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Abstract

Low dimensional data representations are crucial to numerous applications in machine learning, statis-
tics, and signal processing. Nonnegative matrix approximation (NNMA)is a method for dimensionality
reduction that respects the nonnegativity of the input data while constructing a low-dimensional approx-
imation. NNMA has been used in a multitude of applications, though without commensurate theoretical
development. In this report we describe generic methods for minimizing generalized divergences between
the input and its low rank approximant. Some of our general methods areeven extensible to arbitrary convex
penalties. Our methods yield efficient multiplicative iterative schemes for solving the proposed problems.
We also consider interesting extensions such as the use of penalty functions, non-linear relationships via
“link” functions, weighted errors, and multi-factor approximations. We present some experiments as an
illustration of our algorithms. For completeness, the report also includes abrief literature survey of the
various algorithms and the applications of NNMA.

Keywords:
Nonnegative matrix factorization, weighted approximation, Bregman divergence, multiplicative
updates, link functions, dimensionality reduction.

1 Introduction

A suitable representation of data is central to applications in fields such as machine learning, statistics, and
signal processing. The manner in which data are representeddetermines the course of subsequent processing
and analysis, be it pattern recognition, denoising, visualization, compression or anything else. Representation
is crucial, for example consider face recognition; to a human viewer a picture makes vastly more sense than
an array of numbers, though for computation the latter mightbe more preferable.

A useful representation has two primary desiderata. First,an amenability to interpretation and second,
computational feasibility. Central to obtaining useful representations is the process of dimensionality reduc-
tion, wherein one constructs a lower complexity representation of the input data. The reduced dimensionality
offers advantages such as denoising, computational efficiency, greater interpretability and easier visualiza-
tion, among others. While performing dimensionality reduction for inherently nonnegative data such as color
intensities, chemical concentrations, frequency counts etc., it makes sense to respect the nonnegativity to
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avoid physically absurd and uninterpretable results. Thisviewpoint has both computational as well as philo-
sophical underpinnings. For example, for the sake of interpretation one would prefer to draw representatives
from the same space (or a subspace thereof) as that of the input data. Computationally, nonnegativity leads
to a sparser approximation, which in turn facilitates more efficient subsequent processing.

These considerations bring us to the problem ofnonnegative matrix approximation:Given a set of non-
negative inputs find a small set of nonnegative representative vectors whose nonnegative combinations ap-
proximate the input data. That is, given a set{ai : ai ∈ R

M
+ , 1 ≤ i ≤ N} of nonnegative inputs, we wish to

compute vectorsbk ∈ R
M
+ and coefficientsckn ∈ R+ so that

an ≈
K∑

k=1

cknbk, 1 ≤ n ≤ N.

Gathering the vectors and coefficients into matrices, this approximation may be written as

AM×N ≈ BM×KCK×N , whereB,C ≥ 0. (1.1)

We remark that by imposing varying constraints on the matricesB andC one can obtain many different
problems. For example, when eitherB or C is unconstrained and one measures approximation errors using
any unitarily invariant norm such as theL2-norm, then (1.1) leads to the truncated singular value decompo-
sition (TSVD). Other measures of approximation error lead to related problems (see [Collins, Dasgupta, and
Schapire, 2001], for example). By varying the constraints on B andC one obtains various important prob-
lems such as clustering (see [Tropp, 2004, Chapter 8]) and probabilistic latent semantic indexing [Hofmann,
1999], for example.

1.1 Main contributions

This report makes the following main contributions1.

1. It develops algorithms for minimizing Bregman divergences between the input and its low dimensional
approximant. New algorithms as well as details of the derivations for our previous algorithms are
included. Our approach is not restricted to merely Bregman divergences, but extensible (in many
cases) to arbitrary convex losses. The report discusses extensions to Csisźar’s and Young’s divergences
to illustrate this strength.

2. It presents proofs of convergence for many of the main algorithms, including new proofs of convergence
for the Frobenius norm, KL-Divergence and Burg-Entropy based NNMA problems. These proofs
demonstrate that the objective function decreases monotonically with each iteration of the algorithm,
and since the objective functions are bounded below, one obtains convergence to a fixed point of the
objective function.

3. It includes discussion about the use of penalty and “link”functions for NNMA problems. Penalty
functions permit one to enforce additional constraints onB andC, while link functions allow one to
model nonlinear relations such asA ≈ h(BC). We capitalize on the power of link functions to obtain
a new provably convergent algorithm for minimizingDϕ(A;BC).

4. It derives a few example NNMA problems as special cases to illustrate the power of our methods. Fur-
ther, it also includes examples showing extension to the multi-factor and weighted NNMA problems—
both of which can be useful in many applications.

1Preliminary work appeared as [Dhillon and Sra, 2006].
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5. It provides a brief literature review to indicate the vastscope and applicability of NNMA. This review
includes a large list of references and it can be useful to other researchers in the area. Further, it is our
hope that our new algorithms and techniques find use in the numerous applications reviewed.

6. Finally for completeness, for the interested reader, thereport includes a bonus section that offers a brief
summary of the nonnegative matrix factorization (not approximation) problem, thereby justifying our
choice of terminology.

Note: Optimized software written in C++, using BLAS libraries accompanies this report and may be obtained
from the following website:http://www.cs.utexas.edu/˜suvrit/work/progs/nnma.html.

1.2 Summary of the remainder

The rest of the document is organized as follows. Section 2 gives a formal definition of the two main problems
to be solved in this report. A large fraction of the theoretical work of this report is contained in Section 3,
which derives algorithms for solving Problem (P1) in§3.1, and Problem (P2) in§3.2. Penalty functions are
discussed in§§3.1.4 and 3.2.7, while link functions are the topic of§3.1.5. Section 3.3 provides generaliza-
tions to other convex penalties as an illustration of the wider applicability of our methods.

Section 4 shows a number of examples that are special cases ofour general formulation, including KL-
Divergence, constrained, weighted, and multi-factor NNMAproblems. Table 2 summarizes many of the
algorithms described in this document. Section 5 shows someexperimental results to illustrate the behavior
of some of our NNMA algorithms. To complement the experiments and theory we include a brief literature
review in Section 6 that covers most known algorithms (§6.1) and applications (§6.2) of NNMA. Section 7
makes a minor excursus into the problem of nonnegative matrix factorization problem.

2 Problem formulation

Given a nonnegative matrixA = [a1, . . . ,aN ] as input, the classical NNMA problem seeks to approximate
it by a lower rank nonnegative matrix of the formBC, whereB = [b1, ..., bK ] andC = [c1, ..., cN ] are
themselves nonnegative. That is, we seek the approximation

AM×N ≈ BM×KCK×N , whereB,C ≥ 0. (2.1)

For estimating the matricesB andC we measure the quality of approximation in (2.1) by using a general
class of distortion measures calledBregman divergences.

2.1 Bregman divergences

For any strictly convex functionϕ : S ⊆ R → R that has a continuous first derivative, the corresponding
Bregman divergenceDϕ : S × int(S) → R+ is defined as

Dϕ(x; y) , ϕ(x) − ϕ(y) − ϕ′(y)(x − y), (2.2)

where int(S) is the interior of setS [Censor and Zenios, 1997]. Bregman divergences enjoy many useful
properties. For example, they are nonnegative, convex in the first argument and zero if and only ifx = y.
The sum of two Bregman divergences is also a Bregman divergence, hence, we can extend the definition to
matrix (elementwise) arguments, so that

Dϕ(X;Y ) ,
∑

ij

Dϕ(xij ; yij),
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with the implicit assumption thatxij , yij ∈ domϕ∩R+. The well known Euclidean distance, the information
theoretic KL-Divergence (unnormalized), and the Itakuro-Saito distance are examples of particular Bregman
divergences, illustrated respectively by Figures 1(a), 1(b), and 1(c).

y x

ϕ(z)=
1
2 z2

h(z)

Dϕ(x;y)=
1
2 (x−y)2

y

x

Dϕ(x,y)=x log x
y
−x+y

h(z)

ϕ(z)=z log z

(a) Squared Euclidean distance (b) KL-divergence

y x

Dϕ(x,y)= x
y
−log x

y
−1

h(z)

ϕ(z)=− log z

(c) Itakura-Saito distance

Figure 1: Three particular Bregman divergences

Bregman divergences play an important role in convex optimization—they were defined by Bregman
[1967] in the context of minimizing a strictly convex function subject to linear inequality constraints. Re-
cently these divergences have also been applied in to clustering [Banerjee et al., 2004b] and co-clustering
problems [Banerjee et al., 2004a]. The definition of Bregmandivergences can be extended to matrices in a
non-elementwise manner [Bauschke and Borwein, 1997]—this extension has been applied to the problem of
kernel learning [Kulis et al., 2006, Tsuda et al., 2005].

2.2 The Problems

We focus on separable Bregman divergences of the type described above. The two main generalized NNMA
problems that we discuss are

min
B, C≥ 0

Dϕ(BC;A) + α(B) + β(C), and (P1)

min
B, C≥ 0

Dϕ(A;BC) + α(B) + β(C). (P2)

The functionsα andβ arepenaltyfunctions, and they allow us to enforce regularization (or other constraints)
on B andC. We consider both (P1) and (P2) since Bregman divergences are usually asymmetric; further-
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more, each version leads to interesting algorithms with differing characteristics. Our formulation is quite
general as may be discerned from Table 1, which illustrates how some previously studied NNMA problems
turn out to be special cases.

DivergenceDϕ ϕ α β Remarks
‖A − BC‖2

F
1
2x2

0 0 Lee and Seung [1999, 2000]
‖A − BC‖2

F
1
2x2

0 λ1
T C1 Hoyer [2002]

‖W ⊙ (A − BC)‖2
F

1
2x2

0 0 Paatero et al. [1991]
KL(A;BC) x log x 0 0 Lee and Seung [2000]
KL(A;WBC) x log x 0 0 Guillamet et al. [2001]
KL(A;BC) x log x c11

T BT B1 −c2‖C‖2
F Feng et al. [2002]

Table 1: Known NNMA problems that may be obtained from (P2). KL(x, y) denotes the generalized KL-
Divergence =

∑
i xi log xi

yi
− xi + yi (also called I-divergence).

