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Active Contour External Force Using Vector
Field Convolution for Image Segmentation
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Abstract—Snakes, or active contours, have been widely used in
image processing applications. Typical roadblocks to consistent
performance include limited capture range, noise sensitivity,
and poor convergence to concavities. This paper proposes a new
external force for active contours, called vector field convolution
(VFC), to address these problems. VFC is calculated by convolving
the edge map generated from the image with the user-defined
vector field kernel. We propose two structures for the magnitude
function of the vector field kernel, and we provide an analytical
method to estimate the parameter of the magnitude function.
Mixed VFC is introduced to alleviate the possible leakage problem
caused by choosing inappropriate parameters. We also demon-
strate that the standard external force and the gradient vector
flow (GVF) external force are special cases of VFC in certain
scenarios. Examples and comparisons with GVF are presented in
this paper to show the advantages of this innovation, including
superior noise robustness, reduced computational cost, and the
flexibility of tailoring the force field.

Index Terms—Active contours, deformable models, external
force, gradient vector flow (GVF), snakes, vector field convolution
(VFC).

1. INTRODUCTION

CTIVE models [1], or deformable models [2], have been

widely used for image segmentation [3]-[6] and objects
tracking [7]-[10]. Although there are several existing modified
version of active models [11]-[14], the most widely used active
models include active contours (also known as snakes or de-
formable contours) [1] and active surfaces (also known as de-
formable surfaces) [2]. The active models deform on the image
domain and capture a desired feature by minimizing an energy
functional subject to certain constraints. The energy functional
usually contains two terms: an internal energy, which constrains
the smoothness and tautness of the model, and an external en-
ergy, which attracts the elastic model to the features of interest
(FOI). We focus on parametric active contours [1] and discrete
active surfaces [4], [15] in this paper, though the result could be
generalized to other active models.
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An external force for snakes, called gradient vector flow
(GVF) [16] and its improved version [17], were introduced
to overcome two key difficulties of snakes. The snake using
the GVF field provides a large capture range and the ability
to capture concavities by diffusing the gradient vectors of an
edge map generated from the image. Although the GVF field
has been widely used and improved in various models [7], [9],
[18], there are some disadvantages, such as high computational
cost, noise sensitivity, parameter sensitivity, and the ambiguous
relationship between the capture range and parameters.

In this paper, we present a novel external force for active
models called vector field convolution (VFC) to address the
above problems. This external force is calculated by convolving
a vector field with the edge map derived from the image.
Active contours that use VFC external force are termed VFC
snakes. Like GVF snakes, instead of being formulated using
the standard energy minimization framework, VFC snakes are
constructed by way of a force balance condition.

The VFC snakes have not only a large capture range and
ability to capture concavities, but also better robustness to noise
and initialization, flexibility of tailoring the force field, and re-
duced computational cost [19]. Those advantages are demon-
strated by examples and comparisons with GVF snakes in Sec-
tion IV.

II. BACKGROUND

A. Parametric Active Contours

An active contour is represented by a parametric curve
v(s) = [z(s),y(s)]¥, s € [0, 1] that deforms through the image
domain to minimize the energy functional [1]

1 1 / 2 1 2
Eacz/o |:§(a|v ()12 + BIV"(8)]?) + Eext(v(s))]| ds
(1)

where « and ( are weighting parameters representing the degree
of the smoothness and tautness of the contour, respectively, and
v’(s) and v (s) are the first and second derivatives of v(s) with
respect to s. Foxt denotes the external energy, the value of which
is small at the FOI, such as edges [16]. Typical external energies
for a gray-level image I(x, y) for seeking the edges are given as

[1]
EQ)(z,y) = —|VI(z,y)[? )
EQ)(x,y) = —|V[Go(z,y) * I(z,9)]]? 3)

where G, (z,y) is a 2-D Gaussian function with standard devia-
tion o, * denotes linear convolution, and V denotes the gradient
operator. If the image is a binary image, where the FOI are ones
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and the background is zero-valued, the typical external energies
are given as [20]

E&)(x,y) = —1(z,y), )
or
EQ)(x,y) = —Go(z,y) * I(z,y). )

Although a large o may distort the FOI, a large o is often neces-
sary to suppress the noise and increase the capture range of the
active contours.

At the minima of (1), the contour must satisfy the Euler—La-
grange equation

av” — V""" —VEex(v) =0 6)
which can be considered as a force balance equation

fine (V) + fexe(v) = 0 (N
where fi,4(v) = av” — pv”” is the internal force
to constraint the contour smoothness and tautness, and
foxt(V) = —VE«(v) is the external force that attracts
the contour toward the FOL. To solve (6), v(s) is treated as a
function of time ¢. The solution is obtained when the steady
state solution of the following gradient descent equation:

ov(s,t)

o av’(s,t) — Bv"" (s,t) + fexe (V(s, 1)) (8)

is reached from an initial contour v(s,0).

