (1971)
analyzed the same Lower House data with Roskam's UNFOLD
program (cf Roskam 1968). The plot is given in figure 3.3.
It is a nice illustration of a point we made in 3.23, and
earlier in 1.3. The UNFOLD program tends to degenerate the
configuration, not only by moving the very unpopular BP
far from the other parties, but also by collapsing
homogeneous subgroups of parties into single points. It is
possible that if we increase the precision and continue

iterating then BP moves even farther out, and our (P) and
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(C) clusters collapse even more (this is related to the
fact that Kruskal's stress is very flat near the minimum).
Daalder and Rusk show that by moving BP to the arbitrary
point BP' the stress increases from .119 to .121. This
calls for two comments. The flatness of the stress
function has the advantage that the simple gradient method
is relatively effective. If we try to minimize the simple
transform 1ln S/(1-S) or St with t >> 1 with simple
gradient methods we may be in some computational trouble.
in the second place it has been convincingly argued by
Torgerson (1965) that the degenerating effects of MDS
programs may be very helpful for some data sets, and in
the NMSPOM programs (De Leeuw, 1970) we have a special
parameter which regulates collapsing and which can be used
to make the MDS program into a cluster analysis program.
In our particular data set we have seen that the cluster
interpretation is very helpful, but the CARDO2ZP program
gives much more additional useful within-cluster
information than the UNFOLD program does. A comparison of
3.1.a and 3.1.b shows that the within-cluster information
is reliable. Further information on these data and their
relevance for political science can be found in the
article of Daalder and Rusk (since then published in S.C.
Patterson (ed): Comparative Legislative Behaviour, New
York, Wiley, 1972).

Iin the second place it may be interesting to compare our
results with other political preference data analyzed by
the similar CDARD2 program, and reported in De Leeuw
(1968, 1969). The data from a sample of 100 psychology
students collected by Dr. Leo van der Kamp in 1968 and
plotted in figure 3.4 show that the situation here is
somewhat different than in parliament. The progressive
students choose D'66 or PvdA, the conservative ones choose
VVD. The denominational group KVP - CHU -~ ARP 1is very
unpopular amongst students (cf also data 1). They have
only 16% of first choices in this sample (in the Lower
House sample 49%), the vvD has 31%, D'66 23%, and the PvdA
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19%. Although the within-cluster preferences are
completely different in this sample, the same clusters are
still there. The situation is again completely different
if we analyze the data of 80 districts in Amsterdam during
general elections for parliament in february 1967. In
figure 3.5 we set three different scales, one general (G),
one for the establishment (E), and one for the people who
are not satisfied with the current system (U). It is
important to observe that CPN, BP, and PSP were all very
popular in Amsterdam at that time (having about 407 of the
total popular vote). A more precise analysis of the
individual districts shows that some of them have a hard-
core CPN vote, but other districts have a 'dissatisfied!’
CPN vote (in these districts the BP vote is also very
high, and between elections a lot of people switch from BP
to CPN and back).

7.4 Data 4: Political similarity

The conditional similarity matrix in table 4.1 was
obtained by summing conditional rank orders for 11
subjects (also collected in 1968, subjects were students
and staff members of the psychological institute). We use
the data to illustrate the DSCN technique from section
4.6. There are two large eigenvalues, the projections on
the first two principal components are plotted in figure
4.2.a. We can compare this with the output of a 'proper'
nonmetric analysis by using the results from the NMSPOM
program (Minkovski exponent 2, error weighing 2, cf De

Leeuw 1970). This is plotted in figure 4.2.b. The distances
constructed by the two different techniques in two
dimensions are plotted against each other in figure 4.3.
The NMSPOM solution can be interpreted as a two-
dimensional solution, with the major dimension standing
for 1left-right and the second dimension for religious
affiliation (in general rotation is not necessary for

NMSPOM because we use floating point exponents for the
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power metrics). This interpretation has some unsatisfac-
tory features, an alternative interpretation is that we
have a considerable variation around a single linear left-
right dimension. The DSCN solution is more easily inter-
pretable, and gives us a small amount of scatter around
the familiar curved left-right dimension, already found
(with varying degree of closure and curvedness) by De

Gruyter (1967), and Roskam (1968, p. 70-76), and since by

many others.