Later, in this report (§3.3) we will also describe the NNMA problem for two other generalized diver-
gences, namely Csiszár’sϕ-divergence, and Young’s divergence. However, the theoretical ideas for tackling
these two will be the same as those developed below for solving (P1) and (P2).

3 Methods for solution

In this section we develop generic methods for obtaining efficient iterative algorithms for solving problems
(P1) and (P2). We study Problem (P1) first, as it turns out to besimpler than (P2). We remark that this
simplicity is principally due to the convexity of Bregman divergences in their first argument. Section 3.2
discusses methods for solving (P2).

Note that the problems (P1) and (P2) are not jointly convex inB andC simultaneously, making it hard to
obtain globally optimal solutions. Our iterative procedures initializeB andC randomly and then alternately
update them until there is no further appreciable change in the objective function, yielding locally optimal
solutions. Additional initialization strategies could also be used, however, we do not pursue them in this
report.

This section includes algorithms for performing the simplemultiplicative update of the formc ← ηc. We
show the derivations for both the main NNMA problems.

3.1 Algorithms for (P1)

We derive below a method that yields multiplicative updatesfor Problem (P1). Since the divergences that
we treat are separable, we illustrate our method using a single column ofC (or a row ofB). Explicitly,
Dϕ(BC;A) =

∑
j Dϕ(Bcj ;aj), wherecj andaj are corresponding columns ofC andA. Let F (c)

denoteDϕ(Bc;a) for arbitrary columnsc anda. A multiplicative update forc may be written as

ci ← ηici, whereηi ∈ R+, and1 ≤ i ≤ N. (3.1)

A particularly simple special case arises if all theηi values are selected to be the same. In the derivations
below, for simplicity we initially assumeα(B) andβ(C) to be zero. We also useψ(x) to denoteϕ′(x).
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3.1.1 Simple multiplicative updates

GivenF (c) = Dϕ(Bc;a), we wish to compute a factorη so thatF (ηc) ≤ F (c), hence ensuring a monotonic
decrease in the objective function. If we set

η∗ = argmin
η

F (ηc),

and updatec ← η∗c, then clearlyF (η∗c) ≤ F (c). DifferentiatingF (ηc) w.r.t. η and setting the derivative
to zero we have ∑

i

(Bc)iψ(η(Bc)i) − ψ(ai)(Bc)i = 0. (3.2)

Assuming that2 ψ(xy) = ψ(x)ψ(y), we solve (3.2) to obtain the minimum (sinceF ′′(ηc) ≥ 0),

η∗ = ψ−1

[
cT BT ψ(a)

cT BT ψ(Bc)

]
.

We derive the update factor for a given row ofB in a similar way. Thus, we get the following iterative scheme
(for each rowb of B and columnc of C)

b ← ψ−1

[
ψ(aT )CT b

ψ(bT C)CT b

]
b (3.3)

c ← ψ−1

[
cT BT ψ(a)

cT BT ψ(Bc)

]
c. (3.4)

It can be proved that using these updates the algorithm terminates after two iterations. Hence, it should not be
used independently, but instead in conjunction (using a hybrid approach) with the elementwise scaling (3.7).

3.1.2 Improved multiplicative updates

Evidently the updates (3.3) and (3.4) are overly restrictive, and therefore not very desirable. Hence, we focus
on the case where each elementci is scaled separately. We use the concept of auxiliary functions [Collins
et al., 2000, Lee and Seung, 2000] to obtain provably convergent multiplicative updates forc (andb) below.

Definition 1 (Auxiliary function). A functionG(c, c′) is called an auxiliary function forF (c) if:

1. G(c, c) = F (c), and

2. G(c, c̃) ≥ F (c) for all c̃.

Auxiliary functions turn out to be useful primarily due to the following lemma.

Lemma 2 (Iterative minimization). If G(c, c̃) is an auxiliary function forF (c), thenF is non-increasing
under the update

ct+1 = argminc G(c, ct).

Proof. F (ct+1) ≤ G(ct+1, ct) ≤ G(ct, ct) = F (ct).
Given some initialc0, we can iteratively apply Lemma 2 (with changingB) to obtain a sequence{ct}

for whichF (c0) ≥ F (c1) ≥ · · · ≥ F (ct+1) holds. SinceF is bounded below, the sequence{ct} converges
to a stationary point ofF .

2More generally, we could assume thatψ(xy) = ψ1(x)ψ2(y), i.e.,ψ is factorizable.

6



Lemma 3 (Auxiliary function). The function

G(c, c̃) =
∑

ij

λijϕ

(
bijcj

λij

)
−

(∑

i

ϕ(ai) + ψ(ai)
(
(Bc)i − ai

))
, (3.5)

with λij = (bij c̃j)/(
∑

l bilc̃l), is an auxiliary function forF (c).

Proof. It is easy to verify thatG(c, c) = F (c). Since
∑

j λij = 1 andλij ≥ 0, using the convexity ofϕ we
find that

F (c) =
∑

i

ϕ
(∑

j

bijcj

)
−

(∑

i

ϕ(ai) + ψ(ai)
(
(Bc)i − ai

))

≤
∑

ij

λijϕ

(
bijcj

λij

)
−

(∑

i

ϕ(ai) + ψ(ai)
(
(Bc)i − ai

))

= G(c, c̃).

Note that we manipulated only the first term ofF (c). Contributions from the other terms could also be
involved, yielding different auxiliary functions.

To obtain an update forc, we minimizeG(c, c̃) with respect toc. Letψ(x) denote the vector[ψ(x1), . . . , ψ(xn)]T .
The partial derivative ofG w.r.t. cp is

∂G

∂cp
=

∑

i

λipψ

(
bipcp

λip

)
bip

λip
−

∑

i

bipψ(ai)

=
∑

i

bipψ

(
cp

c̃p
(Bc̃)i

)
− (BT ψ(a))p. (3.6)

We need to solve (3.6) forcp by setting∂G/∂cp = 0. Solving this equation analytically is not always
possible, though in principle we could solve it iterativelyin such cases. Let us look at one particular class of
functions for which we can obtain an analytic solution. For example, ifψ is multiplicative3, i.e.,ψ(xy) =
ψ(x)ψ(y), then we may solve∂G/∂cp = 0 as follows,

∂G

∂cp
=

∑

i

bipψ

(
cp

c̃p
(Bc̃)i

)
− (BT ψ(a))p = 0

=⇒
∑

i

bipψ

(
cp

c̃p

)
ψ

(
(Bc̃)i

)
− (BT ψ(a))p = 0

=⇒ ψ

(
cp

c̃p

)
[BT ψ(Bc̃)]p = [BT ψ(a)]p

=⇒ ψ

(
cp

c̃p

)
=

[BT ψ(a)]p
[BT ψ(Bc̃)]p

.

Thus, we obtain the update

cp ← c̃p · ψ−1
( [BT ψ(a)]p

[BT ψ(Bc̃)]p

)
. (3.7)

3More generally we could consider functionsψ that arefactorizable, i.e.,ψ(xy) = ψ1(x)ψ2(y).
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Similarly, we may compute the updates forB one row at a time. Letb denote a row ofB anda the
corresponding row ofA. The objective function for this row is

H(b) = Dϕ(bT C;aT ) =
∑

j

Dϕ(bT cj ; aj),

wherecj denotes thej-th column ofC, andaj denotes thej-th component of the row vectoraT . Using the
convexity ofϕ we define an the auxiliary functionK(b, b̃) for H(b), where

K(b, b̃) =
∑

jk

µkjϕ

(
ckjbk

µkj

)
−

∑

j

ϕ(aj) − ψ(aj)(b
T cj − aj),

µkj = ckj b̃k/(
∑

l clj b̃l), andµkl ≥ 0. As before, we may solve∂K/∂bp = 0 to obtain the update (for
multiplicativeψ)

bp ← b̃p · ψ−1
( [ψ(aT )CT ]p

[ψ(b̃T C)CT ]p

)
. (3.8)

3.1.3 Remarks and observations

1. Whenϕ is a convex function of Legendre type, thenψ−1 can be obtained by the derivative of the
conjugate functionϕ∗ of ϕ, i.e.,ψ−1 = ∇ϕ∗ [Rockafellar, 1970].

2. Since the Frobenius norm is a symmetric Bregman divergence (corresponding withϕ(x) = 1
2x2),

it comes as no surprise that (3.7) & (3.8) coincide with the Frobenius norm NNMA updates derived
by Lee and Seung [2000]

3. The similarity between (3.7), (3.8) and (3.3), (3.4) is striking, though not unexpected, since the latter
updates scale all the elements ofc by the same amount.

4. The reader may have observed that the auxiliary functionsderived above depend only on the fact
that Bregman divergences are convex in their first argument.Therefore, for minimizing a distortion
measureD(Bc,a) =

∑
i Di((Bc)i, ai), where each individual distortion functionDi is convex in its

first argument, we may use the following general approach:

(a) Letλij =
bij c̃j

(Bc̃)i
(or some other suitable set of coefficients that satisfiesλij ≥ 0 and

∑
j λij = 1).

(b) D(Bc,a) =
∑

i Di((Bc)i, ai) ≤
∑

ij λijDi(
bijcj

λij
, ai) = G(c, c̃).

(c) OptimizeG(c, c̃) w.r.t. each componentcp by setting its derivative to zero and solving

∑

i

bip ∇Di

(cp

c̃p
(Bc̃)i, ai

)
= 0.

With Di(x, y) = Dϕ(x; y), we can obtain our method for problem (P1). WithDi(x, y) = xϕ(y/x),
we obtain methods for minimizing Csiszár’s generalized divergences. Hence, our method is extensible
to a large variety of convex losses.