A numerical solution to (8) on a discrete grid can be achieved
by solving a discretization of s iteratively using a finite differ-
ence approach [1], [20]. The continuous contour v(s), s € [0, 1]
is sampled and represented by a set of m discrete points v;, ¢ €
{0,1,..., M — 1}. These sample points are referred to as snake
elements, or snaxels. The update procedure for the entire con-
tour can be written in matrix form as

I+ 7A)VITL =V 4 rF? 9)
where I is the Mx M identity  matrix,
Vi=[vh,vi ... v, ] and Fl'= [foxi(VE), e (V). . .,
foxt (vl ;)] are M x 2 matrices representing the positions
and the external forces of snaxels at time ¢, respectively. A is
an M x M cyclic pentadiagonal matrix used to compute the
internal force. Note that, since (I + 7A) is a cyclic symmetric
pentadiagonal positive definite matrix, we could use either
Cholesky decomposition [21] or the algorithm proposed
in [22] to solve Vit efficiently.

B. External Forces

A number of research groups have generalized (7) via re-
placing the standard external force by the sum of other forces
generated from the image and/or the contour [16], [20], [23].
Instead of a standard energy minimization problem, the solu-
tion of the snake is formulated as a force balance equation. Dif-
ferent external forces have been proposed to improve the perfor-
mance of snakes. The external forces can be generally classified
as dynamic forces and static forces [16]. The dynamic forces
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are those that depend on the snake and, as a result, change as
the snake deforms. The static forces are those that are calcu-
lated from the image, and remain unchanged as the snake de-
forms. The static forces can be further classified based on the
force sources. Edge-based static forces are calculated from the
image edges, whereas region-based static forces are computed
using the region intensity and/or texture information [24].

The pressure force, also known as the inflation force, used
in balloon models is an useful dynamic force that pushes the
snake either outward (inflation) or inward (deflation) [6], [15],
[20], [23], [25]. Although the pressure force can avoid spurious
edges, the pressure force causes leakage problem when there
are significant gaps in the edges [16]. Another limitation of the
snake using a pressure force is that it must be initialized either
inside or outside the targeted object.

A desirable static force should have an important property: a
free particle placed in the force field should be able to move to
the FOI, such as edges. A free particle is defined as a single point
snake with no internal force. The major drawback of standard
external forces is that the force field has an initially zero mag-
nitude in the homogeneous regions of the image. Therefore, the
initial snake must be close to the FOI in order to converge. One
way to alleviate this problem is to increase the standard devia-
tion of the Gaussian filter used in the external energy, with the
cost of distorting the FOI. Several methods have been proposed
to guide the particles in homogeneous regions to the FOI. The
distance forces are proposed to solve this problem by making
the force point to the closest “edge point,” which significantly
increases the capture range of the FOI [20]. The edge points are
extracted from edge detector, such as the Canny edge detector
[26]. The distance forces are calculated by taking the negative
derivative of the distance transformation of the edge points [20].

The gradient vector flow (GVF) field is another edge-based
static force defined by the vector field fy¢(z,y) =
[ugvi(z,Y), vevi(x, y)] that minimizes the energy functional

Egvf = //[/f'(|vugvf|2 + |vavf|2)
IV fgor — VI Pldady  (10)

where f is an edge map derived from the image, and p is a pa-
rameter controlling the degree of smoothness of the GVF field.
The edge map f is typically the additive inverse of an external
energy such as that given in (2)—(5). The GVF field outper-
forms the distance forces by providing a large capture range and
the ability to capture boundary concavities [16]. The general-
ized GVF (GGVF) field, a generalization of the GVF formula-
tion, improves the ability to capture narrow boundary concavi-
ties [17]. Although the GVF field has these desired properties,
there are still several unsolved problems, such as the ambiguous
relationship between the capture range and the parameters, the
sensitivity to the parameters and noise, especially impulse noise,
and expensive computational cost.

The calculation of the external force can be broken down
to two independent steps: the formation of edge map from the
image, and the computation of the external force from the edge
map. Although the quality of the edge map is a critical factor in
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snake performance, this paper focuses on how to obtain a desir-
able external force field given an edge map, which is likely to be
corrupted by noise. We propose a new class of edge-based static
forces called vector field convolution (VFC) in this paper. This
new external force is calculated by convolving a vector field
kernel with the edge map [19]. The novel static external force
has not only a large capture range and ability to capture concav-
ities, but also reduced computational cost, superior robustness
to noise and initialization, flexibility of changing the force field.
We demonstrate these desirable properties by comparing VFC
with GVF in Section IV. (Note that we can always combine VFC
with a region-based static or dynamic force model.) The funda-
mental difference between the distance forces, the GVF forces
and the VFC forces lies in the method with which the homoge-
neous regions are filled.