Of course the summation of the data of individual subjects
may very well be questioned in cases like this, and a
conditional TWWD analysis may be much more appropriate. We
used Van der Kloot's CDARD9 program (described in Van der
Kloot 1969), which computes the dimensions successively
with deflation after the iterations have converged (I now
think that simultaneously optimalization for a fixed
number of dimensions is usually better, but there is no
program yet which does this). The configuration (with axes
of equal length) is given in 4.4. The first two dimensions
explain 53 + 13 = 68% of the total sum of squares, which
is quite a lot for such a restrictive model. It is well
known that there is no rotational indeterminacy in models
such as TWWD and TwwI, and therefor it is interesting to
look at the projections on the dimensions. The first
dimension is clearly left-right in the political sense,
the second dimension can be identified with political
extremism. The position of the SGP on this second
dimension is a bit strange (just as in figure 4.2 we
expect SGP to be closer to BP). Inspection of table 4.1
shows that the subjects tend to emphasize the fact that
SGP is a denominational Calvinist party, very close to ARP
and CHU, and not so much that it is also a party on the
extreme right wing in the political sense (in fact our
subjects think that BP is closer to VVD than to SGP). A
little reflection shows that this effect 1is also
dramatized by the fact that we have conditional data. We
must also remember that the first dimension is much more
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important than the second, and that this can not be seen
from figure 4.4. In figure 4.5 we give the weight given by
the various subjects to the two dimensions (vector of
weights scaled to unit length over subjects for each
dimension). There is only a little variation, especially
in the weights for the first dimension, and only subject
10 clearly does not fit into the general pattern. After
rescaling we find that for subject 2 both dimensions are
about equally important (which means that 4.4 is
representative for this subject). For subjects 4 and 7 we
find that the first dimension is about twice as important
as the second. Consequently their configuration is better
represented by figure 4.6, which is much more like 4.2.

7.5 Data 5: politics and attributes

In 1968 we selected 12 political parties and 17
attributes, and we asked eleven subjects (students and
staff members of the psychological institute) for each of
the 12 x 17 combinations if they thought that this
particular party had that particular attribute or not.
Responses for one single subject are given in table 5.1.
Data of this type occur in many situations, and are some-
what difficult to analyse. They could be analyzed by
unfolding type techniques, but the transpose of the matrix
could equally well be analyzed by wunfolding type
techniques. In the GL-SSA series there seems to be a
program that maintains monotonicity within rows and within
columns, but this is also not exactly what we want. As a
preliminary analysis we use the old CDARD1 program, in
which the attributes are hyperplanes that separate the
parties. The results (projections on dimensions 1 and 2)
are given in table 5.2. It is clear from this table that
the BP 1is a straggler, which is due to the fact that
(according to our subject) it is the only negative and
irresponsible party. In table 5.3 we have collected the
signed distances, which are simply the induced scores for
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attributes (proportional to the direction cosines of the
separating hyperplanes). In stead of using those direction
cosines we have drawn 1in hyperplanes that seem to do the
separating at least as good (fiqure 5.4, SGP and GPV are
represented by the single point SG). The only violation of
the nonmetric separating requirements is the fact that BP
is classified as a left-wing party by attribute 3. By
moving BP to the point (BP) we can achieve a perfect SSC
solution in the sense of De Leeuw (1969c) or a perfect
MSA-1V solution in the sense of Guttman (cf Lingoes 1968).
Observe that (especially if we move BP to (BP)) the
circular configuration of political parties is there
again. It is now a small step to see that the attributes
define segments of this circle, 1i.e. there also is a
SSC(E) representation in the sense of De Leeuw (1969c),
and only the attribute opportunism violates it. The
representation is drawn in figure 5.5, and the use of the
ideas of Shepard and Carroll (1966), Roskam (1968), Van de
Geer (1970), and De Leeuw (1969c) can be used to map this
representation into a single dimension. A final type of
representation is the cluster representation in figure 5.6
(cf also table 5.7). In this example we have used CDARD1
as an approximation to the requirements of nonmetric

programs. As such it clearly does an excellent job.

