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Abstract

Low dimensional data representations are crucial to numerous appiationachine learning, statis-
tics, and signal processing. Nonnegative matrix approximation (NNMA&) method for dimensionality
reduction that respects the nonnegativity of the input data while consguetiow-dimensional approx-
imation. NNMA has been used in a multitude of applications, though withouteamsurate theoretical
development. In this report we describe generic methods for minimizngnalized divergences between
the input and its low rank approximant. Some of our general methogvansextensible to arbitrary convex
penalties. Our methods yield efficient multiplicative iterative schemesoleimg the proposed problems.
We also consider interesting extensions such as the use of penalty fenct@mnlinear relationships via
“link” functions, weighted errors, and multi-factor approximations. Wesent some experiments as an
illustration of our algorithms. For completeness, the report also includehliterature survey of the
various algorithms and the applications of NNMA.

Keywords:
Nonnegative matrix factorization, weighted approximatiBregman divergence, multiplicative
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1 Introduction

A suitable representation of data is central to applicatiorfields such as machine learning, statistics, and
signal processing. The manner in which data are represdetednines the course of subsequent processing
and analysis, be it pattern recognition, denoising, vigatibn, compression or anything else. Representation
is crucial, for example consider face recognition; to a haiwiawer a picture makes vastly more sense than
an array of numbers, though for computation the latter mghtnore preferable.

A useful representation has two primary desiderata. Farstamenability to interpretation and second,
computational feasibility. Central to obtaining usefypmesentations is the process of dimensionality reduc-
tion, wherein one constructs a lower complexity represamaf the input data. The reduced dimensionality
offers advantages such as denoising, computational effigigjreater interpretability and easier visualiza-
tion, among others. While performing dimensionality redwucfor inherently nonnegative data such as color
intensities, chemical concentrations, frequency couttts & makes sense to respect the nonnegativity to



avoid physically absurd and uninterpretable results. Vigapoint has both computational as well as philo-

sophical underpinnings. For example, for the sake of inétgtion one would prefer to draw representatives
from the same space (or a subspace thereof) as that of thiedafu Computationally, nonnegativity leads

to a sparser approximation, which in turn facilitates mdfieient subsequent processing.

These considerations bring us to the problemafinegative matrix approximatiorGiven a set of non-
negative inputs find a small set of nonnegative represeataéictors whose nonnegative combinations ap-
proximate the input data. That is, given a éet : a; € RY, 1 <i < N} of nonnegative inputs, we wish to
compute vectord,, € RY and coefficientsy,, € R, so that

K
a, ~ chnbk, 1<n<N.
k=1

Gathering the vectors and coefficients into matrices, thig@imation may be written as
Ay N ~ ByxkCrxnN, WhereB,CEO. (11)

We remark that by imposing varying constraints on the me¢rl8 and C' one can obtain many different
problems. For example, when eithBror C is unconstrained and one measures approximation errorg usi
any unitarily invariant norm such as tlie-norm, then (1.1) leads to the truncated singular value rigce
sition (TSVD). Other measures of approximation error leacktated problems (see [Collins, Dasgupta, and
Schapire, 2001], for example). By varying the constraimd3andC one obtains various important prob-
lems such as clustering (see [Tropp, 2004, Chapter 8]) astuhpilistic latent semantic indexing [Hofmann,
1999], for example.

1.1 Main contributions
This report makes the following main contributions

1. It develops algorithms for minimizing Bregman divergesbetween the input and its low dimensional
approximant. New algorithms as well as details of the déows for our previous algorithms are
included. Our approach is not restricted to merely Bregmigargences, but extensible (in many
cases) to arbitrary convex losses. The report discussessianhs to Csisz’s and Young's divergences
to illustrate this strength.

2. It presents proofs of convergence for many of the mainréitgus, including new proofs of convergence
for the Frobenius norm, KL-Divergence and Burg-EntropydoB8INMA problems. These proofs
demonstrate that the objective function decreases moigaltynwith each iteration of the algorithm,
and since the objective functions are bounded below, orarabtonvergence to a fixed point of the
objective function.

3. It includes discussion about the use of penalty and “likictions for NNMA problems. Penalty
functions permit one to enforce additional constraints®andC, while link functions allow one to
model nonlinear relations such ds~ h(BC'). We capitalize on the power of link functions to obtain
a new provably convergent algorithm for minimizifigy, (A; BC).

4. It derives a few example NNMA problems as special casdhiirate the power of our methods. Fur-
ther, it also includes examples showing extension to thei+fadtor and weighted NNMA problems—
both of which can be useful in many applications.

1preliminary work appeared as [Dhillon and Sra, 2006].



5. It provides a brief literature review to indicate the vesdpe and applicability of NNMA. This review
includes a large list of references and it can be useful terattsearchers in the area. Further, it is our
hope that our new algorithms and techniques find use in theermums applications reviewed.

6. Finally for completeness, for the interested readergpert includes a bonus section that offers a brief
summary of the nonnegative matrix factorization (not agpnation) problem, thereby justifying our
choice of terminology.

Note: Optimized software written in C++, using BLAS libraries antpanies this report and may be obtained
from the following websitehttp://www.cs.utexas.edu/ suvrit/work/progs/nnnralht

1.2 Summary of the remainder

The rest of the document is organized as follows. Sectionesg formal definition of the two main problems
to be solved in this report. A large fraction of the theor@tiwork of this report is contained in Section 3,
which derives algorithms for solving Problem (P1)51, and Problem (P2) i§3.2. Penalty functions are
discussed i18§3.1.4 and 3.2.7, while link functions are the topic§8f1.5. Section 3.3 provides generaliza-
tions to other convex penalties as an illustration of theawabplicability of our methods.

Section 4 shows a number of examples that are special cases géneral formulation, including KL-
Divergence, constrained, weighted, and multi-factor NNIgidblems. Table 2 summarizes many of the
algorithms described in this document. Section 5 shows saperimental results to illustrate the behavior
of some of our NNMA algorithms. To complement the experirsarid theory we include a brief literature
review in Section 6 that covers most known algorithi§t.1) and applications6.2) of NNMA. Section 7
makes a minor excursus into the problem of nonnegative xfairtorization problem.

2 Problem formulation

Given a nonnegative matrid = [a1, ..., ay] as input, the classical NNMA problem seeks to approximate
it by a lower rank nonnegative matrix of the forB\IC, whereB = [by,...,bx] andC = ¢y, ...,cN] are
themselves nonnegative. That is, we seek the approximation

Apxn = ByxkCrxn, whereB,C > 0. (2.1)
For estimating the matricd8 andC we measure the quality of approximation in (2.1) by usingrzegel

class of distortion measures callBegman divergences

2.1 Bregman divergences

For any strictly convex functiop : S € R — R that has a continuous first derivative, the corresponding
Bregman divergenceD,, : S x int(S) — R is defined as

Dy(x59) £ o(x) — o(y) — ' () (z — y), (2.2)

where intS) is the interior of setS [Censor and Zenios, 1997]. Bregman divergences enjoy maefulu
properties. For example, they are nonnegative, convexearitst argument and zero if and onlyaf= y.
The sum of two Bregman divergences is also a Bregman diveegdérence, we can extend the definition to
matrix (elementwise) arguments, so that

Dy(X:Y) 2 ZDap(Iij;yij)7
ij
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with the implicit assumption that;;, y;; € dompNR . The well known Euclidean distance, the information
theoretic KL-Divergence (unnormalized), and the Itak@dto distance are examples of particular Bregman
divergences, illustrated respectively by Figures 1(d)),J4nd 1(c).

L,O(Z):%ZQ 1 p(z)=zlog 2z
D (w5y)=5 (z—y)*
h(z)
Dy (z,y)=xlog s—aty
Yy
s
(a) Squared Euclidean distance (b) KL-divergence
@(z)==logz

h(z i ; ]
( i \Dw(r,y):fflog 571

(c) Itakura-Saito distance

Figure 1: Three particular Bregman divergences

Bregman divergences play an important role in convex optitimn—they were defined by Bregman
[1967] in the context of minimizing a strictly convex funati subject to linear inequality constraints. Re-
cently these divergences have also been applied in to chgtiBanerjee et al., 2004b] and co-clustering
problems [Banerjee et al., 2004a]. The definition of Bregmi@ergences can be extended to matrices in a
non-elementwise manner [Bauschke and Borwein, 1997]—#ténsion has been applied to the problem of
kernel learning [Kulis et al., 2006, Tsuda et al., 2005].

2.2 The Problems

We focus on separable Bregman divergences of the type bedabove. The two main generalized NNMA
problems that we discuss are

,min - Dy(BC; A) +a(B) +6(C), and (P1)
LMD - Dy(A; BC) +a(B) + 5(C). (P2)

The functionsy andg arepenaltyfunctions, and they allow us to enforce regularization beoconstraints)
on B andC. We consider both (P1) and (P2) since Bregman divergeneessaially asymmetric; further-



more, each version leads to interesting algorithms witfedifg characteristics. Our formulation is quite
general as may be discerned from Table 1, which illustratesdome previously studied NNMA problems
turn out to be special cases.