III. VECTOR FIELD CONVOLUTION SNAKES

Vector field convolution snakes are active contours using the
VEC field as the external force. By replacing the standard ex-
ternal force foxt(v) = —VEe(v) in (8) by the VFC field
fyte(Vv), the iterative snakes solution is

ov(s,t)
ot

This equation can be solved numerically using identical finite
difference approach of standard snakes given in Section II-A.

=av’(s,t) — Bv""(s,t) + furc(v(s,t)).  (11)

A. Vector Field Convolution

A new class of static external forces called vector field con-
volution (VFC) is introduced in this section. We first define a
vector field kernel k(z,y) = [uk(z,y), vr(x,y)] in which all
the vectors point to the kernel origin

k(z,y) = m(z,y)n(z,y) (12)

where m(z,y) is the magnitude of the vector at (z,y) and
n(x,y) is the unit vector pointing to the kernel origin (0, 0)

n(z,y) = [—x/r,—y/7] (13)
except that n(0,0) = [0, 0] at the origin, where r = /22 + 3?2
is the distance from the origin. If the origin is considered as the
FOI, this vector field kernel has the desirable property that a free
particle placed in the field is able to move to the FOI, such as
edges. Note that the kernel origin is not the origin of the image
or the edge map.

The VFC external force fyte(z,y) = [uvic(x,y), vyic(z, y)]
is given by calculating the convolution of the vector field kernel
k(z,y) and the edge map f(x,y) generated from the image
I(z,y)

fvfc(‘T7y) = f(x,y) * k($7y)
= [f(l'y) * Uk(x,y)7f($7y) * Uk(x7y)]'
(14

Since the edge map is non-negative and larger near the image
edges, edges contribute more to the VFC than homogeneous re-
gions. Therefore, the VFC external force will attract free parti-
cles to the edges. If we represent the vector field kernel using a
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Fig. 1. Example discrete vector field kernel with R = 4.

complex-valued range, the VFC is just the filtering result of the
edge map, which does not depend on the origin of the kernel.

The VFC field highly depends on the magnitude of the vector
field kernel m(x,y). By considering the fact that the influence
from the FOI should decrease as the particles are further away,
the magnitude should be a decreasing positive function of dis-
tance from the origin. We propose two types of magnitude func-
tions, given as

my(z,y) = (r+¢e)77
ma(z,y) = exp(—1?/C?)

5)
(16)

where « and ( are positive parameters to control the decrease,
€ is a small positive constant to prevent division by zero at the
origin. m1 (z,y) is inspired by Newton’s law of universal grav-
itation in physics, which can be viewed as a special case with
v = 2 and € = 0. Then, edge pixels in the edge map may be
considered objects with mass proportional to the edge strength,
and the VFC field is the gravity field generated by all objects.
The influence of the FOI increases as -y decreases. In practice,
~v usually ranges from 1.5 to 3 for most images. mo(x,y) is a
Gaussian shape function, where { can be viewed as the standard
deviation. The influence of the FOI increases as ( increases.
Note that the external force proposed in [27] is a special case of
my (z,y) with v = 2. In general, the influence of the FOI should
be increased (decrease y or increase () as the signal-to-noise
ratio (SNR) is decreased.

B. Numerical Implementation

The continuous vector field kernel k(z,y) is approximated
by a discrete and finite matrix given as
K:{k(wvy);x7y:_R7"'7_170717"'7R} (17)
where R denotes the preferred kernel radius. An example dis-
crete vector field kernel is demonstrated in Fig. 1. To calculate
the VFC field, each component of the discrete vector field kernel
is convolved with the edge map. The discrete linear convolution
has been well studied and can be accelerated by the fast Fourier
transform (FFT) and the inverse fast Fourier transform (IFFT)
[28]. Furthermore, if we treat the vectors as complex numbers
instead of two separated real numbers, we could save the compu-
tational expense roughly by a factor of two without using a spe-
cialized FFT for real numbers [29]. In our implementation, the
external forces fey¢ are normalized as unit vectors to encourage
the contour evolves at a constant speed for an uniform time step
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\B
Fig.2. Using aline ‘AB to approximate the effective features of interest (FOI)
AB of (z,9).

7 [20]. The MATLAB implementation of VFC and examples
are available for download at http://viva.ee.virginia.edu/.