3.1.4 Nonzero penalty functions

In the derivations above the central task was to develop an auxiliary function and then minimize it. IfG(c, c̃)
is an auxiliary function forF (c) we see thatG(c, c̃)+β(c) is an auxiliary function forF (c)+β(c). However,
this auxiliary function might not yield simple updates as itdoes not necessarily lead to a decoupling of the
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individual components ofc. It would be better to find an auxiliary function forβ(c) too, and then proceed
as before. Unfortunately, it can often happen that finding anappropriate auxiliary function is not easy. Our
simple heuristic below shows how to tackle this difficult case. The procedure is:

1. LetG(c, c̃) =
∑

ij λijϕ
( bijcj

λij

)
−

(∑
i ϕ(ai) + ψ(ai)

(
(Bc)i − ai

))
+ β(c)

2. DifferentiateG(c, c̃) w.r.t. c. The penalty function contributes the term∇cβ(c).

3. The resulting system of non-linear equations is hard to solve even if we assume thatψ is “factorizable.”
To make it easier to solve we approximate∇cβ(c) ≈ ∇cβ(c) |c=c̃

4. Solve the resulting system of equations in a manner similar to that described in the previous section
(for factorizableψ).

This procedure yields the update

cp = c̃p · ψ−1
( [BT ψ(a)]p − [(∇β)(c̃)]p

[BT ψ(Bc̃)]p

)
, (3.9)

whenψ is multiplicative. Care must be taken to ensure that the argument ofψ−1 remains within the domain
of ψ−1 and to respect the non-negativity ofcp.

3.1.5 Nonlinear models with “link” functions

Certain nonlinear relationships between the inputA and its approximantBC may be modeled by a “link”
function that describes the nonlinearity. For example the link functionh can be used to model a relation of
the formA ≈ h(BC). To obtainBC we may wish to solve

min Dϕ(h(BC);A), B,C ≥ 0. (3.10)

Clearly, solving (3.10) for arbitrary link functionsh can be difficult. However, if(ϕ ◦ h) is convex, then we
can obtain algorithms for this problem with link functions without too much difficulty. For simplicity we
restricth to be an elementwise function of its matrix argument.

For example, ifh is convex (concave) andϕ is an increasing (decreasing) function then,ϕ ◦ h is also
convex as may be verified by considering the second derivative

(ϕ ◦ h)′′(x) = h′′(x)ψ(h(x)) + ψ′(h(x))(h′(x))2,

which is nonnegative for the specifiedh andϕ. Writing g = (ϕ ◦ h) one can verify that

F (c) = Dϕ(h(Bc);a) =
∑

i

g((Bc)i) − ϕ(ai) − ψ(ai)(h(Bc)i − ai)

≤
∑

ij

λijg
(bijcj

λij

)
−

(∑

i

g(ai) + ψ(ai)(h(Bc)i − ai)

)
.

(3.11)

If we further assume thatψ(x) ≥ 0 (for x ≥ 0), then using the convexity ofh we may also define the
divergence ∑

i

ψ(ai)Dh((Bc)i; (Bc̃)i). (3.12)
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Adding (3.11) and (3.12) we obtain the function

G(c, c̃) =
∑

ij

λijg
(bijcj

λij

)
−

∑

i

(
ϕ(ai) + aiψ(ai) + ψ(ai)

{
h((Bc̃)i) + h′((Bc̃)i)((Bc)i − (Bc̃)i)

})
,

which is clearly an auxiliary function forF (c). As before, we differentiateG w.r.t. cp to obtain

∂G

∂cp
=

∑

i

g′
(cp

c̃p
(Bc̃)i

)
bip − biph

′((Bc̃)i)ψ(ai). (3.13)

Finally, to obtain the actual update, we just need to solve∂G/∂cp = 0 (which, depending onh, may or
may not be analytically solvable). As before, the resultingupdates are guaranteed to decrease the objective
function (3.10) monotonically.

3.2 Algorithms for Problem (P2)

In this section we derive algorithms for solving Problem (P2). As before, the aim is to obtain multiplicative
updates forc. Let F (c) = Dϕ(a;Bc), ψ(x) = ϕ′(x), andζ(x) = ψ′(x). We present three different
algorithms that illustrate how to iteratively minimizeF (c). First, in Section 3.2.1 we present a simple mul-
tiplicative scheme, then we exploit the concept of link functions to present a new algorithm in Section 3.2.2
followed by algorithms based on approximately solving the KKT necessary conditions in Section 3.2.3.

3.2.1 Simple multiplicative updates for (P2)

GivenF (c) = Dϕ(a;Bc), we wish to compute a factorη so thatF (ηc) ≤ F (c), hence ensuring a monotonic
decrease in the objective function. If we set

η∗ = argmin
η

F (ηc),

and updatec ← η∗c, then clearlyF (η∗c) ≤ F (c). DifferentiatingF (ηc) w.r.t. η and setting the derivative
to zero we have ∑

i

ζ(η(Bc)i)(Bc)i(η(Bc)i − ai) = 0. (3.14)

Assuming thatζ(xy) = g(x)ζ(y) we solve (3.14) and obtain (noteF ′′(ηc) ≥ 0)

η∗ =
cT BT Z(Bc)a

cT BT Z(Bc)Bc
,

whereZ(x) = diag(ζ(x)). We derive the update factor for a given row ofB in a similar way. Thus, we
have the following iterative scheme (for each rowb of B and columnc of C)

b ← aT Z(bT C)CT b

bT CZ(bT C)CT b
b (3.15)

c ← cT BT Z(Bc)a

cT BT Z(Bc)Bc
c. (3.16)

Remark. This update scheme is reminiscent of the conjugate-gradient method.
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3.2.2 Solutions for(P2)via link functions

Link functions arise naturally for Bregman divergences dueto the following relation,

Dϕ(x; y) = Dϕ∗(ψ(y);ψ(x)),

whereϕ∗(x) is theLegendre-conjugate4 of ϕ. We use this relation to convert Problem (P2) into an equivalent
problem involvingψ as the link function. Observe that ifψ is convex, theng = (ϕ∗ ◦ψ) is also convex, since
g′′(x) = xψ′′(x) + ζ(x) ≥ 0, usingζ(x) to denoteϕ′′(x). In such a case we may write

F (c) = Dϕ(a;Bc) = Dϕ∗(ψ(Bc);ψ(a)).

Now usingh = ψ as the link function, and following the approach of Section 3.1.5 (suitably modifying (3.11)
and (3.12)) we obtain

G(c, c̃) =
∑

ij

λijg
(bijcj

λij

)
−

∑

i

(
g(ai) + ai

{
ψ(ai) + ψi((Bc̃)i) + aiζ((Bc̃)i)((Bc)i − (Bc̃)i)

})
,

as an auxiliary function forF (c). As usual we differentiateG w.r.t. cp and obtain

∂G

∂cp
=

∑

i

g′(
cp

c̃p
(Bc̃)i)bip − bipζ((Bc̃)i)ai.

Assumingζ is separable and usingg′(x) = xζ(x), we can solve∂G/∂cp = 0 to obtain the update

cpζ(cp) = c̃pζ(c̃p)

(
[BT Z(Bc̃)a]p

[BT Z(Bc̃)Bc̃]p

)
, (3.17)

whereZ(x) = diag(ζ(xi)). This update is somewhat complicated by theζ terms. In the next section we
follow a different approach to derive simpler updates, including those that do not depend upon the separability
of ζ, or on the convexity ofψ.

3.2.3 Algorithms based on KKT conditions

The approach in this section is different from the previous sections. As before, we develop our methods
with α andβ initially set to zero, noting that differentiable functions α andβ may be easily incorporated
into the updates. We useZ(x) = diag(ζ(xi)) for notational convenience. The updates here are based
on approximately solving the KKT necessary conditions and they lead to multiplicative updates for each
component ofc.

Consider minimizingF (c) = Dϕ(a;Bc) subject toc ≥ 0. The Lagrangian is

L(c,λ) = F (c) − λT c,

whereλ ≥ 0 is the vector of Lagrange multipliers. The KKT necessary conditions are

[∇cF (c)]p = λp (3.18a)

λpcp = 0 (3.18b)

λp ≥ 0, cp ≥ 0. (3.18c)

4The Legendre-conjugate of a convex function is defined asϕ∗(y) = sup
x

`

xy − ϕ(x)
´

.
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Combining the fact
[∇cF (c)]p = [BT Z(Bc)(Bc − a)]p,

with (3.18a) and (3.18b), we obtain

[BT Z(Bc)Bc]pcp = [BT Z(Bc)a]pcp. (3.19)

Sincec occurs on both sides of (3.19) we could solve forc iteratively. Hence, we are led to the following
simple update

cp ← c̃p
[BT Z(Bc̃)a]p

[BT Z(Bc̃)Bc̃]p
. (3.20)

Update (3.20) is of the formcp ← ηpcp, and the close similarity with update (3.16) (which is of theform
c ← ηc) is unmistakable. Forb we similarly derive the update

bp ← b̃p
[aT Z(b̃T C)CT ]p

[b̃T CZ(b̃T C)CT ]p
. (3.21)

3.2.4 Monotonicity

We now assess the correctness of the multiplicative updates(3.20) and (3.21). Letd denote the vector
obtained by updatingc as per (3.20). To establish correctness, we need to show thatF (d) ≤ F (c). The
difference

F (c)−F (d) =
∑

i

ϕ((Bd)i) − ϕ((Bc)i) − ψ((Bc)i)(ai − (Bc)i) + ψ((Bd)i)(ai − (Bd)i)

=
∑

i

(ai − (Bd)i)(ψ((Bd)i) − ψ((Bc)i)) + Dϕ((Bd)i; (Bc)i),

which is just the generalized Pythagorean theorem for Bregman divergences [Censor and Zenios, 1997]. In
vector notation we may write

∆(d) = F (c) − F (d) = (a − Bd)T
(
ψ(Bd) − ψ(Bc)

)
+ Dϕ(Bd;Bc).

Thus we need to prove that the change∆(d) ≥ 0. Unfortunately, without further assumptions onϕ or ψ it
seems difficult to prove∆(d) ≥ 0. However for three important cases we are able to prove∆(d) ≥ 0 (in fact
we prove a stronger statement) as Lemma 5 below shows. Further, if we linearizeψ we can obtain a simple
proof of monotonicity, as shown in Section 3.2.5 below.