7.6 Data 6: spot patterns

This example illustrates the usefulness of our procedures
in some of the standard situations treated in psycho-
physics. The data are Guilford's spot patterns (Guilford,
1954, p 203). He used 100 different cards with spot
patterns. There were 25 groups of four cards, patterns in
each group having the same number of spots. One single
observer sorted the deck in nine ordered piles, attempting
to keep interpile distances psychologically equal. There
were ten replications of this same experiment. The data

can be collected in a 90 x 100 indicator matrix in which
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each replication defines a 9-category variable, and each
card defines a column. We can apply our PCA procedures
from chapter 3 directly to this matrix, but it seems
appropriate here to require that the direct quantifi-
cations of the ten variables are identical (cf section
3.11). If we also require that the quantifications of the
cards with the same number of spots must be identical we
can use formulas 3.29 and 3.30 for simultaneously direct
quantifications to show that the problem becomes
equivalent to applying the procedure of section 3.10 to
the contingency table given in Guilford (of course the
more complicated indicator matrices are not even given by
Guilford). Our analysis consequently maximizes homogeneity
over replications under these natural equality
constraints, it also finds scores which maximize the
correlation and the binormality of the table, which
linearize the regressions, and which try to reproduce the
Benzécri distances. Data analytically the homogeneity
interpretation seems the most natural one by far. The
analysis shows that the data can be almost completely
transformed to binormality, which makes only the first
component interesting. The maximal correlation is close to
.93, the quantification of the patterns is plotted against
the category number in figure 6.3.

Two conclusions are immediately obvious. In the first
place the intervals between extreme categories are
considerably smaller (from the homogeneity point of view)
than the subject thinks they are. This is partially in
agreement with results using the method of paired com-
parisons (Guilford 1l.c. p. 206-207). In the second place
the relation in figure 6.2 is linear and not logorithmic,
which means that if we maximize homogeneity then Fechner's
law does not come out. In Guilford's analysis based on the
method of equal intervals (l.c. p. 204-205) Fechner's law
comes out nicely, but in the paired comparison analysis
the regression of the scale values on the logarithm'of the
number of spots was positively accelerated, i.e. the
relationship also tended to linearity.
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TABLE 1.1.a - 1.1.1.: ORDER: CONF, VVD, PvdA, PACO, D'66.

LEIDEN A'DAM VU A'DAM GU UTRECHT
JUR 1332 9 218 1 0 0 1 1 314 12 2 10 716 1 0 5
MED 320 7 410 7 1 3 1 2 4 6 4 7 18 6 11 9 211
WE&N 215 4 515 6 0 1 0 1 1 413 419 10 14 16 7 21
SocC 512 4 3 14 2 01 0 2 1 8 28 11 19 6 4 51011
LET 5 8 6 3 5 2 0 0 1 0 7 816 8 16 310 4 413
TEC
PSW 1 1 5 0 4
VEE 3 6 1 1 5
TND 0 3 0 0 1
THE 11 3 2 0 5 0 0 0 O 1 0 0 0 O 5 0 0 2 1
LBW
CIF 0 01 2 0 0 0 0 0 1 2 2 6 5 1 01 0 1 4
ECO 4 0 0 0 2 716 8 6 20

WAGENINGEN GRONINGEN DRIENENOORD NIJMEGEN
JUR 2 8 6 0 7 5 7 3 1 6
MED 3 7 3 211 6 9 3 2 5
W&N 7 5 9 212 7 2 2 4 6
SO0C 0 1 1 0 O 4 511 6 10 4 2 5 422
LET 1 5 6 2 6 4 0 8 2 4
TEC 0 7 3 4 5
PSW
VEE
TND 1 2 0 1 1 1 2 0 0 2
THE 1 0 2 0 1 6 0 0 0 5
LBW 11 14 7 6 14
CIF 01 1 1 0 0 01 0 O
ECO 0 0 0 0 1 113 5 0 7