C. Parameter Estimation

To estimate the parameter - of the vector field kernel for com-
puting mq (w,%), we use a line AB to approximate the effective
FOI AB of (z,y), as shown in Fig. 2. The effective FOI of (x, y)
is defined as the FOI within R distance from (z, y). In order to
capture free particles placed at (z, y), the VFC field should sat-
isfy

foe(z,y) -d(z,y) >0 for[d(z,y)l|=d< R (18)
where d(z, y) is the vector pointing to the approximated effec-
tive FOI AB of (z,y), the magnitude of which is the distance
from the FOI. The VFC force can be decomposed into the force
fror(z, y) resultant from the FOI and the force f,,ise (%, y) from
the noise. The projection of these two forces in the d(«, y) direc-
tion leads to the scalar magnitudes fro1(z,y) and froise(Z, %),
respectively. The FOI force projection can be written as

frot(z,y) = Z fiR; " cosb;
i:R, <R
_ d
= > AR zZRTTY S
#:Ri<R i i:R:<R

19)

where f; is the magnitude of the ¢ th FOI, R; is distance from
(z,y) to the ¢ th FOI, 6; is the angle between d(z,y) and the
vector from (z, y) to the ¢ th FOL Equation (18) is satisfied if

R_W_ld Z fi + fnoise(‘T7y) > 0.

i:R;<R

(20)

If froise(Z,y) > 0, (20) is fulfilled because Zi:RKR fi > 0.In
the case that freise(Z,7) < 0,7 can be estimated using

v < —1+logg[—d Z i/ Fuoise(w, )] @D

i:R;<R
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(b)

(d)

\.

Fig. 3. (a) Synthetic edge map includes an impulse, a strong linear edge, and
a weak linear edge from left to right, respectively. Streamlines generated from
(b) the GVF field, the VFC fields using m (z, y) with (¢c) v = 1.7 and (d)y =
1.1, and (e) the mixed VFC field that mixes (d) with the standard external forces.
The streamlines converging to the strong edge are colored dark.

Hence, (21) provides an upper bound on y for a desired capture
range d. ) ;. p - fi can be estimated by the product of the av-
erage magnitude and the length of AB, whereas f,ise can be
estimated by the SNR of the image. This upper bound can be
applied for meaningful selection of -y in an application where
the desired capture range is known.

D. Mixed Vector Field Convolution

In the edge map generated from most images, the features
can be roughly categorized as strong edges, weak edges, and
noise. One major drawback of the GVF field is that it is very
sensitive to noise, especially impulse noise because the vector
diffusion process treats the gradients generated from different
features equally. To demonstrate this problem, Fig. 3(a) shows
a synthetic edge map, which includes an impulse noise, a strong
edge, and a weak edge from left to right, respectively. The mag-
nitude of the strong edge is equivalent to the magnitude of the
noise, and four times as much as the magnitude of the weak
edge. Streamlines, traces that exhibit where free particles move
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when placed in a force field, are used for illustrating the force
field [16]. The GVF field calculated from this edge map is illus-
trated in Fig. 3(b), where we can see that the strong edge and
the impulse noise share the area between them equally. A sim-
ilar scenario happens for the strong and weak edges. This phe-
nomenon is usually undesirable in practice because snakes are
designed to capture strong boundaries, which may or may not
be the FOI.

The VFC field overcomes this problem because strong edges
contribute more to the VFC field than weak edges and noise. As
shown in Fig. 3(c), the capture range of the strong edge is sig-
nificantly increased in the VFC field using magnitude function
my (z,y) withy = 1.7. The majority of areas between the noise
and the weak edge, and even half of the area on the left of the
noise belongs to the capture range of the strong edge. Although
the influence of the strong edge decreases as the particles are
further away, the accumulated force of the strong edge is still
able to overwhelm the force generated from the noise and the
weak edge even if the particles are close to them. On a discrete
grid, a possible extreme case is shown in Fig. 3(d). As the influ-
ence of the strong edge increases (because + is reduced to 1.1 in
this example), the right capture range of the noise is less than one
pixel. As aresult, the strong edge appears to dominate the whole
image in the resulting discrete VFC field. Although the elimina-
tion of noise is desirable, weak edges are sometimes preferred
to be preserved in practical applications, otherwise this might
cause the leakage problem. To solve this dilemma, we propose
to mix the VFC field with the standard external force, i.e., the
gradient of the edge map f. The mixed VFC field f,ix(x,y) is
defined as

[ Vf(z,y)
fmix(Ly) - {fvfc(zj)

IVf(z,y)ll = ¢
IVf(z,y)ll < ¢

where ¢ is a threshold that determines the edges to preserve,
which is similar to the smoothing parameter p in GVF.
Threshold selection methods for gray-level images, such as the
Otsu method [30], can be employed to determine the threshold
¢ by treating ||V f(z,y)|| as a gray-level image. The mixed
VEC field of Fig. 3(a) is shown in Fig. 3(e), where the weak
edge is preserved and the noise has a diminished impact on the
VEC field, which might be prevailed over by the internal force.
The mixed VFC field can be viewed as the standard external
force with homogeneous regions filled in by the VFC field.