Lemma 4 (Auxiliary inequality). Letc, d be nonnegative, andX = Y T Y , whereY ≥ 0. Then

∑

i

(Xc)i
d2

i

ci
≥ dT Xd. (3.22)

Proof. We have the following

dT Xd = dT Y T Y d =
∑

k

(Y d)2k

≤
∑

ki

λki

(
ykidi

λki

)2

=
∑

ki

(Y c)kykid
2
i /ci, usingλki =

ykici

(Y c)k

=
∑

l

(∑

k

yT
ik(Y c)k

)
d2

i

ci
=

∑

l

(∑

kj

yT
ikykjcj

)
d2

i

ci
=

∑

i

(Xc)i
d2

i

ci
.

12



Lemma 5 (Monotonicity). For ϕ(x) = 1
2x2, ϕ(x) = x log x, or ϕ(x) = − log x, if d is obtained by

updatingc as per(3.20), then
∆̂(d) = ∆(d) − Dϕ(Bd;Bc) ≥ 0.

Proof. We treat each case separately.

CASE I. For the Frobenius norm NNMA problem we haveϕ(x) = 1
2x2. Henceψ(x) = x and we need to

show that
0 ≤ ∆̂(d) =

∑

i

(
ai − (Bd)i

)
((Bd)i − (Bc)i).

For this problem the update (3.20) simplifies to

di = ci
(BT a)i

(BT Bc)i
. (3.23)

Cross-multiplying and summing (3.23) overi we see that
∑

i

di(B
T Bc)i =

∑

i

ci(B
T a)i ⇔ (Bd)T (Bc) = aT (Bc),

whereby∆̂(d) = dT BT a − dT BT Bd. Eliminating(BT a)i we get

∆̂(d) =
∑

i

d2
i

ci
(BT Bc)i − di(B

T Bd)i.

Now, using Lemma 4 withX = BT B we immediately conclude the non-negativity of∆̂(d).

CASE II. For the KL-Divergence NNMA problem we haveψ(x) = 1 + log x. Hence, we need to prove that

0 ≤ ∆̂(d) =
∑

i

(ai − (Bd)i) log
(Bd)i

(Bc)i
.

We proceed by analyzing individual terms in the summation above. We have

log
(Bd)i

(Bc)i
=

1

(Bc)i

(
(Bc)i log

(Bd)i

(Bc)i

)

=
1

(Bc)i

(∑

j

bijcj log

∑
l bildl∑
l bilcl

)

≥ 1

(Bc)i

∑

j

bijcj log
dj

cj
, (3.24)

where the latter inequality follows from the log-sum inequality

∑

i

xi log
xi

yi
≥ (

∑

i

xi) log

∑
i xi∑
i yi

.

A second application of this log-sum inequality allows us toconclude that

−(Bd)i log
(Bd)i

(Bc)i
≥ −

∑

j

bijdj log
dj

cj
. (3.25)

13



Using (3.24) and (3.25) we conclude that

∆(d) ≥
∑

ij

bij log
dj

cj

( ai

(Bc)i
cj − dj

)

=
∑

j

log
dj

cj

((
cj

∑

i

bij
ai

(Bc)i

)
−

∑

i

bijdj

)

= 0,

where the last equality follows from the update (3.20) fordj given by

dj = cj

∑
i bijai/(Bc)i∑

i bij
.

Hence the proof is complete.

CASE III. For the Burg-entropy NNMA problemϕ(x) = − log x. Here the domain ofϕ is R++. We use
∆̂(d) = (a − Bd)T (ψ(Bd) − ψ(Bc)), whereψ(x) = −1/x. Thus, the aim is to prove

0 ≤ ∆̂(d) =
∑

i

(
ai − (Bd)i

)( 1

(Bc)i
− 1

(Bd)i

)
.

The update (3.20) simplifies to

di = ci
(BT Za)i

(BT ZBc)i
, (3.26)

whereZ = diag(1/(Bc)2i ). Cross-multiplying and summing (3.26) overi we obtain

∑

ij

dibij/(Bc)j =
∑

ij

cibijaj/(Bc)2j ⇔
∑

j

(Bd)j

(Bc)i
=

∑

j

aj

(Bc)i
.

Hence proving∆(d) ≥ 0 boils down to proving

∑

i

(
1 − ai

(Bd)i

)
≥ 0.

Applying convexity of1/x to 1/(Bd)i we obtain

ai

(Bd)i
=

ai∑
j bijdj

≤ ai

∑

j

λij

bijdj/λij
,

where
∑

j λij = 1. Lettingλij = bijcj/(Bc)i we have

∑

i

ai

(Bd)i
≤

∑

ij

aibijc
2
j

(Bc)2i dj

=
∑

ij

aibijcj(B
T ZBc)j

(BT Za)j(Bc)2i
=

∑

j

(BT ZBc)jcj

(BT Za)j

∑

i

bij
1

(Bc)2i
ai

=
∑

j

(BT ZBc)jcj =
∑

jk

bkj(ZBc)kcj

=
∑

jk

bkjcj

(Bc)k
=

∑

k

1,

which is what we needed to show, hence the proof is complete.
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We remark that even though convergence for the first two cases(ϕ(x) = 1
2x2 or ϕ(x) = x log x) is

already known [Lee and Seung, 2000], our proofs arenewand direct. Provinĝ∆(d) ≥ 0 for other interesting
functionsϕ remains a challenge.

3.2.5 Monotonicity with linearization

Consider the first order Taylor-series expansion

ψ((Bd)i) ≈ ψ((Bc)i) + ζ((Bc)i)((Bd)i − (Bc)i), (3.27)

which provides a good approximation toψ whenBd is sufficiently close toBc (which is usually the case
after a few iterations, as revealed by our experiments). Thus, (3.27) allows us to write

∆(d) ≈ (a − Bd)T Z(Bc)(Bd − Bc) + Dϕ(Bd;Bc).

Lemma 6 shows that
(a − Bd)T Z(Bc)(Bd − Bc) ≥ 0,

from which, using nonnegativity ofDϕ(Bd;Bc) we immediately conclude that∆(d) ≥ 0.

Lemma 6 (Monotonicity). If d is obtained fromc as per (3.20), then

(a − Bd)T Z(Bc)(Bd − Bc) ≥ 0.

Proof. From (3.20) we have

di[B
T Z(Bc)a]i = [BT Z(Bc)Bc]i

d2
i

ci
=⇒ aT Z(Bc)Bd =

∑

i

[BT Z(Bc)Bc]i
d2

i

ci
.

Similarly (3.20) also yields(Bd)T Z(Bc)Bc = aT Z(Bc)Bc. Thus the claim of this lemma reduces to

∑

i

[BT Z(Bc)Bc]i
d2

i

ci
− (Bd)T Z(Bc)Bd ≥ 0.

Using Lemma 4 withX = BT Z(Bc)B we conclude the truth of this inequality.

3.2.6 Miscellaneous monotonicity approaches

Monotonicity in general is easier to show given additional assumptions. For example, ifψ(x) is convex and
ai ≥ (Bd)i, then∆̂(d) ≥ 0. This claim follows from Lemma 6 upon using the convexity ofψ since

ψ((Bd)i) ≥ ψ((Bc)i) + ζ((Bc)i)((Bd)i − (Bc)i).

However, the requirementai ≥ (Bd)i is overly restrictive and without additional adjustments to the algo-
rithm, not always easy to guarantee. A more interesting variant arises if we assume thata majorizesBc.
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Convergence forℓp-norms Encouraged by the proofs centered around Lemma 4 we could apply the same
techniques (and some additional manipulations) to obtain aproof of convergence for the case whereϕ(x) =
1
pxp, for p ≥ 2. As before we usê∆(d) = (a−Bd)T (ψ(Bd)− ψ(Bc)), whereψ(x) = xp−1. We wish to
prove

0 ≤ ∆̂(d) =
∑

i

(
ai − (Bd)i

)(
(Bd)p−1

i − (Bc)p−1
i

)
.

For the present case (3.20) simplifies to

di = ci
(BT Za)i

(BT ZBc)i
, (3.28)

whereZ = diag((Bc)p−2
i ) (we have dropped the factor(p − 2) because it cancels out). Cross-multiplying

(3.28) and summing overi we obtain
∑

ij

(p − 2)dibji(Bc)p−2
j (Bc)j =

∑

ij

ci(p − 2)bji(Bc)p−2
j aj

⇔
∑

i

(Bd)i(Bc)p−1
i =

∑

i

(Bc)p−1
i ai.

Thus, proving∆̂(d) ≥ 0 boils down to proving

∑

i

(
ai − (Bd)i

)
(Bd)p−1

i ≥ 0. (3.29)

Inequality (3.29) appears difficult on account of thep − 1 exponent. Exploiting Conjecture 7 (empirically
verified) the following sequence of inequalities and equalities establishes (3.29).

∑

i

(Bd)p
i =

∑

i

(Bd)iẑii(Bd)i

≤
∑

i

(BT ẐBc)i
d2

i

ci
, Lemma 4

=
∑

i

(BT ẐBc)i(B
T Za)i

(BT ZBc)i
di, Using (3.20)

=
∑

i

(BT ẐBc)i(B
T Za)i

(BT ZBc)i(BT Ẑa)i

(BT Ẑa)idi

≤
∑

i

(Bd)iẑiiai, Conjecture 7

=
∑

i

ai(Bd)p−1
i .

Conjecture 7 (Ratio conjecture). Let Ẑ = diag
(
(Bd)p−2

i

)
, whered is as given by(3.28). Then,

(BT ẐBc)i

(BT ZBc)i
≤ (BT Ẑa)i

(BT Za)i
. (3.30)

Further, equality holds in(3.30)if and only ifd andc are proportional, i.e.,di

ci
= η.
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Proof. First we prove the iff condition. Ifd = ηc then clearly sincêZ = ηp−2Z (essentially depending on
separabilityof ζ), equality holds. For the other direction assume that equality holds. Then,

∑

i

(BT ẐBc)i(B
T Za)i =

∑

i

(BT ZBc)i(B
T Ẑa)i

i.e., cT BT ẐBBT Za = cT BT ZBBT Ẑa.