DivergenceD,, %) «@ 16 Remarks

|A - BCJ? 122 0 0 Lee and Seung [1999, 2000]
|A - BC|? . 0 A1TC1 | Hoyer[2002]

W ® (A - BC)|? %xQ 0 0 Paatero et al. [1991]

KL(A; BC) xlog x 0 0 Lee and Seung [2000]
KL(A;WBC) rlogx 0 0 Guillamet et al. [2001]
KL(A; BC) zlogz | ;1TBTB1 | —¢,||C||2 | Feng et al. [2002]

Table 1: Known NNMA problems that may be obtained from (P2L(K y) denotes the generalized KL-
Divergence =, x; log ";— — x; + y; (also called I-divergence).

Later, in this report 43.3) we will also describe the NNMA problem for two other geaized diver-
gences, namely Csiaes p-divergence, and Young's divergence. However, the thialatieas for tackling
these two will be the same as those developed below for gp(#fh) and (P2).

3 Methods for solution

In this section we develop generic methods for obtainingiefiit iterative algorithms for solving problems
(P1) and (P2). We study Problem (P1) first, as it turns out taibmler than (P2). We remark that this
simplicity is principally due to the convexity of Bregmarveigences in their first argument. Section 3.2
discusses methods for solving (P2).

Note that the problems (P1) and (P2) are not jointly convel® iandC' simultaneously, making it hard to
obtain globally optimal solutions. Our iterative procegiinitialize B andC randomly and then alternately
update them until there is no further appreciable changhérobjective function, yielding locally optimal
solutions. Additional initialization strategies couldsalbe used, however, we do not pursue them in this
report.

This section includes algorithms for performing the simpidtiplicative update of the form «— nc. We
show the derivations for both the main NNMA problems.

3.1 Algorithms for (P1)

We derive below a method that yields multiplicative upddtesProblem (P1). Since the divergences that
we treat are separable, we illustrate our method using desawdumn of C (or a row of B). Explicitly,
Dy,(BC;A) = >, Dy(Bcj;a;), wherec; anda; are corresponding columns 6 and A. Let F'(c)
denoteD,,(Bc; a) for arbitrary columng: anda. A multiplicative update foe may be written as

ci < nici, Wheren; e R, andl <i < N. (3.2)

A particularly simple special case arises if all thevalues are selected to be the same. In the derivations
below, for simplicity we initially assume(B) and3(C) to be zero. We also usg(x) to denotey’ ().



3.1.1 Simple multiplicative updates

GivenF(c) = D,(Bc; a), we wish to compute a factgrso thatF'(nc) < F(c), hence ensuring a monotonic
decrease in the objective function. If we set

n* = argmin F'(ne),
n

and update: — n*c, then clearlyF'(n*c) < F(c). DifferentiatingF'(nc) w.r.t. n and setting the derivative
to zero we have

> (Be)ip(n(Be)i) — ¢(a;)(Be); = 0. (3.2)
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Assuming that ¢ (zy) = ¥ ()1 (y), we solve (3.2) to obtain the minimum (siné¥ (nc) > 0),

gt = wfl CTBT%/J(G)
c"BTy(Bc) |’

We derive the update factor for a given rowl8fin a similar way. Thus, we get the following iterative scheme

(for each rowb of B and columnc of C)

[ (@O

b= o) e
[ "BTy(a)

e | Spriieg e @4

It can be proved that using these updates the algorithmmetes after two iterations. Hence, it should not be
used independently, but instead in conjunction (using aithdpproach) with the elementwise scaling (3.7).

3.1.2 Improved multiplicative updates

Evidently the updates (3.3) and (3.4) are overly restrictand therefore not very desirable. Hence, we focus
on the case where each elements scaled separately. We use the concept of auxiliary fanst[Collins
et al., 2000, Lee and Seung, 2000] to obtain provably comvengultiplicative updates far (andb) below.

Definition 1 (Auxiliary function). A functionG(e, ¢’) is called an auxiliary function foF'(c) if:
1. G(e,¢) = F(e), and
2. G(e¢,¢é) > F(c) forall é.
Auxiliary functions turn out to be useful primarily due tcetfollowing lemma.

Lemma 2 (Iterative minimization). If G(c, €) is an auxiliary function forF'(c), thenF' is non-increasing
under the update

t+1

¢! = argmin, G(c, c").

Proof. F(c'*1) < G(c!1, et) < G(ct, et) = F(ch).

Given some initiak’, we can iteratively apply Lemma 2 (with changif®) to obtain a sequenci:!}
for which F(c?) > F(c!') > --- > F(c'™!) holds. Since” is bounded below, the sequeniag } converges
to a stationary point of’.

2More generally, we could assume thiatry) = 1 (z)12(y), i.e.,1) is factorizable



Lemma 3 (Auxiliary function). The function

)= (L) - (Z e+ v(o) (B - ) ). (35

U
with A;; = (b;;¢;)/(>_, buér), is an auxiliary function forF'(c).

Proof. It is easy to verify thati(c, c) = F(c). Since}_; Ai; = 1and\;; > 0, using the convexity op we
find that

Zcp wacj (Zw a;) + () (Be): a2)>
Z)\U (b”cj) - (Z o(a;) +v(a;) ((Be); — ai))

IN

ZJ

G(c, ).
O

Note that we manipulated only the first term®Bfc). Contributions from the other terms could also be
involved, yielding different auxiliary functions.

To obtain an update far, we minimizeG (¢, ¢) with respect ta. Lety)(x) denote the vectde)(z1), . .., ¥ (z,)]" .
The partial derivative off w.r.t. ¢, is

g_po :Z ZW( wcp) bip wafﬁ (a:)
—waw( ) - (BTv(@),, (3.6)

We need to solve (3.6) far, by settingdG/dc, = 0. Solving this equation analytically is not always
possible, though in principle we could solve it iterativedysuch cases. Let us look at one particular class of
functions for which we can obtain an analytic solution. Fearaple, if+ is multiplicative’, i.e., ¥ (zy) =
¥(z)¥(y), then we may solveG/dc, = 0 as follows,

acp =2 b <Cp (Be): ) ~ (B"¥(a)), =0

. waw(%)w((mm ~(BT(a)), = 0

— o2 )BT u(Ba), - (B v(@),
~(e)- Bl

Thus, we obtain the update
_ 1 [BTY(a)]
& &Y 1<[BT1/;(Bé)pp>' 3.7)

3More generally we could consider functiogighat arefactorizablg i.e., v (zy) = 11 (z)P2(y).



Similarly, we may compute the updates fBrone row at a time. Leb denote a row ofB anda the
corresponding row ofA. The objective function for this row is

H(b) = D, (b C;a” ZD (b ¢j;a ),

wherec; denotes thg-th column ofC, anda; denotes thg-th component of the row vectar’ . Using the
convexity ofy we define an the auxiliary functiol (b, b) for H(b), where

Crib
=Zukjso( = k) Zsoay (a;) (b c; — ay),
ik

e = cijk/(Zl clj?)l), anduy; > 0. As before, we may solveéK/ob, = 0 to obtain the update (for
multiplicative )

=y (@),
by — by - (W(BTC)CT}p)' (3.8)

3.1.3 Remarks and observations

1. Wheny is a convex function of Legendre type, them! can be obtained by the derivative of the
conjugate functionp* of ¢, i.e.,v)~! = Vy* [Rockafellar, 1970].

2. Since the Frobenius norm is a symmetric Bregman divemécmrresponding withp(z) = %a:Q),
it comes as no surprise that (3.7) & (3.8) coincide with theblenius norm NNMA updates derived
by Lee and Seung [2000]

3. The similarity between (3.7), (3.8) and (3.3), (3.4) iskatg, though not unexpected, since the latter
updates scale all the elementsedfy the same amount.

4. The reader may have observed that the auxiliary functienived above depend only on the fact
that Bregman divergences are convex in their first argume&héerefore, for minimizing a distortion
measureD(Bc,a) = Y, D;((Bc),, a;), where each individual distortion functidp; is convex in its
first argument, we may use the following general approach:

(a) Leth;; = “c] (orsome other suitable set of coefficients that satisfigs> 0 andz Aij = 1).

(b) D(Be, a) = 21 D;((Bc¢);,a;) < Z Aij D; (b“CJ a;) = G(e, é).
(c) OptimizeG(c, ¢) w.r.t. each componem, by setting its derivative to zero and solving

me VD, ( Bc)l,al) =0.

With D;(z,y) = D,(x;y), we can obtain our method for problem (P1). WiR(z, y) = z¢(y/x),
we obtain methods for minimizing Cs&ws generalized divergences. Hence, our method is extiensi
to a large variety of convex losses.