(22)

E. Connections Between VFC and GVF

Note that there are two energy terms in the GVF energy func-
tional of (10), the first of which diffuses the initial vector field,
and the second term guarantees that the GVF field maintains
the initial vector flow field components given before diffusion.
In homogeneous regions of the image, the second term can be
ignored because the gradient of the edge map is zero [16]. The
numerical solution involves computing fs.¢(, y) as function of
time as follows:

fg"f(x7 Y, t + Af) - gvf($7 Y, f)
At
= u[Vugye(2,y,1), Vg (2, y, 1)) (23)
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where At is the time step for each iteration. Equation (23) is
simplified from (14) in [16] by ignoring the second term and
can be rewritten as

fove(z,y, t + At) = foue(z,y, t) + Atp
X [v2ugvf(x7 Y, t)? VQIUgi(x; Y, t)] (24)

The steady-state solution is achieved iteratively from the initial-
ization fyv¢(z,y,0) = V f(z,y). On a discrete grid, the Lapla-
cian operator can be approximated by

Vgt (z,y,t) = uget(x + 1,7,1)
+ ugvt(z — 1,y,t) + ugve(z,y + 1,1)
+ ugvi(z,y — 1,t) — dugyi(z, y, t)
V20gut(2,y, 1) = vgyt(z + 1,4, 1)
+ vgvt(z — 1,4,t) + vgve(z,y + 1, 1)
+ vgvi(z,y — 1,t) — dvgee(z, y, t).
(25)

Substituting (25) into (24) gives an iterative solution in the form
of the following convolution:

0 n 0
fovi(z,y, t+1) = | p 1—dp p| *fevi(z,y,t)
0 n 0

= Ay * fu(z,y,t). (26)

where we assume At = 1 without loss generality. According to
the GVF stability restriction, y must be not larger than 1/4 by
making Az = Ay = 1. We can expand (26) further, obtaining
fove(z,y. t) = Ay s Ay s fyup(z,y,0) = AL * Vf(x,y)
————
t

27

where ¢ is integer, AL denotes the sequential convolution of
t A,. The gradient of edge map f can be approximated by

Vf(:vy) =ky *f(xvy)

_ %[f(w+ Ly) — fz—1,9)

where
1 0.1
ky = 9 [170] [070] [_170] (29)
[07 _1]

Using a different discrete gradient approximation, such as the
Sobel operator, will result a slightly different kv . Therefore,
(27) can be rewritten as

fove(z,y.t) = (AL, xky) * f(z,y) = K, * f(z,y). (30)

By comparing (30) with the corresponding VFC (14), we can
see that the GVF field in homogeneous regions of the image is a
special case of VFC with kernel k’;. The standard external force,
i.e., the gradient of edge map f, is also a special case of VFC,
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Fig. 4. Streamlines generated that mimic the GVF field for the edge map of
Fig. 13 using mixed VFC filed with ¢ = /.

where the kernel is kv. This connection provides a possible av-
enue to acceleration of the GVF calculation. Furthermore, we
can mimic the GVF field using a mixed VFC field with ¢ = |/,
which is exemplified in Fig. 4. This example also demonstrated
the fact that the kernel is crucial to the resulting VFC field. The
essential difference between the GVF kernel kft and the kernels
employed with VFC is that the GVF kernel ka has much smaller
tails. A kernel with small tails tends to shrink the capture range
of strong edges in the corresponding VFC field, since the influ-
ence of the FOI decreases as the tail decreases.

IV. RESULTS AND ANALYSIS

We demonstrate several desirable properties of the VFC
snakes in the results. The GVF snakes have gained tremendous
popularity due to their ability to address a few difficulties ap-
peared in previous snakes. Therefore, we also compare the VFC
snakes results with the GVF snakes results. The magnitude
function used in those experiments is my(x,y) with v = 1.7.
We used o = 0.5, = 0.1 and 7 = 0.5 for all snakes in our
experiments.

A. Capture Range and Convergence to Concavity

We use the U-shape example, which is also shown in [16],
in our experiment. As shown in Fig. 5, both the VFC snake
and the GVF snake are capable of capturing the boundary con-
cavity from a far-off initialization, which demonstrates that both
snakes have a large capture range and concavity convergence
property. The two force fields are barely distinguishable from
each other in this example; especially the vectors within the con-
cavity in both force fields have a downward component to attract
the snakes to the concavity, shown in the right column of Fig. 5.

In practical implementation, the capture range of the GVF
field is influenced by two parameters: the smoothness parameter
1 and the number of iterations. Although we know that the cap-
ture range increases as p and the number of iterations increase,
there is no specified relationship available to the user. If the user
underestimates those parameters, the snakes may not converge
correctly. Therefore, those parameters are usually overestimated
in practice, which wastes computing time. In contrast, the cap-
ture range of the VFC field is determined by the capture range
R of the vector field kernel.