Sincea andBc are arbitrary, we must havêZBBT Z = ZBBT Ẑ. SinceZ and Ẑ are diagonal, this
implies that

ẑiizjj = ziiẑjj , for all i, j,

which is possible only when̂zii/zii = η, for some constantη. This, in turn implies thatdi = ηci.
Now we need to prove the inequality—as of now we do not have a proof.

3.2.7 Nonzero penalty functions

We now look at the case with nonzero (differentiable) penalty functions by proceeding along the same lines
as Section 3.2. Other authors have also obtained similar updates with penalty functions, e.g., [Cichocki et al.,
2006a,b]. Consider minimizingF (c) + β(c) (the penalty function need not be separable, but for notational
convenience we write it here as a function of the columnc under consideration) subject toc ≥ 0. We form
the Lagrangian, differentiate it, and write out the KKT necessary conditions for optimality

∇c[F (c) + β(c)] = λ (3.31a)

λpcp = 0 (3.31b)

λp ≥ 0, cp ≥ 0. (3.31c)

Once again we use (3.31a), (3.31b) in conjunction with the gradient

∇c(F (c) + β(c)) = BT Z(Bc)(Bc − a) + ∇cβ(c),

to obtain the iterative update

cp ← c̃p
[BT Z(Bc̃)a]p

[BT Z(Bc̃)Bc̃]p + [∇cβ(c)]p
. (3.32)

The update forb may be derived similarly and we skip it for brevity. If[∇cβ(c)]p ≥ 0 we do not have
to do any additional work to enforce nonnegativity ofcp. Otherwise, we might have to resort to additional
heuristics to respect the nonnegativity. Furthermore, onemust ensure that the denominator remains nonzero.
Since the problem with penalties is more general than the onewithout, proofs of convergence can be difficult
to furnish, and are deferred to future work.

3.3 Further generalizations

Our methods can be used to minimize other divergence measures too. Below we illustrate two such possi-
bilities as an example. We derive updates for minimizing Csisźar’s ϕ-divergences and Young’s divergences
(defined below). We remark that additional work on minimizing Csisźar’s divergences for NNMA problems
has appeared previously, e.g., [Cichocki et al., 2006b].
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3.3.1 Csisźar’s ϕ-divergences.

Let ϕ(x) be a convex function defined onx > 0 with ϕ(1) = 0. Csisźar’sϕ-divergence betweenx ≥ 0 and
y ≥ 0 is defined as

DCϕ(x; y) =
∑

i

yiϕ

(
xi

yi

)
.

The two associated NNMA problems are

min
c≥0

DCϕ(Bc; a) =
∑

i

(Bc)iϕ

(
ai

(Bc)i

)
, (3.33)

and

min
c≥0

DCϕ(a;Bc) =
∑

i

aiϕ

(
(Bc)i

ai

)
. (3.34)

We may follow the auxiliary function method suggested in Section 3.1.3 or the KKT technique of Section 3.2
to obtain updates for minimizing the above two functions. For example, when minimizing (3.34) using the
auxiliary function method of§ 3.1.3 we can obtain the updated value ofcp by solving (∂G/∂cp = 0)

∑

i

bipaiψ

(
cp(Bc̃)i

c̃pai

)
= 0. (3.35)

The update (3.35) will decrease the objective function (3.34) monotonically (by construction). However, as
before, it is not always possible to solve (3.35) analytically. In principle, one can solve (3.35) iteratively in
such cases.

If we follow the KKT approach, we obtain the following updaterule for minimizing (3.33)

cp ← c̃p
[BT ϕ(r)]p

[BT (ψ(r) ⊙ r)]p
, r = a/Bc. (3.36)

Experiments reveal that forr ≤ 1 update (3.36) leads to a monotonic decrease as long as the nonnegativity
of all the elements can be maintained. More work is needed to determine the conditions under which (3.36)
yields monotonically decreasing updates. Related work on minimizing Csisźar’s divergence for NNMA may
be found in [Cichocki et al., 2006b].

3.3.2 Young’s Divergence

Fenchel’s inequality[see Boyd and Vandenberghe, 2004, pg. 94] states that

ϕ(x) + ϕ∗(y) ≥ xT y,

whereϕ∗ is the convex-conjugate ofϕ. Whenϕ is differentiable (which we assume it to be) this inequality
is calledYoung’s inequality. Thus, one may define a divergence

Dϕ
Y (x;y) = ϕ(x) − xT y + ϕ∗(y). (3.37)

This divergence was previously called theGeneralized Bregman’s divergenceby Gordon [2003], but owing
to its genesis from Young’s inequality we prefer to call itYoung’s divergence. This divergence does not in
general satisfyDϕ

Y (x;x) = 0, and there may existy 6= x such thatDϕ
Y (x;y) = 0. Assume for simplicity

that bothdom ϕ anddom ϕ∗ ⊆ R+. Thus, we redefine (3.37) as

Dϕ
Y (x;y) =

∑

i

ϕ(xi) − xiyi + ϕ∗(yi).
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Young’s divergence is particularly conducive to optimization, since bothϕ andϕ∗ are convex. Thus, it is easy
to obtain provably convergent iterative algorithms for minimizing bothDϕ

Y (a;Bc) andDϕ
Y (Bc;a) via our

auxiliary function technique. We illustrate both cases below, which are essentially special cases of discussion
in Section 3.1.3.

Minimizing Dϕ
Y (a;Bc) For minimizingDϕ

Y (a;Bc) we again use the auxiliary function technique. Owing
to the convexity ofϕ∗ it is easy to construct an auxiliary function. As before, letting λij = bij c̃j/(Bc̃)i we
construct the auxiliary function

G(c, c̃) =
∑

ij

λijϕ
∗
(cj

c̃j
(Bc̃)i

)
+

∑

i

ϕ(ai) − (Bc)iai. (3.38)

Minimizing (3.38) w.r.t.cp amounts to solving

∑

i

bip∇ϕ∗
(cp

c̃p
(Bc̃)i

)
= [BT a]p .

For example, if∇ϕ∗ = ψ−1 is “factorizable” then we obtain the update (cf. Update 3.7)

cp ← c̃pψ

(
[BT a]p

[BT ψ−1(Bc̃)]p

)
. (3.39)

Minimizing Dϕ
Y (Bc;a) This case is tackled with equal ease as the previous one. Observe the (expected)

duality between the two problems. It is easily verified that

G(c, c̃) =
∑

ij

λijϕ
(cj

c̃j
(Bc̃)i

)
+

∑

i

ϕ∗(ai) − (Bc)iai, (3.40)

serves as an auxiliary function. As before, for factorizableψ we obtain the update (cf. Update 3.7)

cp ← c̃pψ
−1

(
[BT a]p

[BT ψ(Bc̃)]p

)
. (3.41)

Observe that when minimizingDϕ
Y (Bc;ψ(a)), (3.40) leads to an update identical with update (3.7) (that

minimizesDϕ(Bc;a)).

4 Examples of NNMA problems

In this section we present some specific NNMA problems and their solutions as obtained by the methods dis-
cussed above. We also motivate simple generalizations suchas weighted and multi-factor NNMA problems
by means of examples. Our (new) contributions are highlighted with a⋆ suffixed to the section name.

4.1 New KL-Divergence NNMA⋆

The original NNMA problem [Lee and Seung, 1999] focused on minimizing KL(a;Bc). We look at the
corresponding asymmetric case that minimizes

KL(Bc,a) =
∑

i

(Bc)i log
(Bc)i

ai
− (Bc)i + ai, B, c ≥ 0. (4.1)
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Let ϕ(x) = x log x − x. Then,ψ(x) = log x, and sinceψ(xy) = ψ(x) + ψ(y), upon substituting forψ
in (3.6) and setting the resultant to zero we obtain

∂G

∂cp
=

∑

i

bip log(cp(Bc̃)i/c̃p) −
∑

i

bip log ai = 0,

=⇒ (BT
1)p log

cp

c̃p
= [BT log a − BT log(Bc̃)]p

=⇒ cp = c̃p · exp

(
[BT log

(
a/(Bc̃)

)
]p

[BT 1]p

)
.

Similarly the update forb is derived to be

bp = b̃p · exp

(
[
(
log(a/b̃T C)

)T
CT ]p

[1T CT ]p

)
.

Due to theexp(·) function it is obvious that the updates maintain the nonnegativity of cp andbp, provided the
iteration is primed with nonnegativec andb.

4.2 Constrained NNMA and Maximum Entropy⋆

Consider the following problem with additional linear constraints

min
c

Dϕ(Bc;a)

s.t. Pc ≤ 0, c ≥ 0.
(4.2)

We introduce a differentiable penalty function for enforcing the constraintsPc ≤ 0. Let,

F (c) = Dϕ(Bc;a) + ρ‖max(0,Pc)‖2, (4.3)

whereρ > 0 is some penalty constant. Assuming multiplicativeψ and following the auxiliary function
technique described in Section 3.1.4, we obtain the following updates forc,

cp ← cp · ψ−1

(
[BT ψ(a)]p − ρ[P T (Pc)+]p

[BT ψ(Bc)]p

)
,

where(Pc)+ = max(0,Pc). Note that care must be taken to ensure that the addition of the penalty term
does not violate the nonnegativity ofc, and that the argument ofψ−1 lies in its domain.

Maximum Entropy. Incorporating additional constraints into (4.1) is easier, since the exponential updates
ensure nonnegativity. Givena = 1, consider the problem

min
c

KL(Bc,1) s.t.Pc ≤ 0, c ≥ 0.

Using the penalty function as described above along with thederivation in§4.1 we obtain

cp ← cp · exp

(
[−BT log(Bc) − ρP T (Pc)+]p

[BT 1]p
.

)

Note that one may use other penalty functions to enforcePc ≤ 0, provided that these functions are differen-
tiable.
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4.3 Lee and Seung’s Algorithms.