3.1.4 Nonzero penalty functions

In the derivations above the central task was to develop zitiay function and then minimize it. IfZ(c, é)
is an auxiliary function fof'(c) we see thaf?(c, ¢)+5(c) is an auxiliary function fo”(¢)+ 5(c). However,
this auxiliary function might not yield simple updates addes not necessarily lead to a decoupling of the



individual components of. It would be better to find an auxiliary function fgi(c) too, and then proceed
as before. Unfortunately, it can often happen that findingpropriate auxiliary function is not easy. Our
simple heuristic below shows how to tackle this difficulteaghe procedure is:

) = (X e(ai) + v(a) ((Be)i — a;)) + Ble)

2. DifferentiateG(c, &) w.r.t. c. The penalty function contributes the teffaG(c).

1. LetG(c,¢) =3, Aij@(b;\];j

3. The resulting system of non-linear equations is hardlieeseven if we assume thatis “factorizable.”
To make it easier to solve we approximate3(c) ~ V.3(¢) |e—s

4. Solve the resulting system of equations in a manner sirtaléhat described in the previous section
(for factorizabley).

This procedure yields the update

BTy (a)], — [(Vﬁ)(é)]p) (3.9)

=5 (T prime),

wheny) is multiplicative. Care must be taken to ensure that theraggu ofi)~! remains within the domain
of ¢y~ and to respect the non-negativity of
3.1.5 Nonlinear models with “link” functions

Certain nonlinear relationships between the induand its approximanBC may be modeled by a “link”
function that describes the nonlinearity. For example itie function 2 can be used to model a relation of
the form A ~ h(BC'). To obtainBC we may wish to solve

min D, (h(BC);A), B,C >0. (3.10)

Clearly, solving (3.10) for arbitrary link functior's can be difficult. However, ifp o ) is convex, then we
can obtain algorithms for this problem with link functiondtlout too much difficulty. For simplicity we
restricth to be an elementwise function of its matrix argument.

For example, ifh is convex (concave) and is an increasing (decreasing) function then; h is also
convex as may be verified by considering the second derévativ

(o h)"(x) = h"(x)p(h(x)) + ¢’ (h(z)) (W (2))?,

which is nonnegative for the specifiédandy. Writing g = (¢ o h) one can verify that

F(c) = Dy(h(Bc);a) = Zg((BC)i) —p(a;) —P(a;)(h(Be)i — a;)
< Z)\ijg(

If we further assume that(xz) > 0 (for x > 0), then using the convexity df we may also define the
divergence

(3.11)

C

b;i»jj) - (Z; g(a;) +(a;)(h(Be); — ai)>.

Z ¥(a;) Dy ((Be)i; (BE);). (3.12)



Adding (3.11) and (3.12) we obtain the function

G(e,¢) = Z Az‘jg(bj{;j) -3 (%’(az‘) +aip(a;) + P(ai) {h((Be&):) + ' ((Bé);)((Be)i; — (Bé)i)}),

i

which is clearly an auxiliary function faF'(c). As before, we differentiaté’ w.r.t. ¢, to obtain

06 _ ™ g/ (2(B&):)biy — biyh! ((BE): (). (3.13)

Ocp - p

Finally, to obtain the actual update, we just need to sélg dc, = 0 (which, depending otk, may or
may not be analytically solvable). As before, the resultipgates are guaranteed to decrease the objective
function (3.10) monotonically.

3.2 Algorithms for Problem (P2)

In this section we derive algorithms for solving Problem)(P®s before, the aim is to obtain multiplicative
updates forc. Let F(c) = Dy(a;Be), ¥(xz) = ¢'(x), and((z) = ¢'(x). We present three different
algorithms that illustrate how to iteratively minimiZ&(c). First, in Section 3.2.1 we present a simple mul-
tiplicative scheme, then we exploit the concept of link fiimes to present a new algorithm in Section 3.2.2
followed by algorithms based on approximately solving th€Tkhecessary conditions in Section 3.2.3.

3.2.1 Simple multiplicative updates for (P2)

GivenF(c) = D,(a; Bc), we wish to compute a factgrso thatF'(nc) < F'(c), hence ensuring a monotonic
decrease in the objective function. If we set

n* = argmin F'(nc),
n

and update: — n*¢, then clearlyF'(n*c) < F(c). DifferentiatingF'(nc) w.r.t. n and setting the derivative
to zero we have

>_Cn(Be))(Be)i(n(Be): = a;) = 0. (3.14)
Assuming that (zy) = g(z){(y) we solve (3.14) and obtain (not&’(nc) > 0)

. c'BTZ(Bc)a
T eTBTZ(Be)Be’

whereZ(x) = diag({(x)). We derive the update factor for a given rowBfin a similar way. Thus, we
have the following iterative scheme (for each rbwf B and columnc of C)

aTZ(bTC)CTh
b 1
T BTCZ(TC)CTh (3.15)
TBTZ(B
¢ (Be)a (3.16)

€ cTBTZ(Bc)Bcc'

Remark. This update scheme is reminiscent of the conjugate-graiethod.

10



3.2.2 Solutions for(P2)via link functions

Link functions arise naturally for Bregman divergences tiuthe following relation,

Dy (25y) = Dy (Y(y); ¥ (2)),

wherep* (z) is theLegendre-conjugafeof .. We use this relation to convert Problem (P2) into an eqeival
problem involvingy as the link function. Observe thatifis convex, thery = (¢* o) is also convex, since
g"(z) = z¢" () + ¢(z) > 0, using{(x) to denotep’” (z). In such a case we may write

F(c) = Dy(a; Be) = De-(4(Bc); y(a)).

Now usingh = 1 as the link function, and following the approach of Sectidh3(suitably modifying (3.11)
and (3.12)) we obtain

G(c,¢) = Z Aijg(b;f;j) -y (g(az‘) +ai{y(a;) + ¢i((BE);) + ai(((BE))((Be)i — (Bé)i)})

i

as an auxiliary function foF'(c). As usual we differentiat&’ w.r.t. ¢, and obtain

0% N g (2B )by — binC(BE)Ja.

Jcp - p

Assuming( is separable and using(z) = x¢(z), we can solvé)G/Jc, = 0 to obtain the update

(BT Z(Bé)al, > 3.17)

epClcp) = EpC(E) ( [BTZ(Bé)Bél

whereZ(x) = diag({(z;)). This update is somewhat complicated by ¢heerms. In the next section we
follow a different approach to derive simpler updates,udahg those that do not depend upon the separability
of ¢, or on the convexity of).

3.2.3 Algorithms based on KKT conditions

The approach in this section is different from the previoestisns. As before, we develop our methods
with « and g initially set to zero, noting that differentiable funct®n and 5 may be easily incorporated
into the updates. We us&(x) = diag(¢(=z;)) for notational convenience. The updates here are based
on approximately solving the KKT necessary conditions dreytlead to multiplicative updates for each
component ot.

Consider minimizingF'(c) = D, (a; Bc) subject toc > 0. The Lagrangian is

L(e,\) = F(c) — AT¢,

where > 0 is the vector of Lagrange multipliers. The KKT necessaryditions are

[VeF(c)], = A, (3.18a)
ApCp =0 (3.18b)
Ap > 0,c, > 0. (3.18c)

4The Legendre-conjugate of a convex function is defineg’dy) = sup,, (zy — ¢(z)).

11



Combining the fact
[VeF(e)], = [BY Z(Be)(Be — a)),,

with (3.18a) and (3.18b), we obtain
(BT Z(Be)Bcl,c, = [B' Z(Bc)a,c,. (3.19)

Sincec occurs on both sides of (3.19) we could solve édteratively. Hence, we are led to the following
simple update

[BTZ(B¢)al,
"[BTZ(Bé¢)Bél,
Update (3.20) is of the form,, «— #,c,, and the close similarity with update (3.16) (which is of tbem
¢ «— nc) is unmistakable. Fab we similarly derive the update

[a”Z(bTC)CT),
Pprezere)er),

Cp €

(3.20)

b, < b, (3.21)

3.2.4 Monotonicity

We now assess the correctness of the multiplicative updat@®) and (3.21). Ledl denote the vector
obtained by updating as per (3.20). To establish correctness, we need to showFilabit < F(c). The
difference

d) = Z@((Bd)i) — ¢((Be)i) — ¥ ((Bc)i)(a; — (Be)i) + ¢((Bd);)(a; — (Bd);)
= Z )(W((Bd);) = ((Be)i)) + Dy((Bd)i; (Be)),
which is just the generalized Pythagorean theorem for Beggdivergences [Censor and Zenios, 1997]. In
vector notation we may write
A(d) = F(c) — F(d) = (a — Bd)" (y(Bd) — ¢(Bc)) + D,(Bd; Be).

Thus we need to prove that the chan§&l) > 0. Unfortunately, without further assumptions @ror ¢ it
seems difficult to prové\ (d) > 0. However for three important cases we are able to pfoig) > 0 (in fact
we prove a stronger statement) as Lemma 5 below shows. Fufthe linearizey) we can obtain a simple
proof of monotonicity, as shown in Section 3.2.5 below.