B. Initialization Sensitivity

As we see in Fig. 5, both the VFC snake and the GVF snake
can be initialized far away outside the object. Furthermore, in
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(a) (b) (c

Fig. 5. Top (bottom) row, from left to right: (a) convergence of the GVF (VFC)
snake, (b) streamlines generated from the GVF (VFC) field, and (c) magnified
GVF (VFC) field within the concavity.

Fig. 6. (Dashed lines) Initial curves and (solid lines) the VFC snake results are
superposed with the edge maps.

order to compare with the GVF snake initialization examples
given in [16], Fig. 6 shows a set of initialization placed across
and inside the boundary, with which the VFC snake converge
correctly. These examples demonstrate that the VFC snake
is insensitive to initialization and capable of converging into
boundary concavities.

C. Computational Cost

If we represent the vectors as complex numbers, the VFC
field can be calculated by convolving a complex matrix with the
edge map, which can be accelerated by way of the FFT and the
IFFT. Given an edge map of N x N pixels and a (2R + 1) x
(2R + 1) vector field kernel, both of which are zero-padded
to (N +2R) x (N + 2R) to avoid wrap-around effects, the
VEC field can be calculated in O((N + 2R)%log(N + 2R))
multiples, which is determined by the complexity of 2-D FFT
[31]. Typical values of R range from N/8 to N/2. The expense
of VFC depends mainly on the size of the vector field kernel,
whereas the computational cost of GVF depends by and large on
the number of diffusion iterations. The GVF field needs O(N?)
multiples within each iteration with a typical iteration number
of N [16]. Therefore, in general, the complexity of the VFC
field is O(N? log N), which compares favorably to the O(N?)
complexity of the GVF computation. Fig. 7 compares the com-
putational cost of VFC and GVF on different image size, from
which we can see that GVF requires 3 to 10 times more com-
putational expense than VFC. This experiment result was based
on a Dell Dimension 9150 PC with Pentium D 2.8-GHz CPU,
1-GB RAM and MATLAB 7.
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Fig. 8. (Solid lines) Impulse noise corrupted U-shape images overlapped
with the results using (a), (b) the GVF snakes with (dashed lines) edge map
f(z,y) = —G5(x, y) = I(«x, y) from different initializations, where G, (x, y)
is a 2-D Gaussian function with standard deviation o, and (c) the VFC snake
with edge map f(x,y) = —I(x,y). (a) RMSE = 3.20; (b) RMSE = 0.43;
(c)RMSE = 0.24.

D. Noise Sensitivity

To evaluate the noise sensitivity of GVF snakes and VFC
snakes, we add impulse noise to the U-shape image in Fig. 5.
Fig. 8 exhibits the noisy image superposed with initial snakes
plotted in dashed lines. The GVF snake in Fig. 8(a) fails to
converge to the U-shape because it is distracted by local im-
pulse noise. Although a more proximal initialization provides
an improved result in Fig. 8(b), the GVF snake does not capture
some boundary features precisely, such as the concavity and the
bottom right portion, which are distorted by the Gaussian filter.
Alternatively, nonlinear filters may be applied to the edge map
to eliminate noise, such as the feature weighted external energy
[32].

Conversely, the VFC snake converges to the desired features
without using a Gaussian (or similar) filter, as shown in Fig. 8(c).
Although the noise outnumbers the edges in this example, the
forces originated from the noise counteract each other and are
overwhelmed by the forces generated from the true edges. Note
that magnitude function my(x,y) with v = 1.7 is used in this
example. If v increases, the VFC snake may not converge be-
cause the influence of the edges is not strong enough to over-
come the noise. As mentioned before, a smaller -y is desired for
a higher noise level. To quantify the accuracy of the results, the
root mean square error (RMSE) of the snake result is calculated.
The error of a point on the snake is defined by the minimum dis-
tance between the point and U-shape in the noise-free image.
As we see in Fig. 8, the VFC snake yields the smallest RMSE.
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Fig. 9. (a) Noise-free image with (dashed line) the snake initialization. Ex-
ample noise corrupted images with (b) 10- and (c) 0-dB SNR. (a) SNR = oc;
(b) SNR = 10 dB; (c) SNR = 0 dB.

These results reveal the superior robustness to noise afforded by
the VFC field.