TILBURG ROTTERDAM EINDHOVEN DELFT
JUR 0 01 0 2 2 2 1 0 O
MED g8 7 1 1 7
W&N
S0C 5 1 0 3 6 1 1 3 1 1
LET
TEC 12 7 3 013 24 66 22 20 50
PSW
VEE
TND
THE
LBW
CIF

ECO 311 2 0 9 93315 216
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TABLE 1.2.a.

JUR MED W&N SOC LET TEC PSW VEE TND THE LBW CIF ECO TOT
DELFT 182 182
EINDH 35 35
RODAM 5 24 7 75 111
TBURG 3 15 25 43
NYGEN 22 25 21 37 18 5 11 1 140
DRIEN 19 19
GRONI 23 26 35 36 20 5 4 3 26 178
WAGEN 2 52 1 55
UTREC 29 39 68 36 34 16 4 8 6 240
ADAMG 41 39 41 67 55 11 1 22 57 334
ADAMV 3 14 8 5 3 5 1 6 45
LEIDE 74 44 41 38 27 7 3 234
TOTAAL 200 211 214 243 157 236 11 16 14 36 52 36 190 1616
TABLE 1.2.b.

JUR MED W&N SOC LET TEC PSW VEE TND THE LBW CIF ECO TOT
CONF 33 37 33 28 22 3 1 3 2 19 11 2 24 215
VVD 79 61 40 34 31 80 1 6 7 1 14 4 73 431
PvdA 33 30 45 58 40 28 5 1 0 5 7 9 30 291
PACO 6 19 22 38 20 246 0 1 1 4 6 9 8 158
D'66 49 64 74 85 44 68 4 5 4 7 14 12 55 485
TOTAAL 200 211 214 243 157 236 11 16 14 36 52 36 190 1616
TABLE 1.2.c.

DEL EIN ROD TBU NYG DRI GRO WAG UTR ADG ADV LEI TOT
CONF 24 12 20 8 33 0 20 11 40 27 27 29 251
VVD 66 7 43 12 22 7 46 15 65 59 1 88 431
PvdA 22 3 20 3 22 3 43 8 36 92 5 34 291
PACO 20 0 4 3 13 4 14 6 27 43 3 21 158
D'66 50 13 24 17 50 5 55 15 72 113 9 62 485
TOTAAL 182 35 111 43 140 19 178 55 240 334 45 234 1616
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TABLE 1.3.a:
CONF 029 -.001
VVD -.007 -.017
PvdA -.008 014
PACO -.007 .007
D'66 -.001 .005
DELFT -.003 -.012
EINDH 028 -.003
RODAM 002 -.015
TBURG 007 -.007
NYGEN 012 .009
DRIEN -.022 -.007
GRONI -.006 005
WAGEN 006 -.003
UTREC 002 -.002
ADAMG -.010 016
ADAMV 059 011
LEIDE -.005 -.013
TABLE 1.5.
Canonical
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TABLE 1.3.b:

CONF -.002 024
VvvD -.018 -.005
PvdA 012 -.005
PACO 020 -.002
D'66 004 -.004
JUR -.016 -.000
MED -.004 .003
W&N 008 .000
S0C 017 -.005
LET 010 -.002
TEC -.008 -.000
PSW 019 -.013
VEE -.016 005
TND -.027 -.002
THE 012 .062
LBW -.002 009
CIF 027 -.013
ECO -.014 ~-.006

partition universities

Component 1 113.809
Component 2 66.472
Residual 22.647
Total 202.928
TABLE 1.5.b:

Canonical partition faculties
Component 1 108.050
Component 2 47.870
Residual 21.730
Total 177.650
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LAMMERS PARTICIPATION FACULTIES