Lemma 4 (Auxiliary inequality). Letc, d be nonnegative, anX = Y'Y, whereY > 0. Then

d2
Y (Xe)—t > d" Xd. (3.22)
- C;
Proof. We have the following
d'Xd =d'Y'Yd=) (Yd);
k

Yrid : YkiCi
< Aki al = Y id3 /e, iNgA\g; = =~
Z k ( Nei ) ;( O)ryrid; [ci,  USINGAy Yol

:;(¥y5€(YC)k>CCZ_§ =zl:(%: yﬁykjcj‘)i—f = D _(Xo Cf

7
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Lemma 5 (Monotonicity). For ¢(z) = 122, ¢(z) = zlogz, or p(z) = —logz, if d is obtained by
updatingc as per(3.20) then R
A(d) = A(d) — D,(Bd; Bc) > 0.

Proof. We treat each case separately.
CAsE |. For the Frobenius norm NNMA problem we hayézr) = 122 Hencey(z) = = and we need to
show that R

< A(d) = (a; — (Bd),)((Bd); — (Bc),).
For this problem the update (3.20) simplifies to

(BTO,)l'

d; =

Cross-multiplying and summing (3.23) oviewe see that
> di(B"Be)i =Y _ci(B"a); < (Bd)" (Bc) = a” (Be),

wherebyA (d) = d” BTa — d” BT Bd. Eliminating (B a); we get

d2
A(d) = B Bc); — d;(BT Bd);.
(@ =35 (BT Be)i ~ (B Bd)
Now, using Lemma 4 witiX = BT B we immediately conclude the non—negativityzfs(d).
CAasE Il. For the KL-Divergence NNMA problem we hawg(z) = 1 + log 2. Hence, we need to prove that

< Ad) = Y (o - (Bay)log (2

%

We proceed by analyzing individual terms in the summatiasvabWe have

(Bd)i _ 1 d)
1Ogu.%)i = B, (Boloe 55)

Be
_ > bad;
= ( g bi;jc;log le lel)

d]
> (B—c)i Zj: bijc; log o (3.24)

where the latter inequality follows from the log-sum inelifya

Zx 1og— > ( le 1og§: z:

[

A second application of this log-sum inequality allows usdoclude that

Bd); d;
—(Bd); log E Bc; "> = bijd;log C—J (3.25)
7 j 7

13



Using (3.24) and (3.25) we conclude that
d; a;
d) Z %:bij log é((BC)ZCJ — dj)
:Zlog?( cJZb” med)
j J

= 07
where the last equality follows from the update (3.20)dpgiven by
> ibijai/(Bc)i
dj = ¢; =2,
T by

Hence the proof is complete.

CAsE Ill. For the Burg-entropy NNMA problenp(z) = —logz. Here the domain op is R, ;. We use
A(d) = (a — Bd)T (¢(Bd) — (Bc)), wherey)(z) = —1/z. Thus, the aim is to prove

A(d) =) (a: — (Bd);) ((Blc»- B <Bld>z-)'

%

I /\

The update (3.20) simplifies to

) (BTZ(I)Z

"(BTZBc);’

whereZ = diag(1/(Bc)?). Cross-multiplying and summing (3.26) oviewe obtain

(Bd); aj
Zdbm/ (Be), Z@bw%/ (B < ;<Bc>f;<3c>a

Hence provingA(d) > 0 boils down to proving

;(1 - (Ba;)i) =0

Applying convexity ofl/x to 1/(Bd); we obtain

di =c (3.26)

a; - a; )\ij

= <uay —
(Bd); >, bijd; EJ: bijd;/Aij

where)" . \ij = 1. Letting \;; = b;c;/(Bc); we have
a;bi;c?

Z (B;)i = Z (Bc1§2¢j1

aibijcj (BT ZBC) B (
(BT Za),;(Bc)? Z

- BTZa ”

:Z BTZBc)jcj = Zbkj(ZBc)kcj
ik

_Z kaCJ _ Zl’
k

which is what we needed to show, hence the proof is complete. O
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We remark that even though convergence for the first two cgses = %xQ or p(xz) = xlogx) is
already known [Lee and Seung, 2000], our proofsrea@and direct. Proving&(d) > 0 for other interesting

functionsy remains a challenge.
3.2.5 Monotonicity with linearization

Consider the first order Taylor-series expansion

Y((Bd);) =~ ¢((Bc);) + (((Be);)((Bd); — (Bc);), (3.27)

which provides a good approximation fowhen Bd is sufficiently close taBc (which is usually the case
after a few iterations, as revealed by our experiments)sT{8127) allows us to write

A(d) ~ (a — Bd)"'Z(Bc)(Bd — Be) + D,(Bd; Be).

Lemma 6 shows that
(a — Bd)' Z(Bc)(Bd — Be) > 0,
from which, using nonnegativity ab,, (Bd; Bc) we immediately conclude tha(d) > 0.

Lemma 6 (Monotonicity). If d is obtained fronc as per (3.20), then
(a — Bd)" Z(Bc)(Bd — Bce) > 0.

Proof. From (3.20) we have

Ci

2 2
d;[B*Z(Bc)a); = [BTZ(BC)Bc]id—i — a"Z(Bc)Bd = Z[BTZ(BC)BC]Z-@
‘ Ci
Similarly (3.20) also yield§ Bd)” Z(Bc) Be = a” Z(Bc)Be. Thus the claim of this lemma reduces to
2

Z[BTZ(BC)Bc]ii — (Bd)"Z(Bc)Bd > 0.

Ci

(2

Using Lemma 4 withX = B” Z(Bc) B we conclude the truth of this inequality. O

3.2.6 Miscellaneous monotonicity approaches

Monotonicity in general is easier to show given additiorssamptions. For example,if(z) is convex and
a; > (Bd);, thenA(d) > 0. This claim follows from Lemma 6 upon using the convexity/osince

Y((Bd);) = ¥((Be)i) + ¢((Bc)i)((Bd); — (Bc)i).

However, the requirement; > (Bd); is overly restrictive and without additional adjustmerdgtie algo-
rithm, not always easy to guarantee. A more interestingaadarises if we assume thaimajorizesBec.
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Convergence for/,-norms Encouraged by the proofs centered around Lemma 4 we couly tygpsame
techniques (and some additional manipulations) to obtgiroaf of convergence for the case wherer) =
P, for p > 2. As before we usé\(d) = (a — Bd)T (¢y(Bd) — 1)(Bc)), wherey(z) = 2P, We wish to
prove

0<A(d) =) (ai — (Bd);) ((Bd)!™" — (Be)! ™).

For the present case (3.20) simplifies to

(B"Za),

(BTZBe). (3.28)

d,‘ZCi

whereZ = diag((Bc)f”) (we have dropped the fact¢p — 2) because it cancels out). Cross-multiplying
(3.28) and summing overwe obtain

Z(p h Q)dibji(Bc)g?_Q(Bc)j = Z ci(p — 2)bji(BC)§)_2aj

1] 1]

& Z(Bd)i(Bc)f_l => (Be)'a;.

2

Thus, provingA(d) > 0 boils down to proving

> (ai — (Bd);)(Bd)Y ™" > 0. (3.29)

%

Inequality (3.29) appears difficult on account of the- 1 exponent. Exploiting Conjecture 7 (empirically
verified) the following sequence of inequalities and edigaliestablishes (3.29).

> (B = ) (Bd);z;(Bd);

[ %

N d?

< BT ZBe);, -+, Lemma 4
< Y8728

(BTZBc¢);(BT Za); .
= XZ: (BTZBo), d;, Using (3.20)

BT ZBec);(BT Za); R
= Z( T c)l( TAa')Z(BTZa)Z‘di

~ (BT ZBc);(BT Za);

< Z(Bd)iénai, Conjecture 7

i

= Y ai(Bd)! ™.

Conjecture 7 (Ratio conjecture). Let Z = diag((Bd)f_g), whered is as given by3.28) Then,

(BTZBc);
(BT ZBc);

(BT Za);
(BTZa)q; '

< (3.30)

Further, equality holds irf3.30)if and only ifd and c are proportional, i.e.,CC‘—; =n.
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Proof. First we prove the iff condition. 18 = nc then clearly sinceZ = n?~2Z (essentially depending on
separabilityof ¢), equality holds. For the other direction assume that dggyuablds. Then,

> (B"ZBc){(B"Za); = Y (B"ZBc);(B" Za);

ie., ¢!'B"ZBB"Za = ¢"B"ZBB" Za.