Furthermore, we generate 50 images with same SNR for 11
different SNR levels (550 images in total) by adding zero mean
Gaussian noise to a star-shaped grayscale image as shown in
Fig. 9(a). Two examples with 10- and 0-dB SNR are shown in
Fig. 9(b) and (c). GVF snakes and VFC snakes are deformed
from the same initialization as shown in Fig. 9(a), and the RMSE
is calculated after the snakes converge. The GVF snake result
obtained from the noise-free image is taken as the ground truth.
In our experiments, the edge map magnitude is normalized to
[0, 1]. After testing a range of p values, we note that the GVF
computation may be unstable for x> 0.25 and, therefore, use a
maximal p of 0.25. From Fig. 10, we can compare the perfor-
mance of GVF snakes and VFC snakes using different filtering
parameter values at different noise levels. By examining Fig. 10,
we observe some salient features of the performance. First, the
VFC snake with v = 2 provides lowest overall RMSE, which
is congruent with the claim that the VFC snakes are more ro-
bust to noise than GVF snakes. Second, using a larger standard
deviation o with the Gaussian filter does not necessarily im-
prove the snake performance because the edge map may be over
smoothed. For example, in Fig. 10(d), as the standard deviation
of the Gaussian filter increases from 1 to 3, the associated RMSE
values of the VFC snake with v = 2 increase as well for SNRs
larger than 1 dB. Third, reducing y from 2.0 to 1.7 does not im-
prove the performance of VFC snakes. The reason behind this
lack of improvement is that a smaller vy encourages the snake to
ignore noise as well as weak edges, which causes leakage prob-
lems similar to those encountered with pressure force snakes.

E. Application-Specific Implementation

The magnitude function can be modified to provide a tailored
VEC field. We can include an anisotropic term in the magni-
tude function to obtain a VFC field similar to the motion GVF
(MGVF) proposed in [7], which incorporates the motion direc-
tion inside the GVF energy to track cells. By initializing from
the snake result in the previous frame, the MGVF field pushes
the snake towards the motion direction in order to capture the
shifted cell. The modified anisotropic magnitude function is
given as
1=1,2

ma(x,y) = c(x,y)mi(z,y), (31

where c¢(z, y) is the anisotropic term. In this experiment, ¢(z, y)
is defined as

c(z,y) =1/[2 —d-n(z,y)] (32)
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Fig. 10. Average RMSE of GVF and VFC with different parameters at different SNR levels using (a) nonfiltered edge map, and Gaussian filtered edge maps with
(b) o = 1 and (c) ¢ = 3. (d) Comparison of five selected snakes. The RMSE at each level is averaged over 50 synthetic images generated by randomly adding

Gaussian noise to the noise-free image.

where d is a unit vector representing the motion direction, and
- denotes the vector dot product. If n(x, y) and d have the same
direction, ¢(x,y) is close to 1; if they have the opposite direc-
tion, ¢(x, y) is close to 1/3. Therefore, like the MG VF field, the
resulting VFC field is biased in the motion direction.

Fig. 11(a) shows a synthetic cell image with a displaced
initialization, which represents the previous snake result. The
GVF snake fails to capture the proper boundary and collapses
into a point because of the isotropic gradient vector diffusion
process, shown in Fig. 11(c). Whereas the VFC snake succeeds
by using anisotropic magnitude function with motion direction
d = [-1,0], as shown in Fig. 11(b). The resulting anisotropic
VEC force field is illustrated in Fig. 11(d), which is close to
the MGVF force [7]. Note that the “origin point” where the
streamlines emanate inside the ellipse in Fig. 11(b) is at the
center, whereas the same point has been moved to the right
in Fig. 11(d). This example demonstrates that VFC could be
easily modified and improved for different applications.

F. VFC Active Surfaces

VEC can be easily extended to data of higher dimensionality.
For n dimensions, the vector field kernel k(v) : R® — R™ is
defined as

-V

k(v) =m(v) - ™ (33)

(b)

Fig. 11. Ellipse represents a synthetic cell with (dashed lines) initial snakes
and (solid lines) results using (a) GVF and (b) VFC; streamlines generated from
(c) the GVF field and (d) the VFC field.

where m(v) R” — R is the magnitude function, and
(—=v)/(]|v]]) is the unit vector pointing to the origin. The pro-
posed magnitude functions (15)—(16) for 2-D can be rewritten
as follows for n-D

my(v) = (vl +)~7
ma(v) = exp(=||v|[*/¢?).

(34)
(35)
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Fig. 12. Isosurface rendering of a 3-D star-like object in (a) a noise-free image
and (b) an impulse noise corrupted image with —6 dB SNR. The deformation
of the VFC active surface using (a) as edge map after (c) 0, (d) 20, and (e) 40
iterations. The deformation of the VFC active surface using (b) as edge map
without filtering after (c) 0, (f) 20, (g) 40, and (h) 60 iterations.