Let α ≡ 0, β ≡ 0. Whenϕ(x) = 1
2x2, then (3.21) and (3.20) yield

bmk ← bmk
(ACT )mk

(BCCT )mk
, ckn ← ckn

(BT A)kn

(BT BC)kn
,

while for ϕ(x) = x log x we obtain

bmk ← bmk

{ (
[ A
BC

]CT
)
mk

(1M1
T
NCT )mk

=

∑
s cksams/(BC)ms∑

n ckn

}
,

ckn ← ckn

{ (
BT [ A

BC
]
)
kn

(BT 1M1
T
N )kn

=

∑
t btkatn/(BC)tn∑

m bmk

}
.

These updates are the same as the ones originally derived by Lee and Seung [2000]. It can easily be shown
that these updates are equivalent (see [Gaussier and Goutte, 2005]) to those for probabilistic latent semantic
indexing (PLSI) [Hofmann, 1999].

4.4 The Multifactor NNMA Problem ⋆ and an Application

Both the NNMA problems (P1) and (P2) can be extended to the “multi-factor” problem, wherein one seeks
an approximation of the typeA ≈ B1B2 . . . BR. As a simple example, consider minimizing

Dϕ(A;B1B2 . . . BR),

where all matrices involved are nonnegative. We compute thegradient of the divergenceDϕ w.r.t. eachBr.
Let B̂ = B1B2 . . . Br−1, Ĉ = Br+1Br+2 . . . BR, andH = B1B2 . . . BR. Let br

pq denote the(p, q)-th
element ofBr. It is easy to verify that

∂Dϕ

∂br
pq

=
[
B̂T (ζ(H) ⊙ (H − A))ĈT

]
pq

.

Following the derivation in Section 3.2 we obtain the update

Br ← Br ⊙
B̂T (ζ(H) ⊙ A)ĈT

B̂T (ζ(H) ⊙ H)ĈT
. (4.4)

Application to relaxed Co-clustering. A typical usage of multi-factor NNMA problem would be to obtain
a three-factor NNMA, namelyA ≈ RBCT . Such an approximation is closely tied to the problem of co-
clustering [Cho et al., 2004], and can be used to produce relaxed co-clustering solutions, wherein the matrices
R, C, B represent row-clustering, column-clustering, and co-cluster prototypes, respectively. For example,
for the problems

min ‖A − RBCT ‖2
F (Euclidean)

min KL(A; RBCT ) (Information-theoretic),

an application of (4.4) yields the iterative schemes

R ← R ⊙ ACBT

RBCT CBT
, B ← B ⊙ RT AC

RT RBCT C
, C ← C ⊙ AT RB

CBT RT RB

R ← R ⊙ [ A
RBCT ]CBT

11T CBT
, B ← B ⊙ RT [ A

RBCT ]C

RT 11T C
, C ← C ⊙ [ AT

CBT RT ]RB

11T RB
,
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for the relaxations of the Euclidean and Information-theoretic clustering, respectively. In practice we can also
normalize bothR andC while adjusting the matrixB accordingly. It is evident that we can exploit the gener-
ality of the update (4.4) to obtain relaxed co-clustering solutions to problems of the formmin Dϕ(A;RBC).
We remark that in practice, the above updates should be implemented to exploit the sparsity ofA. A recent
paper [Badea, 2005] also describes a co-clustering procedure based on NNMA.

4.5 Weighted NNMA Problems⋆

There are three main ways in which weighting may be incorporated into the NNMA model. First, we weight
the objective function elementwise, second we weight the low-rank approximant elementwise, and third we
weight the approximant by multiplying it with weighting matrices. The corresponding NNMA problems are

min
∑

ij

wijDϕ(aij ; (BC)ij) and min
∑

ij

wijDϕ((BC)ij ; aij),

min Dϕ(A;W ⊙ (BC)) and min Dϕ(W ⊙ (BC);A),

min Dϕ(A;W1BCW2) and min Dϕ(W1BCW2;A),

where the weighting matricesW1 andW2 are also nonnegative. All of these problems may be solved easily
by the techniques developed above though to avoid repetition we skip the derivations. Table 2, however,
summarizes some of the associated updates.

Example: The PMF Problem. Here we wish to minimize‖W ⊙ (A−BC)‖2
F . UsingX ←

√
W ⊙X,

andA ←
√

W ⊙ A in (3.21) and (3.20) one obtains

B ← B ⊙ (W ⊙ A)CT

(W ⊙ (BC))CT
, C ← C ⊙ BT (W ⊙ A)

BT (W ⊙ (BC))
.

These iterative updates are significantly simpler than the PMF algorithms of Paatero and Tapper [1994] and
may be used as alternatives to them.

Example: Weighted KL-Divergence Problem. Here we wish to minimize KL(A;PBCQ), whereP

andQ are positive diagonal matrices. This problem is a slight generalization of the diagonally weighted
problem considered by [Guillamet et al., 2001, 2003]. Using(4.4), we obtain

bmk ← bmk

{(
P

[
A

P BCQ

]
QCT

)
mk(

P (1M1
T
N )QCT

)
mk

=

∑
s cksams/(pmm(BC)ms)∑

n cknqnn

}

ckn ← ckn

{(
BT P

[
A

P BCQ

]
Q

)
kn(

BT P (1M1
T
N )Q

)
kn

=

∑
t btkatn/(qnn(BC)tn)∑

m bmkpmm

}
.

Observe that whenP = IM andQ = IN then these updates simplify to those given in Section 4.3.
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Objective function Update Reference

‖A − BC‖2
F ckn ← ckn

(BT A)kn

(BT BC)kn
§ 4.3

KL(A;BC) ckn ← ckn

P
t btkatn/(BC)tnP

m bmk
§ 4.3

KL(Bc;a) cp ← cp exp
(

[BT log
(
a/(Bc)

)
]p

[BT 1]p

)
§ 4.1

Dϕ(Bc;a) c ← ψ−1
[

cT BT ψ(a)
cT BT ψ(Bc)

]
c (3.4)

Dϕ(Bc;a) cp ← cp · ψ−1
( [BT ψ(a)]p

[BT ψ(Bc)]p

)
(3.7)

Dϕ(a;Bc) c ← cT BT Z(Bc)a
cT BT Z(Bc)Bc

c (3.16)

Dϕ(a;Bc) g′(cp) ← g′(cp)
[BT Z(Bc)a]p

[BT Z(Bc)Bc]p
(3.17)

Dϕ(a;Bc) cp ← cp
[BT Z(Bc)a]p

[BT Z(Bc)Bc]p
(3.20)

Dϕ(A;B1B2 . . . BR) Br ← Br ⊙
bBT (ζ(H)⊙A) bCT

bBT (ζ(H)⊙H) bCT
(4.4)

‖W ⊙ (A − BC)‖2
F C ← C ⊙ BT (W⊙A)

BT (W⊙(BC))
§ 4.5

KL(A;PBCQ) ckn ← ckn

P
t btkatn/(qnn(BC)tn)P

m bmkpmm
§ 4.5

∑
i wiDϕ(ai; (Bc)i) cp ← cp

[BT Z(Bc)(w⊙a)]p
[BT Z(Bc)(w⊙(Bc))]p

§ 4.5
∑

i wiDϕ((Bc)i; ai) cp ← cp · ψ−1
( [BT (w⊙ψ(a))]p

[BT (w⊙(ψ(Bc)))]p

)
§ 4.5

Dϕ(a;w ⊙ (Bc)) cp ← cp
[BT Z(w⊙(Bc))(w⊙a)]p

[BT Z(w⊙(Bc))(w2⊙Bc)]p
§ 4.5

Dϕ(A;W1BCW2) C ← C ⊙ BT W T
1

(
ζ(Z)⊙A

)
W T

2

BT W T
1

(
ζ(Z)⊙(Z)

)
W T

2

Z = W1BCW2

DCϕ(Bc; a) cp ← cp
[BT ϕ(r)]p

[BT diag(r)ψ(r)]p
§ 3.3.1

Dϕ
Y (Bc;a) cp ← c̃p · ψ−1

(
[BT a]p

[BT ψ(Bc̃)]p

)
§ 3.3.2

Dϕ
Y (a;Bc) cp ← c̃p · ψ

(
[BT a]p

[BT ψ−1(Bc̃)]p

)
§ 3.3.2

Table 2: Summary of some NNMA algorithms. The updates are shown either for individual elements ofC
(ckn), the entire matrixC, or individual elements (cp) of an arbitrary column ofc. The corresponding updates
for B are similar and have been omitted for brevity.

5 Experiments

This section presents simple experiments to illustrate some of the properties of our algorithms. We do not fo-
cus on any particular application and point the interested reader to the vast list of applications in Section 6.2).

5.1 Monotonic convergence

First we illustrate the monotonic convergence behavior of some of our algorithms that were implemented in
MATLAB . However, this implementation is for illustrative purposes only; we refer the reader to our high
performance implementation in C++ for tackling real world datasets.

Figure 2 reports how the respective objective functions decreased monotonically while performing a rank-
3 decomposition for a20 × 8 nonnegative input matrix. The first subfigure in the second row shows that the
simple multiplicative scaling procedure (3.4)) hits its stationary point within two iterations, and no further
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improvement to the divergence is achieved thereafter. Comparing it with the second subfigure in row two, we
see that the elementwise multiplicative update (3.7) leadsto a better local minimum for the same objective
function value.
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Figure 2: Illustration of monotonic decrease in objective function values for a various instances of NNMA
problems. A rank-3 decomposition of a20 × 8 matrix was obtained for each case. The first row (left to
right) shows NNMA for‖A − BC‖2

F, KL(A; BC), and KL(BC; A). The second row shows NNMA
update (3.4) (Dϕ(BC;A)) with ϕ = 1

3x3, update (3.7) (Dϕ(BC;A)) with ϕ = 1
3x3, and update (3.20)

(Dϕ(A;BC)) with ϕ = exp(x). The third row shows NNMA update (3.20) withϕ = x8 followed by
updates for‖W ⊙ (A − BC)‖2

F, and KL(A; W1BCW2) with random weighting matrices. The last row
shows Csisźar’s divergence update (3.36) withϕ =

√
x − 1, Young’s divergence updates (3.39), and (3.41)

with ϕ = 1
3x3. The absolute values of the objective functions cannot of course be compared to each other;

the essential point being the monotonicity.