Sincea and Be are arbitrary, we must havid BBTZ = ZBB”Z. SinceZ and Z are diagonal, this
implies that
ZA’”‘ZJ‘J‘ = Ziié’jj, for all .7,
which is possible only wheg;; /z;; = 7, for some constanj. This, in turn implies thatl; = nc;.
Now we need to prove the inequality—as of now we do not have afpro O

3.2.7 Nonzero penalty functions

We now look at the case with nonzero (differentiable) pgnfalbctions by proceeding along the same lines
as Section 3.2. Other authors have also obtained similatapdvith penalty functions, e.g., [Cichocki et al.,
2006a,b]. Consider minimizing'(c) + 5(c) (the penalty function need not be separable, but for natatio
convenience we write it here as a function of the colutnmder consideration) subject ¢o> 0. We form
the Lagrangian, differentiate it, and write out the KKT nexary conditions for optimality

V[F(c)+ 8(e)) = A (3.31a)
Apcp =0 (3.31b)
Ap > 0,¢p, > 0. (3.31c)

Once again we use (3.31a), (3.31b) in conjunction with tlagignt
Ve(F(e) + B(¢) = B Z(Bc)(Be — a) + Vi(c),

to obtain the iterative update
[B"Z(B¢)al,
[BTZ(Bé)Bé|, + [Vp(c)]y’

The update foib may be derived similarly and we skip it for brevity. [¥.5(c)], > 0 we do not have

to do any additional work to enforce nonnegativitygf Otherwise, we might have to resort to additional
heuristics to respect the nonnegativity. Furthermore,roast ensure that the denominator remains nonzero.
Since the problem with penalties is more general than thevitheut, proofs of convergence can be difficult

to furnish, and are deferred to future work.

Cp < Cp

(3.32)

3.3 Further generalizations

Our methods can be used to minimize other divergence meagoe Below we illustrate two such possi-
bilities as an example. We derive updates for minimizings@sis ¢-divergences and Young'’s divergences
(defined below). We remark that additional work on minimgiBsisar’s divergences for NNMA problems
has appeared previously, e.g., [Cichocki et al., 2006b].
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3.3.1 Csisar's e-divergences.

Let ¢(x) be a convex function defined an> 0 with ¢(1) = 0. Csisar’s p-divergence between > 0 and

y > 0 is defined as
DC#Pw y Zyz ( )

The two associated NNMA problems are

Iglzlg Dcy(Be; a) = Z(Bc)i@(&)v (3.33)

and

m>1g1 D¢y, (a; Be) Zal ( ) (3.34)

We may follow the auxiliary function method suggested intlBec3.1.3 or the KKT technique of Section 3.2
to obtain updates for minimizing the above two functionsr &mample, when minimizing (3.34) using the
auxiliary function method of 3.1.3 we can obtain the updated value:pby solving PG /¢, = 0)

Z bipait) <W> =0. (3.35)

CpQy

The update (3.35) will decrease the objective function4BrBonotonically (by construction). However, as
before, it is not always possible to solve (3.35) analytjcdh principle, one can solve (3.35) iteratively in
such cases.
If we follow the KKT approach, we obtain the following updatde for minimizing (3.33)
~ [BTSO("“)]p

Cp— Cpm— 7,
PPBT((r) o),
Experiments reveal that for < 1 update (3.36) leads to a monotonic decrease as long as thegstivity

of all the elements can be maintained. More work is needeeterchine the conditions under which (3.36)

yields monotonically decreasing updates. Related work immmizing Csisar's divergence for NNMA may
be found in [Cichocki et al., 2006b].

r =a/Bec. (3.36)

3.3.2 Young's Divergence
Fenchel's inequalitysee Boyd and Vandenberghe, 2004, pg. 94] states that
p(x) + ¢ (y) > a'y,

wherep* is the convex-conjugate of. Wheny is differentiable (which we assume it to be) this inequality
is calledYoung's inequalityThus, one may define a divergence

DY (w5y) = o(x) — "y + ¢*(y). (3.37)

This divergence was previously called tGeneralized Bregman'’s divergenbg Gordon [2003], but owing

to its genesis from Young’s inequality we prefer to calfdung’s divergenceThis divergence does not in
general satisfyDy (z; ) = 0, and there may exigj # x such thatDy (x;y) = 0. Assume for simplicity

that bothdom ¢ anddom ¢* C R,.. Thus, we redefine (3.37) as

y) = Z (i) — 2iys + 0" (yi)-
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Young’s divergence is particularly conducive to optimiaat since botlp andy* are convex. Thus, itis easy
to obtain provably convergent iterative algorithms for miizing both DY (a; Be¢) and Dy (Bc; a) via our
auxiliary function technique. We illustrate both case®belvhich are essentially special cases of discussion
in Section 3.1.3.

Minimizing DY (a; Be) For minimizingDy (a; Be) we again use the auxiliary function technique. Owing
to the convexity ofp* it is easy to construct an auxiliary function. As beforetifet \,; = b;;¢;/(Bé); we
construct the auxiliary function

G(c, &) = Z Aij " (%(Bé)i) + Z o(a;) — (Be)ia;. (3.38)
ij i
Minimizing (3.38) w.r.t.c, amounts to solving
> bwVe' (2 (B):) = [BTal,
For example, itVy* = ¢! is “factorizable” then we obtain the update (cf. Update 3.7)

— i [BTa]p
& pq/([BTW(Bé)}p)' (3.39)

Minimizing DY (Bc;a) This case is tackled with equal ease as the previous one.n@ibe (expected)
duality between the two problems. It is easily verified that

- Cj s .
G(c,é) =) Aij@(é—]_(BC)i) +3 ¢ () — (Be)ias, (3.40)
ij J i
serves as an auxiliary function. As before, for factorieablwe obtain the update (cf. Update 3.7)

&bl [BTa}p
e (o] (34D

Observe that when minimizin@y. (Bc; ¢(a)), (3.40) leads to an update identical with update (3.7) (that
minimizesD,(Bc; a)).

4 Examples of NNMA problems

In this section we present some specific NNMA problems anid sioéutions as obtained by the methods dis-
cussed above. We also motivate simple generalizationsasialeighted and multi-factor NNMA problems
by means of examples. Our (new) contributions are highdidhtith ax suffixed to the section name.

4.1 New KL-Divergence NNMA"

The original NNMA problem [Lee and Seung, 1999] focused onimizing KL(a; Bc¢). We look at the
corresponding asymmetric case that minimizes

KL(Bc,a) = Y (Bc)log @ —(Be¢)i+a;, B,c>0. (4.1)

- a;
3
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Let p(x) = xlogz — x. Then,y(z) = logz, and since)(zy) = ¥(x) + ¥ (y), upon substituting fog)
in (3.6) and setting the resultant to zero we obtain

oG
D wa log(cp,(Bé€);/ép) Zbip loga; =0,
p 7

= (B"1),log -2

Cp
Cp
[BT log(a/(B¢))],
= ¢, =0Cp- exp( BT, ¢) .

=[BT loga — B log(Bé)],

Similarly the update fob is derived to be

; ([(log(a/éTc»TcTJp)

b, = by, - exp ATCT]
P

Due to theexp(-) function it is obvious that the updates maintain the nontrégaof ¢, andb,, provided the
iteration is primed with nonnegativeandb.

4.2 Constrained NNMA and Maximum Entropy*

Consider the following problem with additional linear ctraints

min D, (Bc;a)
c

4.2)
st. Pc<0, c¢c>0.
We introduce a differentiable penalty function for enfogthe constraint®c < 0. Let,
F(c) = Dy(Be;a) + pl| max(0, Pe)|?, 4.3)

wherep > 0 is some penalty constant. Assuming multiplicativeand following the auxiliary function
technique described in Section 3.1.4, we obtain the folgwipdates foe,

i 1BTua), — PP,
Y ( (BTY(BA), )

where(Pc)* = max(0, Pc). Note that care must be taken to ensure that the additioregfehalty term
does not violate the nonnegativity of and that the argument gf—! lies in its domain.

Maximum Entropy. Incorporating additional constraints into (4.1) is egss@rce the exponential updates
ensure nonnegativity. Givem = 1, consider the problem

minKL (Be,1) St.Pc<0, ¢>0.
[
Using the penalty function as described above along withiération in§4.1 we obtain

([—BT log(Be) — pP” (Pc)*], )

Cp < Cp-€xXp

[BT1],

Note that one may use other penalty functions to enfétee< 0, provided that these functions are differen-
tiable.
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4.3 Lee and Seung’s Algorithms.
Leta =0, 3 = 0. Wheny(z) = 122, then (3.21) and (3.20) yield

2
(ACT),i (BT A)in

bm bm e n N7 T v )
BTOmEBOCTY T M (BTBCO)

while for ¢ () = 2 log 2 we obtain

bk < b k{ ([%]CT)W@ _ Zscksaan/(BC)"Ls}
T T T .
Ckn < Ck { (BT[%DML _ Do btkatn/(BC)tn}.

n "L(BT1p15)kn S bk

These updates are the same as the ones originally derivedebgrid Seung [2000]. It can easily be shown
that these updates are equivalent (see [Gaussier and G2008&]) to those for probabilistic latent semantic
indexing (PLSI) [Hofmann, 1999].