Source X2 dfr
Regression 105.546 12
Residual 72.109 36
Total 177.655 48

LAMMERS PARTICIPATION UNIVERSITIES

Regression 61.656 "
Residual 141.272 33
Total 202.928 44

TABLE 1.7
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TABLE 1.8.a:

01111 129.844 00111 35.516 00011 21.097
10111 88.220 01011 97.776 00101 13.688
11011 143.206 01101 90.514 00110 20.010
11101 138.063 01110 121.637 01001 50.228
11110 166.642 10011 66.903 01010 77.142
10101 62.489 01100 72.881
10110 74.176 10001 38.628
11001 96.771 10010 43.558
11010 121.124 10100 46 .354
11100 119.461 11000 56.440

TABLE 1.8.b:
10111 88.220 00111 35.516 11000 56.440
01000 0.000 11000 56.440 00101 13.688
89.435 85.699 00010 0.000
107.527
177.655 177.655 177.655
10110 74.176 11001 96.771 10100 46.354
01001 50.228 00110 20.010 01001 50.228
47.251 60.874 00010 0.000
81.063
177.655 177.655 177.655
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TABLE 1.9:

1 Ll 111 v \ V1 VIl
JUR -.023 -.018
MED -.011
W&N -.011
SoC .012 -.021
LET .011
TEC .038
PSW .057 .020 -.020 .060
VEE -.019 -.022 -.018 .110 .017
TND -.019 .018 -.068
THE -.018 -.039 .042 -.017
LBW .087
CIF .034 .011 .026
ECO .039
DELFT .038
EINDH .038 .017
RODAM .043 -.011
TBURG .034 .012 -.045
NYGEN -.012 .013 -.012 -.022
DRIEN .038 .012
GRON1 -.015
WAGEN .084
UTREC -.012 .029
ADAMG .020 .010
ADAMV -.036 .043 -.013 .031
LEIDE -.022 -.017
CONF -.021 .017
A% -.016
Pvda .013
PACO .012
D'66
A .672 .658 .539 .480 .451 422 .397
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TABLE 2.3:

o Py b ¢ A B CDE exact. asymp .

1 +1 +1 +1 -1 -1 +1 -1 -1 -1 -1 66.646 66.646

2 +1 +1 +1 -1 -1 0 +1 +1 -1 ~1 .854 1.980

3 +1 +1 +1 -1 -1 0 +1 -1 +1 -1 .513 1.189

4 +1 +1 +1 -1 -1 0 +1 -1 -1 +1 . 180 417

5 +1 -1 0 0 O +1 -1 -1 -1 -1 .000

6 +1 -1 0 0 O 0 +1 +1 -1 -1 .000

7 +1 -1 0 0 0 0 +1 -1 +1 -1 .000

8 +1 -1 0 0 O 0 +1 -1 -1 +1 .000

9 +1 +1 -1 0 O +1 -1 -1 -1 -1 4.628 12.404

10 +1 +f -1 0 0O 0 +1 +1 -1 -1 .467

11 +1 +1 -1 0 O 0 +1 -1 +1 -1 .280

12 +1 +1 -1 0 O 0 +1 -1 -1 +1 .093

13 0 0 0 +1 -1 +1 -1 -1 -1 -1 11.046 10.743

14 0 0 0 +1 -1 0 +1 +1 -1 -1 8.070 3.244

15 0 0 0+1 -1 0 +1 -1 +1 -1 2.675 1.527

16 0 0 0+1 -1 0 +1 -1 -1 +1 4,263 2.174
TABLE 2.4.a: TABLE 2.4.b:
Environment xi dfr P School xi dfr P
Within ofy 5.527 8 .30 Within A 0.000 0 -—-
Within &¢ 26.054 4 <.01 Within BCDE 17.400 12 .14
Between offy-6¢ 68.193 4 <.01 Between A-BCDE 82.374 4 <.01
Total 99.774 16 <.01 Total 99.774 16 <.01
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PvdA " 38 90 86 40 54 66 34 76