While producing these figures, we noticed another interesting trend. Our algorithm for minimizing
Dϕ(A;BC) also monotonically decreasesDϕ(BC;A) at the same time, and vice-versa. The same holds
true for our algorithms that minimize Young’s divergences.This curious effect is somewhat unexpected con-
sidering the innate asymmetry of these divergences. However, it remains to be investigated in greater detail.
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5.2 Effect of objective function

We remark that if the model fits the data well then the particular objective function selected does not play
a very important role. However, if one has ana priori assumption on the noise corrupting the observed
data, then minimizing the Bregman divergence corresponding to the assumed noise distribution is expected
to given a better reconstruction. Banerjee et al. [2005] illustrate clustering results on data following different
distributions, demonstrating that if one the matching Bregman divergence the resulting clustering accuracy is
higher. Their observation lends support to our recommendation for selecting an appropriate divergence for
minimization.

The application being studied can govern the selection of the objective function, see for example the recent
work [Chen et al., 2006, Cichocki et al., 2006a,c]. In addition, the summary of applications in Section 6.2
can provide some additional information about the choice ofdivergence.

Another important factor governing the choice of objectivefunction is the ease of minimization and
computational complexity, especially in the presence of additional regularization terms and/or constraints.
Furthermore, the sparsity pattern of the input can govern which objective function we choose to use. However,
just as selecting the appropriate kernel is not always easy,it is difficult to give general prescriptions for which
particular divergence measure is most suited to a given problem. Usually experience and knowledge about
the data determine the choice of the divergence measure.

6 Brief Literature Review

Since its introduction, NNMA has been increasingly appliedas a technique for dimensionality reduction and
data analysis. Correspondingly, there has been a significant amount of research related to it. The aim of
this section is to provide a brief summary about the various algorithms and applications of NNMA that have
appeared in the literature. While attempt has been made to be as complete as possible, the sheer magnitude
of the task renders it impossible to attain completeness. Weapologize in advance to the authors whose work
we might have inadvertently missed.

The origin of theapproximatenonnegative factorization problem or NNMA may be credited to [Paatero
et al., 1991] who called it Positive Matrix Factorization (PMF), and to [Lee and Seung, 1999] who called it
Nonnegative Matrix Factorization. Theexactfactorization problem is however older, and Section 7 digresses
briefly into it.

6.1 Algorithms

There exist a few different algorithms for NNMA. Some of themare based on solving suitably modified
non-linear least squares problems, while others are simpleiterative procedures. We summarize procedures of
both types below.

6.1.1 Paatero’s methods

Paatero et al. [1991] introduced the term PMF and sought to construct a factor model with two nonnegative
matrices by minimizing

‖W ⊙ (A − BC)‖2
F, (6.1)

whereA, B, C, andW are all nonnegative. The matrixW consists of weights reflecting confidence in
the measurements inA. In the same paper Paatero et al. [1991] also introduced a three factor NNMA
model. However, they did not provide any algorithm to actually compute the presented models. Paatero and
Tapper [1993] suggested using alternating least squares (ALS), wherein one holdsB fixed while obtaining the
optimalC and vice versa, for PMF. Nonnegativity is enforced in an ad-hoc fashion by simply discarding the
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entries smaller than zero. NNMA may also be performed with alternating non-negative least squares instead
of ALS by using the NNLS algorithm of [Lawson and Hanson, 1974]. While doing ALS or Alternating
NNLS, the least squares subroutines can prove to be a bottleneck. Hence, in practice it is better to combine
the least square approach with the faster Lee/Seung type updates.

Later [Paatero and Tapper, 1994] proposed another approachfor PMF, claiming it to be superior to the one
based on ALS. In this approach one iteratively solves(B+∆B)C ≈ A for ∆B (likewise for∆C), followed
by solving for the coefficientα in (B+∆B)(C+∆C) ≈ A. However, in practice Paatero and Tapper [1994]
recommend neglecting the product∆B∆C while minimizing‖A − (B + ∆B)(C + ∆C)‖F to obtain∆B

and∆C. In [Paatero, 1997b], yet another algorithm for PMF is introduced under the name PMF2 (the two
standing for a two-factor model). However, from its description, the PMF2 algorithm seems to have expanded
upon the just described method of [Paatero and Tapper, 1994]and it enforces nonnegativity using logarithmic
penalty functions.

Paatero [1997a] went on to consider a three-way factor analytic model (also called PARAFAC, a factor
model introduced in 1970 by Harshman [Harshman and Lundy, 1984]). The corresponding algorithm for
computing nonnegative factors was called PMF3 and pseudocode is provided in the paper [Paatero, 1997a].
However, the algorithm requires a significant amount of engineering effort to implement and is rather ob-
scure. As an application to the same problem (PARAFAC) Bro and de Jong [1997] presented a faster NNLS
algorithm. In order to solve more general “multi-factor” problems Paatero [1999] developed another algo-
rithm called the Multi-linear Engine that allows solvingn-way models. The solution is computed using a
method based on conjugate gradients.

Other methods based on Least SquaresPauca et al. [2004b] presented an algorithm that combines a
constrained least squares problem with the multiplicativeupdate procedures of Lee and Seung [1999]. The
procedure solves the least square problemmin ‖A − BC‖2

F + λ‖C‖2
F using ordinary least squares. The

nonnegativity ofC is enforced by setting the negative elements to0. The matrixB is updated using the
standard updates (§ 4.3). Langville and Meyer [2005] suggest using alternatingconstrained least squares for
both B andC. Theλ term influences the sparsity of the resulting solution. Langville and Meyer [2005]
also discuss other measures of sparsity that one could incorporate. Other related work dealing with sparsity
in NNMA is [Paatero et al., 2002] (controlling rotations by influencing sparsity) and [Heiler and Schnörr,
2006a] (for nonnegative tensors). In a vein similar to alternating NNLS Lawrence et al. [2004a] describe an
alternating constrained nonnegative least squares procedure for NNMA built on top of linearly constrained
least squares. The brief survey paper [Berry et al., 2006] describes some other approaches.

6.1.2 Lee & Seung and Related Methods

Lee and Seung also developed the problem of NNMA and introduced a specially constrained version of it in
the context of unsupervised learning by convex and conic coding [Lee and Seung, 1997]. In that paper, they
considered learning encodings so that the reconstruction error over the ensemble of inputs is minimized. The
method of choice was an alternating projected gradient approach in which firstB is fixed and a gradient de-
scent is done w.r.t.C and vice versa. Nonnegativity constraints were implemented by zeroing out the negative
entries and the normalization constraints were enforced using quadratic penalty functions. However, NNMA
finally gained popularity after the two papers [Lee and Seung, 1999, 2000] introduced the problem under
the namenonnegative matrix factorization. Lee and Seung [1999] provided efficient iterative algorithms for
NNMA, which were developed and analyzed further in [Lee and Seung, 2000].

Hoyer [2002] added anℓ1-norm based regularization term to the original Frobenius norm objective func-
tion in order achieve sparser solutions. The resultant NNMAproblem, which he named Nonnegative Sparse
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Coding, was
min

B,C≥0
‖A − BC‖2

F + λ
∑

ij

cij ,

whereλ > 0 is a regularization parameter. Subsequently, Hoyer [2004]extended the enforcement of spar-
sity by minimizing ‖A − BC‖2

F under additional sparsity constraints of the form sparsity(cT
j ) = SC ,

sparsity(bi) = SB . Hoyer [2004] uses the function

sparsity(x) =

√
n − ‖x‖1/‖x‖2√

n − 1
,

to measure the sparsity and uses a combination of projected gradient descent and Lee/Seung’s iterative up-
dates for carrying out the minimization. Evidently, one canuse other measures of sparsity (See [Langville
and Meyer, 2005], for further examples).

Feng et al. [2002] added additional constraints to the KL-Divergence NNMA problem to model spatial
locality in the input matrixA. Locality is encouraged by enforcing constraints onB, and sparsity by imposing
constraints onC. The resultant objective function was

KL(A;BC) + c11
T BT B1 − c2‖C‖2

F, (6.2)

wherec1, c2 > 0 are some constants.
Sajda et al. [2003] modified Lee/Seung’s algorithm by forcing small values inC to ǫ > 0, and named

their modification cNMF (constrained NMF). They initialized B randomly, andC using a constrained least
squares solution. Thereafter, they updatedB andC as usual with the exception of clamping down small
values inC to the fixed constantǫ.

Guillamet et al. [2001, 2003] suggest that one should weightthe input vectors (columns ofA) and con-
sider the approximationAW ≈ BCW , whereW is a diagonal matrix of weights such thatTr(W ) = 1.
They present results for such a modification to the KL-Divergence NNMA problem. Our weighted NNMA
described in§ 4.5 subsumes this approach.

Szatḿary et al. [2002] perform NNMA that has been augmented with sparse code shrinkage and weight
sparsification. The latter two techniques were employed to improve the performance of NNMA. For more
on SCS the reader is referred to [Hyvärinen et al., 2001]. Heiler and Schnörr [2006b] use NNMA and cone
programming to obtain sparse representations.

The NNMA problem has been extended to nonnegative approximations for tensors. Welling and We-
ber [2001] derive algorithms similar to the iterative Lee/Seung schemes for minimizing squared and KL-
Divergence losses (for tensors). Shashua and Hazan [2005] perform nonnegative tensor factorization by
repeated rank-1 approximations, while minimizing a squared loss objective function. They include a proof of
convergence of their procedure. Heiler and Schnörr [2006a] study sparseness in the context of NTF.

New methods for minimizing Csiszar’s divergence are described by Cichocki et al. [2006b,c]. NNMA
using quasi-Newton methods is considered by Zdunek and Cichocki [2006], who apply it to Amari’sα-
disparity [Amari, 1985]. Cichocki et al. [2006a] also derive other iterative methods for minimizing Amari’s
α-divergence.