4.4 The Multifactor NNMA Problem * and an Application

Both the NNMA problems (P1) and (P2) can be extended to thdti4factor” problem, wherein one seeks
an approximation of the typd ~ B B- ... Bg. As a simple example, consider minimizing

DLP(A;B1B2 e BR),

where all matrices involved are nonnegative. \WWe computgthdient of the divergencB,, w.r.t. eachB,.
LetB=BB;...B,_1,,C =B,;1B,,5... Bg,andH = BB, ... Bg. Let bpg denote thep, ¢)-th
element ofB,.. It is easy to verify that
0D,
Wy

= [B"((H)® (H - A)C"] .

Following the derivation in Section 3.2 we obtain the update
BT(¢C(H)® A)CT

B, — B, ® — .
BT(((H)® H)CT

(4.4)

Application to relaxed Co-clustering. A typical usage of multi-factor NNMA problem would be to olita

a three-factor NNMA, namelyd ~ RBCT. Such an approximation is closely tied to the problem of co-
clustering [Cho et al., 2004], and can be used to producreeleo-clustering solutions, wherein the matrices
R, C, B represent row-clustering, column-clustering, and cateluprototypes, respectively. For example,
for the problems

min |A — RBC”|2 (Euclidean)
min KL(A; RBCT) (Information-theoretic)
an application of (4.4) yields the iterative schemes
ACBT RTAC ATRB
R—  Ropperepr B~ BOgrrperer ©~ C°cB'RTRB
[zBeT]CB” R [ggerC [c#mr)RB
R— RO repr— B~ BO—fgimre ¢ CO T rRrp
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for the relaxations of the Euclidean and Information-tlegiorclustering, respectively. In practice we can also
normalize bothR andC while adjusting the matrixB accordingly. It is evident that we can exploit the gener-
ality of the update (4.4) to obtain relaxed co-clusteringsons to problems of the formmin D, (A; RBC).

We remark that in practice, the above updates should be mgpited to exploit the sparsity of. A recent
paper [Badea, 2005] also describes a co-clustering proeddised on NNMA.

4.5 Weighted NNMA Problems

There are three main ways in which weighting may be incotedranto the NNMA model. First, we weight
the objective function elementwise, second we weight thertnk approximant elementwise, and third we
weight the approximant by multiplying it with weighting mies. The corresponding NNMA problems are

m1nZwU (ai;; (BC)ij) and manwU ((BC)ij; aij),
min  D,(A; W © (BC)) and  min DW(W ©(BC); A),
min .D%,(z47 WlBCWQ) and min DSD(WlBCWQ; A),

where the weighting matricéd’; andW, are also nonnegative. All of these problems may be solvetyeas
by the techniques developed above though to avoid repetii® skip the derivations. Table 2, however,
summarizes some of the associated updates.

Example: The PMF Problem. Here we wish to minimizd W © (A — BC)||%. UsingX «— vW & X,
andA — vW © Ain (3.21) and (3.20) one obtains

(W o A)CT o BWoa

B=BO myoBoyer BT(W & (BO))’

These iterative updates are significantly simpler than €& Blgorithms of Paatero and Tapper [1994] and
may be used as alternatives to them.

Example: Weighted KL-Divergence Problem. Here we wish to minimize K[A; PBCQ), where P
and @ are positive diagonal matrices. This problem is a slightegalization of the diagonally weighted
problem considered by [Guillamet et al., 2001, 2003]. Ugihg), we obtain

by — bk (P[PBCQ] QCT)mk _ Zs ChsUms/ (Pmm (BC)ms)
" " (P(]']Wl )QCT)mk Zn Cknnn

c ¢ (BTP[PBCQ} Q) kn _ Zt btkatn/(%m (Bc)tn)
o e (BTP(lM]-]T\ﬂ/)Q) kn Zm bmk'pmm '

Observe that whe® = I,; and@ = Iy then these updates simplify to those given in Section 4.3.
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Objective function Update Reference
|A - BC|I2 Chn & Chnrp §4.3
KL (A; BC) O s e §4.3

KL (Bc;a) Cp — ¢ exp(%) §4.1
D,(Bc;a) c — ! [%]C (3.4)
D,(Bc;a) Cp — cpT wT (%) 3.7)
D,(a; Bc) c — #&?}ic (3.16)
Dy (a; Be) 7)) — gle) mrpmdel (3.17)
D, (a; Be) Cp — ¢ [I[SBTTZ((% (3.20)
D,(A:B\B,...Bp) | B, «— B,o % (4.4)
W o (A-BO)|%2 | C — CO Rl §4.5
KL(A; PBCQ) Chn O a0 B §4.5
S wiDplai(Be) |6 o cppliyaBatcal §4.5
S.wiDy((Be)isa) | ¢ = b (GRieotelh ) §4.5
Do(asw® (Be)) | ¢ o« cpgaeBluonl, §4.5

D (A;W,BCW,) | C ;V;VT&(ZZE;‘)))VVV‘IT Z = W,BCW,
D¢y (Be; a) Cp — ¢ [I3T[g;§?+)](l;)]p §3.3.1
D% (Bc;a) ¢ — &yl (%) §3.3.2
DY (a; Be) ¢y — - w<%> §3.3.2

Table 2: Summary of some NNMA algorithms. The updates arestather for individual elements af
(ckn), the entire matribxC, or individual elementse,) of an arbitrary column of. The corresponding updates
for B are similar and have been omitted for brevity.

5 Experiments

This section presents simple experiments to illustratessoithe properties of our algorithms. We do not fo-
cus on any particular application and point the interesteder to the vast list of applications in Section 6.2).

5.1 Monotonic convergence

First we illustrate the monotonic convergence behaviowoafie of our algorithms that were implemented in
MATLAB. However, this implementation is for illustrative purpssanly; we refer the reader to our high
performance implementation in C++ for tackling real worktakets.

Figure 2 reports how the respective objective functionsetesed monotonically while performing a rank-
3 decomposition for &0 x 8 nonnegative input matrix. The first subfigure in the secomdsiows that the
simple multiplicative scaling procedure (3.4)) hits itat&inary point within two iterations, and no further
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improvement to the divergence is achieved thereafter. @Goimgit with the second subfigure in row two, we
see that the elementwise multiplicative update (3.7) leadsbetter local minimum for the same objective
function valie
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Figure 2: lllustration of monotonic decrease in objectivadtion values for a various instances of NNMA
problems. A rank-3 decomposition of28 x 8 matrix was obtained for each case. The first row (left to
right) shows NNMA for||A — BC||2, KL(A; BC), and KL(BC; A). The second row shows NNMA
update (3.4) D,(BC; A)) with o = 123, update (3.7) D, (BC; A)) with ¢ = 123, and update (3.20)
(Dy(A; BC)) with ¢ = exp(z). The third row shows NNMA update (3.20) with = z® followed by
updates foil W @ (A — BC)||2, and KL(A; W; BCW,) with random weighting matrices. The last row
shows Csisar's divergence update (3.36) with= /z — 1, Young'’s divergence updates (3.39), and (3.41)
with ¢ = %x?’. The absolute values of the objective functions cannot afs®mbe compared to each other;
the essential point being the monotonicity.

While producing these figures, we noticed another intergdtiend. Our algorithm for minimizing
D,(A; BC) also monotonically decreasés,(BC'; A) at the same time, and vice-versa. The same holds
true for our algorithms that minimize Young’s divergencekis curious effect is somewhat unexpected con-
sidering the innate asymmetry of these divergences. Hawiévemains to be investigated in greater detail.



5.2 Effect of objective function

We remark that if the model fits the data well then the pargicobjective function selected does not play
a very important role. However, if one has arpriori assumption on the noise corrupting the observed
data, then minimizing the Bregman divergence correspantirthe assumed noise distribution is expected
to given a better reconstruction. Banerjee et al. [2006%tHate clustering results on data following different
distributions, demonstrating that if one the matching Brag divergence the resulting clustering accuracy is
higher. Their observation lends support to our recommémididr selecting an appropriate divergence for
minimization.

The application being studied can govern the selectioneobbijective function, see for example the recent
work [Chen et al., 2006, Cichocki et al., 2006a,c]. In addifithe summary of applications in Section 6.2
can provide some additional information about the choicgivérgence.

Another important factor governing the choice of objectiuaction is the ease of minimization and
computational complexity, especially in the presence ditaahal regularization terms and/or constraints.
Furthermore, the sparsity pattern of the input can govelinmdbjective function we choose to use. However,
just as selecting the appropriate kernel is not always é@asylifficult to give general prescriptions for which
particular divergence measure is most suited to a givenlgmobUsually experience and knowledge about
the data determine the choice of the divergence measure.

6 Brief Literature Review

Since its introduction, NNMA has been increasingly apphsch technique for dimensionality reduction and
data analysis. Correspondingly, there has been a sigrifacaount of research related to it. The aim of
this section is to provide a brief summary about the varidgsrahms and applications of NNMA that have
appeared in the literature. While attempt has been made te bemaplete as possible, the sheer magnitude
of the task renders it impossible to attain completenessapuogize in advance to the authors whose work
we might have inadvertently missed.