Given the edge map f(v) : R” — R generated from the n-D
image, the VFC field f,¢.(v) : R® — R™ is given by calculating
the convolution of each component of k(v) and the edge map

fore(v) = f(v) x k(v)
= (V) *ka(v), .o, (V) R (V)]

Examples of VFC active surfaces, a 3-D extension of VFC
snakes, are illustrated in Fig. 12. We generated a 3-D star-like
object in a 64 voxel image, which is shown in Fig. 12(a) using
isosurface algorithm [33]. An active surface is initialized as a
sphere far away outside the object, the deformation of which
is shown in Fig. 12(c)—(e). The converged surface, as shown in
Fig. 12(e), is smoother than the isosurface rendering as a result
of the internal force influence in the active surface. Furthermore,
impulse noise is randomly added to the image, which results
—6 dB SNR, i.e., the noise is twice as much as the edges. The
noise corrupted image, shown in Fig. 12(b) using isosurface al-
gorithm, is used as the edge map for the VFC calculation without
any filtering. With the same initialization, the VFC active sur-
face overcomes the heavy noise and converges to the boundary
correctly, as revealed in Fig. 12(c) and (f)—(h). By comparing
Fig. 12(e) with Fig. 12(h), we can see that the upper left arm is
slightly distorted because of the presence of the noise. The 3-D
VEC field used in these examples is calculated using (34) with
~v = 3. These examples demonstrate the feasibility of extending
the VFC field to higher dimensions and the outstanding robust-
ness to noise of VFC.

(36)

G. Real Images

We apply the VFC snakes to noisy magnetic resonance (MR)
images of human ankles. External energies given by (2) and
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(b)

Fig. 13. MR image of a human ankle with (dashed lines) initial snakes and
(solid lines) results using (a) GVF and (b) VFC; streamlines generated from
(c) the GVF field and (d) the VFC field.

(b)

Fig. 14. Ultrasound image of a mouse heart with (dashed lines) initial snakes
and (solid lines) results using (a) GVF, (b) DDGVF, and (c) VFC field.
(a)RMSE = 29.20, (b) RMSE = 5.26, and (c) RMSE = 2.68.

(3) can be used to calculate the edge map of the gray-level
image. The Gaussian filter is employed to suppress the noise,
whereas other techniques such as anisotropic diffusion [34],
[35], morphological filtering, and the one proposed in [32]
could also be applied to enhance the edge map. As shown in
Fig. 14(a), the GVF snake becomes stuck in the interior and
does not converge to boundary. The explanation can be found
in Fig. 14(c)—the GVF snake tends to move in the vertical
direction because there is little horizontal force component in
the center area. In contrast, the VFC snake converges to the
boundary concavities on the lower right precisely from the
same initialization at the center, shown in Fig. 14(b). We also
note that the GVF snake converges if the initialization is closer
to the boundary. This anecdotal case exemplifies the robustness
to initialization afforded by the VFC approach.

GVF snakes and VFC snakes are compared in an application
of segmenting ultrasound images of a mouse heart (see Fig. 15).
Furthermore, the dynamic directional GVF (DDGVF) snake
[36], which employs a dynamic external force improved from
the directional GVF [37], is used in this comparison. Speckle
reducing anisotropic diffusion (SRAD) is employed to suppress
the noise [35]. The VFC snake captures the endocardial border
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(a) (b) (©)

Fig. 15. (a), (b) Two views of VFC active surfaces segmentation result of the
pericardium border (red) and endocardial border (green) deformed from (c) the
initial surfaces. Two slices of the MR image of human heart is shown for refer-
ence.

accurately in 50 iterations, whereas the GVF snake is distracted
by clutter and yields a significantly higher RMSE. Although
the DDGVF snake improves the segmentation accuracy from
the GVF snake with the cost of higher computational expense,
the VFC snake has superior performance as demonstrated qual-
itatively in Fig. 15 and quantitatively by the lower RMSE. The
RMSE is calculated by comparing to the manual segmentation
by an expert.

We also demonstrate the segmentation result for a human
heart 3-D MR image using VFC active surfaces in Fig. 13. The
VEC active surfaces converge in 60 iterations and capture both
borders accurately. A rotating 3-D movie showing the surfaces
converging is available at http://viva.ee.virginia.edu/.

V. CONCLUSION

In this paper, a novel static external force for active contours,
called the vector field convolution (VFC), has been introduced.
The VFC field is calculated by convolving a vector field kernel
with the edge map generated from the image. We proposed two
classes of magnitude functions for the vector field kernel. We
showed that the GVF field in homogeneous regions of the image
is a special case of a VFC field. Several promising properties of
VEFC have been demonstrated by extensive examples. We have
shown that the VFC snakes have large capture ranges, and con-
verge to boundary concavities, similar to the GVF snakes. Ad-
ditionally, the VFC snakes are less computationally expensive,
more robust to noise and initialization than GVF snakes. VFC
can also be easily customized and enhanced for different appli-
cations.

One possible drawback of VFC is that the weak edges might
be overwhelmed by the strong edges along with the noise. We
proposed the mixed VFC in this paper to alleviate this problem.
Another solution is to scale the edge map that the weak edges
have similar associated magnitude to that of the strong edges.
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