Berry et al. [2006] provide a short survey on the algorithms and applications of NNMA though they
mainly focus on the Frobenius norm based NNMA problems.

6.2 Applications

We now enlist some of the numerous applications of NNMA that have appeared in the literature. We have
roughly categorized them for easier perusal. Some of the applications are divergent from a traditional machine
learning setting, but as the original PMF series of algorithms arose in such applications, we have decided to
retain references to them for completeness.
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6.2.1 Environmetrics and Chemometrics

Paatero et al. applied the ideas of PMF to environmental dataas early as 1991. For a list of references that
indicate some of these applications the reader is referred to the original PMF paper [Paatero and Tapper,
1994]. Later Paatero [1999] applied his multi-linear engine to analyze atmospheric emission and pollution
data. A paper discussing the application of orthogonal projection approach, alternating least squares and PMF
to analyze chromatographic spectral data (which is used to analyze mixtures of chemicals) was presented
by Frenich et al. [2000]. The results obtained by these threemethods are compared by evaluating measures
of dissimilarity between real and estimated spectra (matrix C). The authors concluded that in general PMF2
and alternating least squares had little differences in thequality of results, and that PMF2 is a good tool for
curve resolution analysis of chromatographic data. Qin et al. [2002] used PMF on a large aerosol database
measured in Hong Kong incorporating error estimates through theW matrix.

Paatero et al. [2002] discuss the resolution of the problem of rotational indeterminacy in the PMF (PMF2,
PMF3, ME) solutions using a specific two factor model as an example. The conclusions and recommenda-
tions of the paper are however, largely empirical in nature.Ramadan et al. [2003] compare PMF and the
ME on a data matrix of pollutant concentrations in Phoenix, and they conclude that the ME did not yield
significant modeling advantages over PMF2. Sajda et al. [2003] applied their constrained version of NNMA
to recovering constituent spectra in 3D chemical shift imaging. They compared their results to Bayesian
Spectral Decomposition [Ochs et al., 1999] and suggested that NNMA obtains similar results in orders of
magnitude lesser time.

6.2.2 Image Processing and Computer Graphics

In their seminal paper Lee and Seung [1999] demonstrated howone could obtain a parts based representation
for image data. That is, the sparse basis vectors (columns ofB) approximating faces roughly corresponded to
individual parts of faces such as lips, noses and eyes. Feng et al. [2002] used their local NNMA algorithm for
learning a spatially localized, parts-based representation for images. They compare their method to PCA and
NNMA to demonstrate the situations where a spatially localized approach has advantages (such as highly oc-
cluded faces during face recognition). Guillamet and Vitrià [2002c] suggest using the Earth Movers Distance
as a relevant metric for doing face recognition using NNMA. Other work on face and image processing appli-
cations of NNMA by these authors includes [Guillamet et al.,2001, Guillamet and Vitrìa, 2002a,b, Guillamet
et al., 2003]. Cooper and Foote [2002] applied NNMA to summarizing video and audio data.

Wild et al. [2003] described an application of NNMA to Airborne Visible/Infrared Imaging Spectrometer
data. They describe feature extraction using a random initialization of NNMA as well as via an initialization
based on a spherical kmeans clustering. Szatmáry et al. [2003] proposed hierarchical image representation
using NNMA augmented with sparse code shrinkage preprocessing and applied their methods to the FERET
image database. Other image processing work that uses NNMA includes [Kun et al., 2005, Lawrence et al.,
2004a,b, Zhang et al., 2004]. The recent article of Spratling [2006] evaluates the empirical performance of
some NNMA algorithms for recognizing elementary image features, especially in the presence of occlusion.

Nonnegative tensor factorization (NTF) was used by Wellingand Weber [2001] to the decomposition of
color images. Shashua and Hazan [Hazan et al., 2005, Shashuaand Hazan, 2005] applied NTF to low-rank
representation of images, obtaining good parts based representations.

6.2.3 Text analysis

Lee and Seung [1999] applied NNMA to text documents and highlighted the ability of NNMA to tackle
semantic issues such as synonymy. Owing to the low-rank approximations produced NNMA is a natural
candidate for a clustering procedure. Xu et al. [2003] described clustering experiments with NNMA, wherein
they compared NNMA against spectral methods, suggesting that the former can obtain higher accuracy. Xu

28



et al. [2003] used NNMA for clustering text data. Other related work on clustering and text analysis using
NNMA includes [Badea, 2005, Pauca et al., 2004b, Shahnaz et al., 2006]. An application to email surveillance
was discussed in [Berry and Browne, 2005],

6.2.4 Blind Source Separation & ICA

Some authors have considered blind source separation by using either nonnegative PCA [Oja and Plumbley,
2003] or ICA [Plumbley, 2002a,b]. Work that directly applies NNMA to blind source separation and ICA
includes Cichocki et al. [2006c], Li and Cichocki [2003]. Pauca et al. [2004a] use NNMA and ICA for
unmixing data.

6.2.5 Bioinformatics

Recently various data mining techniques have been applied to problems or data sets from biology forming a
significant part of the field of bioinformatics. NNMA has had its share of applications. Brunet et al. [2004]
apply NNMA to formmetagenesto infer biological information from cancer-related microarray data. They
use the KL-Divergence based NNMA algorithm and also provideheuristic methods for model selection.
Kim and Tidor [2003] apply NNMA for performing dimensionality reduction to aid in the identification of
subsystems from gene microarray data. They hinged their arguments on the ability to detect local features
from the data using NNMA. Other applications include lung cancer prognosis [Inamura et al., 2005], analysis
of lung cancer profiles [Fujiwara et al., 2005], sparse NNMA for cancer class discovery [Gao and Church,
2005], among others. Further references that apply NNMA or sparse variants thereof, to gene data are [Badea
and Tilivea, 2005, Pascual-Montano et al., 2003, Rao et al.,2004]. Chen et al. [2006] apply their NNMA
algorithms to the analysis of data related to Alzheimer’s disease.

6.2.6 Miscellaneous applications

NNMA has been applied to problems of a diverse nature. Thoughwe summarized some of the major applica-
tions above, there remain numerous other applications. We cannot hope to be exhaustive in our coverage and
must thereby satisfy ourselves by being indicative. Hoyer [2002] added sparsity constraints to NNMA and in
a later paper [Hoyer, 2003] modeled the receptive fields of the primary visual cortex in mammals. Hoyer’s
experiments on natural images revealed the usefulness of anNNMA based approach.

Behnke [2003] proposed a variant of NNMA called convolutional NNMA and applied it to a hierarchical
approach for extracting speech features. NNMA was combinedwith a Neural Abstraction Pyramid architec-
ture [Behnke, 1999] and recursively applied to to obtain a hierarchical decomposition of the features.

A somewhat offbeat application to the transcription of polyphonic music via NNMA was attempted
by Smaragdis and Brown [2003], who analyzed polyphonic music passages that comprised of notes that
exhibit a harmonically fixed spectral profile.

J-H. Ahn and Choi [2004], Lee et al. [2001] apply NNMA to the analysis of matrices obtained via dynamic
Positron Emission Tomography (PET). The ability to use a Poisson statistics based noise model for NNMA
for PET images is suggested to be one of the benefits of NNMA over traditional Gaussian based methods
since PET data comes from a process where the Poisson distribution makes more sense. This motivation
also lies behind using an appropriate Bregman divergence for an NNMA problem depending on the assumed
underlying nature of the noise distribution.

Other applications include object characterization [Piper et al., 2005], spectral data analysis [Pauca et al.,
2005], learning sound dictionaries [Asari, 2005], mining ratio-rules [Hu et al., 2004], and multiway clustering
[Badea, 2005, Shashua et al., 2006].
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7 Nonnegative Matrix Factorization

For completeness (and to ratify our selection of the name NNMA) we digress briefly to describe the nonnega-
tive matrix factorization problem, i.e., an NNMA problem where an exact factorization of the formA = BC

exists. We provide only a smattering of references to this problem, hopefully pointing the interested reader
in the correct direction.

Markham [1972] derived necessary and sufficient conditionsfor a nonnegative matrixA to have a factor-
ization of the formLU , whereL is nonnegative lower triangular andU is a nonnegative unit upper triangular
matrix. He restrictedA to the class of matrices that have nonzero principal subminors. This somewhat artifi-
cial restriction was lifted in a subsequent paper [Lau and Markham, 1978]. Related work discussing “correct”
decomposition into parts may be found in a more recent paper [Donoho and Stodden, 2003]. Markham has
also discussed factorizations of completely positive matrices, i.e., matrices all of whose minors are posi-
tive [Markham, 1971]. Later Cryer [1973] proved that a matrix A is strictly totally positive iffA = LU ,
whereL andU are triangular matrices all of whose non-trivial minors arestrictly positive. Other relevant
references include [Hannah and Laffey, 1983, Kaykobad, 1987, Li et al., 2004].

Gray and Wilson [1980] provided geometric proofs of the factthat forn ≤ 4, n×n nonnegative positive-
definite matrices can be factored inton× n nonnegative factors. They also show that their conditions are not
sufficient to guarantee the existence of such factorizations forn ≥ 5.

SupposeA is anm × n matrix of rankr ≤ min(m,n). Then,BC is called arank factorizationof A if
B andC arem× r, n× r full-rank matrices, andA = BC. Of course, for a nonnegative rank factorization
(NRF) bothB andC are nonnegative. Campbell and Poole [1981] discuss the existence of generalized matrix
inverses in terms of NRFs. They also present an algorithm that can compute a NRF of a nonnegative matrix
when a nonnegative 1-inverse exists5. Thomas [1974] gave a simple characterization when a NRF exists for
a given matrix. Wall [1979] discusses rank factorizations of positive operators. Jeter and Pye [1981] prove
that if A is weakly monotone [Berman and Plemmons, 1976] then it has a NRF if and only if it possesses an
r × r monomial submatrix. Chen [1984] describes whenA has “trivial” or “non-trivial” NRFs.
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