The origin of theapproximatenonnegative factorization problem or NNMA may be credite@Raatero
et al., 1991] who called it Positive Matrix FactorizatiorMP), and to [Lee and Seung, 1999] who called it
Nonnegative Matrix Factorization. Thexactfactorization problem is however older, and Section 7 diges
briefly into it.

6.1 Algorithms

There exist a few different algorithms for NNMA. Some of theme based on solving suitably modified
non-linear least squares problems, while others are siitgulgive procedures. We summarize procedures of
both types below.

6.1.1 Paatero’'s methods

Paatero et al. [1991] introduced the term PMF and soughtristoact a factor model with two nonnegative
matrices by minimizing
W © (A~ BO)|lE, (6.1)

where A, B, C, andW are all nonnegative. The matr®%” consists of weights reflecting confidence in
the measurements id. In the same paper Paatero et al. [1991] also introducedes tfactor NNMA
model. However, they did not provide any algorithm to adfuabmpute the presented models. Paatero and
Tapper [1993] suggested using alternating least squates)(Avherein one hold® fixed while obtaining the
optimal C and vice versa, for PMF. Nonnegativity is enforced in an ad{fiashion by simply discarding the
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entries smaller than zero. NNMA may also be performed witkrahting non-negative least squares instead
of ALS by using the NNLS algorithm of [Lawson and Hanson, 197While doing ALS or Alternating
NNLS, the least squares subroutines can prove to be a etietdence, in practice it is better to combine
the least square approach with the faster Lee/Seung typeegd

Later [Paatero and Tapper, 1994] proposed another appfoaeMF, claiming it to be superior to the one
based on ALS. In this approach one iteratively sols- AB)C =~ A for AB (likewise forAC), followed
by solving for the coefficient in (B+AB)(C+AC) ~ A. However, in practice Paatero and Tapper [1994]
recommend neglecting the produsBAC while minimizing||A — (B + AB)(C + AC)||r to obtainAB
andAC. In [Paatero, 1997b], yet another algorithm for PMF is idtroed under the name PMF2 (the two
standing for a two-factor model). However, from its desioip, the PMF2 algorithm seems to have expanded
upon the just described method of [Paatero and Tapper, B9@4it enforces nonnegativity using logarithmic
penalty functions.

Paatero [1997a] went on to consider a three-way factor inahyodel (also called PARAFAC, a factor
model introduced in 1970 by Harshman [Harshman and Lund8419 The corresponding algorithm for
computing nonnegative factors was called PMF3 and pseuagosgrovided in the paper [Paatero, 1997a].
However, the algorithm requires a significant amount of eegiing effort to implement and is rather ob-
scure. As an application to the same problem (PARAFAC) BobdaJong [1997] presented a faster NNLS
algorithm. In order to solve more general “multi-factor'optems Paatero [1999] developed another algo-
rithm called the Multi-linear Engine that allows solvimgway models. The solution is computed using a
method based on conjugate gradients.

Other methods based on Least SquaresPauca et al. [2004b] presented an algorithm that combines a
constrained least squares problem with the multiplicatipdate procedures of Lee and Seung [1999]. The
procedure solves the least square probtem || A — BC||Z + A||C||2 using ordinary least squares. The
nonnegativity ofC' is enforced by setting the negative element$.tolThe matrix B is updated using the
standard update§ 4.3). Langville and Meyer [2005] suggest using alternatiagstrained least squares for
both B andC. The \ term influences the sparsity of the resulting solution. hdllegand Meyer [2005]
also discuss other measures of sparsity that one couldpoie. Other related work dealing with sparsity
in NNMA is [Paatero et al., 2002] (controlling rotations hyfluencing sparsity) and [Heiler and S¢hin
2006a] (for nonnegative tensors). In a vein similar to ali¢ing NNLS Lawrence et al. [2004a] describe an
alternating constrained nonnegative least squares puoedor NNMA built on top of linearly constrained
least squares. The brief survey paper [Berry et al., 200&3ritees some other approaches.

6.1.2 Lee & Seung and Related Methods

Lee and Seung also developed the problem of NNMA and intredlacspecially constrained version of it in
the context of unsupervised learning by convex and conitngddlee and Seung, 1997]. In that paper, they
considered learning encodings so that the reconstruction@ver the ensemble of inputs is minimized. The
method of choice was an alternating projected gradientcagmbrin which firstB is fixed and a gradient de-
scentis done w.r.iC and vice versa. Nonnegativity constraints were implentebyezeroing out the negative
entries and the normalization constraints were enforcedjwgiadratic penalty functions. However, NNMA
finally gained popularity after the two papers [Lee and Sed®99, 2000] introduced the problem under
the namenonnegative matrix factorizatiorLee and Seung [1999] provided efficient iterative algonishfor
NNMA, which were developed and analyzed further in [Lee aadrg, 2000].

Hoyer [2002] added afy-norm based regularization term to the original Frobenrsmobjective func-
tion in order achieve sparser solutions. The resultant NNW@blem, which he named Nonnegative Sparse
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Coding, was
3 — 2 ..
BI,HCI'Izlo |A—BC|g+ A%:CU’
where) > 0 is a regularization parameter. Subsequently, Hoyer [2@f¢§nded the enforcement of spar-
sity by minimizing ||A — BC||2 under additional sparsity constraints of the form spa:fe}fy = Sc,
sparsityb;) = Sg. Hoyer [2004] uses the function

VAl G IPVAIEIP
vn—1 "

to measure the sparsity and uses a combination of projecégliegt descent and Lee/Seung's iterative up-
dates for carrying out the minimization. Evidently, one cae other measures of sparsity (See [Langville
and Meyer, 2005], for further examples).

Feng et al. [2002] added additional constraints to the KizeBjence NNMA problem to model spatial
locality in the input matrixA. Locality is encouraged by enforcing constraints®yand sparsity by imposing
constraints orC'. The resultant objective function was

KL(A; BC) + ;1" BT B1 — 5| C||, (6.2)

sparsitfx) =

wherecy, co > 0 are some constants.

Sajda et al. [2003] modified Lee/Seung’s algorithm by fagcémall values irC to e > 0, and named
their modification cNMF (constrained NMF). They initialdd3 randomly, andC' using a constrained least
squares solution. Thereafter, they updai@énd C as usual with the exception of clamping down small
values inC' to the fixed constard.

Guillamet et al. [2001, 2003] suggest that one should wetghinput vectors (columns od) and con-
sider the approximatiodW ~ BCW, whereW is a diagonal matrix of weights such tHEt(W) = 1.
They present results for such a modification to the KL-Diesige NNMA problem. Our weighted NNMA
described ir§ 4.5 subsumes this approach.

Szatnary et al. [2002] perform NNMA that has been augmented witlrsp code shrinkage and weight
sparsification. The latter two techniques were employednarove the performance of NNMA. For more
on SCS the reader is referred to [Hyinen et al., 2001]. Heiler and Saim [2006b] use NNMA and cone
programming to obtain sparse representations.

The NNMA problem has been extended to nonnegative appraixingafor tensors. Welling and We-
ber [2001] derive algorithms similar to the iterative LemBg schemes for minimizing squared and KL-
Divergence losses (for tensors). Shashua and Hazan [2@0EJrm nonnegative tensor factorization by
repeated rank-1 approximations, while minimizing a sgd&wes objective function. They include a proof of
convergence of their procedure. Heiler and Sehf2006a] study sparseness in the context of NTF.

New methods for minimizing Csiszar’s divergence are dbscriby Cichocki et al. [2006b,c]. NNMA
using quasi-Newton methods is considered by Zdunek andoCktj2006], who apply it to Amari'sa-
disparity [Amari, 1985]. Cichocki et al. [2006a] also derigther iterative methods for minimizing Amari’'s
a-divergence.

Berry et al. [2006] provide a short survey on the algorithmd applications of NNMA though they
mainly focus on the Frobenius norm based NNMA problems.

6.2 Applications

We now enlist some of the numerous applications of NNMA theatehappeared in the literature. We have
roughly categorized them for easier perusal. Some of thiécapipns are divergent from a traditional machine
learning setting, but as the original PMF series of algangrarose in such applications, we have decided to
retain references to them for completeness.
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6.2.1 Environmetrics and Chemometrics

Paatero et al. applied the ideas of PMF to environmental alatzarly as 1991. For a list of references that
indicate some of these applications the reader is refeadtet original PMF paper [Paatero and Tapper,
1994]. Later Paatero [1999] applied his multi-linear eegio analyze atmospheric emission and pollution
data. A paper discussing the application of orthogonalata@n approach, alternating least squares and PMF
to analyze chromatographic spectral data (which is usedatyze mixtures of chemicals) was presented
by Frenich et al. [2000]. The results obtained by these threthods are compared by evaluating measures
of dissimilarity between real and estimated spectra (x&t)i. The authors concluded that in general PMF2
and alternating least squares had little differences irgttadity of results, and that PMF2 is a good tool for
curve resolution analysis of chromatographic data. Qirfl.g2&02] used PMF on a large aerosol database
measured in Hong Kong incorporating error estimates thrabgW matrix.