PSP 33 11 87 83 31 60 66 49 75
BP 79 83 11 36 83 53 56 61 33
SGP 76 90 48 11 g2 35 33 55 55
CPN 30 31 88 91 11 58 68 49 69
AR 62 80 13 45 94 11 28 44 54
CHU 71 85 65 54 94 28 11 46 42
KVP 39 76 83 71 81 33 47 11 54
VVD 75 83 49 53 96 44 30 54 11
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TABLE 5.1:

i

pa ps cp vv bp ch ar gp sg d6 kv cr
opportunistic 0 0 0 0 0 0 0 0 0 1 1 0
progressive 1 1 1 0 0 0 ! 0 0 1 0 !
left-wing 0 1 1 0 0 0 0 0 0 0 0 0
dogmatic 0 0 1 0 1 0 0 1 1 0 0 0
conservative 0 0 0 1 1 0 0 I 1 0 0 0
important 0 0 0 0 0 0 0 0 0 0 0 0
clear 0 1 1 1 1 0 0 1 1 0 0 0
homogeneous 0 1 1 1 1 0 0 1 i 1 0 1
sympathetic 1 1 0 0 0 0 0 0 0 1 0 1
intelligent 0 1 0 0 0 0 0 0 0 1 0 1
democratic 1 1 0 1 0 1 1 0 0 1 1 1
tolerant 1 1 0 1 0 1 1 0 0 1 1 1
negative 0 0 0 0 1 0 0 0 0 0 0 0
constructive 1 0 0 1 0 1 1 0 0 0 1 0
up to date 0 0 0 0 0 0 0 0 0 1 0 1
responsible 1 1 1 1 0 1 1 1 1 1 1 1
consistent 0 1 1 1 1 0 0 1 1 1 0 1
TABLE 5.2: TABLE 5.3:
PvdA -.310 .172 opportunistic .323 .000
PSP -.202 .516 progressive .289 .343
CPN .236 .213 left-wing .0n .371
vvD .030 .287 dogmatic .498 .036
BP 1.415 .126 conservative .455 .123
CHU ~.262 415 important .000 .000
AR -.315 .318 clear .364 .050
GPV .379 . 113 homogeneous .352 .263
SGP .379 .113 sympathetic .309 419
D'66 -.611 L4112 intelligent .291 .561
KVP -.366 L4111 democratic .498 .036
CR -.375 .561 tolerant .498 .036
negative .850 .116
constructive .231 . 466
up to date .326 .495
responsible .850 .116
consistent .352 .262
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This book is a reprint of De Leeuw's Ph.D. thesis which
was first published, in a limited edition, in 1973. From
one point of view, the book can be characterized by saying
that it offers a widening of principal components analysis
to applications with categorical (nominal) data. This
approach is firmly rooted in a tradition that goes back
to the 1930's, illustrated by publications such as of
Lancaster, Fisher, Guttman, Carroll, and Kruskal.

One basic feature of the book is the introduction of
the indicator matrix. In such a matrix, categories of
a nominal variable are ‘replaced by as many binary
variables, indicating whether the. tategory applies to
the objects or not. Binary variables for categories
within the same nominal variable then are replaced by
an orthogonal and unit-normalized basis. De Leeuw shows
that principal  components analysis, applied to those
bases, results into a quantification of both categories,
and of objects. Since then this type of analysis has
become known under the name HOMALS. .

De Leeuw, however, also shows how this analysis fits in
with the tradition of multi-dimensional scaling. This
is demonstrated in particular for data from paired
comparisons, either of single stimuli or of sets of
stimuli.

In addition, the book contains a discussion of the
case where nominal variables can be distinguished into
separate sets. This discussion is a prelude of non-
linear generalization of canonical analysis (since
then elaborated - in computer programs called CANALS and
OVERALS) and on non-linear analysis of variance and
discriminant analysis.
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