Paatero et al. [2002] discuss the resolution of the probliemotational indeterminacy in the PMF (PMF2,
PMF3, ME) solutions using a specific two factor model as anmpta. The conclusions and recommenda-
tions of the paper are however, largely empirical in nattRamadan et al. [2003] compare PMF and the
ME on a data matrix of pollutant concentrations in Phoenid they conclude that the ME did not yield
significant modeling advantages over PMF2. Sajda et al.3p8pplied their constrained version of NNMA
to recovering constituent spectra in 3D chemical shift imgg They compared their results to Bayesian
Spectral Decomposition [Ochs et al., 1999] and suggestdNNMA obtains similar results in orders of
magnitude lesser time.

6.2.2 Image Processing and Computer Graphics

In their seminal paper Lee and Seung [1999] demonstratedheveould obtain a parts based representation
forimage data. That s, the sparse basis vectors (columBg approximating faces roughly corresponded to
individual parts of faces such as lips, noses and eyes. Rethg2002] used their local NNMA algorithm for
learning a spatially localized, parts-based represemtdtir images. They compare their method to PCA and
NNMA to demonstrate the situations where a spatially laemliapproach has advantages (such as highly oc-
cluded faces during face recognition). Guillamet and ¥iffi002c] suggest using the Earth Movers Distance
as a relevant metric for doing face recognition using NNMAhé& work on face and image processing appli-
cations of NNMA by these authors includes [Guillamet et2001, Guillamet and Vité, 2002a,b, Guillamet

et al., 2003]. Cooper and Foote [2002] applied NNMA to sumnirgg video and audio data.

Wild et al. [2003] described an application of NNMA to Airtrar Visible/Infrared Imaging Spectrometer
data. They describe feature extraction using a randonaliziéition of NNMA as well as via an initialization
based on a spherical kmeans clustering. Saagret al. [2003] proposed hierarchical image represeanmtati
using NNMA augmented with sparse code shrinkage prepringgasd applied their methods to the FERET
image database. Other image processing work that uses NXblddes [Kun et al., 2005, Lawrence et al.,
2004a,b, Zhang et al., 2004]. The recent article of Sp@a{f2d06] evaluates the empirical performance of
some NNMA algorithms for recognizing elementary imagedead, especially in the presence of occlusion.

Nonnegative tensor factorization (NTF) was used by Weléind Weber [2001] to the decomposition of
color images. Shashua and Hazan [Hazan et al., 2005, Shastudazan, 2005] applied NTF to low-rank
representation of images, obtaining good parts basedsemaions.

6.2.3 Text analysis

Lee and Seung [1999] applied NNMA to text documents and kggted the ability of NNMA to tackle
semantic issues such as synonymy. Owing to the low-rankoappations produced NNMA is a natural
candidate for a clustering procedure. Xu et al. [2003] dbsdrclustering experiments with NNMA, wherein
they compared NNMA against spectral methods, suggestatghle former can obtain higher accuracy. Xu
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et al. [2003] used NNMA for clustering text data. Other rethtvork on clustering and text analysis using
NNMA includes [Badea, 2005, Pauca et al., 2004b, Shahndz 2086]. An application to email surveillance
was discussed in [Berry and Browne, 2005],

6.2.4 Blind Source Separation & ICA

Some authors have considered blind source separation fiy eisher nonnegative PCA [Oja and Plumbley,
2003] or ICA [Plumbley, 2002a,b]. Work that directly apliBINMA to blind source separation and ICA
includes Cichocki et al. [2006¢c], Li and Cichocki [2003]. Uea et al. [2004a] use NNMA and ICA for
unmixing data.

6.2.5 Bioinformatics

Recently various data mining techniques have been apmiptbblems or data sets from biology forming a
significant part of the field of bioinformatics. NNMA has had share of applications. Brunet et al. [2004]
apply NNMA to formmetageneso infer biological information from cancer-related miarcay data. They
use the KL-Divergence based NNMA algorithm and also providaristic methods for model selection.
Kim and Tidor [2003] apply NNMA for performing dimensionglireduction to aid in the identification of
subsystems from gene microarray data. They hinged theimzggts on the ability to detect local features
from the data using NNMA. Other applications include lungaar prognosis [Inamura et al., 2005], analysis
of lung cancer profiles [Fujiwara et al., 2005], sparse NNM#A ¢ancer class discovery [Gao and Church,
2005], among others. Further references that apply NNMAarse variants thereof, to gene data are [Badea
and Tilivea, 2005, Pascual-Montano et al., 2003, Rao eR@04]. Chen et al. [2006] apply their NNMA
algorithms to the analysis of data related to Alzheimersedse.

6.2.6 Miscellaneous applications

NNMA has been applied to problems of a diverse nature. Thevgbummarized some of the major applica-
tions above, there remain numerous other applications.aieat hope to be exhaustive in our coverage and
must thereby satisfy ourselves by being indicative. Ho80PR] added sparsity constraints to NNMA and in
a later paper [Hoyer, 2003] modeled the receptive fields efpttimary visual cortex in mammals. Hoyer's
experiments on natural images revealed the usefulnessiNdMA based approach.

Behnke [2003] proposed a variant of NNMA called convoluibNMA and applied it to a hierarchical
approach for extracting speech features. NNMA was combivittda Neural Abstraction Pyramid architec-
ture [Behnke, 1999] and recursively applied to to obtainemdrichical decomposition of the features.

A somewhat offbeat application to the transcription of pblgnic music via NNMA was attempted
by Smaragdis and Brown [2003], who analyzed polyphonic mpsissages that comprised of notes that
exhibit a harmonically fixed spectral profile.

J-H. Ahn and Choi [2004], Lee et al. [2001] apply NNMA to thealyrsis of matrices obtained via dynamic
Positron Emission Tomography (PET). The ability to use a&mi statistics based noise model for NNMA
for PET images is suggested to be one of the benefits of NNMA aditional Gaussian based methods
since PET data comes from a process where the Poisson dlistnbmakes more sense. This motivation
also lies behind using an appropriate Bregman divergenafdINMA problem depending on the assumed
underlying nature of the noise distribution.

Other applications include object characterization [Pgial., 2005], spectral data analysis [Pauca et al.,
2005], learning sound dictionaries [Asari, 2005], miniaga-rules [Hu et al., 2004], and multiway clustering
[Badea, 2005, Shashua et al., 2006].
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7 Nonnegative Matrix Factorization

For completeness (and to ratify our selection of the name MINWe digress briefly to describe the nonnega-
tive matrix factorization problem, i.e., an NNMA problem &re an exact factorization of the forc= BC
exists. We provide only a smattering of references to thiblem, hopefully pointing the interested reader
in the correct direction.

Markham [1972] derived necessary and sufficient conditfona nonnegative matrix to have a factor-
ization of the formLU, whereL is nonnegative lower triangular aéid is a nonnegative unit upper triangular
matrix. He restrictedd to the class of matrices that have nonzero principal subreifithis somewhat artifi-
cial restriction was lifted in a subsequent paper [Lau andddlam, 1978]. Related work discussing “correct”
decomposition into parts may be found in a more recent pdpamngho and Stodden, 2003]. Markham has
also discussed factorizations of completely positive ioad; i.e., matrices all of whose minors are posi-
tive [Markham, 1971]. Later Cryer [1973] proved that a matA is strictly totally positive iff A = LU,
whereL andU are triangular matrices all of whose non-trivial minors aiéctly positive. Other relevant
references include [Hannah and Laffey, 1983, Kaykobady 1B&et al., 2004].

Gray and Wilson [1980] provided geometric proofs of the thet forn < 4, n x n nonnegative positive-
definite matrices can be factored into< n nonnegative factors. They also show that their conditioasat
sufficient to guarantee the existence of such factorizationn > 5.

SupposeA is anm x n matrix of rankr < min(m,n). Then,BC is called arank factorizationof A if
B andC arem x r, n x r full-rank matrices, andd = BC'. Of course, for a nonnegative rank factorization
(NRF) bothB andC' are nonnegative. Campbell and Poole [1981] discuss theeexis of generalized matrix
inverses in terms of NRFs. They also present an algorithtnciracompute a NRF of a nonnegative matrix
when a nonnegative 1-inverse existfhomas [1974] gave a simple characterization when a NR§tsefar
a given matrix. Wall [1979] discusses rank factorizatiohpasitive operators. Jeter and Pye [1981] prove
that if A is weakly monotone [Berman and Plemmons, 1976] then it haRR ilNand only if it possesses an
r x r monomial submatrix. Chen [1984] describes wheihas “trivial” or “non-trivial” NRFs.
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